WorldWideScience

Sample records for activates plant immunity

  1. The activation and suppression of plant innate immunity by parasitic nematodes.

    Science.gov (United States)

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism. PMID:24906126

  2. The Activation and Suppression of Plant Innate Immunity by Parasitic Nematodes

    NARCIS (Netherlands)

    Goverse, A.; Smant, G.

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions r

  3. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-04-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  4. Plant innate immunity multicomponent model

    Directory of Open Access Journals (Sweden)

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  5. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  6. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Science.gov (United States)

    Hemetsberger, Christoph; Herrberger, Christian; Zechmann, Bernd; Hillmer, Morten; Doehlemann, Gunther

    2012-01-01

    The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  7. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. PMID:27264335

  8. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus.

    Science.gov (United States)

    Immanuel, G; Uma, R P; Iyapparaj, P; Citarasu, T; Peter, S M Punitha; Babu, M Michael; Palavesam, A

    2009-05-01

    The effects of supplementing diets with acetone extract (1% w/w) from four medicinal plants (Bermuda grass Cynodon dactylon, H(1), beal Aegle marmelos, H(2), winter cherry Withania somnifera, H(3) and ginger Zingiber officinale, H(4)) on growth, the non-specific immune response and ability to resist pathogen infection in tilapia Oreochromis mossambicus were assessed. In addition, the antimicrobial properties of the extract were assessed against Vibrio alginolyticus, Vibrioparahaemolyticus, Vibrio mimicus, Vibrio campbelli, Vibrio vulnificus, Vibrio harveyi and Photobacterium damselae. Oreochromis mossambicus were fed 5% of their body mass per day for 45 days, and those fed the experimental diets showed a greater increase in mass (111-139%) over the 45 days compared to those that received the control diet (98%). The specific growth rate of O. mossambicus fed the four diets was also significantly greater (1.66-1.93%) than control (1.52%) diet-fed fish. The blood plasma chemistry analysis revealed that protein, albumin, globulin, cholesterol, glucose and triglyceride levels of experimental fish were significantly higher than that of control fish. Packed cell volume of the blood samples of experimental diet-fed fish was also significantly higher (34.16-37.95%) than control fish (33.0%). Leucocrit value, phagocytic index and lysozyme activity were enhanced in fish fed the plant extract-supplemented diets. The acetone extract of the plants inhibited growth of Vibrio spp. and P. damselae with extracts from W. somnifera showing maximum growth inhibition. A challenge test with V. vulnificus showed 100% mortality in O. mossambicus fed the control diet by day 15, whereas the fish fed the experimental diets registered only 63-80% mortality at the end of challenge experiment (30 days). The cumulative mortality index for the control group was 12,000, which was equated to 1.0% mortality, and accordingly, the lowest mortality of 0.35% was registered in H(4)-diet-fed group. PMID

  9. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect herbivo

  10. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Science.gov (United States)

    García, Ana V; Blanvillain-Baufumé, Servane; Huibers, Robin P; Wiermer, Marcel; Li, Guangyong; Gobbato, Enrico; Rietz, Steffen; Parker, Jane E

    2010-07-01

    An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  11. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  12. Ubiquitination of plant immune receptors.

    Science.gov (United States)

    Zhou, Jinggeng; He, Ping; Shan, Libo

    2014-01-01

    Ubiquitin is a highly conserved regulatory protein consisting of 76 amino acids and ubiquitously expressed in all eukaryotic cells. The reversible ubiquitin conjugation to a wide variety of target proteins, a process known as ubiquitination or ubiquitylation, serves as one of the most important and prevalent posttranslational modifications to regulate the myriad actions of protein cellular functions, including protein degradation, vesicle trafficking, and subcellular localization. Protein ubiquitination is an ATP-dependent stepwise covalent attachment of one or more ubiquitin molecules to target proteins mediated by a hierarchical enzymatic cascade consisting of an E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase. The plant plasma membrane resident receptor-like kinase Flagellin Sensing 2 (FLS2) recognizes bacterial flagellin and initiates innate immune signaling to defend against pathogen attacks. We have recently shown that two plant U-box E3 ubiquitin ligases PUB12 and PUB13 directly ubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, which in turn attenuates FLS2 signaling to prevent excessive or prolonged activation of immune responses. Here, we use FLS2 as an example to describe a protocol for detection of protein ubiquitination in plant cells in vivo and in test tubes in vitro. In addition, we elaborate the approach to identify different types of ubiquitin linkages by using various lysine mutants of ubiquitin. The various in vivo and in vitro ubiquitination assays will provide researchers with the tools to address how ubiquitination regulates diverse cellular functions of target proteins. PMID:25117287

  13. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  14. Diuretics prime plant immunity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  15. Protein trafficking during plant innate immunity

    Institute of Scientific and Technical Information of China (English)

    Wen-Ming Wang; Peng-Qiang Liu; Yong-Ju Xu; Shunyuan Xiao

    2016-01-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell’s protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major compo-nents of the trafficking machineries engaged.

  16. Protein trafficking during plant innate immunity.

    Science.gov (United States)

    Wang, Wen-Ming; Liu, Peng-Qiang; Xu, Yong-Ju; Xiao, Shunyuan

    2016-04-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged. PMID:26345282

  17. Vesicle trafficking in plant immune responses.

    Science.gov (United States)

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  18. Immune stimulatory activity of BRP-4, an acidic polysaccharide from an edible plant, Basella rubra L.

    Institute of Scientific and Technical Information of China (English)

    Hye-Jin Park

    2014-01-01

    Objective: To evaluated the immunomodulatory effect of BRP-4, an acidic polysaccharide from Basella rubra (B. rubra) L on the macrophage activity. Methods: Phagocytic activity was determined by the ingestion of Latex Beads-Rabbit IgG-FITC using the fluorescent microscopy and flow cytometry analysis and nitric oxide production was measured using Griess reaction assay. Results: An enhanced production of NO was observed at 10 and 100μg/mL of BRP-4. The phagocytic activity of macrophage was enhanced in BRP-4 treated RAW264.7 cells. BRP-4 combined with concanavalin A (Con A) provided obvious promotion and strengthening of the proliferation of the splenocytes. Conclusions: BRP-4, polysaccharide isolated from B. rubra, is suggested to activate macrophage function and stimulate splenocyte proliferation. The strong immunomodulatory activity of BRP-4 confirmed its good potential as an immunotherapeutic adjuvant.

  19. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  20. Networking by small-molecule hormones in plant immunity

    OpenAIRE

    Pieterse, Corné M. J.; Leon-Reyes, Antonio; Van der Ent, Sjoerd; van Wees, Saskia C.M.

    2009-01-01

    Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provid...

  1. Ready to fire: Secretion in plant immunity.

    Science.gov (United States)

    Sup Yun, Hye; Panstruga, Ralph; Schulze-Lefert, Paul; Kwon, Chian

    2008-07-01

    Effective recognition of pathogens and rapid execution of immune responses are essential for the survival of living organisms. Cell-autonomous immune responses of animal and plant cells rely on pattern recognition receptors that can distinguish self from non-self structures and that are able to activate a molecular execution machinery that ultimately terminates most pathogen attacks. Reminiscent of the situation in mammalian T cells, accumulating evidence points to a key role of vesicle trafficking and exocytosis in plant innate immunity. In this context, our recent finding that ternary soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complexes comprising PEN1, SNAP33 and VAMP721/722 function at pathogen entry sites is instrumental in understanding the execution of plant immune responses at the cell periphery. Our study further revealed unexpected overlapping functions of the same SNARE complexes in disease resistance and development. Here, we discuss the potential identity of cargo delivered through the PEN1-SNAP33-VAMP721/722-dependent secretory pathway and the necessity for a tight regulation of SNARE complex formation to avoid unintentional release of toxic load. PMID:19704501

  2. Regulation of plant immune receptors by ubiquitination

    Directory of Open Access Journals (Sweden)

    Giulia eFurlan

    2012-10-01

    Full Text Available From pathogen perception and the activation of signal transduction cascades to the deployment of defense responses, protein ubiquitination plays a key role in the modulation of plant immunity. Ubiquitination is mediated by three enzymes, of which the E3 ubiquitin ligases, the substrate determinants, have been the major focus of attention. Accumulating evidence suggests that ubiquitination modulates signaling mediated by pattern recognition receptors (PRRs and is important for the accumulation of nucleotide-binding leucine-rich repeat (NB-LRR type intracellular immune sensors. Recent studies also indicate that ubiquitination directs vesicle trafficking, a function that has been clearly established for immune signaling in animals. In this mini review, we discuss these and other recent advances and highlight important open questions.

  3. Regulation of plant immune receptors by ubiquitination.

    Science.gov (United States)

    Furlan, Giulia; Klinkenberg, Jörn; Trujillo, Marco

    2012-01-01

    From pathogen perception and the activation of signal transduction cascades to the deployment of defense responses, protein ubiquitination plays a key role in the modulation of plant immunity. Ubiquitination is mediated by three enzymes, of which the E3 ubiquitin ligases, the substrate determinants, have been the major focus of attention. Accumulating evidence suggests that ubiquitination modulates signaling mediated by pattern recognition receptors and is important for the accumulation of nucleotide-binding leucine-rich repeat type intracellular immune sensors. Recent studies also indicate that ubiquitination directs vesicle trafficking, a function that has been clearly established for immune signaling in animals. In this mini review, we discuss these and other recent advances and highlight important open questions. PMID:23109936

  4. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  5. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Science.gov (United States)

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  6. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  7. Nuclear Trafficking During Plant Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Gitta Coaker

    2008-01-01

    Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.

  8. Plant lectin, ATF1011, on the tumor cell surface augments tumor-specific immunity through activation of T cells specific for the lectin.

    Science.gov (United States)

    Yoshimoto, R; Kondoh, N; Isawa, M; Hamuro, J

    1987-01-01

    The possibility that a plant lectin as a carrier protein would specifically activate T cells, resulting in the augmentation of antitumor immunity was investigated. ATF1011, a nonmitogenic lectin for T cells purified from Aloe arborescens Mill, bound equally to normal and tumor cells. ATF1011 binding on the MM102 tumor cell surfaces augmented anti-trinitrophenyl (TNP) antibody production of murine splenocytes when the mice were primarily immunized with TNP-conjugated MM102 tumor cells. The alloreactive cytotoxic T cell response was also augmented by allostimulator cells binding ATF1011 on the cell surfaces. These augmented responses may be assumed to be mediated by the activation of helper T cells recognizing ATF1011 as a carrier protein. Killer T cells were induced against ATF1011 antigen in the H-2 restricted manner using syngeneic stimulator cells bearing ATF1011 on the cell surfaces. When this lectin was administered intralesionally into the tumors, induction of cytotoxic effector cells was demonstrated. These results suggest that intralesionally administered ATF1011 binds to the tumor cell membrane and activates T cells specific for this carrier lectin in situ, which results in the augmented induction of systemic antitumor immunity. PMID:3496156

  9. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. PMID:26475190

  10. VIP1: linking Agrobacterium-mediated transformation to plant immunity?

    Science.gov (United States)

    Liu, Yukun; Kong, Xiangpei; Pan, Jiaowen; Li, Dequan

    2010-08-01

    Agrobacterium tumefaciens is the most efficient vehicle used today for the production of transgenic plants and plays an essential role in basic scientific research and in agricultural biotechnology. Previously, plant VirE2-interacting protein 1 (VIP1) was shown to play a role in Agrobacterium-mediated transformation. Recent reports demonstrate that VIP1, as one of the bZIP transcription factors, is also involved in plant immunity responses. Agrobacterium is able to activate and abuse VIP1 for transformation. These findings highlight Agrobacterium-host interaction and unveil how Agrobacterium hijacks host cellular mechanism for its own benefit. This review focuses on the roles played by VIP1 in Agrobacterium-mediated transformation and plant immunity. PMID:20473505

  11. VIP1: linking Agrobacterium-mediated transformation to plant immunity?

    Science.gov (United States)

    Liu, Yukun; Kong, Xiangpei; Pan, Jiaowen; Li, Dequan

    2010-08-01

    Agrobacterium tumefaciens is the most efficient vehicle used today for the production of transgenic plants and plays an essential role in basic scientific research and in agricultural biotechnology. Previously, plant VirE2-interacting protein 1 (VIP1) was shown to play a role in Agrobacterium-mediated transformation. Recent reports demonstrate that VIP1, as one of the bZIP transcription factors, is also involved in plant immunity responses. Agrobacterium is able to activate and abuse VIP1 for transformation. These findings highlight Agrobacterium-host interaction and unveil how Agrobacterium hijacks host cellular mechanism for its own benefit. This review focuses on the roles played by VIP1 in Agrobacterium-mediated transformation and plant immunity.

  12. Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity.

    Directory of Open Access Journals (Sweden)

    Johannes Mathieu

    2014-07-01

    Full Text Available The tomato--Pseudomonas syringae pv. tomato (Pst--pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI. AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450 in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.

  13. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    NARCIS (Netherlands)

    Lozano Torres, J.L.; Wilbers, R.H.P.; Warmerdam, S.; Finkers-Tomczak, A.M.; Diaz Granados Muñoz, A.; Schaik, van C.C.; Helder, J.; Bakker, J.; Goverse, A.; Schots, A.; Smant, G.

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of t

  14. Pathogenicity of and plant immunity to soft rot pectobacteria

    Directory of Open Access Journals (Sweden)

    Pär Roland Davidsson

    2013-06-01

    Full Text Available Soft rot Pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemibiotrophs such as Pseudomonas, type three secretion systems (T3SS and T3 effectors do not appear central to pathogenesis of Pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range Pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA and JA/ET mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs or recognition of modified-self such as damage-associated molecular patterns (DAMPs and result in enhancement of basal immunity (Pattern-triggered immunity, PTI. In particular plant cell-wall fragments released by the action of the degradative enzymes secreted by Pectobacteria are major players in enhanced immunity towards these pathogens. Most notably bacterial pectin degrading enzymes release oligogalacturonide (OG fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as

  15. Plant innate immunity: An updated insight into defense mechanism

    Indian Academy of Sciences (India)

    Mehanathan Muthamilarasan; Manoj Prasad

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  16. Innate immune activation in intestinal homeostasis.

    Science.gov (United States)

    Harrison, Oliver J; Maloy, Kevin J

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation. PMID:21912101

  17. Pseudomonas evades immune recognition of flagellin in both mammals and plants

    OpenAIRE

    Bart W Bardoel; Sjoerd van der Ent; Pel, Michiel J. C.; Jan Tommassen; Pieterse, Corné M. J.; van Kessel, Kok P. M.; van Strijp, Jos A. G.

    2011-01-01

    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteri...

  18. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined...... by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  19. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  20. Receptor-Like Kinases in Plant Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Ying Wu; Jian-Min Zhou

    2013-01-01

    Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens.

  1. Hemipteran and dipteran pests:Effectors and plant host immune regulators

    Institute of Scientific and Technical Information of China (English)

    Isgouhi Kaloshian; Linda L Walling

    2016-01-01

    Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant’s defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.

  2. Cardiac allograft immune activation: current perspectives

    OpenAIRE

    Chang D; Kobashigawa J

    2014-01-01

    David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibod...

  3. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Directory of Open Access Journals (Sweden)

    Bo eDing

    2015-09-01

    Full Text Available To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  4. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  5. Pivoting the Plant Immune System from Dissection to Deployment

    OpenAIRE

    Jeffery L Dangl; Horvath, Diana M.; Staskawicz, Brian J.

    2013-01-01

    Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease...

  6. Activation of Plant Immune Responses by a Gain-of-Function Mutation in an Atypical Receptor-Like Kinase1[C][W][OA

    Science.gov (United States)

    Bi, Dongling; Cheng, Yu Ti; Li, Xin; Zhang, Yuelin

    2010-01-01

    Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive1 (snc1) contains a gain-of-function mutation in a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat Resistance (R) protein and it has been a useful tool for dissecting R-protein-mediated immunity. Here we report the identification and characterization of snc4-1D, a semidominant mutant with snc1-like phenotypes. snc4-1D constitutively expresses defense marker genes PR1, PR2, and PDF1.2, and displays enhanced pathogen resistance. Map-based cloning of SNC4 revealed that it encodes an atypical receptor-like kinase with two predicted extracellular glycerophosphoryl diester phosphodiesterase domains. The snc4-1D mutation changes an alanine to threonine in the predicted cytoplasmic kinase domain. Wild-type plants transformed with the mutant snc4-1D gene displayed similar phenotypes as snc4-1D, suggesting that the mutation is a gain-of-function mutation. Epistasis analysis showed that NON-RACE-SPECIFIC DISEASE RESISTANCE1 is required for the snc4-1D mutant phenotypes. In addition, the snc4-1D mutant phenotypes are partially suppressed by knocking out MAP KINASE SUBSTRATE1, a positive defense regulator associated with MAP KINASE4. Furthermore, both the morphology and constitutive pathogen resistance of snc4-1D are partially suppressed by blocking jasmonic acid synthesis, suggesting that jasmonic acid plays an important role in snc4-1D-mediated resistance. Identification of snc4-1D provides us a unique genetic system for analyzing the signal transduction pathways downstream of receptor-like kinases. PMID:20508139

  7. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  8. ATG7 contributes to plant basal immunity towards fungal infection

    OpenAIRE

    Heike D. Lenz; Vierstra, Richard D.; Nürnberger, Thorsten; Gust, Andrea A.

    2011-01-01

    Autophagy has an important function in cellular homeostasis. In recent years autophagy has been implicated in plant basal immunity and assigned negative (“anti-death”) and positive (“pro-death”) regulatory functions in controlling cell death programs that establish sufficient immunity to microbial infection. We recently showed that Arabidopsis mutants lacking the autophagy-associated (ATG) genes ATG5, ATG10 and ATG18a are compromised in their resistance towards infection with necrotrophic fun...

  9. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...... and their molecular components in plants are reviewed here....

  10. Stem-Cell-Triggered Immunity Safeguards Cytokinin Enriched Plant Shoot Apexes from Pathogen Infection

    Directory of Open Access Journals (Sweden)

    Thomas eDandekar

    2014-10-01

    Full Text Available Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide is perceived by FLS2 (FLAGELLIN SENSING 2 receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while cytokinins boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between cytokinin signaling and CLV3p mediated immune response in the SAM.

  11. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine.

    Science.gov (United States)

    Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh

    2014-04-20

    In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax.

  12. Boosting plant immunity with CRISPR/Cas

    OpenAIRE

    Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2015-01-01

    CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method.See related Research: http://www.genomebiology.com/2015/16/1/238.

  13. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  14. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Plants perceive several general elicitors from both host and non-host pathogens. These elicitors are essential structures for pathogen survival and are for that reason conserved among pathogens. These conserved microbe-specific molecules, also referred to as Microbe or Pathogen Associated Molecular...... (SodM) are known to act as MAMPs and induce immune responses in plants or plant cells (Gómez-Gómez and Boller, 2000; Erbs and Newman, 2003; Felix and Boller, 2003; Kunze et al., 2004; Watt et al., 2006, Gust et al., 2007; Erbs et al., unpublished). The corresponding PRRs for some of these bacterial...... Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  15. Salicylic Acid and its Function in Plant Immunity

    Institute of Scientific and Technical Information of China (English)

    Chuanfu An; Zhonglin Mou

    2011-01-01

    The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network.Characterization of a number of genes functioning in SA biosynthesis,conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid,cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.

  16. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  17. Does plant immunity have a central role in the legume rhizobium symbiosis?

    Directory of Open Access Journals (Sweden)

    Katalin eToth

    2015-06-01

    Full Text Available Plants are exposed to many different microbes in their habitat. These microbes may be benign or pathogenic, but in some cases they are beneficial. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic microorganisms, which raises the question as to how roots can distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens. Plants possess an innate immunity system that can recognize pathogens, through an arsenal of protein receptors. These receptors include receptor-like kinases (RLK and receptor-like proteins (RLP located at the plasma membrane, as well as intracellular receptors (so called NBS-LRR proteins or R proteins that recognize molecules released by microbes into the plant cell. The key rhizobial, symbiotic signaling molecule (called Nod factor is perceived by the host legume plant using LysM-domain containing RLKs. Perception of the symbiotic Nod factor triggers signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis (RNS. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immunity response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.

  18. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    NARCIS (Netherlands)

    A.M. Abd-el-Haliem; J.H. Vossen; A. van Zeijl; S. Dezhsetan; C. Testerink; M.F. Seidl; M. Beck; J. Strutt; S. Robatzek; M.H.A.J. Joosten

    2016-01-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs bel

  19. Pivoting the plant immune system from dissection to deployment.

    Science.gov (United States)

    Dangl, Jeffery L; Horvath, Diana M; Staskawicz, Brian J

    2013-08-16

    Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease resistance beyond the limits imposed by conventional breeding and in a manner that will replace costly and unsustainable chemical controls. PMID:23950531

  20. Rhodiola plants: Chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2015-09-01

    Full Text Available Rhodiola is a genus of medicinal plants that originated in Asia and Europe and are used traditionally as adaptogens, antidepressants, and anti-inflammatory remedies. Rhodiola plants are rich in polyphenols, and salidroside and tyrosol are the primary bioactive marker compounds in the standardized extracts of Rhodiola rosea. This review article summarizes the bioactivities, including adaptogenic, antifatigue, antidepressant, antioxidant, anti-inflammatory, antinoception, and anticancer activities, and the modulation of immune function of Rhodiola plants and its two constituents, as well as their potential to prevent cardiovascular, neuronal, liver, and skin disorders.

  1. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    Science.gov (United States)

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-01

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions. PMID:27301792

  2. Active immunization against renin in normotensive marmoset

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J.B.; Guettier, C.; Philippe, M.; Galen, F.X.; Corvol, P.; Menard, J.

    1987-06-01

    Primate renins (human and monkey) are very similar. We used pure human renin to immunize marmosets (Callithrix jacchus) and thereby produce a chronic blockade of the renin-angiotensinogen reaction. After a control period of 2 months, five male marmosets, on their usual sodium-poor diet, were immunized against pure human renin by three subcutneous injections of 30 ..mu..g each, with complete and then incomplete Freund's adjuvant. Three marmosets were injected with adjuvant only and served as controls. Blood sampling and blood pressure measurements were performed weekly. After the third injection, the five marmosets immunized against renin developed a high titer of renin antibodies (50% binding of /sup 125/I-labeled human renin at a dilution of greater than or equal to 1:10,000). The antibodies inhibited the enzymatic activity of both marmoset and human renins. At the same time, systolic blood pressure decreased significantly. Plasma renin enzyme activity was undetectable in the animals. Plasma aldosterone decreased significantly. After 1-4 months with low blood pressure, a normal urinary output, and a normal plasma creatinine, the five marmosets became sick and died within one month. At autopsy an immunological renal disease, characterize by the presence of immunoglobulin and macrophage infiltration colocalized with renin, was found. No immunoglobulin was detectable in extrarenal vessels or in other organs. These experiments demonstrate that, in this primate, a chronic blockade of the renin-angiotensin system can be achieved by active immunization against homologous renin, but this blockade is associated with the development of an autoimmune disease localized in the kidney.

  3. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    Science.gov (United States)

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-01

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors.

  4. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    Science.gov (United States)

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-01

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors. PMID:22521848

  5. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants

    OpenAIRE

    Porcel, Rosa; Zamarreño, Ángel M.; García-Mina, José M.; AROCA, RICARDO

    2014-01-01

    Abstract Background Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca ...

  6. Plant immunity: the EDS1 regulatory node.

    Science.gov (United States)

    Wiermer, Marcel; Feys, Bart J; Parker, Jane E

    2005-08-01

    ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4), constitute a regulatory hub that is essential for basal resistance to invasive biotrophic and hemi-biotrophic pathogens. EDS1 and PAD4 are also recruited by Toll-Interleukin-1 receptor (TIR)-type nucleotide binding-leucine rich repeat (NB-LRR) proteins to signal isolate-specific pathogen recognition. Recent work points to a fundamental role of EDS1 and PAD4 in transducing redox signals in response to certain biotic and abiotic stresses. These intracellular proteins are important activators of salicylic acid (SA) signaling and also mediate antagonism between the jasmonic acid (JA) and ethylene (ET) defense response pathways. EDS1 forms several molecularly and spatially distinct complexes with PAD4 and a newly discovered in vivo signaling partner, SENESCENCE ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4 and SAG101 provide a major barrier to infection by both host-adapted and non-host pathogens.

  7. Pseudomonas evades immune recognition of flagellin in both mammals and plants.

    Directory of Open Access Journals (Sweden)

    Bart W Bardoel

    2011-08-01

    Full Text Available The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5 in mammals and flagellin-sensitive 2 (FLS2 in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR antagonists, we screened bacterial supernatants and identified alkaline protease (AprA of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.

  8. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity

    NARCIS (Netherlands)

    Engelhardt, S.; Lee, J.; Gäbler, Y.; Kemmerling, B.; Haapalainen, M.L.; Li, C.M.; Wei, Z.; Keller, H.; Joosten, M.; Taira, S.; Nürnberger, T.

    2009-01-01

    The HrpZ1 gene product from phytopathogenic Pseudomonas syringae is secreted in a type-III secretion system-dependent manner during plant infection. The ability of HrpZ1 to form ion-conducting pores is proposed to contribute to bacterial effector delivery into host cells, or may facilitate the nutri

  9. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    OpenAIRE

    Denancé, Nicolas; Sánchez-Vallet, Andrea; Goffner, Deborah; Molina, Antonio

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones inter...

  10. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    OpenAIRE

    Nicolas eDenancé; Andrea eSánchez-Vallet; Deborah eGoffner; Antonio eMolina

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interac...

  11. Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity.

    Science.gov (United States)

    Thalineau, Elise; Truong, Hoai-Nam; Berger, Antoine; Fournier, Carine; Boscari, Alexandre; Wendehenne, David; Jeandroz, Sylvain

    2016-01-01

    Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen interactions, plants' capacity to acquire, assimilate, allocate N, and maintain amino acid homeostasis appears to partly mediate the effects of N on plant defense. Nitric oxide (NO), one of the products of N metabolism, plays an important role in plant immunity signaling. NO is generated in part through Nitrate Reductase (NR), a key enzyme involved in nitrate assimilation, and its production depends on levels of nitrate/nitrite, NR substrate/product, as well as on L-arginine and polyamine levels. Cross-regulation between NO signaling and N supply/metabolism has been evidenced. NO production can be affected by N supply, and conversely NO appears to regulate nitrate transport and assimilation. Based on this knowledge, we hypothesized that N availability partly controls plant resistance to pathogens by controlling NO homeostasis. Using the Medicago truncatula/Aphanomyces euteiches pathosystem, we showed that NO homeostasis is important for resistance to this oomycete and that N availability impacts NO homeostasis by affecting S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase activity in roots. These results could therefore explain the increased resistance we noted in N-deprived as compared to N-replete M. truncatula seedlings. They open onto new perspectives for the studies of N/plant defense interactions. PMID:27092169

  12. Merchant Plant activity

    Energy Technology Data Exchange (ETDEWEB)

    Hepple, R.T. [Calpine Corp., San Jose, CA (United States)

    1998-07-01

    The changes facing the electric power industry in the 1990s have created opportunities to build new power plants. These plants are called Merchant Plants because they will not benefit from long-term power purchase agreements as in the past. Currently in Canada and the United States, about 45 per cent of the generating capacity is provided by plants that are more than 25 years old. These plants have high heat rates (i.e. the cost of generating one kWh of electricity is high) and are a major source of pollution. Nuclear power, which held much promise 30 years ago, has been rejected on both sides of the border, and coal-fired power plants are facing their own set of challenges. Modern natural gas-fired combined-cycle power plants appear to be a feasible, less polluting way to generate electricity. The per kilowatt cost of building a modern combined-cycle power plant averages about $500/kw which is far below the cost of coal or nuclear plants. Costing and siting new merchant plants, configuring a plant in such a way as to achieve the lowest-cost power generation were some of the topics that were highlighted.

  13. Cysteine homeostasis plays an essential role in plant immunity.

    Science.gov (United States)

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    • Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response.

  14. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  15. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori;

    2010-01-01

    walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe...... review the current knowledge about the bacterial MAMPs LPS and PGN, the fungal MAMPs ß-glucan, chitin and chitosan oligosaccharides and the bacterial suppressors EPS and cyclic glucan, with particular reference to the chemical structures of these molecules, the PRRs involved in their recognition (where...

  16. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    Science.gov (United States)

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  17. Innate Immune Activation in Intestinal Homeostasis

    OpenAIRE

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  18. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Natali Shirron

    Full Text Available The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.

  19. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    Science.gov (United States)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-10-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.

  20. The Immune System as a Regulator of Thyroid Hormone Activity

    OpenAIRE

    Klein, John R.

    2006-01-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid stimulating hormone (TSH) can be produced by many types of extra-pituitary cell...

  1. Cullin-RING Ubiquitin Ligases in Salicylic Acid-Mediated Plant Immune Signaling

    Directory of Open Access Journals (Sweden)

    James J. Furniss

    2015-03-01

    Full Text Available Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA. SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e. the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs, which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing (NLR immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.

  2. Activation and Regulation of DNA-Driven Immune Responses

    OpenAIRE

    Paludan, Søren R

    2015-01-01

    The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally,...

  3. Gastrointestinal inflammation and associated immune activation in schizophrenia

    OpenAIRE

    Severance, Emily G.; Alaedini, Armin; Yang, Shuojia; Halling, Meredith; Gressitt, Kristin L.; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Leweke, F. Markus; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG an...

  4. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity

    Science.gov (United States)

    Sun, Tongjun; Zhang, Yaxi; Li, Yan; Zhang, Qian; Ding, Yuli; Zhang, Yuelin

    2015-01-01

    Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses. PMID:27206545

  5. Antifertility activity of medicinal plants.

    Science.gov (United States)

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study.

  6. Antifertility activity of medicinal plants.

    Science.gov (United States)

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study. PMID:25921562

  7. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor

    Science.gov (United States)

    Zhu, Zhaohai; Xu, Fang; Zhang, Yaxi; Cheng, Yu Ti; Wiermer, Marcel; Li, Xin; Zhang, Yuelin

    2010-01-01

    In both plants and animals, nucleotide-binding (NB) domain and leucine-rich repeat (LRR)-containing proteins (NLR) function as sensors of pathogen-derived molecules and trigger immune responses. Although NLR resistance (R) proteins were first reported as plant immune receptors more than 15 years ago, how these proteins activate downstream defense responses is still unclear. Here we report that the Toll-like/interleukin-1 receptor (TIR)-NB-LRR R protein, suppressor of npr1-1, constitutive 1 (SNC1) functions through its associated protein, Topless-related 1 (TPR1). Knocking out TPR1 and its close homologs compromises immunity mediated by SNC1 and several other TIR-NB-LRR–type R proteins, whereas overexpression of TPR1 constitutively activates SNC1-mediated immune responses. TPR1 functions as a transcriptional corepressor and associates with histone deacetylase 19 in vivo. Among the target genes of TPR1 are Defense no Death 1 (DND1) and Defense no Death 2 (DND2), two known negative regulators of immunity that are repressed during pathogen infection, suggesting that TPR1 activates R protein-mediated immune responses through repression of negative regulators. PMID:20647385

  8. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    Science.gov (United States)

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  9. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  10. Receptor-like kinase complexes in plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Christiaan eGreeff

    2012-08-01

    Full Text Available Receptor-like kinases (RLKs are surface localized, transmembrane receptors comprising a large family of well-studied kinases. RLKs signal through their transmembrane and juxtamembrane domains with the aid of various interacting partners and downstream components. The N-terminal extracellular domain defines ligand specificity, and RLK families are sub-classed according to this domain. The most studied of these subfamilies include those with 1 leucine rich repeat (LRR domains, 2 LysM domains (LYM and 3 the Catharanthus roseus RLK1-like (CrRLK1L domain. These proteins recognize distinct ligands of microbial origin or ligands derived from intracellular protein/carbohydrate signals. For example, the pattern recognition receptor (PRR AtFLS2 recognizes flg22 from flagellin, and the PRR AtEFR recognizes elf18 from elongation factor (EF-Tu. Upon binding of their cognate ligands, the aforementioned RLKs activate generic immune responses termed pattern triggered immunity (PTI. RLKs can form complexes with other family members and engage a variety of intracellular signaling components and regulatory pathways upon stimulation. This review focuses on interesting new data about how these receptors form protein complexes to exert their function.

  11. The RNA silencing enzyme RNA polymerase v is required for plant immunity.

    Directory of Open Access Journals (Sweden)

    Ana López

    2011-12-01

    Full Text Available RNA-directed DNA methylation (RdDM is an epigenetic control mechanism driven by small interfering RNAs (siRNAs that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1. NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V, which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence

  12. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Masaki Shimono

    Full Text Available Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of

  13. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    . For example, Arabidopsis MPK4 regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with (i) PAT1, component of the mRNA decapping machinery, (ii) AOC3, a component in the biosynthesis pathway of JA and (iii) e......IF4E, a component in the translational initiation protein complex. For PAT1 and eIF4E we show that MPK4 phosphorylates specific Ser and Thr residues in vitro, and that MPK4 also phosphorylates AOC3 at an unmapped residue. Specific in vivo phosphorylation for PAT1 is shown in response to pathogen...... recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...

  14. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  15. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  16. Antiprotozoal activities of Colombian plants.

    Science.gov (United States)

    Weniger, B; Robledo, S; Arango, G J; Deharo, E; Aragón, R; Muñoz, V; Callapa, J; Lobstein, A; Anton, R

    2001-12-01

    In our search for therapeutical alternatives for antiprotozoal chemotherapy, we collected a selection of 44 plants from western Colombia upon ethnopharmacological and chemotaxonomic considerations. Polar and apolar extracts of these species were examined for antimalarial activity using in vitro tests with two clones of Plasmodium falciparum. Leishmanicidal and trypanocidal activity were determined in vitro using promastigote and amastigote forms of several strains of Leishmania sp. and epimastigotes of Trypanosoma cruzi. Among the selected plants, the 15 following species showed good or very good antiprotozoal activity in vitro: Aspidosperma megalocarpon, Campnosperma panamense, Conobea scoparioides, Guarea polymera, Guarea guidonia, Guatteria amplifolia, Huberodendron patinoi, Hygrophila guianensis, Jacaranda caucana, Marila laxiflora, Otoba novogranatensis, Otoba parviflora, Protium amplium, Swinglea glutinosa and Tabernaemontana obliqua. Cytotoxicity was assessed in U-937 cells and the ratio of cytotoxicity to antiprotozoal activity was determined for the active extracts. Ten extracts from eight species showed selectivity indexes > or = 10. Among the extracts that showed leishmanicidal activity, the methylene chloride extract of leaves from C. scoparioides showed a selectivity index in the same range that the one of the Glucantime control. Several of the active leishmanicidal plants are traditionally used against leishmaniasis by the population of the concerned area. PMID:11694364

  17. Medicinal Plants with Antiplatelet Activity.

    Science.gov (United States)

    El Haouari, Mohammed; Rosado, Juan A

    2016-07-01

    Blood platelets play an essential role in the hemostasis and wound-healing processes. However, platelet hyperactivity is associated to the development and the complications of several cardiovascular diseases. In this sense, the search for potent and safer antiplatelet agents is of great interest. This article provides an overview of experimental studies performed on medicinal plants with antiplatelet activity available through literature with particular emphasis on the bioactive constituents, the parts used, and the various platelet signaling pathways modulated by medicinal plants. From this review, it was suggested that medicinal plants with antiplatelet activity mainly belong to the family of Asteraceae, Rutaceae, Fabaceae, Lamiaceae, Zygophyllaceae, Rhamnaceae, Liliaceae, and Zingiberaceae. The antiplatelet effect is attributed to the presence of bioactive compounds such as polyphenols, flavonoids, coumarins, terpenoids, and other substances which correct platelet abnormalities by interfering with different platelet signalization pathways including inhibition of the ADP pathway, suppression of TXA2 formation, reduction of intracellular Ca(2+) mobilization, and phosphoinositide breakdown, among others. The identification and/or structure modification of the plant constituents and the understanding of their action mechanisms will be helpful in the development of new antiplatelet agents based on medicinal plants which could contribute to the prevention of thromboembolic-related disorders by inhibiting platelet aggregation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062716

  18. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity.

    Directory of Open Access Journals (Sweden)

    Suomeng Dong

    2011-11-01

    Full Text Available Plants have evolved pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity (ETI to protect themselves from infection by diverse pathogens. Avirulence (Avr effectors that trigger plant ETI as a result of recognition by plant resistance (R gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity.

  19. On the modulation of innate immunity by plant-parasitic cyst nematodes

    NARCIS (Netherlands)

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different types of

  20. Activation of the reward system boosts innate and adaptive immunity.

    Science.gov (United States)

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  1. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Science.gov (United States)

    Ramírez, Vicente; Gonzalez, Beatriz; López, Ana; Castelló, María José; Gil, María José; Etherington, Graham J; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-10-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  2. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    2015-10-01

    Full Text Available tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9. Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.

  3. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover

    DEFF Research Database (Denmark)

    Monaghan, Jacqueline; Matschi, Susanne; Shorinola, Oluwaseyi;

    2014-01-01

    Plant perception of pathogen-associated molecular patterns (PAMPs) triggers a phosphorylation relay leading to PAMP-triggered immunity (PTI). Despite increasing knowledge of PTI signaling, how immune homeostasis is maintained remains largely unknown. Here we describe a forward-genetic screen to i...... contributes to BIK1 turnover. Our results suggest a negative regulatory mechanism that continually buffers immune signaling by controlling the turnover of this key signaling kinase....

  4. Fingerprinting antioxidative activities in plants

    Directory of Open Access Journals (Sweden)

    Plieth Christoph

    2009-01-01

    Full Text Available Abstract Background A plethora of concurrent cellular activities is mobilised in the adaptation of plants to adverse environmental conditions. This response can be quantified by physiological experiments or metabolic profiling. The intention of this work is to reduce the number of metabolic processes studied to a minimum of relevant parameters with a maximum yield of information. Therefore, we inspected 'summary parameters' characteristic for whole classes of antioxidative metabolites and key enzymes. Results Three bioluminescence assays are presented. A horseradish peroxidase-based total antioxidative capacity (TAC assay is used to probe low molecular weight antioxidants. Peroxidases are quantified by their luminol converting activity (LUPO. Finally, we quantify high molecular weight superoxide anion scavenging activity (SOSA using coelenterazine. Experiments with Lepidium sativum L. show how salt, drought, cold, and heat influence the antioxidative system represented here by TAC, LUPO, SOSA, catalase, and glutathione reductase (GR. LUPO and SOSA run anti-parallel under all investigated stress conditions suggesting shifts in antioxidative functions rather than formation of antioxidative power. TAC runs in parallel with GR. This indicates that a majority of low molecular weight antioxidants in plants is represented by glutathione. Conclusion The set of assays presented here is capable of characterising antioxidative activities in plants. It is inexpensive, quick and reproducible and delivers quantitative data. 'Summary parameters' like TAC, LUPO, and SOSA are quantitative traits which may be promising for implementation in high-throughput screening for robustness of novel mutants, transgenics, or breeds.

  5. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid.

    Science.gov (United States)

    Zheng, Xiao-Yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L; Spivey, Natalie Weaver; Kay, Steve A; Dong, Xinnian

    2015-07-28

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-like 9 (NTL9) and CCA1 hiking expedition (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, phytoalexin-deficient 4 (PAD4) and enhanced disease susceptibility 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators calmodulin binding protein 60g (CBP60g) and systemic acquired resistance deficient 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.

  6. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: innate immune responses in plants.

    Science.gov (United States)

    Schulze-Lefert, P

    2010-04-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  7. Regulation of plant immunity through ubiquitin-mediated modulation of Ca(2+) -calmodulin-AtSR1/CAMTA3 signaling.

    Science.gov (United States)

    Zhang, Lei; Du, Liqun; Shen, Chenjia; Yang, Yanjun; Poovaiah, B W

    2014-04-01

    Transient changes in intracellular Ca(2+) concentration are essential signals for activation of plant immunity. It has also been reported that Ca(2+) signals suppress salicylic acid-mediated plant defense through AtSR1/CAMTA3, a member of the Ca(2+) /calmodulin-regulated transcription factor family that is conserved in multicellular eukaryotes. How plants overcome this negative regulation to mount an effective defense response during a stage of intracellular Ca(2+) surge is unclear. Here we report the identification and functional characterization of an important component of ubiquitin ligase, and the associated AtSR1 turnover. The AtSR1 interaction protein 1 (SR1IP1) was identified by CytoTrap two-hybrid screening. The loss-of-function mutant of SR1IP1 is more susceptible to bacterial pathogens, and over-expression of SR1IP1 confers enhanced resistance, indicating that SR1IP1 acts as a positive regulator of plant defense. SR1IP1 and AtSR1 act in the same signaling pathway to regulate plant immunity. SR1IP1 contains the structural features of a substrate adaptor in cullin 3-based E3 ubiquitin ligase, and was shown to serve as a substrate adaptor that recruits AtSR1 for ubiquitination and degradation when plants are challenged with pathogens. Hence, SR1IP1 positively regulates plant immunity by removing the defense suppressor AtSR1. These findings provide a mechanistic insight into how Ca(2+) -mediated actions are coordinated to achieve effective plant immunity. PMID:24528504

  8. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  9. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    Science.gov (United States)

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  10. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Directory of Open Access Journals (Sweden)

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  11. Epidemic spreading and immunization in node-activity networks

    Science.gov (United States)

    Wu, Qingchu; Chen, Shufang

    2015-09-01

    In this paper, we study the epidemic spreading in node-activity networks, where an individual participates in social networks with a certain rate h. There are two cases for h: the state-independent case and the state-dependent case. We investigate the epidemic threshold as a function of h compared to the static network. Our results suggest the epidemic threshold cannot be exactly predicted by using the analysis approach in the static network. In addition, we further propose a local information-based immunization protocol on node-activity networks. Simulation analysis shows that the immunization can not only eliminate the infectious disease, but also change the epidemic threshold via increasing the immunization parameter.

  12. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  13. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity.

    Science.gov (United States)

    Abd-El-Haliem, Ahmed M; Vossen, Jack H; van Zeijl, Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, Michael F; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, Matthieu H A J

    2016-09-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26825689

  14. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity.

    Science.gov (United States)

    Abd-El-Haliem, Ahmed M; Vossen, Jack H; van Zeijl, Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, Michael F; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, Matthieu H A J

    2016-09-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  15. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2013-01-01

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  16. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    Science.gov (United States)

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  17. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Directory of Open Access Journals (Sweden)

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  18. Activation of innate immunity during systemic Candida infections

    NARCIS (Netherlands)

    Ifrim, D.C.

    2015-01-01

    Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection, much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses. We showed that the chronic exposu

  19. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  20. Photodynamic therapy for cancer and activation of immune response

    Science.gov (United States)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  1. Global Activities and Plant Survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2014-01-01

    This chapter provides an extensive review of the empirical evidence found for Sweden concerning plant survival. The result reveals that foreign MNE plants and exporting non-MNE plants have the lowest exit rates, followed by purely domestic-oriented plants, and that domestic MNE plants have...... the highest exit rates. Moreover, the exit rates of globally engaged plants seem to be unaffected by increased foreign presence, whereas there appears to be a negative impact on the survival rates of non-exporting non-MNE plants. Finally, the result reveals that the survival ratio of plants of acquired...... exporters, but not other types of plants, improves post acquisition....

  2. Measuring MAP kinase activity in immune complex assays.

    Science.gov (United States)

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  3. The mucosal immune response to plant-derived vaccines.

    Science.gov (United States)

    Hefferon, Kathleen Laura

    2010-10-01

    Transgenic plants present enormous potential as one of the most cost-effective and safe systems for large-scale production of proteins for industrial, pharmaceutical, veterinary and agricultural uses. Heat-stable plant-derived vaccines that are administered orally could in effect enhance vaccine coverage in children and infants, particularly in developing countries. Here we discuss the current status of plant-derived vaccines and their potential to champion the battle against infectious diseases in the least developed countries.

  4. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. PMID:25231970

  5. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  6. Oral immunization with hepatitis B surface antigen expressed in transgenic plants

    OpenAIRE

    Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin

    2001-01-01

    Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic ...

  7. Cell wall integrity signaling and innate immunity in plants

    OpenAIRE

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  8. Transportin-SR Is Required for Proper Splicing of Resistance Genes and Plant Immunity

    Science.gov (United States)

    Xu, Shaohua; Zhang, Zhibin; Jing, Beibei; Gannon, Patrick; Ding, Jinmei; Xu, Fang; Li, Xin; Zhang, Yuelin

    2011-01-01

    Transportin-SR (TRN-SR) is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR) proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14), a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R) protein snc1 (suppressor of npr1-1, constitutive 1). MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity. PMID:21738492

  9. Transportin-SR is required for proper splicing of resistance genes and plant immunity.

    Directory of Open Access Journals (Sweden)

    Shaohua Xu

    2011-06-01

    Full Text Available Transportin-SR (TRN-SR is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14, a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R protein snc1 (suppressor of npr1-1, constitutive 1. MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.

  10. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    Science.gov (United States)

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  11. Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores.

    Science.gov (United States)

    Lampert, Evan C; Bowers, M Deane

    2015-01-01

    Herbivorous insects use several different defenses against predators and parasites, and tradeoffs among defensive traits may occur if these traits are energetically demanding. Chemical defense and immune response potentially can interact, and both can be influenced by host plant chemistry. Two closely related caterpillars in the lepidopteran family Sphingidae are both attacked by the same specialist endoparasitoid species but have mostly non-overlapping host plant ranges that differ in secondary chemistry. Ceratomia catalpae is a specialist on Catalpa and also will feed on Chilopsis, which both produce iridoid glycosides. Ceratomia undulosa consumes members of the Oleaceae, which produce seco-iridoid glycosides. Immune response of the two species on a typical host plant species (Catalpa bignonioides for C. catalpa; Fraxinus americana for C. undulosa) was compared using a melanization assay, and did not differ. In a second experiment, the iridoid glycoside catalpol was added to the diets of both insects, and growth rate, mass, chemical defense, and immune response were evaluated. Increased dietary catalpol weakened the immune response of C. undulosa and altered the development rate of C. catalpae by prolonging the third instar and accelerating the fourth instar. Catalpol sequestration was negatively correlated with immune response of C. catalpae, while C. undulosa was unable to sequester catalpol. These results show that immune response can be negatively influenced by increasing concentrations of sequestered defensive compounds. PMID:25516226

  12. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  13. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.

  14. Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yoshiteru eNoutoshi

    2012-10-01

    Full Text Available Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened 2 different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds—sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine—among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 µM. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties.

  15. Structure-Dependent Immune Modulatory Activity of Protegrin-1 Analogs

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-11-01

    Full Text Available Protegrins are porcine antimicrobial peptides (AMPs that belong to the cathelicidin family of host defense peptides. Protegrin-1 (PG-1, the most investigated member of the protegrin family, is an arginine-rich peptide consisting of 18 amino acid residues, its main chain adopting a β-hairpin structure that is linked by two disulfide bridges. We report on the immune modulatory activity of PG-1 and its analogs in neutralizing bacterial endotoxin and capsular polysaccharides, consequently inhibiting inflammatory mediators’ release from macrophages. We demonstrate that the β-hairpin structure motif stabilized with at least one disulfide bridge is a prerequisite for the immune modulatory activity of this type of AMP.

  16. Role of Leptin in the Activation of Immune Cells

    Directory of Open Access Journals (Sweden)

    Patricia Fernández-Riejos

    2010-01-01

    Full Text Available Adipose tissue is an active endocrine organ that secretes various humoral factors (adipokines, and its shift to production of proinflammatory cytokines in obesity likely contributes to the low-level systemic inflammation that may be present in metabolic syndrome-associated chronic pathologies such as atherosclerosis. Leptin is one of the most important hormones secreted by adipocytes, with a variety of physiological roles related to the control of metabolism and energy homeostasis. One of these functions is the connection between nutritional status and immune competence. The adipocyte-derived hormone leptin has been shown to regulate the immune response, innate and adaptive response, both in normal and pathological conditions. The role of leptin in regulating immune response has been assessed in vitro as well as in clinical studies. It has been shown that conditions of reduced leptin production are associated with increased infection susceptibility. Conversely, immune-mediated disorders such as autoimmune diseases are associated with increased secretion of leptin and production of proinflammatory pathogenic cytokines. Thus, leptin is a mediator of the inflammatory response.

  17. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  18. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    Science.gov (United States)

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  19. Insights into Animal and Plant Lectins with Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Renata de Oliveira Dias

    2015-01-01

    Full Text Available Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  20. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  1. Immune parameters differentiating active from latent tuberculosis infection in humans.

    Science.gov (United States)

    Lee, Ji Yeon; Jung, Young Won; Jeong, Ina; Joh, Joon-Sung; Sim, Soo Yeon; Choi, Boram; Jee, Hyeon-Gun; Lim, Dong-Gyun

    2015-12-01

    Tuberculosis remains a highly prevalent infectious disease worldwide. Identification of the immune parameters that differentiate active disease from latent infection will facilitate the development of efficient control measures as well as new diagnostic modalities for tuberculosis. Here, we investigated the cytokine production profiles of monocytes and CD4(+) T lymphocytes upon encountering mycobacterial antigens. In addition, cytokines and lipid mediators with immune-modulating activities were examined in plasma samples ex vivo. Comparison of these parameters in active tuberculosis patients and healthy subjects with latent infection revealed that, active tuberculosis was associated with diminished Th1-type cytokine secretion from CD4(+) T cells and less augmented inflammatory cytokine secretion from monocytes induced by IFN-γ than that in latent tuberculosis infection. In addition, a higher plasma concentration of lipoxin A4 and lower ratio of prostaglandin E2 to lipoxin A4 were observed in active cases than in latent infections. These findings have implications for preparing new therapeutic strategies and for differential diagnosis of the two types of tuberculosis infection.

  2. Pseudomonas evades immune recognition of flagellin in both mammals and plants

    NARCIS (Netherlands)

    Bardoel, B.W.; Ent, S. van der; Pel, M.J.C.; Tommassen, J.; Pieterse, C.M.J.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2011-01-01

    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants

  3. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses.

    Directory of Open Access Journals (Sweden)

    Adrian A Moreno

    Full Text Available Endoplasmic reticulum (ER-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR, is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA. However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR, whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent

  4. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Science.gov (United States)

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  5. Antioxidant and Immunity Activities of Fufang Kushen Injection Liquid

    Directory of Open Access Journals (Sweden)

    Tie-Nan Bi

    2012-05-01

    Full Text Available We investigated the effects of Fufang Kushen Injection Liquid (FFKSIL on gastric immunity and oxidant-antioxidant status during N-methyl-N′-nitro-N-nitroso-guanidine (MNNG-induced gastric carcinogenesis. The extent of lipid peroxidation and the levels of reduced glutathione (GSH and activities of the GSH-dependent enzymes superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-Px were used to monitor the peroxidative balance. Enhanced lipid peroxidation in the gastric cancer animals was accompanied by significant decreases in the activities of GSH, GPx, GST and GR. Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-α levels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity.

  6. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  7. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants.

    Science.gov (United States)

    Ma, Yi; Walker, Robin K; Zhao, Yichen; Berkowitz, Gerald A

    2012-11-27

    Little is known about molecular steps linking perception of pathogen invasion by cell surface sentry proteins acting as pattern recognition receptors (PRRs) to downstream cytosolic Ca(2+) elevation, a critical step in plant immune signaling cascades. Some PRRs recognize molecules (such as flagellin) associated with microbial pathogens (pathogen-associated molecular patterns, PAMPs), whereas others bind endogenous plant compounds (damage-associated molecular patterns, DAMPs) such as peptides released from cells upon attack. This work focuses on the Arabidopsis DAMPs plant elicitor peptides (Peps) and their receptors, PEPR1 and PEPR2. Pep application causes in vivo cGMP generation and downstream signaling that is lost when the predicted PEPR receptor guanylyl cyclase (GC) active site is mutated. Pep-induced Ca(2+) elevation is attributable to cGMP activation of a Ca(2+) channel. Some differences were identified between Pep/PEPR signaling and the Ca(2+)-dependent immune signaling initiated by the flagellin peptide flg22 and its cognate receptor Flagellin-sensing 2 (FLS2). FLS2 signaling may have a greater requirement for intracellular Ca(2+) stores and inositol phosphate signaling, whereas Pep/PEPR signaling requires extracellular Ca(2+). Maximal FLS2 signaling requires a functional Pep/PEPR system. This dependence was evidenced as a requirement for functional PEPR receptors for maximal flg22-dependent Ca(2+) elevation, H(2)O(2) generation, defense gene [WRKY33 and Plant Defensin 1.2 (PDF1.2)] expression, and flg22/FLS2-dependent impairment of pathogen growth. In a corresponding fashion, FLS2 loss of function impaired Pep signaling. In addition, a role for PAMP and DAMP perception in bolstering effector-triggered immunity (ETI) is reported; loss of function of either FLS2 or PEPR receptors impaired the hypersensitive response (HR) to an avirulent pathogen.

  8. In vitro antioxidant activities of Asteraceae Plants

    OpenAIRE

    Vijaylakshmi, S.; Nanjan, M.J.; Suresh, B.

    2009-01-01

    Anaphalis neelgerriana DC and Cnicus wallichi DC belonging to the family Asteraceae (Compositae) are important medicinal plants indigenous to Nilgiris. Since the related species Anaphalis morrisonicola and Cnicus benedictus were reported for its anti cancer activities, the above mentioned plants were screened for Invitro antioxidant activity. In vitro antioxidant studies were carried out by DPPH, Nitric oxide and Hydrogen peroxide methods for the aerial part extracts of the plants. Different ...

  9. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection.

    Science.gov (United States)

    Liebrand, Thomas W H; van den Berg, Grardy C M; Zhang, Zhao; Smit, Patrick; Cordewener, Jan H G; America, Antoine H P; America, Antione H P; Sklenar, Jan; Jones, Alexandra M E; Tameling, Wladimir I L; Robatzek, Silke; Thomma, Bart P H J; Joosten, Matthieu H A J

    2013-06-11

    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.

  10. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  11. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Akinori Kiba

    Full Text Available We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14 in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid (JA and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.

  12. Antibacterial activity of selected Egyptian ethnomedicinal plants

    Directory of Open Access Journals (Sweden)

    Mashait, M.

    2013-01-01

    Full Text Available Aims: Medicinal plants have recently received the attention of the antimicrobial activity of plants and their metabolites due to the challenge of growing incidences of drug-resistant pathogens. The aims of this study were to determine the antibacterial activities of plant extracts used as ethnomedicinal in Egypt. Methodology and Results: Investigations were carried out to assess the antibacterial efficiency of 11 plant extracts used as ethnopharmacological among Egyptian native people against infectious diseases. Crude methanol, ethanol,chloroform, hexane, acetone and aqueous extract of plants were tested for antibacterial activity in vitro against ten bacterial isolates using the disc diffusion method test. Discs were impregnated with 2 mg/mL of different solvent extracts. Among all the crude extracts, the methanol extract showed the highest activity than other extracts. P. harmala and S. officinalis exhibited highest antibacterial activity against gram positive and negative bacteria while the remainingplants extracts showed less activity. All the plant extracts showed no significant effect against the Bordetella bronchisepta ATCC 4617 except the extracts of M. fragrans and L. sativum. E. coli is the most sensitive microorganism tested, with the lowest MIC value (0.5 mg/mL in the presence of the plant extract of P. harmala and S. officinalis.Conclusion, significance and impact of study: Results obtained herein, may suggest that the ethnomedicinal Egyptian plants possess antimicrobial activity and therefore, they can be used in biotechnological fields as natural preservative ingredients in food and/or pharmaceutical industry.

  13. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity

    Science.gov (United States)

    Lu, Dongping; Lin, Wenwei; Gao, Xiquan; Wu, Shujing; Cheng, Cheng; Avila, Julian; Heese, Antje; Devarenne, Timothy P.; He, Ping; Shan, Libo

    2011-01-01

    Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLS2 senses bacterial flagellin and initiates immune signaling by association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases PUB12 and PUB13 to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12/13 and is required for FLS2-PUB12/13 association. PUB12/13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling. PMID:21680842

  14. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  15. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  16. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

    OpenAIRE

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-01-01

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ΔCEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effect...

  17. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  18. Active condensation of water by plants

    OpenAIRE

    Prokhorov Alexey Anatolievich

    2013-01-01

    This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomen...

  19. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  20. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  1. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  2. Immunity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by

  3. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity.

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2014-08-01

    Full Text Available In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH type transcription factor (TF, bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1 and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition.

  4. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    Science.gov (United States)

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  5. SCREENING OF PLANTS FOR ANTI DERMATOPHYTE ACTIVITY

    Directory of Open Access Journals (Sweden)

    V.S. Chauhan, A. Suthar, V. Naik and K. Salkar*

    2012-05-01

    Full Text Available Mycotic infections of skin are caused by dermatophytes. Screening of plants for anti dermatophyte activity was carried out based on the literature search done. Native plants of Maharashtra (India were screened for anti dermatophyte activity. Various plant parts from different regions were collected and then extracted with three different solvents viz. alcohol, hydro-alcohol and aqueous. The obtained extracts were subjected for anti dermatophyte activity using agar-well diffusion technique. Three different concentrations of extract were checked for activity. Two species of dermatophytes, viz. - Trichophyton and Microsporum were used in the screening assay. Out of the twenty-eight plants screened by agar diffusion method, seven were found to be active with different activity profile. Methanol extract was the most active extract. Pterospermum suberifolium, Trachyspermum ammi, Peltaphorum pterocarpum, Ixora coccinia, Persicaria glabra, Terminallia elliptica and Cicca acida showed activity at different concentrations against the two species of dermatophytes. The data obtained can be used for further studying the anti dermatophyte potential of active plants.

  6. Cytokine, Chemokine and Immune Activation Pathway Profiles in Celiac Disease: An Immune System Activity Screening by Expression Macroarrays

    Directory of Open Access Journals (Sweden)

    José A. Garrote

    2008-01-01

    Full Text Available The aims of the study were to assess the usefulness of expression macroarrays to determine the pattern of expression of cytokines, chemokines and molecules related to immune system activation pathways, in non-stimulated intact intestinal tissue specimens from patients with active CD (aCD and on a gluten-free diet (GFD, to compare it with two groups of controls with either normal or altered mucosal architecture, and to establish putative targets for diagnostic markers or therapeutic intervention. We have experienced the lack of sensitivity to detect signal of genes with low level of expression. In spite of that, active CD seems to show a Th1 cytokine pattern, but with signs of Th2 activity. Cytokines such as IL-9, IL-11, IL-21 or MIF might be involved in mucosal inflammation in CD. In GFD, some memory cells and DC’s activity remains, and factors that maintain this remnant activation might be responsible of the fast mucosal response on gluten challenge. STAT3 and STAT5 pathways, and their regulatory molecules SOCS’s may result keys for understanding mucosal inflammation in gut and putative targets for further research.

  7. Antimicrobial activity of amazonian medicinal plants

    OpenAIRE

    Oliveira, Amanda A; Segovia, Jorge FO; Sousa, Vespasiano YK; Mata, Elida CG; Gonçalves, Magda CA; Bezerra, Roberto M; Junior, Paulo OM; Kanzaki, Luís IB

    2013-01-01

    Objectives The aqueous extracts of currently utilized Amazonian medicinal plants were assayed in vitro searching for antimicrobial activity against human and animal pathogenic microorganisms. Methods Medium resuspended lyophilized aqueous extracts of different organs of Amazonian medicinal plants were assayed by in vitro screening for antimicrobial activity. ATCC and standardized microorganisms obtained from Oswaldo Cruz Foundation/Brazil were individually and homogeneously grown in agar plat...

  8. Antibacterial activity of selected Myanmar medicinal plants

    International Nuclear Information System (INIS)

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  9. Evaluating Medicinal Plants for Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Elisha Solowey

    2014-01-01

    Full Text Available Plants have been used for medical purposes since the beginning of human history and are the basis of modern medicine. Most chemotherapeutic drugs for cancer treatment are molecules identified and isolated from plants or their synthetic derivatives. Our hypothesis was that whole plant extracts selected according to ethnobotanical sources of historical use might contain multiple molecules with antitumor activities that could be very effective in killing human cancer cells. This study examined the effects of three whole plant extracts (ethanol extraction on human tumor cells. The extracts were from Urtica membranacea (Urticaceae, Artemesia monosperma (Asteraceae, and Origanum dayi post (Labiatae. All three plant extracts exhibited dose- and time-dependent killing capabilities in various human derived tumor cell lines and primary cultures established from patients’ biopsies. The killing activity was specific toward tumor cells, as the plant extracts had no effect on primary cultures of healthy human cells. Cell death caused by the whole plant extracts is via apoptosis. Plant extract 5 (Urtica membranacea showed particularly strong anticancer capabilities since it inhibited actual tumor progression in a breast adenocarcinoma mouse model. Our results suggest that whole plant extracts are promising anticancer reagents.

  10. Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Vyacheslav V Martemyanov

    Full Text Available The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects' fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula--gypsy moth Lymantria dispar--nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus.

  11. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.

    Science.gov (United States)

    Feys, Bart J; Wiermer, Marcel; Bhat, Riyaz A; Moisan, Lisa J; Medina-Escobar, Nieves; Neu, Christina; Cabral, Adriana; Parker, Jane E

    2005-09-01

    Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.

  12. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  13. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  14. Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice

    Directory of Open Access Journals (Sweden)

    Ai-Guo Zhou

    2012-01-01

    Full Text Available In this study, we evaluated effect of glycyrrhizin on immunity function in allergic rhinitis (AR mice. The AR mice model were induced by dripping ovalbumin in physiological saline (2 mg mL−1, 10 μL into the bilateral nasal cavities using a micropipette. After the AR model was induced, mice were randomly divided into six groups: the normal control, model, lycopene 20 mg kg−1 (as positive control drug group, and glycyrrhizin 10, 20, 30 mg kg−1 groups. After the sensitization day 14, lycopene (20 mg/kg BW and glycyrrhizin (10, 20 and 30 mg/kg BW were given orally for 20 days once a day. Mice in the normal control and model groups were given saline orally once a day for 20 days. Results showed that glycyrrhizin treatment could dose-dependently significantly reduce blood immunoglobulin E (IgE, interleukin-4 (IL-4, interleukin-5 (IL-5, interleukin-6 (IL-6, nitrous oxide (NO, tumor necrosis factor-alpha (TNF-α levels and nitrous oxide synthase (NOS activity and enhance blood immunoglobulin A (IgA, immunoglobulin G (IgG, immunoglobulin M (IgM, interleukin-2 (IL-2 and interleukin-12 (IL-12 levels in AR mice. Furthermore, glycyrrhizin treatment could dose-dependently significantly enhance acetylcholinesterase (AchE activity and reduce substance P (SP level in peripheral blood and nasal mucosa of AR mice. We conclude that glycyrrhizin can improve immunity function in AR mice, suggesting a potential drug for the prevention and therapy of AR.

  15. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Schikora Marek

    2012-07-01

    Full Text Available Abstract Background The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. Results The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. Conclusion This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or

  16. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Science.gov (United States)

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  18. Plant Photosynthetic Responses During Insect Effector-Triggered Plant Susceptibility and Immunity.

    Science.gov (United States)

    Gramig, Greta G; Harris, Marion O

    2015-06-01

    Gall-inducing insects are known for altering source-sink relationships within plants. Changes in photosynthesis may contribute to this phenomenon. We investigated photosynthetic responses in wheat [Triticum aestivum L. (Poaceae: Triticeae)] seedlings attacked by the Hessian fly [Mayetiola destructor (Say) (Diptera: Cecidomyiidae], which uses a salivary effector-based strategy to induce a gall nutritive tissue in susceptible plants. Resistant plants have surveillance systems mediated by products of Resistance (R) genes. Detection of a specific salivary effector triggers downstream responses that result in a resistance that kills neonate larvae. A 2 × 2 factorial design was used to study maximum leaf photosynthetic assimilation and stomatal conductance rates. The plant treatments were-resistant or susceptible wheat lines expressing or not expressing the H13 resistance gene. The insect treatments were-no attack (control) or attack by larvae killed by H13 gene-mediated resistance. Photosynthesis was measured for the second and third leaves of the seedling, the latter being the only leaf directly attacked by larvae. We predicted effector-based attack would trigger increases in photosynthetic rates in susceptible but not resistant plants. For susceptible plants, attack was associated with increases (relative to controls) in photosynthesis for the third but not the second leaf. For resistant plants, attack was associated with increases in photosynthesis for both the second and third leaves. Mechanisms underlying the increases appeared to differ. Resistant plants exhibited responses suggesting altered source-sink relationships. Susceptible plants exhibited responses suggesting a mechanism other than altered source-sink relationships, possibly changes in water relations that contributed to increased stomatal conductance.

  19. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  20. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae.

    Science.gov (United States)

    Yunis-Aguinaga, Jefferson; Claudiano, Gustavo S; Marcusso, Paulo F; Manrique, Wilson Gómez; de Moraes, Julieta R Engrácia; de Moraes, Flávio R; Fernandes, João B K

    2015-11-01

    Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia.

  1. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae.

    Science.gov (United States)

    Yunis-Aguinaga, Jefferson; Claudiano, Gustavo S; Marcusso, Paulo F; Manrique, Wilson Gómez; de Moraes, Julieta R Engrácia; de Moraes, Flávio R; Fernandes, João B K

    2015-11-01

    Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia. PMID:26434713

  2. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity

    Directory of Open Access Journals (Sweden)

    Vincent eDuplan

    2014-02-01

    Full Text Available Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease.

  3. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity.

    Science.gov (United States)

    Duplan, Vincent; Rivas, Susana

    2014-01-01

    Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease. PMID:24592270

  4. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  5. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    Science.gov (United States)

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  6. Cytotoxic Activity of Selected Nigerian Plants

    OpenAIRE

    Sowemimo, A; M. Venter; Baatjies, L; Koekemoer, T

    2009-01-01

    Cancer is one of the most prominent human diseases which has stimulated scientific and commercial interest in the discovery of new anticancer agents from natural sources. The current study investigates the cytotoxic activity of ethanolic extracts of sixteen Nigerian plants used locally for the treatment of cancer using the MTT assay on the HeLa cell line. Sapium ellipticum leaves showed activity comparable to the reference compound Cisplatin and greater cytotoxic activity than Combretum panic...

  7. Immune adjuvant activity of the olive, soybean and corn oils

    Directory of Open Access Journals (Sweden)

    Ana Claudia Marinho da Silva

    2016-08-01

    Full Text Available In the last half of the century, a large amount of substances has been used as immune adjuvant. The immune adjuvant effect of olive, soybean and corn oils in Swiss mice immunized with ovalbumin (OVA plus aluminum hydroxide or emulsified in Marcol, soybean, olive or corn oils was evaluated through the OVA-specific antibodies determined by ELISA and Passive Cutaneous Anaphylaxis. In this work the comparison of the intensity of the immune response was established by the Bayesian analysis. The adjuvant effect of the vegetable oils was shown to be more effective than aluminium hydroxide. Regarding to OVA-specific IgE synthesis, olive oil had the slowest adjuvant effect of the three vegetable oils. Accordingly, olive oil was the most convenient among the vegetable oils to be used as immune adjuvant, since it stimulated a higher production of OVA-specific Ig and lower levels of anti-OVA IgE.

  8. Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast.

    Science.gov (United States)

    Batista, S; Medina, A; Pires, M A; Moriñigo, M A; Sansuwan, K; Fernandes, J M O; Valente, L M P; Ozório, R O A

    2016-08-01

    The effects of using plant ingredients in Senegalese sole (Solea senegalensis) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level. PMID:27183997

  9. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    Science.gov (United States)

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. PMID:25203448

  10. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Institute of Scientific and Technical Information of China (English)

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  11. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include......Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation...... crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...

  12. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers

    OpenAIRE

    Gyuleva, Ilona; Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with ...

  13. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  14. Experimental verification and molecular basis of active immunization against fungal pathogens in termites.

    Science.gov (United States)

    Liu, Long; Li, Ganghua; Sun, Pengdong; Lei, Chaoliang; Huang, Qiuying

    2015-10-13

    Termites are constantly exposed to many pathogens when they nest and forage in the field, so they employ various immune strategies to defend against pathogenic infections. Here, we demonstrate that the subterranean termite Reticulitermes chinensis employs active immunization to defend against the entomopathogen Metarhizium anisopliae. Our results showed that allogrooming frequency increased significantly between fungus-treated termites and their nestmates. Through active social contact, previously healthy nestmates only received small numbers of conidia from fungus-treated individuals. These nestmates experienced low-level fungal infections, resulting in low mortality and apparently improved antifungal defences. Moreover, infected nestmates promoted the activity of two antioxidant enzymes (SOD and CAT) and upregulated the expression of three immune genes (phenoloxidase, transferrin, and termicin). We found 20 differentially expressed proteins associated with active immunization in R. chinensis through iTRAQ proteomics, including 12 stress response proteins, six immune signalling proteins, and two immune effector molecules. Subsequently, two significantly upregulated (60S ribosomal protein L23 and isocitrate dehydrogenase) and three significantly downregulated (glutathione S-transferase D1, cuticle protein 19, and ubiquitin conjugating enzyme) candidate immune proteins were validated by MRM assays. These findings suggest that active immunization in termites may be regulated by different immune proteins.

  15. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    Full Text Available UNLABELLED: Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes

  16. Linalool exhibits cytotoxic effects by activating antitumor immunity.

    Science.gov (United States)

    Chang, Mei-Yin; Shen, Yi-Ling

    2014-01-01

    According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  17. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  18. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2012-01-01

    ) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as ‘microbe-associated molecular patterns’ (MAMPs). MAMPs are recognized by the plant...... to as ‘innate immunity’. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN...

  19. Big Roles of Small Kinases:The Complex Functions of Receptor-Like Cytoplasmic Kinases in Plant Immunity and Development

    Institute of Scientific and Technical Information of China (English)

    Wenwei Lin; Xiyu Ma; Libo Shan; Ping He

    2013-01-01

    Plants have evolved a large number of receptor-like cytoplasmic kinases (RLCKs) that often functionally and physically associate with receptor-like kinases (RLKs) to modulate plant growth, development and immune responses. Without any apparent extracellular domain, RLCKs relay intracellular signaling often via RLK complex-mediated transphosphorylation events. Recent advances have suggested essential roles of diverse RLCKs in concert with RLKs in regulating various cellular and physiological responses. We summarize here the complex roles of RLCKs in mediating plant immune responses and growth regulation, and discuss specific and overlapping functions of RLCKs in transducing diverse signaling pathways.

  20. Immune activation by casein dietary antigens in bipolar disorder

    NARCIS (Netherlands)

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized differe

  1. Antibacterial activity of Brazilian Amazon plant extracts

    Directory of Open Access Journals (Sweden)

    Ivana Barbosa Suffredini

    2006-12-01

    Full Text Available Infections caused by multiresistant bacteria are a widespread problem, especially in intensive care units. New antibiotics are necessary, and we need to search for alternatives, including natural products. Brazil is one of the hottest spots in the world in terms of biodiversity, but little is known about the chemical and pharmacological properties of most of the plants found in the Amazon rain forest and the Atlantic Forest. We screened 1,220 organic and aqueous extracts, obtained from Amazon and Atlantic rain forest plants, against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and E. coli. Seventeen organic and aqueous extracts obtained from 16 plants showed activity against both Gram-positive bacteria. None of the extracts showed relevant activity against the Gram-negative E. coli and Pseudomonas aeruginosa.

  2. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone...... to generate antibody at distant mucosal sites. IgG2a and TgG2b were the dominant IgG subclasses in sera to both CPMV and FnBP, demonstrating a bias in the response toward the T helper 1 type. The sera completely inhibited the binding of human fibronectin to the S. aureus FnBP. Oral immunization of the CVPs...... also generated CPMV- and FnBP-specific serum IgG; however, these titers were significantly lower and more variable than those generated by the intranasal route, and FnBP-specific intestinal Ig A was undetectable. Neither the ISCOM matrix nor cholera toxin enhanced these responses. These studies...

  3. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers

    Science.gov (United States)

    Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100–200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system. PMID:26675014

  4. Innate and specific immunity in plants Imunidade inata e específica em plantas

    Directory of Open Access Journals (Sweden)

    Hércules Menezes

    2009-01-01

    Full Text Available Plants and animals are able to recognize and distinguish between self and non-self molecular structures. Recent studies concerning host-parasite relations have presented the common and contrasting mechanisms of host resistance in both plants and animals. Some phylogenetically old defense structures and strategies have been maintained by means of parallel development, while several others have emerged more recently during phylogenesis. Although lacking immunoglobulin molecules, circulating cells and phagocytosis process, plants successfully use several pre-established physical and chemical defenses as well as induce adaptive-immune response strategies. This review presents recent developments in the study of comparative immunity aspects that are present in animals and plants. Plantas e animais são capazes de reconhecer e distinguir entre estruturas moleculares próprias e não-próprias. Estudos recentes nas relações hospedeiro-parasitas têm exposto mecanismos comuns e contrastantes de resistência do hospedeiro tanto em animais como em plantas. Algumas estruturas e estratégias de defesa filogeneticamente antigas têm sido mantidas por desenvolvimento paralelo, enquanto várias outras emergiram mais recentemente durante a filogênese. Embora desprovidas de moléculas de imunoglobulina, células circulantes e processo de fagocitose, as plantas utilizam com sucesso várias defesas físicas e químicas pré-formadas, bem como induzem estratégias de imunidade adaptativa. Esta revisão apresenta a evolução recente nos estudo de aspectos de imunidade comparada, presentes em animais e as plantas.  

  5. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S;

    2011-01-01

    glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...... the transgenic plant material and injected subcutaneously with the plant-made CCHFV glycoprotein (fed/boosted), vaccinated with an attenuated CCHF vaccine (positive control), or received no treatment (negative control). All immunized groups had a consistent rise in anti-glycoprotein IgG and IgA antibodies...... in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition...

  6. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells

    Institute of Scientific and Technical Information of China (English)

    Qi Cao; Dangsheng Li; Ningli Li; Li Wang; Fang Du; Huiming Sheng; Yan Zhang; Juanjuan Wu; Baihua Shen; Tianwei Shen; Jingwu Zhang

    2007-01-01

    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Thl immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml,/K0.01 vs controls). Consistent with a role of anti-CD25 response in the down-regulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  7. ANTI-ULCER ACTIVITY OF LEGUMINOSAE PLANTS

    Directory of Open Access Journals (Sweden)

    Noemi D. PAGUIGAN

    2014-03-01

    Full Text Available Context Ulcer is the most common gastrointestinal disturbance resulting from an inadequate gastric mucosal defense. Several drugs are available in the market to address the disease; however, these drugs are associated with unnecessary side effects. Objectives Previous research have confirmed the efficacy of plant extracts for possible treatment of the disease. This research aims to evaluate the anti-ulcer properties of medicinal plants. Methods Methanol extracts from the leaves of Intsia bijuga, Cynometra ramiflora, Tamarindus indica, Cassia javanica, Cassia fistula, Bauhini purpurea, Senna spectabilis, Senna siamea and Saraca thaipingensis were evaluated for their anti-ulcer activity using HCl-ethanol as ulcerogen. Results All extracts showed inhibitory activity with I. bijuga, T. indica, S. spectabilis and S. thaipingensis exhibiting more than 50% inhibition. S. thaipingensis showed the highest activity at 80%. S. spectabilis and S. thaipingensis were partitioned further into hexane, ethyl acetate and aqueous fractions. The aqueous and ethyl acetate fractions of S. spectabilis showed significant increased in its activity while the hexane and ethyl acetate fractions of S. thaipingensis gave higher activity than its aqueous portions. Conclusions We conclude that plant extracts are potential sources of new anti-ulcer agents.

  8. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    Directory of Open Access Journals (Sweden)

    Hasan MuhammadMohtasheemul

    2012-02-01

    Full Text Available Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits, Chichorium intybus L (flowers, Cinnamum tamala L (leaves, Curcuma caesia Roxb (rhizomes, Lallemantia royleana Benth (leaves, Matricaria chamomila L (flowers, Piper longum L (fruits, Piper methysticum G. Forst (fruits, Piper nigrum Linn. (fruits and Syzygium aromaticum (Linn. Merr. & Perry (flowering buds was studied using chick emetic model. The ethanol extracts of these plants were administered at 150 mg/kg body weight orally. Domperidone was given at 100 mg/kg as a reference drug. All the extracts decrease in retches induced by copper sulphate pentahydrate given orally at 50 mg/kg body weight and showed comparable antiemetic activity with domperidone. Compound targeted antiemetic activity is further suggested.

  9. Antifungal activity of 10 Guadeloupean plants.

    Science.gov (United States)

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. PMID:23280633

  10. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  11. LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Mi Ha Le

    Full Text Available Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1 as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. This screen identified 54 putative CERK1-interactors. Screening mutants defective in 43 of these interacting proteins identified only two, a calmodulin like protein (At3g10190 and a leucine-rich repeat receptor like kinase (At3g14840, which differed in their response to pathogen challenge. In the present work, we focused on characterizing the LRR-RLK gene where mutations altered responses to chitin elicitation. This LRR-RLK was named LysM RLK1-interacting kinase 1 (LIK1. The interaction between CERK1 and LIK1 was confirmed by co-immunoprecipitation using protoplasts and transgenic plants. In vitro experiments showed that LIK1 was directly phosphorylated by CERK1. In vivo phosphorylation assays showed that Col-0 wild-type plants have more phosphorylated LIK1 than cerk1 mutant plants, suggesting that LIK1 may be directly phosphorylated by CERK1. Lik1 mutant plants showed an enhanced response to both chitin and flagellin elicitors. In comparison to the wild-type plants, lik1 mutant plants were more resistant to the hemibiotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic pathogen Sclerotinia sclerotiorum. Consistent with the enhanced susceptibility to necrotrophs, lik1 mutants showed reduced expression of genes involved in jasmonic acid and ethylene signaling pathways. These data suggest that LIK1 directly interacts with CERK1 and regulates MAMP-triggered innate immunity.

  12. Medicinal plants with anti-inflammatory activities.

    Science.gov (United States)

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  13. Long-term activation of the innate immune system in atherosclerosis.

    Science.gov (United States)

    Christ, Anette; Bekkering, Siroon; Latz, Eicke; Riksen, Niels P

    2016-08-01

    Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.

  14. Inflammasome-mediated activation of microglia : Tissue-specific features of innate immunity

    NARCIS (Netherlands)

    Burm, S.M.

    2016-01-01

    Multiple sclerosis (MS) is a chronic neurodegenerative disease where lesions are found within the brain. Although the exact cause of MS is unknown, these lesions are characterized by activation of immune cells, including microglia and macrophages. Microglia are the resident innate immune cells of th

  15. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot b

  16. Immune challenge affects basal metabolic activity in wintering great tits.

    OpenAIRE

    Ots, I.; Kerimov, A. B.; Ivankina, E. V.; Ilyina, T. A.; Hõrak, P.

    2001-01-01

    The costs of exploiting an organism's immune function are expected to form the basis of many life-history trade-offs. However, there has been debate about whether such costs can be paid in energetic and nutritional terms. We addressed this question in a study of wintering, free-living, male great tits by injecting them with a novel, non-pathogenic antigen (sheep red blood cells) and measuring the changes in their basal metabolic rates and various condition indices subsequent to immune challen...

  17. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    OpenAIRE

    Takashi Ohta; Atsushi Ido; Kie Kusano; Chiemi Miura; Takeshi Miura

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named "dipterose", with a molecular weight of 1.01 × 10(6) and comprising nine monosaccharides. Dipterose w...

  18. Synthesis of TP3 Fragment via One Pot Strategy and Its Immune Regulatory Activity

    Institute of Scientific and Technical Information of China (English)

    WANG Li-feng; CHEN Jie; SHAN Hui-jie; LI Wei

    2005-01-01

    We have modified the previously described one-pot peptide synthesis method. The modified method has been successfully applied to the synthesis of TP3. Furthermore, the immune regulatory activity of TP3 has been characterized. The results show that the modified one-pot method can be used to synthesize the biological active peptide with the advantages of low cost and high productivity. Moreover, TP3 has a higher immune regulatory activity than TP5.

  19. Gender differences in the immune system activities of sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Arizza, Vincenzo; Vazzana, Mirella; Schillaci, Domenico; Russo, Debora; Giaramita, Francesca Tiziana; Parrinello, Nicolò

    2013-03-01

    In the immune system of vertebrates, gender-specific differences in individual immune competence are well known. In general, females possess more powerful immune response than males. In invertebrates, the situation is much less clear. For this purpose we have chosen to study the immune response of the two sexes of the echinoderm Paracentrotus lividus in pre- and post-spawning phases. The coelomic fluid from the echinoderms contains several coelomocyte types and molecules involved in innate immune defenses. In this article we report that the degree of immune responses in the P. lividus differs according to sex in both pre- and post-spawning phases. We found in all tests that females were more active than males. The results indicate that females possess a significant higher number of immunocytes consisting of phagocytes and uncolored spherulocytes. Since the immunological activity is mainly based on immunocytes, it was not surprising that females possessed the highest values of cytotoxicity and hemolysis activity and showed a greater ability to uptake neutral red and phagocyte yeasts cells, while the average number of ingested particles per active phagocyte was not significantly different. Furthermore, agglutinating activity was more evident in the coelomocyte lysate and coelomic fluid of females than in those of males. Finally we found that the acidic extract of female gonads possessed greater antimicrobial activity than that of male gonads. These results make it very likely that gender differences in the immune response are not restricted to vertebrates; rather, they are a general evolutionary phenomenon. PMID:23220062

  20. Antibacterial activity of eight Brazilian annonaceae plants.

    Science.gov (United States)

    Takahashi, Jacqueline A; Pereira, Cássia R; Pimenta, Lúcia P S; Boaventura, Maria Amélia D; Silva, Luiz G F E

    2006-01-01

    Sixteen extracts, obtained from eight Brazilian plants of Annonaceae family, were screened for their antibacterial activity: Xylopia frutescens, X. aromatica, X. amazonica, X. benthamii, Annona ambotay, A. crassiflora, A. muricata and A. cherimolia. Amongst the investigated extracts, six showed antibacterial activity against at least one of the tested organisms at the concentration of 100 microg/mL. The most active extracts were those prepared from X. frutescens, X. amazonica, and A. ambotay. A phytochemical screening showed the presence of anonaceus acetogenins in some active extracts. Eleven diterpenoids were also tested for comparison purposes. Six were natural products, previously isolated from Xylopia sp. (kaurenoic, frutoic, xylopic, 15beta-hydroxy-kaurenoic and trachylobanic acids plus kaurenol) and five were derivatives of such compounds, obtained by esterification or reduction reactions. Trachylobanic acid showed antibacterial activity against B. subtilis and S. aureus.

  1. Interferon Type I Driven Immune Activation in Generalized Autoimmune Diseases

    NARCIS (Netherlands)

    Z. Brkić (Zana)

    2013-01-01

    textabstractThis thesis describes research performed on several generalized autoimmune diseases with the main focus on primary Sjögren’s syndrome. Interferon type I has been implicated in the pathogenesis of these diseases and will be introduced in this chapter together with other important immune f

  2. Active or passive immunization in unexplained recurrent miscarriage

    DEFF Research Database (Denmark)

    Christiansen, Ole B; Nielsen, Henriette Svarre; Pedersen, Bjorn

    2004-01-01

    carried out as Cochrane reviews have concluded than none of the different forms of immunotherapy has proved effective in the total RM population. However, the included trials have generally been small and very heterogenous with respect to the clinical histories of patients and the immunization protocols...

  3. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    OpenAIRE

    Hasan MuhammadMohtasheemul; Ahmed Salman; Ahmed Ziauddin; Azhar Iqbal

    2012-01-01

    Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits), Chichorium intybus L (flowers), Cinnamum tamala L (leaves), Curcuma caesia Roxb (rhizomes), Lallemantia royleana Benth (leaves), Matricaria chamomila L (flowers), Piper longum L (fruits), Piper methysticum G. Forst (fruits), Piper nigrum Linn. (fruits) and Syzygium aromaticum (Linn.) Merr. & Perry (flowering buds) was studied using chick emetic model. The ethan...

  4. Antioxidant activities of five Lamiaceae plants

    OpenAIRE

    Olívia R. Pereira; Perez, Maria J.; Macias, Rócio I.R.; Marín, Jose J. G.; Cardoso, Susana M.

    2013-01-01

    In the last decades, oxidative stress has been recognized as a key process in the physiopathology of several diseases. Consequently, the search for new antioxidant compounds, as well as new antioxidant sources, has increased exponentially. The Lamiaceae family encloses many plant species which are potential sources of antioxidant compounds. The present study evaluates the antioxidant activity of phenolic enriched extracts of Lamium album, Leonurus cardiaca, Lavandula dentata, Mentha aquatica ...

  5. Nitric oxide and S-nitrosoglutathione function additively during plant immunity.

    Science.gov (United States)

    Yun, Byung-Wook; Skelly, Michael J; Yin, Minghui; Yu, Manda; Mun, Bong-Gyu; Lee, Sang-Uk; Hussain, Adil; Spoel, Steven H; Loake, Gary J

    2016-07-01

    Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes. A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation. Here we show that endogenous NO accumulation in Arabidopsis, resulting from loss-of-function mutations in NO Overexpression 1 (NOX1), led to disabled Resistance (R) gene-mediated protection, basal resistance and defence against nonadapted pathogens. In nox1 plants both salicylic acid (SA) synthesis and signalling were suppressed, reducing SA-dependent defence gene expression. Significantly, expression of a GSNOR1 transgene complemented the SNO-dependent phenotypes of paraquat resistant 2-1 (par2-1) plants but not the NO-related characters of the nox1-1 line. Furthermore, atgsnor1-3 nox1-1 double mutants supported greater bacterial titres than either of the corresponding single mutants. Our findings imply that GSNO and NO, two pivotal redox signalling molecules, exhibit additive functions and, by extension, may have distinct or overlapping molecular targets during both immunity and development.

  6. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    Science.gov (United States)

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens. PMID:23823318

  7. Antileishmanial activity and cytotoxicity of Brazilian plants.

    Science.gov (United States)

    Ribeiro, Tatiana G; Chávez-Fumagalli, Miguel A; Valadares, Diogo G; Franca, Juçara R; Lage, Paula S; Duarte, Mariana C; Andrade, Pedro H R; Martins, Vivian T; Costa, Lourena E; Arruda, Ana L A; Faraco, André A G; Coelho, Eduardo A F; Castilho, Rachel O

    2014-08-01

    Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance has increased the importance of discovering new therapeutic products. The present study aimed to investigate the in vitro leishmanicidal activity from 16 different Brazilian medicinal plants. Stationary-phase promastigotes of Leishmania amazonensis and murine macrophages were exposed to 44 plant extracts or fractions for 48 h at 37°C, in order to evaluate their antileishmanial activity and cytotoxicity, respectively. The most potent extracts against L. amazonensis were the hexanic extract of Dipteryx alata (IC50 of 0.08 μg/mL), the hexanic extract of Syzygium cumini (IC50 of 31.64 μg/mL), the ethanolic and hexanic extracts of leaves of Hymenaea courbaril (IC50 of 44.10 μg/mL and 35.84 μg/mL, respectively), the ethanolic extract of H. stignocarpa (IC50 of 4.69 μg/mL), the ethanolic extract of Jacaranda caroba (IC50 of 13.22 μg/mL), and the ethanolic extract of J. cuspidifolia leaves (IC50 of 10.96 μg/mL). Extracts of D. alata and J. cuspidifolia presented higher selectivity index, with high leishmanicidal activity and low cytotoxicity in the mammalian cells. The capacity in treated infected macrophages using the extracts and/or fractions of D. alata and J. cuspidifolia was also analyzed, and reductions of 95.80%, 98.31%, and 97.16%, respectively, in the parasite burden, were observed. No nitric oxide (NO) production could be observed in the treated macrophages, after stimulation with the extracts and/or fractions of D. alata and J. cuspidifolia, suggesting that the biological activity could be due to mechanisms other than macrophage activation mediated by NO production. Based on phytochemistry studies, the classes of compounds that could contribute to the observed activities are also discussed. In conclusion, the data presented in this study indicated that traditional medicinal plant extracts present effective antileishmanial activity. Future studies could focus on

  8. From Wasting to Obesity: The Contribution of Nutritional Status to Immune Activation in HIV Infection.

    Science.gov (United States)

    Koethe, John R; Heimburger, Douglas C; PrayGod, George; Filteau, Suzanne

    2016-10-01

    The impact of human immunodeficiency virus (HIV) infection on innate and adaptive immune activation occurs in the context of host factors, which serve to augment or dampen the physiologic response to the virus. Independent of HIV infection, nutritional status, particularly body composition, affects innate immune activation through a variety of conditions, including reduced mucosal barrier defenses and microbiome dysbiosis in malnutrition and the proinflammatory contribution of adipocytes and stromal vascular cells in obesity. Similarly, T-cell activation, proliferation, and cytokine expression are reduced in the setting of malnutrition and increased in obesity, potentially due to adipokine regulatory mechanisms restraining energy-avid adaptive immunity in times of starvation and exerting a paradoxical effect in overnutrition. The response to HIV infection is situated within these complex interactions between host nutritional health and immunologic function, which contribute to the varied phenotypes of immune activation among HIV-infected patients across a spectrum from malnutrition to obesity.

  9. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  10. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Directory of Open Access Journals (Sweden)

    Elizabeth Henry

    2015-04-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64 and endosomal trafficking inhibitors (BFA, Wortmannin demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments.

  11. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Science.gov (United States)

    Henry, Elizabeth; Fung, Nicholas; Liu, Jun; Drakakaki, Georgia; Coaker, Gitta

    2015-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments. PMID:25918875

  12. Effect of a plant preparation Citrosept on selected immunity indices in blood of slaughter turkey hens

    Directory of Open Access Journals (Sweden)

    Elzbieta Rusinek-Prystupa

    2014-09-01

    Full Text Available [b]Introduction and objective[/b]. The objective of this study was to determine the effect of per os administration of 3 various dosages of a Citrosept preparation (a grapefruit extractto growing turkey hens on changes in their selected haematological and immunological blood indices. An attempt was also undertaken to select the most efficient dose of the preparation with respect to the mentioned indices in turkey hens. [b]Materials and methods[/b]. The experiment was conducted on 180 turkey hens allocated at random to 4 groups, 45 birds in each group. Samples of their full blood were analyzed for haematological indices, such as red blood cell count (RBS, haemoglobin content (Hb, haematocrit value (Ht, and white blood cell count (WBC. Samples of blood plasma were assayed to determine the activity of lysozyme (chamber-diffusive method and heterophils capability to reduce nitro blue tetrazolium (stimulated and spontaneous NBT test. Phagocytic activity of leucocytes against Staphylococcus aureus 209P strain was assessed and expressed as the percentage of phagocytic cells (% PC and phagocytic index (PI. [b]Results[/b]. The administration of the grapefruit extract to turkey hens with drinking water caused a significant increase in haemoglobin content in blood, as well as an increase in non-specific humoral immunity marker (activity of lysozyme and non-specific cellular immunity marker (percentage of phagocytic cells; P ≤ 0.05. [b]Conclusions[/b]. The results obtained enabled the positive evaluation of the advisability of applying the Citrosept preparation in the feeding of turkey hens at the age of 6–9 weeks. Among the doses examined, the most efficient with respect to the stimulation of the non-specific humoral and cellular immunity was the dose of 0.021 ml/kg of body weight.

  13. Immune complexes that contain HIV antigens activate peripheral blood T cells.

    Science.gov (United States)

    Korolevskaya, L B; Shmagel, K V; Saidakova, E V; Shmagel, N G; Chereshnev, V A

    2016-07-01

    Uninfected donor T cells were treated in vitro by model immune complexes that contained either HIV or hepatitis C virus (HCV) antigens. Unlike HCV antigen-containing complexes, the immune complexes that contained HIV antigens have been shown to activate peripheral blood T cells of uninfected donors under in vitro conditions. Both the antiviral antibodies and HIV antigen were involved in the activation process. The unique properties of the immune complexes formed by HIV antigens and antiviral antibodies are believed to result from the virus-specific antibody properties and molecular conformation of the antigen-antibody complex. PMID:27595830

  14. On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition

    Directory of Open Access Journals (Sweden)

    I. Brazzoli

    2006-01-01

    Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.

  15. Danger signals activating the immune response after trauma

    OpenAIRE

    Stefanie Hirsiger; Hans-Peter Simmen; Werner, Clément M. L.; Wanner, Guido A; Daniel Rittirsch

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immun...

  16. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ Receptors

    OpenAIRE

    O’Gorman, William E.; Huang, Huang; Wei, Yu-Ling; Davis, Kara L.; Leipold, Michael D.; Bendall, Sean C.; Kidd, Brian A.; Dekker, Cornelia L.; Maecker, Holden T.; Chien, Yueh-hsiu; Davis, Mark M.

    2014-01-01

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or “split” viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors—specifically Toll-like receptors...

  17. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    OpenAIRE

    Steven Biesmans; Meert, Theo F.; Jan A. Bouwknecht; Acton, Paul D.; Nima Davoodi; Patrick De Haes; Jacobine Kuijlaars; Xavier Langlois; Liam J. R. Matthews; Luc Ver Donck; Niels Hellings; Rony Nuydens

    2013-01-01

    Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice an...

  18. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression

    OpenAIRE

    Fairfax, B. P.; Humburg, P.; Makino, S.; Naranbhai, V; Wong, D.; Lau, E; Jostins, L; Plant, K.; Andrews, R; McGee, C.; Knight, J.C.

    2014-01-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTL...

  19. Lipopolysaccharide Increases Immune Activation and Alters T Cell Homeostasis in SHIVB'WHU Chronically Infected Chinese Rhesus Macaque

    OpenAIRE

    Gao-Hong Zhang; Run-Dong Wu; Hong-Yi Zheng; Xiao-Liang Zhang; Ming-Xu Zhang; Ren-Rong Tian; Guang-Ming Liu; Wei Pang; Yong-Tang Zheng

    2015-01-01

    Immune activation plays a significant role in the disease progression of HIV. Microbial products, especially bacterial lipopolysaccharide (LPS), contribute to immune activation. Increasing evidence indicates that T lymphocyte homeostasis disruptions are associated with immune activation. However, the mechanism by which LPS affects disruption of immune response is still not fully understood. Chronically SHIVB’WHU-infected Chinese rhesus macaques received 50 μg/kg body weight LPS in this study....

  20. Immune and hormonal activity in adults suffering from depression

    Directory of Open Access Journals (Sweden)

    S.O.V. Nunes

    2002-05-01

    Full Text Available An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5% were females and 11 (27.5% were males (2.6:1 ratio. The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and ß-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05. The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05. These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

  1. Maternal immune activation increases seizure susceptibility in juvenile rat offspring.

    Science.gov (United States)

    Yin, Ping; Zhang, Xin-Ting; Li, Jun; Yu, Lin; Wang, Ji-Wen; Lei, Ge-Fei; Sun, Ruo-Peng; Li, Bao-Min

    2015-06-01

    Epidemiological data suggest a relationship between maternal infection and a high incidence of childhood epilepsy in offspring. However, there is little experimental evidence that links maternal infection with later seizure susceptibility in juvenile offspring. Here, we asked whether maternal immune challenge during pregnancy can alter seizure susceptibility and seizure-associated brain damage in adolescence. Pregnant Sprague-Dawley rats were treated with lipopolysaccharide (LPS) or normal saline (NS) on gestational days 15 and 16. At postnatal day 21, seizure susceptibility to kainic acid (KA) was evaluated in male offspring. Four groups were studied, including normal control (NS-NS), prenatal infection (LPS-NS), juvenile seizure (NS-KA), and "two-hit" (LPS-KA) groups. Our results demonstrated that maternal LPS exposure caused long-term reactive astrogliosis and increased seizure susceptibility in juvenile rat offspring. Compared to the juvenile seizure group, animals in the "two-hit" group showed exaggerated astrogliosis, followed by worsened spatial learning ability in adulthood. In addition, prenatal immune challenge alone led to spatial learning impairment in offspring but had no effect on anxiety. These data suggest that prenatal immune challenge causes a long-term increase in juvenile seizure susceptibility and exacerbates seizure-induced brain injury, possibly by priming astroglia. PMID:25982885

  2. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1

    DEFF Research Database (Denmark)

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro;

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the different......Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe...... the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control...... of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our...

  3. Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with HIV

    Directory of Open Access Journals (Sweden)

    Zuri A. Sullivan

    2015-04-01

    Significance: Latent tuberculosis, which affects an estimated 1/3 of the world's population, has long been thought to be a relatively benign, quiescent state of M. tuberculosis infection. While HIV co-infection is known to exacerbate M. tuberculosis infection and increase the risk of developing active TB, little is known about the potential effect of latent TB infection on HIV disease. This study shows that HIV-infected individuals with both active and latent TB have elevated levels of inflammation and immune activation, biomarkers of HIV disease progression and elevated risk of mortality. These results suggest that, in the context of HIV, latent TB infection may be associated with increased risk of progression to AIDS and mortality.

  4. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm.

    Science.gov (United States)

    Nishida, Satoshi; Ono, Yasuo; Sekimizu, Kazuhisa

    2016-02-01

    Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity. PMID:26971556

  5. Sexually dimorphic effects of neonatal immune system activation with lipopolysaccharide on the behavioural response to a homotypic adult immune challenge.

    Science.gov (United States)

    Tenk, Christine M; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2008-01-01

    Research has shown that acute immune activation during the early postnatal period with the Gram-negative endotoxin, lipopolysaccharide (LPS), alters a variety of physiological and behavioural processes in the adult animal. For example, neonatal LPS exposure affects disease susceptibility later in life, though these effects appear to be modulated by time of exposure, sex, and immune stimulus. The current study examined sex differences in the effect of neonatal LPS treatment on the locomotor activity response to adult LPS administration. Male and female Long-Evans rats were treated systemically with either LPS (50 microg/kg) or saline (0.9%) on postnatal days 3 and 5. Later in adulthood (postnatal day 92), all animals were subjected to an adult LPS challenge and were injected (i.p.) with 200 microg/kg LPS. Two hours after injection, animals were placed in a non-novel open-field and locomotor activity was assessed for 30 min. Body weights were determined both at the time of injection and 24h later to examine LPS-induced weight loss. Adult males treated neonatally with LPS exhibited significantly less horizontal and vertical activity in response to the LPS challenge relative to males treated neonatally with saline. This effect was not observed in females. Thus, the current study provides important evidence of sexual dimorphism in the long-term effects of neonatal LPS exposure on the responses to an adult homotypic immune challenge in rats. These findings have potential clinical significance given that neonatal exposure to pathogens is a fairly common occurrence and Gram-negative bacteria are a common cause of neonatal bacterial infections.

  6. Antibacterial activity of resin rich plant extracts

    Directory of Open Access Journals (Sweden)

    Mohd Shuaib

    2013-01-01

    Full Text Available Background: The in vitro antibacterial activity of resin rich methanolic extracts (RRMEs of Commiphora myrrha, Operculina turpethum, and Pinus roxburghii. Materials and Methods: Different concentration were studied by agar-well diffusion method against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Enterococcus faecalis and Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae. Results: Among all the bacterial strains tested, E. faecalis was most sensitive and S. typhi was resistant to C. myrrha and P. roxburghii. The extracts of O. turpethum were active against all tested strains in which B. subtilis and S. aureus were the most sensitive. Conclusion: This suggested that the antibacterial activity of RRMEs of O. turpethum was more than C. myrrha and P. roxburghii. This probably explains the potential of these plants against a number of infections caused by bacterial strains tested.

  7. A mathematical model of immune activation with a unified self-nonself concept

    Directory of Open Access Journals (Sweden)

    Sahamoddin eKhailaie

    2013-12-01

    Full Text Available The adaptive immune system reacts against pathogenic nonself, whereas it normally remains tolerant to self. The initiation of an immune response requires a critical antigen(Ag-stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not completely deleted by thymic selection and partially present in the periphery of healthy individuals that respond in certain physiological conditions. A number of experimental and theoretical models are based on the concept that structural differences discriminate self from nonself. In this article, we establish a mathematical model for immune activation in which self and nonself are not distinguished. The model considers the dynamic interplay of conventional T cells, regulatory T cells (Tregs and IL-2 molecules and shows that the renewal rate ratio of resting Tregs to naive T cells as well as the proliferation rate of activated T cells determine the probability of immune stimulation. The actual initiation of an immune response, however, relies on the absolute renewal rate of naive T cells. This result suggests that thymic selection reduces the probability of autoimmunity by increasing the Ag-stimulation threshold of self reaction which is established by selection of a low number of low-avidity autoreactive T cells balanced with a proper number of Tregs. The stability analysis of the ordinary differential equation model reveals three different possible immune reactions depending on critical levels of Ag-stimulation: A subcritical stimulation, a threshold stimulation inducing a proper immune response, and an overcritical stimulation leading to chronic co-existence of Ag and immune activity. The model exhibits oscillatory solutions in the case of persistent but moderate Ag-stimulation, while the system returns to the homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear as a result of shifted Ag-stimulation thresholds which delineate these three regimes of

  8. Antioxidant activity of some Turkish medicinal plants.

    Science.gov (United States)

    Karadeniz, A; Çinbilgel, I; Gün, S Ş; Çetin, A

    2015-01-01

    DPPH, superoxide and nitric oxide radical scavenging activities and total phenolic content (TPC) of some less known plants, distributed in Burdur-Antalya provinces and consumed both as food and for the medicine, Asplenium ceterach L. (golden herb), Valeriana dioscoridis Sm. (valerian), Doronicum orientale Hoffm. (tiger herb), Cota pestalozzae (Boiss.) Boiss. (camomile), Eremurus spectabilis M. Bieb. (foxtail lily), Asphodeline lutea (L.) Rchb. (asphodel) and Smyrnium connatum Boiss. and Kotschy (hemlock) were investigated. As a result, the highest 2,2-diphenyl-1-picril hydrazyl (DPPH) radical scavenging activity was determined in C. pestalozzae extract (IC50 = 18.66 μg mL(-1)), the highest superoxide and nitric oxide radical scavenging activity was determined in A. ceterach extract (IC50 = 145.17 and 372.03 μg mL(-1)). The highest TPC was determined in A. ceterach extract (59,26 μg mL(-1)) as gallic acid equivalent. Further bioactivity and phytochemistry studies on these plants may enlighten new drug discovery researches. PMID:25649168

  9. The Ankyrin-Repeat Transmembrane Protein BDA1 Functions Downstream of the Receptor-Like Protein SNC2 to Regulate Plant Immunity1[C][OA

    Science.gov (United States)

    Yang, Yuanai; Zhang, Yaxi; Ding, Pingtao; Johnson, Kaeli; Li, Xin; Zhang, Yuelin

    2012-01-01

    Plants utilize a large number of immune receptors to recognize pathogens and activate defense responses. A small number of these receptors belong to the receptor-like protein family. Previously, we showed that a gain-of-function mutation in the receptor-like protein SNC2 (for Suppressor of NPR1, Constitutive2) leads to constitutive activation of defense responses in snc2-1D mutant plants. To identify defense signaling components downstream of SNC2, we carried out a suppressor screen in the snc2-1D mutant background of Arabidopsis (Arabidopsis thaliana). Map-based cloning of one of the suppressor genes, BDA1 (for bian da; “becoming big” in Chinese), showed that it encodes a protein with amino-terminal ankyrin repeats and carboxyl-terminal transmembrane domains. Loss-of-function mutations in BDA1 suppress the dwarf morphology and constitutive defense responses in snc2-1D npr1-1 (for nonexpressor of pathogenesis-related genes1,1) and also result in enhanced susceptibility to bacterial pathogens. In contrast, a gain-of-function allele of bda1 isolated from a separate genetic screen to search for mutants with enhanced pathogen resistance was found to constitutively activate cell death and defense responses. These data suggest that BDA1 is a critical signaling component that functions downstream of SNC2 to regulate plant immunity. PMID:22740615

  10. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants.

    Science.gov (United States)

    Daoudi, Abdeljlil; Aarab, Lotfi; Abdel-Sattar, Essam

    2013-04-01

    Herbal and traditional medicines are being widely used in practice in many countries for their benefits of treating different ailments. A large number of plants in Morocco were used in folk medicine to treat immune-related disorders. The objective of this study is to evaluate the immunomodulatory activity of protein extracts (PEs) of 14 Moroccan medicinal plants. This activity was tested on the proliferation of immune cells. The prepared total and PEs of the plant samples were tested using MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay on the splenocytes with or without stimulation by concanavalin-A (Con-A), a mitogenic agent used as positive control. The results of this study indicated different activity spectra. Three groups of activities were observed. The first group represented by Citrullus colocynthis, Urtica dioica, Elettaria cardamomum, Capparis spinosa and Piper cubeba showed a significant immunosuppressive activity. The second group that showed a significant immunostimulatory activity was represented by Aristolochia longa, Datura stramonium, Marrubium vulgare, Sinapis nigra, Delphynium staphysagria, Lepidium sativum, Ammi visnaga and Tetraclinis articulata. The rest of the plant extracts did not alter the proliferation induced by Con-A. This result was more important for the PE than for the total extract. In conclusion, this study revealed an interesting immunomodulating action of certain PEs, which could explain their traditional use. The results of this study may also have implications in therapeutic treatment of infections, such as prophylactic and adjuvant with cancer chemotherapy. PMID:22301818

  11. Monitoring of immune activation using biochemical changes in a porcine model of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Anton Amann

    2001-01-01

    Full Text Available In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-γ induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC and radioimmunoassay (RIA (BRAHMS Diagnostica, Berlin, Germany. Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false positive results. The mean serum tryptophan concentration was 39.0 Ī 6.2 μmol/l, and the mean kynurenine concentration was 0.85 Ī 0.33 μmol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7Ī 8.4 nmol/μmol, and that in plasma was 20.7Ī 9.5 nmol/μmol (n = 7, which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation.

  12. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  13. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    International Nuclear Information System (INIS)

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.)

  14. Association of neopterin as a marker of immune system activation and juvenile rheumatoid arthritis activity

    Directory of Open Access Journals (Sweden)

    Mones M. Abu Shady

    2015-08-01

    Full Text Available OBJECTIVE: To evaluate neopterin plasma concentrations in patients with active juvenile idiopathic arthritis (JIA and correlate them with disease activity.METHODS: Sixty patients diagnosed as active JIA, as well as another 60 apparently healthy age- and gender-matched children as controls, were recruited from the Pediatrics Allergy and Immunology Clinic, Ain Shams University. Disease activity was assessed by the Juvenile Arthritis Disease Activity Score 27 (JADAS-27. Laboratory investigations were performed for all patients, including determination of hemoglobin concentration (Hgb, erythrocyte sedimentation rate (ESR, and C-reactive protein. Serum concentrations of tumor necrosis factor-alpha (TNF-a, interleukin-6 (IL-6, monocyte chemoattractant protein-1 (MCP-1, and neopterin were measured.RESULTS: Significant differences were found between JIA patients and controls with regard to the mean levels of Hgb, ESR, TNF-a, IL-6, and MCP-1 (p 0.05. Multiple linear regression analysis showed that JADAS- 27 and ESR were the main variables associated with serum neopterin in JIA patients (p < 0.05.CONCLUSION: The elevation of plasma neopterin concentrations in early JIA patients may indicate stimulation of immune response. Serum neopterin can be used as a sensitive marker for assaying background inflammation and disease activity score in JIA patients.

  15. Possible activation of auto-immune thyroiditis from continuous subcutaneous infusion of genapol-containing insulin.

    Science.gov (United States)

    Chantelau, E

    2000-09-01

    A case of a type 1 diabetic woman with auto-immune thyroiditis is reported, in whom repeated exposure to insulin containing Genapol(R) (polyethylen-polypropylenglycol) over 3 years reproducibly parallels with an increase of serum TSH (thyroid-stimulating hormone) above the normal limit. Previously, adverse effects of Genapol(R) insulin have been related to its intraperitoneal application, and thought to be restricted to anti-insulin-immunity; activating effects on thyroid auto-immunity have been repeatedly disputed. We suggest that Genapol(R) insulin should be replaced by other insulin preparations with a better safety record.

  16. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    OpenAIRE

    Thomas Stübig; Anita Badbaran; Tim Luetkens; York Hildebrandt; Djordje Atanackovic; Binder, Thomas M. C.; Boris Fehse; Nicolaus Kröger

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and...

  17. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Science.gov (United States)

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  18. Biological Activities of Plant Pigments Betalains.

    Science.gov (United States)

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2016-04-25

    Betalains are a family of natural pigments present in most plants of the order Caryophyllales. They provide colors ranging from yellow to violet to structures that in other plants are colored by anthocyanins. These include not only edible fruits and roots but also flowers, stems, and bracts. The recent characterization of different bioactivities in experiments with betalain containing extracts and purified pigments has renewed the interest of the research community in these molecules used by the food industry as natural colorants. Studies with multiple cancer cell lines have demonstrated a high chemopreventive potential that finds in vitro support in a strong antiradical and antioxidant activity. Experiments in vivo with model animals and bioavailability studies reinforce the possible role played by betalains in the diet. This work provides a critical review of all the claimed biological activities of betalains, showing that the bioactivities described might be supported by the high antiradical capacity of their structural unit, betalamic acid. Although more investigations with purified compounds are needed, the current evidences suggest a strong health-promoting potential. PMID:25118005

  19. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    Science.gov (United States)

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. PMID:26848538

  20. Active Immunization in the United States: Developments over the Past Decade

    OpenAIRE

    Dennehy, Penelope H.

    2001-01-01

    The Centers for Disease Control and Prevention has identified immunization as the most important public health advance of the 20th century. The purpose of this article is to review the changes that have taken place in active immunization in the United States over the past decade. Since 1990, new vaccines have become available to prevent five infectious diseases: varicella, rotavirus, hepatitis A, Lyme disease, and Japanese encephalitis virus infection. Improved vaccines have been developed to...

  1. Gender-Dependent Effects of Maternal Immune Activation on the Behavior of Mouse Offspring

    OpenAIRE

    Xuan, Ingrid C. Y.; Hampson, David R.

    2014-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the "maternal immune activation" model, whereby the offspring from female rodents who we...

  2. Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions

    OpenAIRE

    Desiree Dickerson; David Bilkey

    2013-01-01

    Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model thos...

  3. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation.

    Science.gov (United States)

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  4. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity

    OpenAIRE

    Takayuki Uematsu; Ei’ichi Iizasa; Noritada Kobayashi; Hiroki Yoshida; Hiromitsu Hara

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune acti...

  5. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  6. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Directory of Open Access Journals (Sweden)

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  7. Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity.

    Science.gov (United States)

    Zhang, Zhibin; Liu, Yanan; Ding, Pingtao; Li, Yan; Kong, Qing; Zhang, Yuelin

    2014-12-01

    Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recognition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D contains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of SNC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3000hrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1. PMID:25267732

  8. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887

    Directory of Open Access Journals (Sweden)

    J.D. Biller-Takahashi

    2013-12-01

    Full Text Available The immune system of teleost fish has mechanisms responsible for the defense against bacteria through protective proteins in several tissues. The protein action can be evaluated by serum bactericidal activity and this is an important tool to analyze the immune system. Pacu, Piaractus mesopotamicus, is one of the most important fish in national aquaculture. However there is a lack of studies on its immune responses. In order to standardize and assess the accuracy of the serum bactericidal activity assay, fish were briefly challenged with Aeromonas hydrophila and sampled one week after the challenge. The bacterial infection increased the concentration of protective proteins, resulting in a decrease of colony-forming unit values expressed as well as an enhanced serum bactericidal activity. The protocol showed a reliable assay, appropriate to determine the serum bactericidal activity of pacu in the present experimental conditions.

  9. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  10. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  11. Danger signals activating innate immunity in graft-versus-host disease.

    Science.gov (United States)

    Zeiser, Robert; Penack, Olaf; Holler, Ernst; Idzko, Marco

    2011-09-01

    Extensive cell death with consecutive release of danger signals can cause immune-mediated tissue destruction. The abundance of cell death is likely to determine the relevance of the danger signals as physiological mechanisms that counteract immune activation may be overruled. Such constellation is conceivable in chemo-/radiotherapy-induced tissue damage, reperfusion injury, trauma, and severe infection. Studies on graft-versus-host disease (GvHD) development have to consider the effects of chemo-/radiotherapy-related tissue damage leading to the release of exogenous and endogenous danger signals. Our previous work has demonstrated a role for adenosine-5'-triphosphate (ATP) as an endogenous danger signal in GvHD. Besides ATP, uric acid or soluble extracellular matrix components are functional danger signals that activate the NLRP3 inflammasome when released from dying cells or from extracellular matrix. In contrast to sterile inflammation, GvHD is more complex since bacterial components that leak through damaged intestinal barriers and the skin can activate pattern recognition receptors and directly contribute to GvHD pathogenesis. These exogenous danger signals transmit immune activation via toll-like receptors and NOD-like receptors of the innate immune system. This review covers both the impact of endogenous and exogenous danger signals activating innate immunity in GvHD.

  12. Fluorescence activated cell sorting of plant protoplasts.

    Science.gov (United States)

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-02-18

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  13. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.

    Science.gov (United States)

    Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng

    2016-01-01

    Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.

  14. Immunization with Dendritic Cells Pulsed ex vivo with Recombinant Chlamydial Protease-Like Activity Factor Induces Protective Immunity Against Genital Chlamydia muridarum Challenge

    Directory of Open Access Journals (Sweden)

    Bernard eArulanandam

    2011-12-01

    Full Text Available We have shown that immunization with soluble recombinant (r chlamydial protease-like activity factor (rCPAF and a T helper (Th 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia–induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs pulsed ex vivo with rCPAF+CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF+CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40 and major histocompatibility complex class II (MHC II, and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN- and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB-BMDCs, for inducing robust anti-Chlamydia immunity.

  15. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response

    OpenAIRE

    Oskvig, Devon B.; Elkahloun, Abdel G.; Johnson, Kory R.; Phillips, Terry M.; Herkenham, Miles

    2012-01-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother’s immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the of...

  16. Effect of Rice Plants on Nitrogenase Activity of Flooded Soils

    OpenAIRE

    Habte, Mitiku; Alexander, Martin

    1980-01-01

    In samples of flooded soil containing blue-green algae (cyanobacteria), the presence of rice plants did not influence the nitrogenase activity of the algae. Nitrogenase activity of heterotrophic bacteria was enhanced by the presence of rice plants, but this activity was not affected by changes in plant density. The rate of nitrogen fixation in the rhizosphere, however, varied significantly among the 16 rice varieties tested. A simple method was devised to test the nitrogen-fixing activity in ...

  17. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  18. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer* #

    OpenAIRE

    Que, Ri-sheng; Lin, Cheng; Ding, Guo-ping; WU, ZHENG-RONG; Cao, Li-ping

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic ca...

  19. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    Science.gov (United States)

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  20. Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment

    Science.gov (United States)

    Rosengaus, Rebeca B.; Reichheld, Jennifer L.

    2016-02-01

    Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant inter-specific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the above-ground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular.

  1. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.

    Science.gov (United States)

    Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Vu, Trang; Roberts, Philip; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.

  2. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation

    Directory of Open Access Journals (Sweden)

    van Horssen Jack

    2012-07-01

    Full Text Available Abstract Background In brain tissues from multiple sclerosis (MS patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of well-characterized MS brain samples. Methods Here, we document the frequency of preactive lesions and their association with distinct white matter lesions in a cohort of 21 MS patients. Immunohistochemistry was used to gain further insight into the cellular and molecular composition of preactive lesions. Results Preactive lesions were observed in a majority of MS patients (67% irrespective of disease duration, gender or subtype of disease. Microglial clusters were predominantly observed in the vicinity of active demyelinating lesions and are not associated with T cell infiltrates, axonal alterations, activated astrocytes or blood–brain barrier disruption. Microglia in preactive lesions consistently express interleukin-10 and TNF-α, but not interleukin-4, whereas matrix metalloproteases-2 and −9 are virtually absent in microglial nodules. Interestingly, key subunits of the free-radical-generating enzyme NADPH oxidase-2 were abundantly expressed in microglial clusters. Conclusions The high frequency of preactive lesions suggests that it is unlikely that most of them will progress into full-blown demyelinating lesions. Preactive lesions are not associated with blood–brain barrier disruption, suggesting that an intrinsic trigger of innate immune activation, rather than extrinsic factors crossing a damaged blood–brain barrier, induces the formation of clusters of activated microglia.

  3. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications.

    Directory of Open Access Journals (Sweden)

    Atsushi Muroi

    Full Text Available A blend of volatile organic compounds (VOCs emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn by exposing them to transgenic-plant-volatiles (VOCos including (E-β-ocimene, emitted from transgenic tobacco plants (NtOS2 that were constitutively overexpressing (E-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai. In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications.

  4. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-01-01

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen. PMID:24589193

  5. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  6. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism.

    Science.gov (United States)

    Boontanrart, Mandy; Hall, Samuel D; Spanier, Justin A; Hayes, Colleen E; Olson, Julie K

    2016-03-15

    Microglia become activated immune cells during infection or disease in the central nervous system (CNS). However, the mechanisms that downregulate activated microglia to prevent immune-mediated damage are not completely understood. Vitamin D3 has been suggested to have immunomodulatory affects, and high levels of vitamin D3 have been correlated with a decreased risk for developing some neurological diseases. Recent studies have demonstrated the synthesis of active vitamin D3, 1,25-dihydroxyvitamin D3, within the CNS, but its cellular source and neuroprotective actions remain unknown. Therefore, we wanted to determine whether microglia can respond to vitamin D3 and whether vitamin D3 alters immune activation of microglia. We have previously shown that microglia become activated by IFNγ or LPS or by infection with virus to express pro-inflammatory cytokines, chemokines, and effector molecules. In this study, activated microglia increased the expression of the vitamin D receptor and Cyp27b1, which encodes the enzyme for converting vitamin D3 into its active form, thereby enhancing their responsiveness to vitamin D3. Most importantly, the activated microglia exposed to vitamin D3 had reduced expression of pro-inflammatory cytokines, IL-6, IL-12, and TNFα, and increased expression of IL-10. The reduction in pro-inflammatory cytokines was dependent on IL-10 induction of suppressor of cytokine signaling-3 (SOCS3). Therefore, vitamin D3 increases the expression of IL-10 creating a feedback loop via SOCS3 that downregulates the pro-inflammatory immune response by activated microglia which would likewise prevent immune mediated damage in the CNS.

  7. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington's disease.

    Science.gov (United States)

    Ramsingh, Arlene I; Manley, Kevin; Rong, Yinghui; Reilly, Andrew; Messer, Anne

    2015-11-01

    Immunotherapy, both active and passive, is increasingly recognized as a powerful approach to a wide range of diseases, including Alzheimer's and Parkinson's. Huntington's disease (HD), an autosomal dominant disorder triggered by misfolding of huntingtin (HTT) protein with an expanded polyglutamine tract, could also benefit from this approach. Individuals can be identified genetically at the earliest stages of disease, and there may be particular benefits to a therapy that can target peripheral tissues in addition to brain. In this active vaccination study, we first examined safety and immunogenicity for a broad series of peptide, protein and DNA plasmid immunization protocols, using fragment (R6/1), and knock-in (zQ175) models. No safety issues were found. The strongest and most uniform immune response was to a combination of three non-overlapping HTT Exon1 coded peptides, conjugated to KLH, delivered with alum adjuvant. An N586-82Q plasmid, delivered via gene gun, also showed ELISA responses, mainly in the zQ175 strain, but with more variability, and less robust responses in HD compared with wild-type controls. Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expression by regulators, a temporal dysregulation of innate immune responses and transcriptional repression of genes associated with memory T cell responses. These studies highlight critical issues for immunotherapy and HD disease management in general. PMID:26307082

  8. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    Science.gov (United States)

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  9. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    Science.gov (United States)

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  10. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses

    Science.gov (United States)

    Yu, Jong W.; Hoffman, Sandy; Beal, Allison M.; Dykon, Angela; Ringenberg, Michael A.; Hughes, Anna C.; Dare, Lauren; Anderson, Amber D.; Finger, Joshua; Kasparcova, Viera; Rickard, David; Berger, Scott B.; Ramanjulu, Joshi; Emery, John G.; Gough, Peter J.; Bertin, John; Foley, Kevin P.

    2015-01-01

    CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo. PMID:25965667

  11. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Directory of Open Access Journals (Sweden)

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  12. Anti-inflammatory activity of some traditional medicinal plants.

    Science.gov (United States)

    Singh, R K; Joshi, V K; Gambhir, S S

    1998-10-01

    The ethanol extract of roots, fruits and roots of solanum indicum and saccharum munja respectively and water soluble resin of commiphora myrrha were studied for antiinflammatory activity against carrageenin induced oedema in rats, the significant antiinflammatory activity were found in former two plants will slight anti inflammatory activity was observed in latter plant.

  13. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Jennifer C. Molloy

    2015-08-01

    Full Text Available Aedes albopictus is a major vector of dengue (DENV and chikungunya (CHIKV viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species.

  14. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants. PMID:24604202

  15. Immunostimulating complexes incorporating Eimeria tenella antigens and plant saponins as effective delivery system for coccidia vaccine immunization.

    Science.gov (United States)

    Berezin, V E; Bogoyavlenskiy, A P; Tolmacheva, V P; Makhmudova, N R; Khudyakova, S S; Levandovskaya, S V; Omirtaeva, E S; Zaitceva, I A; Tustikbaeva, G B; Ermakova, O S; Aleksyuk, P G; Barfield, R C; Danforth, H D; Fetterer, R H

    2008-04-01

    Immunostimulating complexes (ISCOMs) are unique, multimolecular structures formed by encapsulating antigens, lipids, and triterpene saponins of plant origin, and are an effective delivery system for various kinds of antigens. The uses of ISCOMs formulated with saponins from plants collected in Kazakhstan, with antigens from the poultry coccidian parasite Eimeria tenella, were evaluated for their potential use in developing a vaccine for control of avian coccidiosis. Saponins isolated from the plants Aesculus hippocastanum and Glycyrrhiza glabra were partially purified by HPLC. The saponin fractions obtained from HPLC were evaluated for toxicity in chickens and chicken embryos. The HPLC saponin fractions with the least toxicity, compared to a commercial saponin Quil A, were used to assemble ISCOMs. When chicks were immunized with ISCOMs prepared with saponins from Kazakhstan plants and E. tenella antigens, and then challenged with E. tenella oocysts, significant protection was conveyed compared to immunization with antigen alone. The results of this study indicate that ISCOMs formulated with saponins isolated from plants indigenous to Kazakhstan are an effective antigen delivery system which may be successfully used, with low toxicity, for preparation of highly immunogenic coccidia vaccine. PMID:18564738

  16. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies.

    Science.gov (United States)

    Giovanoli, Sandra; Weber-Stadlbauer, Ulrike; Schedlowski, Manfred; Meyer, Urs; Engler, Harald

    2016-07-01

    Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation. PMID:26408796

  17. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei. PMID:26993614

  18. In vitro modulation of oxidative burstvia release of reactive oxygen species from immune cells by extracts of selected tropical medicinal herbs and food plants

    Institute of Scientific and Technical Information of China (English)

    Fawzi Mahomoodally; Ahmed Mesaik; M Iqbal Choudhary; Anwar H Subratty; Ameenah Gurib-Fakim

    2012-01-01

    Objective:To evaluatein vitro immunomodulating properties and potential cytotoxicity of six tropical medicinal herbs and food plants namelyAntidesma madagascariense(Euphorbiaceae) (AM),Erythroxylum macrocarpum (Erythroxylaceae) (EM),Faujasiopsis flexuosa(Asteraceae) (FF),Pittosporum senacia (Pittosporaceae) (PS),Momordica charantia (Cucurbitaceae)(MC)and Ocimum tenuiflorum(Lamiaceae) (OT).Methods:Initially, the crude water and methanol extracts were probed for their capacity to trigger immune cells’NADPH oxidase andMPO-dependent activities as measured by lucigenin- and luminol-amplified chemiluminescence, respectively; as compared to receptor-dependent (serum opsonised zymosan-OPZ) or receptor-independent phorbol myristerate acetate(PMA).Results:Preliminary screening on whole human blood oxidative burst activity showed significant and concentration-dependent immunomodulating properties of three plantsAM, FF and OT. Further investigations of the fractions on isolated human polymorphonuclear cells (PMNs) and mice monocytes using two different pathways for activation of phagocytic oxidative burst showed that ethyl acetate fraction was the most potent extract. None of the active samples had cell-death effects on humanPMNs, under the assay conditions as determined by the trypan-blue exclusion assay. Since PMA andOPZ NADPH oxidase complex is activatedvia different transduction pathways, these results suggest thatAM, FF andOTdoes not affect a specific transductional pathway, but rather directly inhibit a final common biochemical target such as theNADPH oxidase enzyme and/or scavengesROS.Conclusions: Our findings suggest that some of these plants extracts/fractions were able to modulate significantly immune response of phagocytes and monocytes at different steps, emphasizing their potential as a source of new natural alternative immunomodulatory agents.

  19. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    Directory of Open Access Journals (Sweden)

    Chun-Jung Huang

    2013-01-01

    Full Text Available Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation.

  20. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants.

    Science.gov (United States)

    Fujikawa, Takashi; Sakaguchi, Ayumu; Nishizawa, Yoko; Kouzai, Yusuke; Minami, Eiichi; Yano, Shigekazu; Koga, Hironori; Meshi, Tetsuo; Nishimura, Marie

    2012-01-01

    Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is

  1. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    Science.gov (United States)

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  2. Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers

    Directory of Open Access Journals (Sweden)

    Tinyiko G. Makhubele

    2016-01-01

    Full Text Available Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14, beta-2 microglobulin (β2M, CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1. Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P<0.01–P<0.0001. The effects of antiretroviral therapy (ART and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group.

  3. The immune theory of psychiatric diseases : a key role for activated microglia and circulating monocytes

    NARCIS (Netherlands)

    Beumer, Wouter; Gibney, Sinead M.; Drexhage, Roosmarijn C.; Pont-Lezica, Lorena; Doorduin, Janine; Klein, Hans C.; Steiner, Johann; Connor, Thomas J.; Harkin, Andrew; Versnel, Marjan A.; Drexhage, Hemmo A.

    2012-01-01

    This review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction of monocyte

  4. The immune theory of psychiatric diseases: A key role for activated microglia and circulating monocytes

    NARCIS (Netherlands)

    W. Beumer (Wouter); S.M. Gibney (Sinead); R.C. Drexhage (Roos); L. Pont-Lezica (Lorena); J. Doorduin (Janine); H.C. Klein (Hans); J. Steiner (Johann); L. Connor; A. Harkin (Andrew); M.A. Versnel (Marjan); H.A. Drexhage (Hemmo)

    2012-01-01

    textabstractThis review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction

  5. Hyperferritinaemia in dengue virus infected patients is associated with immune activation and coagulation disturbances

    NARCIS (Netherlands)

    Weg, C.A. van de; Huits, R.M.; Pannuti, C.S.; Brouns, R.M.; Berg, R.W.A. van den; Ham, H.J. van den; Martina, B.E.; Osterhaus, A.D.; Netea, M.G.; Meijers, J.C.; Gorp, E.C. van; Kallas, E.G.

    2014-01-01

    BACKGROUND: During a dengue outbreak on the Caribbean island Aruba, highly elevated levels of ferritin were detected in dengue virus infected patients. Ferritin is an acute-phase reactant and hyperferritinaemia is a hallmark of diseases caused by extensive immune activation, such as haemophagocytic

  6. Hyperferritinaemia in Dengue Virus Infected Patients Is Associated with Immune Activation and Coagulation Disturbances

    NARCIS (Netherlands)

    C.A.M. van de Weg (Cornelia A.M.); R.M.H.G. Huits (Ralph M. H. G.); C.S. Pannuti (Cláudio); R.M. Brouns (Rosalba M.); R.W.A. van den Berg (Riemsdijk W. A.); H.J. van den Ham; B.E.E. Martina (Byron); A.D.M.E. Osterhaus (Albert); M.G. Netea (Mihai); J.C.M. Meijers; E.C.M. van Gorp (Eric); E.G. Kallas (Esper)

    2014-01-01

    textabstractDuring a dengue outbreak on the Caribbean island Aruba, highly elevated levels of ferritin were detected in dengue virus infected patients. Ferritin is an acute-phase reactant and hyperferritinaemia is a hallmark of diseases caused by extensive immune activation, such as haemophagocytic

  7. Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide.

    Science.gov (United States)

    Bommineni, Yugendar R; Pham, Giang H; Sunkara, Lakshmi T; Achanta, Mallika; Zhang, Guolong

    2014-05-01

    Appropriate modulation of immunity is beneficial in antimicrobial therapy and vaccine development. Host defense peptides (HDPs) constitute critically important components of innate immunity with both antimicrobial and immune regulatory activities. We previously showed that a chicken HDP, namely fowlicidin-1(6-26), has potent antibacterial activities in vitro and in vivo. Here we further revealed that fowl-1(6-26) possesses strong immunomodulatory properties. The peptide is chemotactic specifically to neutrophils, but not monocytes or lymphocytes, after injected into the mouse peritoneum. Fowl-1(6-26) also has the capacity to activate macrophages by inducing the expression of inflammatory mediators including IL-1β, CCL2, and CCL3. However, unlike bacterial lipopolysaccharide that triggers massive production of inflammatory cytokines and chemokines, fowl-1(6-26) only marginally increased their expression in mouse RAW264.7 macrophages. Additionally, fowl-1(6-26) enhanced the surface expression of MHC II and CD86 on RAW264.7 cells, suggesting that it may facilitate development of adaptive immune response. Indeed, co-immunization of mice with chicken ovalbumin (OVA) and fowl-1(6-26) augmented both OVA-specific IgG1 and IgG2a titers, relative to OVA alone. We further showed that fowl-1(6-26) is capable of preventing a methicillin-resistant Staphylococcus aureus (MRSA) infection due to its enhancement of host defense. All mice survived from an otherwise lethal infection when the peptide was administered 1-2 days prior to MRSA infection, and 50% mice were protected if receiving the peptide 4 days before infection. Taken together, with a strong capacity to stimulate innate and adaptive immunity, fowl-1(6-26) may have potential to be developed as a novel antimicrobial and a vaccine adjuvant.

  8. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Lebeis, Sarah [University of North Carolina

    2013-03-01

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  9. Reduced Chitinase Activities in Ant Plants of the Genus Macaranga

    Science.gov (United States)

    Heil, Martin; Fiala, Brigitte; Linsenmair, K. Eduard; Boller, Thomas

    Many plant species have evolved mutualistic associations with ants, protecting their host against detrimental influences such as herbivorous insects. Letourneau (1998) reported in the case of Piper that ants defend their plants principally against stem-boring insects and also reduce fungal infections on inflorescences. Macaranga plants that were experimentally deprived of their symbiotic Crematogaster ants suffered heavily from shoot borers and pathogenic fungi (Heil 1998). Here we report that ants seem to reduce fungal infections actively in the obligate myrmecophyte Macarangatriloba (Euphorbiaceae), while ant-free plants can be easily infected. We also found extremely low chitinase activity in Macaranga plants. The plants' own biochemical defense seems to be reduced, and low chitinase activity perhaps may represent a predisposition for the evolution of myrmecophytism. These plants are therefore highly dependent on their ants, which obviously function not only as an antiherbivore defense but also as an effective agent against fungal pathogens.

  10. From Tumor Immunosuppression to Eradication: Targeting Homing and Activity of Immune Effector Cells to Tumors

    Directory of Open Access Journals (Sweden)

    Oana Draghiciu

    2011-01-01

    Full Text Available Unraveling the mechanisms used by the immune system to fight cancer development is one of the most ambitious undertakings in immunology. Detailed knowledge regarding the mechanisms of induction of tolerance and immunosuppression within the tumor microenvironment will contribute to the development of highly effective tumor eradication strategies. Research within the last few decades has shed more light on the matter. This paper aims to give an overview on the current knowledge of the main tolerance and immunosuppression mechanisms elicited within the tumor microenvironment, with the focus on development of effective immunotherapeutic strategies to improve homing and activity of immune effector cells to tumors.

  11. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  12. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor.

    Science.gov (United States)

    Roberts, Melinda; Tang, Saijun; Stallmann, Anna; Dangl, Jeffery L; Bonardi, Vera

    2013-01-01

    Plants react to pathogen attack via recognition of, and response to, pathogen-specific molecules at the cell surface and inside the cell. Pathogen effectors (virulence factors) are monitored by intracellular nucleotide-binding leucine-rich repeat (NB-LRR) sensor proteins in plants and mammals. Here, we study the genetic requirements for defense responses of an autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC)-NB-LRR protein. ADR1-L2 functions upstream of salicylic acid (SA) accumulation in several defense contexts, and it can act in this context as a "helper" to transduce specific microbial activation signals from "sensor" NB-LRRs. This helper activity does not require an intact P-loop. ADR1-L2 and another of two closely related members of this small NB-LRR family are also required for propagation of unregulated runaway cell death (rcd) in an lsd1 mutant. We demonstrate here that, in this particular context, ADR1-L2 function is P-loop dependent. We generated an autoactive missense mutation, ADR1-L2D484V, in a small homology motif termed MHD. Expression of ADR1-L2D848V leads to dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. The morphological phenotype also requires an intact P-loop, suggesting that these ADR1-L2D484V phenotypes reflect canonical activation of this NB-LRR protein. We used ADR1-L2D484V to define genetic requirements for signaling. Signaling from ADR1-L2D484V does not require NADPH oxidase and is negatively regulated by EDS1 and AtMC1. Transcriptional regulation of ADR1-L2D484V is correlated with its phenotypic outputs; these outputs are both SA-dependent and -independent. The genetic requirements for ADR1-L2D484V activity resemble those that regulate an SA-gradient-dependent signal amplification of defense and cell death signaling initially observed in the absence of LSD1. Importantly, ADR1-L2D484V autoactivation signaling is controlled by both EDS1 and SA in separable, but linked pathways

  13. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor.

    Directory of Open Access Journals (Sweden)

    Melinda Roberts

    Full Text Available Plants react to pathogen attack via recognition of, and response to, pathogen-specific molecules at the cell surface and inside the cell. Pathogen effectors (virulence factors are monitored by intracellular nucleotide-binding leucine-rich repeat (NB-LRR sensor proteins in plants and mammals. Here, we study the genetic requirements for defense responses of an autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC-NB-LRR protein. ADR1-L2 functions upstream of salicylic acid (SA accumulation in several defense contexts, and it can act in this context as a "helper" to transduce specific microbial activation signals from "sensor" NB-LRRs. This helper activity does not require an intact P-loop. ADR1-L2 and another of two closely related members of this small NB-LRR family are also required for propagation of unregulated runaway cell death (rcd in an lsd1 mutant. We demonstrate here that, in this particular context, ADR1-L2 function is P-loop dependent. We generated an autoactive missense mutation, ADR1-L2D484V, in a small homology motif termed MHD. Expression of ADR1-L2D848V leads to dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. The morphological phenotype also requires an intact P-loop, suggesting that these ADR1-L2D484V phenotypes reflect canonical activation of this NB-LRR protein. We used ADR1-L2D484V to define genetic requirements for signaling. Signaling from ADR1-L2D484V does not require NADPH oxidase and is negatively regulated by EDS1 and AtMC1. Transcriptional regulation of ADR1-L2D484V is correlated with its phenotypic outputs; these outputs are both SA-dependent and -independent. The genetic requirements for ADR1-L2D484V activity resemble those that regulate an SA-gradient-dependent signal amplification of defense and cell death signaling initially observed in the absence of LSD1. Importantly, ADR1-L2D484V autoactivation signaling is controlled by both EDS1 and SA in separable, but linked

  14. STUDY OF DRUG LIKENESS ACTIVITY OF PHYTOCHEMICALS IN MEDICINAL PLANTS

    OpenAIRE

    V. Sathya; Gopalakrishnan, V. K.

    2012-01-01

    Phytochemicals in medicinal plants can deliver potential therapeutic drugs such as anticancer, antiviral, antioxidant etc. The plant kingdom is a treasure house of potential drugs and each phytochemical cannot be tested in the wetlab preparations. Hence the main aim of the study is the drug likeness activity of phytochemicals in medicinal plants such as Anethum graveolens, Apium graveolens against hepatocellular carcinoma. These plants have anticancer, antilivercancer, hepatoprotective, antiv...

  15. Development of CpG-oligodeoxynucleotides for effective activation of rabbit TLR9 mediated immune responses.

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chuang

    Full Text Available CpG-oligodeoxynucleotides (CpG-ODN are potent immune stimuli being developed for use as adjuvants in different species. Toll-like receptor 9 (TLR9 is the cellular receptor for CpG-ODN in mammalian cells. The CpG-ODN with 18-24 deoxynucleotides that are in current use for human and mouse cells, however, have low activity with rabbit TLR9. Using a cell-based activation assay, we developed a type of CpG-ODN containing a GACGTT or AACGTT motif in 12 phosphorothioate-modified deoxynucleotides with potent stimulatory activity for rabbit TLR9. The developed CpG-ODN have higher activities than other developed CpG-ODN in eliciting antigen-nonspecific immune responses in rabbit splenocytes. When mixed with an NJ85 peptide derived from rabbit hemorrhagic disease virus, they had potent activities to boost an antigen-specific T cell activation and antibody production in rabbits. Compared to Freund's adjuvant, the developed CpG-ODN are capable of boosting a potent and less toxic antibody response. The results of this study suggest that both the choice of CpG-motif and its length are important factors for CpG-ODN to effectively activate rabbit TLR9 mediated immune responses.

  16. Design of host defence peptides for antimicrobial and immunity enhancing activities.

    Science.gov (United States)

    McPhee, Joseph B; Scott, Monisha G; Hancock, Robert E W

    2005-05-01

    Host defense peptides are a vital component of the innate immune systems of humans, other mammals, amphibians, and arthropods. The related cationic antimicrobial peptides are also produced by many species of bacteria and function as part of the antimicrobial arsenal to help the producing organism reduce competition for resources from sensitive species. The antimicrobial activities of many of these peptides have been extensively characterized and the structural requirements for these activities are also becoming increasingly clear. In addition to their known antimicrobial role, many host defense peptides are also involved in a plethora of immune functions in the host. In this review, we examine the role of structure in determining antimicrobial activity of certain prototypical cationic peptides and ways that bacteria have evolved to usurp these activities. We also review recent literature on what structural components are related to these immunomodulatory effects. It must be stressed however that these studies, and the area of peptide research, are still in their infancy.

  17. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    Science.gov (United States)

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  18. Immune reconstitution inflammatory syndrome after initiating highly active antiretroviral therapy in HIV-infected children

    International Nuclear Information System (INIS)

    The outcome of HIV infection has improved since the widespread availability of highly active antiretroviral therapy (HAART). Some patients, however, develop a clinical and radiological deterioration following initiation of HAART due to either the unmasking of occult subclinical infection or an enhanced inflammatory response to a treated infection. This phenomenon is believed to result from the restored ability to mount an immune response and is termed immune reconstitution inflammatory syndrome (IRIS) or immune reconstitution disease. IRIS is widely reported in the literature in adult patients, most commonly associated with mycobacterial infections. There is, however, a paucity of data documenting the radiological findings of IRIS in children. Radiologists need to be aware of this entity. As a diagnosis of exclusion it is essential that the radiological findings be assessed in the context of the clinical presentation. This article reviews the common clinical and radiological manifestations of IRIS in HIV-infected children. (orig.)

  19. Mechanistic insights on immunosenescence and chronic immune activation in HIV-tuberculosis co-infection

    Science.gov (United States)

    Shankar, Esaki M; Velu, Vijayakumar; Kamarulzaman, Adeeba; Larsson, Marie

    2015-01-01

    Immunosenescence is marked by accelerated degradation of host immune responses leading to the onset of opportunistic infections, where senescent T cells show remarkably higher ontogenic defects as compared to healthy T cells. The mechanistic association between T-cell immunosenescence and human immunodeficiency virus (HIV) disease progression, and functional T-cell responses in HIV-tuberculosis (HIV-TB) co-infection remains to be elaborately discussed. Here, we discussed the association of immunosenescence and chronic immune activation in HIV-TB co-infection and reviewed the role played by mediators of immune deterioration in HIV-TB co-infection necessitating the importance of designing therapeutic strategies against HIV disease progression and pathogenesis. PMID:25674514

  20. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro

    DEFF Research Database (Denmark)

    Jenny, Marcel; Pedersen, Ninfa R; Hidayat, Budi J;

    2010-01-01

    Bovine colostrum (BC) is the thick yellow fluid a lactating cow Oyes to a suckling calf during its first days of life to support the growth of the calf and prevent gastrointestinal infections until the calf has synthesized its own active immune defense system. BC contains a complex system of immune...... factors and has a long history of use in traditional medicine. In an approach to evaluate the effects of bovine colostrum (BC) on the T-cell/macrophage interplay, we investigated and compared the capacity of BC containing low and high amounts of lactose and lactoferrin to modulate tryptophan degradation...... and neopterin formation in unstimulated and mitogen-stimulated human peripheral blood mononuclear cells (PBMC). The present study shows significant immunomodulatory effects of these BC preparations in human PBMC, either by enhancing or suppressing the occurrence of a Th-1 type immune response. The amount...

  1. Gender-dependent effects of maternal immune activation on the behavior of mouse offspring.

    Directory of Open Access Journals (Sweden)

    Ingrid C Y Xuan

    Full Text Available Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the "maternal immune activation" model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior.

  2. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    Science.gov (United States)

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.

  3. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.

    Science.gov (United States)

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A; Ingalls, Robin R

    2014-05-01

    NOD1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. We examined the ability of NOD1 and NOD2 to recognize Neisseria gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. Gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2. We identified a number of cytokines and chemokines that were differentially expressed in wild type versus NOD2-deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling up-regulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. Thus, NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  4. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  5. G protein activation stimulates phospholipase D signaling in plants

    NARCIS (Netherlands)

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  6. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo.

    Directory of Open Access Journals (Sweden)

    Silke eSmolders

    2015-08-01

    Full Text Available Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus.Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model.

  7. Biological activity of some Patagonian plants.

    Science.gov (United States)

    Cuadra, Pedro; Furrianca, María; Oyarzún, Alejandra; Yáñez, Erwin; Gallardo, Amalia; Fajardo, Víctor

    2005-12-01

    Citotoxicity (inhibition of cell division in fertilized eggs of Loxechinus albus) and general toxicity (using embryos of Artemia salina) of plants belonging to the genera Senecio, Deschampsia, Alstroemeria, Anarthrophyllum, Chloraea and Geranium were investigated. PMID:16229970

  8. THE APPLICATION OF FUROLAN PLANT GROWTH REGULATOR AND IMMUNIZER ON SUNFLOWER CULTIVATION IN THE KRASNODAR REGION

    Directory of Open Access Journals (Sweden)

    Yablonskaya Y. K.

    2016-09-01

    Full Text Available Sunflower is one of the most important oilseed crops, which are of great economic importance in Russia and in the world. It is very adaptive crop in terms of climatic conditions range, for that reason it is cultivated on a vast territory of the Russian Federation in various weather conditions. Sunflower oil has high nutritional and taste qualities, it is used numerously in food and is applied in various fields of food industry. The biologically active linoleic acid, phosphatides and fat-soluble vitamins A, D, E and K, which are of great nutritional value to humans, are contained in the oil. According to its calorific capacity, sunflower oil is on the first place among vegetable oils. Due to biological characteristics of sunflower, the Krasnodar region is the most favorable region of the Russian Federation for obtaining high and stable yields of this crop. However, here the drought is observed during the summer period and it affects adversely the productivity and quality of sunflower seeds. The increasing of resistance to unfavorable weather conditions is possible only based on detailed study of physiological features of productivity formation and seeds quality that is highly important task in view of the current geopolitical situation in Russia. One way of solving this issue is the appliance of the growth regulators, possessing anti-stress activity that improve the quality of sowing seeds and increase the productivity and plant resistance to stressful environmental factors. These drugs include growth regulator called Furolan, which was created in KubGTU and is certified for use in Russia. It is not toxic and is used in nano-dozes, there is no its residual quantities in the products and environment. Furolan has a positive effect on physiological and biochemical processes, improves the productivity of plants, their resistance to unfavorable growing conditions by increasing the resistance to dehydration as well as to the risk of fungal diseases

  9. Anti-Trypanosomal Activity of Nigerian Plants and Their Constituents

    Directory of Open Access Journals (Sweden)

    Ngozi Justina Nwodo

    2015-04-01

    Full Text Available African trypanosomiasis is a vector-borne parasitic disease causing serious risks to the lives of about 60 million people and 48 million cattle globally. Nigerian medicinal plants are known to contain a large variety of chemical structures and some of the plant extracts have been screened for antitrypanosomal activity, in the search for potential new drugs against the illness. We surveyed the literatures on plants and plant-derived products with antitrypanosomal activity from Nigerian flora published from 1990 to 2014. About 90 plants were identified, with 54 compounds as potential active agents and presented by plant families in alphabetical order. This review indicates that the Nigerian flora may be suitable as a starting point in searching for new and more efficient trypanocidal molecules.

  10. Comparative Analysis of Immune Cells Activation and Cytotoxicity upon Exposure Pathogen and Glycoconjugates

    Science.gov (United States)

    Saheb, Entsar; Tarasenko, Olga

    2010-04-01

    Peripheral mononuclear cells (PMNC) including macrophages are key players in the immune responses against pathogens. Any infection could be attenuated if PMNC would be activated and capable to kill pathogen on exposure. It was shown that glycoconjugates (GCs) play an important role in adhesion to, activation, and recognition of pathogens. Nitric oxide (NO) is a regulatory molecule released by immune cells against pathogens that include bacteria, protozoa, helminthes, and fungi. NO is a highly reactive and diffusible molecule that controls replication or intracellular killing of pathogens during infection and immune responses against infections caused by pathogens. Avirulent Bacillus anthracis Sterne spores were used as a model in our study. The purpose of this study was two-fold: A) to analyze PMNC activation through NO production and B) to determine the cytotoxicity effect based on lactate dehydrogenase (LDH) upon exposure to pathogen exerted by GCs. The latter were used "prior to," "during," and "following" PMNC exposure to pathogen in order to modulate immune responses to spores during phagocytosis. Post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to spores. Results have shown that untreated PMNC released low levels of NO. However, in the presence of GCs, PMNC were activated and produced high levels of NO under all experimental conditions. In addition, the results showed that GC1, GC3 are capable of increasing PMNC activity as evidenced by higher NO levels under the "prior," "during" and "following" to pathogen exposure conditions. On the other hand, GCs were capable of controlling cytotoxicity and decreased LDH levels during phagocytosis of spores. Our findings suggest that GCs stimulate NO production by activating PMNC and decrease cytotoxicity caused by pathogens on PMNC.

  11. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    Science.gov (United States)

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-01

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  12. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Jacqueline Monaghan

    2009-07-01

    Full Text Available Plant Resistance (R proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein-mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity.

  13. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal.

    Directory of Open Access Journals (Sweden)

    Patrick M Brock

    Full Text Available Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on

  14. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  15. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Science.gov (United States)

    Sohn, Kee Hoon; Segonzac, Cécile; Rallapalli, Ghanasyam; Sarris, Panagiotis F; Woo, Joo Yong; Williams, Simon J; Newman, Toby E; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D G

    2014-10-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light

  16. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.

    Science.gov (United States)

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M

    2006-11-01

    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  17. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    Directory of Open Access Journals (Sweden)

    Charles Chen Hu

    2014-01-01

    Full Text Available Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’2 could rescue 100% of the mice by one dose (3 nmol administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50, only the IgG-treated mice survived; the F(ab’2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  18. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp.

    Science.gov (United States)

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tayag, Carina Miranda; Li, Hui-Fang; Putra, Dedi Fazriansyah; Kuo, Yi-Hsuan; Bai, Jia-Chin; Chang, Yu-Hsuan

    2016-08-01

    The effect of Spirulina dried powder (SDP) on the immune response of white shrimp Litopenaeus vannamei was studied in vitro and in vivo. Incubating shrimp haemocytes in 0.5 mg ml(-1) SDP caused the degranulation of haemocytes and a reduction in the percentage of large cells within 30 min. Shrimp haemocytes incubated in 1 mg ml(-1) SDP significantly increased their phenoloxidase (PO) activity, serine proteinase activity, and respiratory burst activity (RB, release of superoxide anion). A recombinant protein of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of the white shrimp was produced, named rLvLGBP, and examined for its binding with SDP. An ELISA binding assay showed that rLvLGBP binds to SDP with a dissociation constant of 0.0507 μM. In another experiment, shrimp fed diets containing SDP at 0 (control), 30, and 60 g kg(-1) after four weeks were examined for LGBP transcript level and lysozyme activity, as well as phagocytic activity, clearance efficiency, and resistance to Vibrio alginolyticus. These parameters were significantly higher in shrimp receiving diets containing SDP at 60 g kg(-1) or 30 g kg(-1) than in controls. In conclusion, shrimp haemocytes receiving SDP provoked the activation of innate immunity as evidenced by the recognition and binding of LGBP, degranulation of haemocytes, reduction in the percentage of large cells, increases in PO activity, serine proteinase activity, superoxide anion levels, and up-regulated LGBP transcript levels. Shrimp receiving diets containing SDP had increased lysozyme activity and resistance against V. alginolyticus infection. This study showed the mechanism underlying the immunostimulatory action of Spirulina and its immune response in shrimp.

  19. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-01-01

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin®) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed. PMID:27019795

  20. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed.

  1. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages.

    Science.gov (United States)

    Pastore, Nunzia; Brady, Owen A; Diab, Heba I; Martina, José A; Sun, Lu; Huynh, Tuong; Lim, Jeong-A; Zare, Hossein; Raben, Nina; Ballabio, Andrea; Puertollano, Rosa

    2016-08-01

    The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response. PMID:27171064

  2. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Directory of Open Access Journals (Sweden)

    Bo Yoon Chang

    2015-10-01

    Full Text Available Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE. MFE stimulated the production of cytokines, nitric oxide (NO and tumor necrosis factor-α (TNF-α and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase and nuclear factor-κB (NF-κB signaling pathways downstream from toll-like receptor (TLR 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK cell activity, cytotoxic T lymphocyte (CTL activity and IFN-γ production. Immunoglobulin G (IgG antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  3. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    Science.gov (United States)

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  4. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  5. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  6. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics.

    Science.gov (United States)

    de Kivit, Sander; Tobin, Mary C; Forsyth, Christopher B; Keshavarzian, Ali; Landay, Alan L

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  7. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Directory of Open Access Journals (Sweden)

    Thomas Stübig

    2014-01-01

    Full Text Available Demethylating agent, 5-Azacytidine (5-Aza, has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1 were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza.

  8. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Science.gov (United States)

    Stübig, Thomas; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M. C.; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  9. 5-azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity.

    Science.gov (United States)

    Stübig, Thomas; Badbaran, Anita; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M C; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ + T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  10. Mechanisms of innate immune activation by gluten peptide p31-43 in mice.

    Science.gov (United States)

    Araya, Romina E; Gomez Castro, María Florencia; Carasi, Paula; McCarville, Justin L; Jury, Jennifer; Mowat, Allan M; Verdu, Elena F; Chirdo, Fernando G

    2016-07-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo. Here we show that intraluminal delivery of p31-43 induces morphological changes in the small intestinal mucosa of normal mice consistent with those seen in CD, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by coadministration of the TLR3 agonist polyinosinic:polycytidylic acid. Together, these results indicate that gliadin peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent inflammation, relevant to CD. Our findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of CD. PMID:27151946

  11. Kinetics of rabies antibodies as a strategy for canine active immunization

    OpenAIRE

    Babboni, Selene Daniela; da Costa, Hení Falcão; MARTORELLI, Luzia Fátima Alves; KATAOKA, Ana Paula de Arruda Geraldes; Victoria, Cassiano; Padovani, Carlos Roberto; Modolo, José Rafael

    2014-01-01

    Background Rabies, a zoonosis found throughout the globe, is caused by a virus of the Lyssavirus genus. The disease is transmitted to humans through the inoculation of the virus present in the saliva of infected mammals. Since its prognosis is usually fatal for humans, nationwide public campaigns to vaccinate dogs and cats against rabies aim to break the epidemiological link between the virus and its reservoirs in Brazil. Findings During 12 months we evaluated the active immunity of dogs firs...

  12. Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans

    OpenAIRE

    Palmer, C. V.; Bythell, J. C.; Willis, B. L.

    2012-01-01

    Coral reefs are threatened by increasing levels of coral disease and the functional loss of obligate algal symbionts (bleaching). Levels of immunity relate directly to susceptibility to these threats; however, our understanding of fundamental aspects of coral immunology is lacking. We show that three melanin-synthesis pathway components (mono-phenoloxidase, ortho-diphenoloxidase (tyrosinase-type pathway) and para-diphenoloxidase (laccase-type pathway)) are present in both their active (phenol...

  13. Behavioural deficits associated with maternal immune activation in the rat model of schizophrenia.

    Science.gov (United States)

    Wolff, Amy R; Cheyne, Kirsten R; Bilkey, David K

    2011-11-20

    Schizophrenia is associated with changes in memory and contextual processing. As maternal infection is a risk factor in schizophrenia we tested for these impairments in a maternal immune activation (MIA) animal model. MIA rats displayed impaired object recognition memory, despite intact object discrimination, and a reduced reinstatement of rearing in response to a contextual manipulation. These results link MIA to contextual impairments in schizophrenia, possibly through changes in hippocampal function.

  14. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    OpenAIRE

    Bo Yoon Chang; Seon Beom Kim; Mi Kyeong Lee; Hyun Park; Sung Yeon Kim

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (...

  15. Determination Of Antioxidant Activities In Freshliver (Salvia Officinalis) Plant

    OpenAIRE

    Arıduru, Rana; Arabacı, Gülnur

    2013-01-01

    In this study, we determined the antioxidant activities of four different solvent fractions (ethanol, methanol, acetone and ethyl acetate) obtained from Freshliver plant leaves (Salvia officinalis) by employing two different assays such as 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) and Folin-Ciocaltaeu method. The results showed that ethanolextract of freshliver plant exhibited the highest total phenolic contents (43.55 mg GAE/g extract), followed by methanol-extract of freshliver plant (23...

  16. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    Science.gov (United States)

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.

  17. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation.

    Science.gov (United States)

    Nuhn, Lutz; Vanparijs, Nane; De Beuckelaer, Ans; Lybaert, Lien; Verstraete, Glenn; Deswarte, Kim; Lienenklaus, Stefan; Shukla, Nikunj M; Salyer, Alex C D; Lambrecht, Bart N; Grooten, Johan; David, Sunil A; De Koker, Stefaan; De Geest, Bruno G

    2016-07-19

    Agonists of Toll-like receptors (TLRs) are potent activators of the innate immune system and hold promise as vaccine adjuvant and for anticancer immunotherapy. Unfortunately, in soluble form they readily enter systemic circulation and cause systemic inflammatory toxicity. Here we demonstrate that by covalent ligation of a small-molecule imidazoquinoline-based TLR7/8 agonist to 50-nm-sized degradable polymeric nanogels the potency of the agonist to activate TLR7/8 in in vitro cultured dendritic cells is largely retained. Importantly, imidazoquinoline-ligated nanogels focused the in vivo immune activation on the draining lymph nodes while dramatically reducing systemic inflammation. Mechanistic studies revealed a prevalent passive diffusion of the nanogels to the draining lymph node. Moreover, immunization studies in mice have shown that relative to soluble TLR7/8 agonist, imidazoquinoline-ligated nanogels induce superior antibody and T-cell responses against a tuberculosis antigen. This approach opens possibilities to enhance the therapeutic benefit of small-molecule TLR agonist for a variety of applications. PMID:27382168

  18. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Beltrán LM

    2015-01-01

    Full Text Available Luis M Beltrán,1 Alfonso Rubio-Navarro,2 Juan Manuel Amaro-Villalobos,2 Jesús Egido,2–4 Juan García-Puig,1 Juan Antonio Moreno21Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain; 2Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain; 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, Madrid, Spain; 4Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN, Madrid, SpainAbstract: Patients infected with the human immunodeficiency virus (HIV have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.Keywords: HIV, cardiovascular disease, immune activation, inflammation, antiretroviral therapy

  19. The Role of Platelet-Activating Factor in Chronic Inflammation, Immune Activation, and Comorbidities Associated with HIV Infection

    Science.gov (United States)

    Kelesidis, Theodoros; Papakonstantinou, Vasiliki; Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Chini, Maria; Lazanas, Marios C.; Antonopoulou, Smaragdi

    2016-01-01

    With the advent of highly effective antiretroviral therapy, cardiovascular disease has become an important cause of morbidity and mortality among people with treated HIV-1, but the pathogenesis is unclear. Platelet-activating factor is a potent lipid mediator of inflammation that has immunomodulatory effects and a pivotal role in the pathogenesis of inflammatory disorders and cardiovascular disease. Limited scientific evidence suggests that the platelet-activating factor pathway may be a mechanistic link between HIV-1 infection, systemic inflammation, and immune activation that contribute to pathogenesis of chronic HIV-related comorbidities, including cardiovascular disease and HIV-associated neurocognitive disorders. In this review, we examine the mechanisms by which the cross-talk between HIV-1, immune dysregulation, inflammation, and perturbations in the platelet-activating factor pathway may directly affect HIV-1 immunopathogenesis. Understanding the role of platelet-activating factor in HIV-1 infection may pave the way for further studies to explore therapeutic interventions, such as diet, that can modify platelet-activating factor activity and use of platelet-activating factor inhibitors that might improve the prognosis of HIV-1 infected patients. PMID:26616844

  20. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin.

    Science.gov (United States)

    Gitik, Miri; Kleinhaus, Rachel; Hadas, Smadar; Reichert, Fanny; Rotshenker, Shlomo

    2014-01-01

    The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the

  1. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin

    Directory of Open Access Journals (Sweden)

    Miri eGitik

    2014-04-01

    Full Text Available The innate-immune function of phagocytosis of apoptotic cells, tissue-debris, pathogens and cancer cells is essential for homeostasis, tissue repair, fighting infection and combating malignancy. Phagocytosis is carried out in the CNS by resident microglia and in both CNS and PNS by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a do not eat me message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue-debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue-debris degenerated-myelin which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a the cytoskeleton generates the mechanical forces that drive phagocytosis and (b both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the inactivation of paxillin and cofilin.

  2. Complement Activation Is Involved in Renal Damage in Human Antineutrophil Cytoplasmic Autoantibody Associated Pauci-Immune Vasculitis

    NARCIS (Netherlands)

    Xing, Guang-qun; Chen, Min; Liu, Gang; Heeringa, Peter; Zhang, Jun-jun; Zheng, Xin; Jie, E.; Kallenberg, Cees G. M.; Zhao, Ming-hui

    2009-01-01

    This study was to investigate the evidence for complement activation in renal biopsy specimens of patients with myeloperoxidase (MPO)-antineutrophil cytoplasmic autoantibody (ANCA)-associated pauci-immune vasculitis. Renal biopsy specimens from seven patients with MPO-ANCA positive pauci-immune necr

  3. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  4. Antibacterial activity of Brazilian Amazon plant extracts

    OpenAIRE

    Ivana Barbosa Suffredini; Mateus Luís Barradas Paciencia; Antonio Drauzio Varella; Riad Naim Younes

    2006-01-01

    Infections caused by multiresistant bacteria are a widespread problem, especially in intensive care units. New antibiotics are necessary, and we need to search for alternatives, including natural products. Brazil is one of the hottest spots in the world in terms of biodiversity, but little is known about the chemical and pharmacological properties of most of the plants found in the Amazon rain forest and the Atlantic Forest. We screened 1,220 organic and aqueous extracts, obtained from Amazon...

  5. ANTI-INFLAMATORY ACTIVITY OF SOME INDIAN MEDICINAL PLANTS

    OpenAIRE

    Thenmozhi, V.; Elango, V.; Sadique, J.

    1989-01-01

    The anti-inflamatory activity of some of the medicinal plants were assayed at a dose of 1000 mg/kg b.wt. in male albino rats using Carrageenin induced rat raw edema. Among the fifteen medicinal plants were found to be highly effective which are discussed in this paper.

  6. Anti-inflamatory activity of some Indian medicinal plants.

    Science.gov (United States)

    Thenmozhi, V; Elango, V; Sadique, J

    1989-01-01

    The anti-inflamatory activity of some of the medicinal plants were assayed at a dose of 1000 mg/kg b.wt. in male albino rats using Carrageenin induced rat raw edema. Among the fifteen medicinal plants were found to be highly effective which are discussed in this paper.

  7. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    Science.gov (United States)

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases. PMID:21294419

  8. Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhu, Qi; Zhang, Min; Shi, Ming; Liu, Yang; Zhao, Qing; Wang, Wenjing; Zhang, Guangyun; Yang, Longxiu; Zhi, Jin; Zhang, Lin; Hu, Gengyao; Chen, Pin; Yang, Yining; Dai, Wen; Liu, Tingting; He, Ying; Feng, Guodong; Zhao, Gang

    2016-04-01

    The paradigm that B cells are nonphagocytic was taken for granted for a long time until phagocytic B cells were found in early vertebrate animals. Thereafter, limited evidence has shown that human B cells may also internalize bacteria. However, whether human B cells can actively phagocytose bacteria has been less extensively investigated; in particular, the mechanisms and significance of the phagocytosis require clarification. Here, we show that the human Raji B cell line can phagocytose both live and dead Mycobacterium tuberculosis (Mtb), and the phagocytosed Mtb in turn affects the immune functions of the B cells. After incubation of Raji cells with Mtb, our confocal microscopy, electron microscopy and flow cytometry data showed that Raji cells effectively engulfed Mtb as well as latex beads. The phagocytic rate was proportional to the incubation time and the amount of Mtb or beads added. Additionally, we found that normal human serum could enhance the ability of Raji cells to phagocytose Mtb, while heat-inactivated serum reversed this promoting effect. The phagocytic process of B cells could partially be inhibited by cytochalasin B, an actin inhibitor. Importantly, the phagocytosed Mtb could regulate B cell immune functions, such as stimulating IgM production and upregulating the expression of the antigen-presenting costimulatory molecules CD80 and CD86. Therefore, our results provide the first evidence that human B cells can phagocytose Mtb in an active manner that is independent of bacterial viability, and phagocytosed Mtb can in turn regulate the immune activation of B cells.

  9. Active Mines and Mineral Plants in the US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Mine plants and operations for commodities monitored by the Minerals Information Team of the USGS. Operations included are those considered active in 2003 and...

  10. The Medicinal Plant of Mimusops Elengi (Sapodaceae in Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Kannadhasan M.

    2016-07-01

    Full Text Available The selected study area for this study is Pachaimalai Hills, situated in Eastern ghats of Tamil Nadu. This study was focussed on the antimicrobial activity of Mimosopselengi, one of the medicinal plant belongs to the family sapotaceae. It is a tropically distributed the highly medicinal plant. Antimicrobial activities and extracts of petroleum ether, Ethyl acetate and methanol were also found to be better with respect to inhibitory function against the two fungal species, Fusarium oxysporum and Aspergillus flavus. The study scientifically validates the use of plant in traditional and ethno medicine. Three solvents such as Petroleum ether, Ethyl acetate and Ethanol were used to take plant extract. These extracts were studied for antimicrobial activity against two gram positive bacterial strains such as Bacillus substilis andBacillus thuriengensis and two gram negative bacterial strains such as Klebsiella pneumonia and Escherichia coli. This study also extended to find antifungal activity against four fungal strains.

  11. Antimalarial activity of some Colombian medicinal plants

    OpenAIRE

    Garavito, G. (G.); Rincon, J.; Arteaga, L.; Hata, Y; Bourdy, Geneviève; Gimenez, A.; Pinzon, R.; Deharo, Eric

    2006-01-01

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta gr...

  12. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish.

    Science.gov (United States)

    Sun, Chen; Zhang, Shicui

    2015-10-01

    Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health. PMID:26506386

  13. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish

    Directory of Open Access Journals (Sweden)

    Chen Sun

    2015-10-01

    Full Text Available Vitellogenin (Vtg, the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv and phosvitin (Pv extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.

  14. Effect of extrusion processing on immune activation properties of hazelnut protein in a mouse model.

    Science.gov (United States)

    Ortiz, Tina; Para, Radhakrishna; Gonipeta, Babu; Reitmeyer, Mike; He, Yingli; Srkalovic, Ines; Ng, Perry K W; Gangur, Venu

    2016-09-01

    Although food processing can alter food allergenicity, the impact of extrusion processing on in vivo hazelnut allergenicity is unknown. Here, we tested the hypothesis that extrusion processing will alter the immune activation properties of hazelnut protein (HNP) in mice. Soluble extrusion-processed HNP (EHNP) was prepared and evaluated for immune response using an established transdermal sensitization mouse model. Mice were sensitized with identical amounts of EHNP versus raw HNP. After confirming systemic IgE, IgG1 and IgG2a antibody responses, oral hypersensitivity reaction was quantified by hypothermia shock response (HSR). Mechanism was studied by measuring mucosal mast cell (MMC) degranulation. Compared to raw HNP, the EHNP elicited slower but similar IgE antibody (Ab) response, lower IgG1 but higher IgG2a Ab response. The EHNP exhibited significantly lower oral HSR as well as MMC degranulation capacity. These results demonstrate that the extrusion technology can be used to produce soluble HNP with altered immune activation properties. PMID:27251648

  15. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody.

    Science.gov (United States)

    Gu, Luo; Ruff, Laura E; Qin, Zhengtao; Corr, Maripat; Hedrick, Stephen M; Sailor, Michael J

    2012-08-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as self-malignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30-40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs.

  16. Selenylation modification can enhance immune-enhancing activity of Chuanminshen violaceum polysaccharide.

    Science.gov (United States)

    Haibo, Feng; Fan, Jing; Bo, Hongquan; Tian, Xi; Bao, He; Wang, Xiaohua

    2016-11-20

    Chuanminshen violaceum polysaccharides (CVPS) were extracted, purified and selenizingly modified. The modification has been achieved by using the HNO3- Na2SeO3 method, and selenizing Chuanminshen violaceum polysaccharides (sCVPS) were evaluated for their physicochemical properties and their potential as adjuvant to modulate cellular and humoral immune responses to hepatitis B subunit vaccine in a mouse model. Our results demonstrated that sCVPS significantly promoted splenocytes proliferation and the production of IL-4 and IFN-γ in vitro. In vivo experiments showed that sCVPS significantly increased the rHBsAg-specific IgG level, IgG subclass (IgG1, IgG2a, and IgG2b) antibody titers, T cells proliferation, levels of IL-4, IL-2, and IFN-γ in CD4 (+)T cells and the level of IFN-γ in CD8(+)T cells. Furthermore, sCVPS increased the activity of natural killer cells and cytotoxic T lymphocytes, thus increasing both cellular and humoral immune responses in vivo. The present data suggest that selenylation of CVPS can significantly improve their immune-enhancing activity both in vitro and in vivo, thus representing a powerful adjuvant for vaccine design. PMID:27561500

  17. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    Science.gov (United States)

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance. PMID:26627732

  18. Plant immunity: it's the hormones talking, but what do they say?

    NARCIS (Netherlands)

    Verhage, A.; Wees, A.C.M. van; Pieterse, C.M.J.

    2010-01-01

    Plants live in complex environments in which they intimately interact with a broad range of other organisms. Besides the plethora of deleterious interactions with pathogens and insect herbivores, relationships with beneficial microorganisms are frequent in nature as well, improving plant growth or h

  19. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    Science.gov (United States)

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  20. The mitogen-activated protein kinase (MAPK pathway: role in immune evasion by trypanosomatids

    Directory of Open Access Journals (Sweden)

    Mercedes Carolina Soares-Silva

    2016-02-01

    Full Text Available Leishmania spp and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas' disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae and are both obligate intracellular parasites that manipulate host signaling pathways to establish the infection, and also subvert the host innate immune system. Mitogen-activated protein kinases (MAPKs are serine and threonine protein kinases, highly conserved in eukaryotes, and are involved in signal transduction pathways that are related to modulation of physiological and pathophysiological cell responses. This mini-review highlights the current knowledge about the mechanisms that Leishmania spp and T. cruzi have evolved to target host MAPK signaling pathway, highjack immune response, and in this manner, promote parasite maintenance in the host.

  1. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    Science.gov (United States)

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P chickens.

  2. EV71-infected CD14(+) cells modulate the immune activity of T lymphocytes in rhesus monkeys.

    Science.gov (United States)

    Wang, Jingjing; Pu, Jing; Huang, Hongtai; Zhang, Ying; Liu, Longding; Yang, Erxia; Zhou, Xiaofang; Ma, Na; Zhao, Hongling; Wang, Lichun; Xie, Zhenfeng; Tang, Donghong; Li, Qihan

    2013-07-01

    Preliminary studies of the major pathogen enterovirus 71 (EV71), a member of the Picornaviridae family, have suggested that EV71 may be a major cause of fatal hand, foot and mouth disease cases. Currently, the role of the pathological changes induced by EV71 infection in the immunopathogenic response remains unclear. Our study focused on the interaction between this virus and immunocytes and indicated that this virus has the ability to replicate in CD14(+) cells. Furthermore, these EV71-infected CD14(+) cells have the capacity to stimulate the proliferation of T cells and to enhance the release of certain functional cytokines. An adaptive immune response induced by the back-transfusion of EV71-infected CD14(+) cells was observed in donor neonatal rhesus monkeys. Based on these observations, the proposed hypothesis is that CD14(+) cells infected by the EV71 virus might modulate the anti-EV71 adaptive immune response by inducing simultaneous T-cell activation.

  3. Microbial priming of plant and animal immunity: symbionts as developmental signals.

    Science.gov (United States)

    Selosse, Marc-André; Bessis, Alain; Pozo, María J

    2014-11-01

    The functional similarity between root and gut microbiota, both contributing to the nutrition and protection of the host, is often overlooked. A central mechanism for efficient protection against pathogens is defense priming, the preconditioning of immunity induced by microbial colonization after germination or birth. Microbiota have been recruited several times in evolution as developmental signals for immunity maturation. Because there is no evidence that microbial signals are more relevant than endogenous ones, we propose a neutral scenario for the evolution of this dependency: any hypothetic endogenous signal can be lost because microbial colonization, reliably occurring at germination or birth, can substitute for it, and without either positive selection or the acquisition of new functions. Dependency of development on symbiotic signals can thus evolve by contingent irreversibility. PMID:25124464

  4. Preliminary analysis of immune activation in early onset type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Julia D. Rempel

    2013-08-01

    Full Text Available Introduction. First Nations and other Aboriginal children are disproportionately affected by cardiometabolic diseases, including type 2 diabetes (T2D. In T2D, the disruption of insulin signalling can be driven by pro-inflammatory immunity. Pro-inflammatory responses can be fueled by toll-like receptors (TLR on immune cells such as peripheral blood mononuclear cells (PBMC, a white blood cell population. TLR4 can bind to lipids from bacteria and food sources activating PBMC to produce cytokines tumour necrosis factor (TNF-α and interleukin (IL-1β. These cytokines can interfere with insulin signalling. Here, we seek to understand how TLR4 activation may be involved in early onset T2D. We hypothesized that immune cells from youth with T2D (n=8 would be more reactive upon TLR4 stimulation relative to cells from age and body mass index (BMI-matched controls without T2D (n=8. Methods. Serum samples were assayed for adipokines (adiponectin and leptin, as well as cytokines. Freshly isolated PBMC were examined for immune reactivity upon culture with TLR4 ligands bacterial lipopolysaccharide (LPS, 2 and 0.2 ng/ml and the fatty acid palmitate (200 µM. Culture supernatants were evaluated for the amount of TNF-α and IL-1β produced by PBMC. Results. Youth with T2D displayed lower median serum adiponectin levels compared to controls (395 vs. 904 ng/ml, p<0.05. PBMC isolated from youth with and without T2D produced similar levels of TNF-α and IL-1β after exposure to the higher LPS concentration. However, at the low LPS dose the T2D cohort exhibited enhanced IL-1β synthesis relative to the control cohort. Additionally, exposure to palmitate resulted in greater IL-1β synthesis in PBMCs isolated from youth with T2D versus controls (p<0.05. These differences in cytokine production corresponded to greater monocyte activation in the T2D cohort. Conclusion. These preliminary results suggest that cellular immune responses are exaggerated in T2D, particularly

  5. Heightened Immune Activation in Fetuses with Gastroschisis May Be Blocked by Targeting IL-5.

    Science.gov (United States)

    Frascoli, Michela; Jeanty, Cerine; Fleck, Shannon; Moradi, Patriss W; Keating, Sheila; Mattis, Aras N; Tang, Qizhi; MacKenzie, Tippi C

    2016-06-15

    The development of the fetal immune system during pregnancy is a well-orchestrated process with important consequences for fetal and neonatal health, but prenatal factors that affect immune activation are poorly understood. We hypothesized that chronic fetal inflammation may lead to alterations in development of the fetal immune system. To test this hypothesis, we examined neonates with gastroschisis, a congenital abdominal wall defect that leads to exposure of the fetal intestines to amniotic fluid, with resultant intestinal inflammation. We determined that patients with gastroschisis show high systemic levels of inflammatory cytokines and chemokines such as eotaxin, as well as earlier activation of CD4(+) and CD8(+) effector and memory T cells in the cord blood compared with controls. Additionally, increased numbers of T cells and eosinophils infiltrate the serosa and mucosa of the inflamed intestines. Using a mouse model of gastroschisis, we observed higher numbers of eosinophils and both type 2 and type 3 innate lymphoid cells (ILC2 and ILC3), specifically in the portion of organs exposed to the amniotic fluid. Given the role of IL-5 produced by ILC2 in regulating eosinophil development and survival, we determined that maternal or fetal administration of the anti-IL-5 neutralizing Ab, or a depleting Ab against ILCs, can both effectively reduce intestinal eosinophilia. Thus, a congenital anomaly causing chronic inflammation can alter the composition of circulating and tissue-resident fetal immune cells. Given the high rate of prenatal and neonatal complications in these patients, such changes have clinical significance and might become targets for fetal therapy. PMID:27183609

  6. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response.

    Science.gov (United States)

    García, Irene; Rosas, Tábata; Bejarano, Eduardo R; Gotor, Cecilia; Romero, Luis C

    2013-08-01

    Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system. PMID:23784464

  7. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    OpenAIRE

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  8. Anti-Tumor and Immune Enhancing Activities of Rice Bran Gramisterol on Acute Myelogenous Leukemia.

    Directory of Open Access Journals (Sweden)

    Somsuda Somintara

    Full Text Available Acute myelogenous leukemia (AML is a cancer of the blood that most commonly affects human adults. The specific cause of AML is unclear, but it induces abnormality of white blood cells that grow rapidly and accumulate in bone marrow interfering with the production and functions of the normal blood cells. AML patients face poor prognosis and low quality of life during chemotherapy or transplantation of hematopoietic stem cells due to the progressive impairment of their immune system. The goal of this study is to find natural products that have the potential to delay growth or eliminate the abnormal leukemic cells but cause less harmful effect to the body's immune system.The unsaponified fraction of Riceberry rice bran (RBDS and the main pure compound, gramisterol, were studied for cytotoxicity and biological activities in WEHI-3 cells and in the leukemic mouse model induced by transplantation of WEHI-3 cells intraperitoneally. In the in vitro assay, RBDS and gramisterol exerted sub-G1 phase cell cycle arrest with a potent induction of apoptosis. Both of them effectively decreased cell cycle controlling proteins (cyclin D1 and cyclin E, suppressed cellular DNA synthesis and mitotic division, and reduced anti-apoptosis Bcl-2 protein, but increased apoptotic proteins (p53 and Bax and activated caspase-3 enzyme in the intrinsic cell death stimulation pathway. In leukemic mice, daily feeding of RBDS significantly increased the amount of immune function-related cells including CD3+, CD19+, and CD11b+, and elevated the serum levels of IFN-γ, TNF-α, IL-2, and IL-12β cytokines, but suppressed IL-10 level. At the tumor sites, CD11b+ cells were polarized and became active phagocytotic cells. Treatment of mice normal immune cells with gramisterol alone or a combination of gramisterol with cytokines released from RBDS-treated leukemic mice splenocytes culture synergistically increased pSTAT1 transcriptional factor that up-regulated the genes controlling

  9. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity

    Science.gov (United States)

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-01-01

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens. PMID:27725643

  10. Inhibition of Naja kaouthia venom activities by plant polyphenols.

    Science.gov (United States)

    Pithayanukul, Pimolpan; Ruenraroengsak, Pakatip; Bavovada, Rapepol; Pakmanee, Narumol; Suttisri, Rutt; Saen-oon, Suwipa

    2005-03-21

    Plant polyphenols from the aqueous extracts of Pentace burmanica, Pithecellobium dulce, Areca catechu and Quercus infectoria were tested for their inhibitory activities against Naja kaouthia (NK) venom by in vitro neutralization method. The first three extracts could completely inhibit the lethality of the venom at 4 LD50 concentration and the venom necrotizing activity at the minimum necrotizing dose while also inhibited up to 90% of the acetylcholinesterase activity of NK venom at much lower tannin concentrations than that of Quercus infectoria. The ED50 of plant tannins in inhibiting NK venom activities varied according to condensed tannins and their content in the extracts. Molecular docking of the complexes between alpha-cobratoxin and either hydrolysable or condensed tannins at their lowest energetic conformations were proposed. The anti-venom activities of these plant polyphenols by selectively blocking the nicotinic acetylcholine receptor and non-selectively by precipitation of the venom proteins were suggested. PMID:15740891

  11. Antifungal activity of traditional medicinal plants from Tamil Nadu, India

    Institute of Scientific and Technical Information of China (English)

    Duraipandiyan V; Ignacimuthu S

    2011-01-01

    Objective:To assess the antifungal activity of hexane, ethyl acetate and methanol extracts of 45 medicinal plants and to determine the minimum inhibitory concentration for each extract against human pathogenic fungi. Methods:A total of 45 medicinal plants were collected from different places of Tamil Nadu and identified. Hexane, ethyl acetate and methanol extracts of 45 medicinal plants were assessed for antifungal susceptibility using broth microdilution method. Two known antifungal agents were used as positive controls. Results: Most of the extracts inhibited more than four fungal strains. From the evaluation we found that ethyl acetate extracts inhibited large number of fungal growth. Hexane extracts also nearly showed the same level of inhibition against fungal growth. Methanol extracts showed the minimum antifungal activity. Among the 45 plants tested, broad spectrum antifungal activity was detected in Albizzia procera (A. procera), Atalantia monophylla, Asclepias curassavica, Azima tetracantha, Cassia fistula (C. fistula), Cinnomomum verum, Costus speciosus (C. speciosus), Nymphaea stellata, Osbeckia chinensis, Piper argyrophyllum, Punica granatum, Tinospora cordifolia and Toddalia asiatica (T. asiatica). Promising antifungal activity was seen in A. procera, C. speciosus, C. fistula and T. asiatica. Conclusions:It can be concluded that the plant species assayed possess antifungal properties. Further phytochemical research is needed to identify the active principles responsible for the antifungal effects of some of these medicinal plants.

  12. Interleukin-33 primes mast cells for activation by IgG immune complexes.

    Directory of Open Access Journals (Sweden)

    Shinjiro Kaieda

    Full Text Available Mast cells (MCs are heterogeneous cells whose phenotype is modulated by signals received from the local microenvironment. Recent studies have identified the mesenchymal-derived cytokine IL-33 as a potent direct activator of MCs, as well as regulator of their effector phenotype, and have implicated this activity in the ability of mast cells to contribute to murine experimental arthritis. We explored the hypothesis that IL-33 enables participation of synovial MCs in murine K/BxN arthritis by promoting their activation by IgG immune complexes. Compared to wild-type (WT control mice, transgenic animals lacking the IL-33 receptor ST2 exhibited impaired MC-dependent immune complex-induced vascular permeability (flare and attenuated K/BxN arthritis. Whereas participation of MCs in this model is mediated by the activating IgG receptor FcγRIII, we pre-incubated bone marrow-derived MCs with IL-33 and found not only direct induction of cytokine release but also a marked increase in FcγRIII-driven production of critical arthritogenic mediators including IL-1β and CXCL2. This "priming" effect was associated with mRNA accumulation rather than altered expression of Fcγ receptors, could be mimicked by co-culture of WT but not ST2(-/- MCs with synovial fibroblasts, and was blocked by antibodies against IL-33. In turn, WT but not ST2(-/- MCs augmented fibroblast expression of IL-33, forming a positive feedback circuit. Together, these findings confirm a novel role for IL-33 as an amplifier of IgG immune complex-mediated inflammation and identify a potential MC-fibroblast amplification loop dependent on IL-33 and ST2.

  13. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    Institute of Scientific and Technical Information of China (English)

    Yan-Hui Ma; Wei-Zhi Cheng; Fang Gong; An-Lun Ma; Qi-Wen Yu; Ji-Ying Zhang; Chao-Ying Hu; Xue-Hua Chen; Dong-Qing Zhang

    2008-01-01

    AIM:To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance.METHODS:In this study,an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5×105 cells) into BALB/c mice.The experimental treatment was orally administered with ACML-55 or PBS,followed by the inoculation of colon cancer cell line CT26.Intracellular cytokine staining was used to detect IFN-y production by tumor antigen specific CD8+ T cells.FACS analysis was employed to profile composition and activation of CD4+,CD8+,γδ T and NK cells.RESULTS:Our results showed,compared to PBS treated mice,ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo.Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells,and increased the number of tumor Ag specific CD8+ T cells,it was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells.Interestingly,ACML-55 treatment also showed increased cell number of NK,and γδT cells,indicating the role of ACML-55 in activation of innate lymphooltes.CONCLUSION:Our results demonstrate that ACML-55therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  14. Ant sperm storage organs do not have phenoloxidase constitutive immune activity.

    Science.gov (United States)

    Dávila, Francisco; Chérasse, Sarah; Boomsma, Jacobus J; Aron, Serge

    2015-07-01

    The prophenoloxidase system (proPO-AS) is a primordial constituent of insect innate immunity. Its broad action spectrum, rapid response time, and cytotoxic by-products induced by phenoloxidase (PO) production contribute to the effective clearing of invading pathogens. However, such immune reactions may not be optimal for insect organs that evolved to have mutualistic interactions with non-self-cells. Ant queens are long-lived, but only mate early in adult life and store the sperm in a specialized organ, the spermatheca. They never re-mate so their life-time reproductive success is ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. The proPO-AS may therefore be inappropriate for the selective clearing of sexually transmitted infections, as it might also target sperm cells that cannot be replaced. We measured PO enzymatic activity in the sperm storage organs of three ant species before and after mating. Our data show that no PO is produced in the sperm storage organs, relative to other somatic tissues as controls, and that these negative results are not due to non-detection in small volumes as non-immune-relevant catalase activity in single spermatheca fluid samples of both virgin and mated queens was significant. The lack of PO activity in sperm storage organs across three different ant species may represent an evolutionarily conserved adaptation to life-long sperm storage by ant queens. We expect that PO activity will be similarly suppressed in queen spermathecae of other eusocial Hymenoptera (bees and wasps) and, more generally, of insect females that store sperm for long periods. PMID:25911976

  15. Antimicrobial activity of mangrove plant (Lumnitzera littorea)

    Institute of Scientific and Technical Information of China (English)

    Shahbudin Saad; Muhammad Taher; Deny Susanti; Haitham Qaralleh; Nurul Afifah Binti Abdul Rahim

    2011-01-01

    Objective:To investigate the antimicrobial activities ofn-hexane, ethyl acetate and methanol extracts of the leaves ofLumnitzera littorea (L. littorea) against six human pathogenic microbes. Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.Results:The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear thatn-hexane extract was the most effective extract. Additionally, Gram positiveBacillus cereus (B. cereus) appear to be the most sensitive strain whilePseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) andCryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as0.04 mg/mL indicated the potent antimicrobial activity ofL. littorea extracts.Conclusions:The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents fromL. littorea extracts.

  16. Antimalarial activity of some Colombian medicinal plants.

    Science.gov (United States)

    Garavito, G; Rincón, J; Arteaga, L; Hata, Y; Bourdy, G; Gimenez, A; Pinzón, R; Deharo, E

    2006-10-11

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta grandifolia (Mart.) Sandwith (Menispermaceae) leaves, Acacia farnesiana (L.) Willd. (Mimosaceae) leaves, Acnistus arborescens (L.) Schltdl. (Solanaceae) aerial part, Croton leptostachyus Kunth (Euphorbiaceae) aerial part, Piper cumanense Kunth (Piperaceae) fruits and leaves, Piper holtonii C. DC. (Piperaceae) aerial part and Xylopia aromatica (Lam.) Mart. (Annonaceae) bark with IC(50) values ranging from <1 to 2.1 microg/ml, while in the in vivo model only Abuta grandifolia alkaloid crude extract exhibits activity, inhibiting 66% of the parasite growth at 250 mg/kg/day. In the FBIT model, five extracts were active (Abuta grandifolia, Croton leptostachyus, Piper cumanense fruit and leaves and Xylopia aromatica). PMID:16713157

  17. EFFECTS OF INTERFERON THERAPY UPON IMMUNE MARKER PROFILE AND ENZYMATIC ACTIVITY IN PERIPHERAL BLOOD LYMPHOCYTES OF PATIENTS WITH RENAL CANCER

    Directory of Open Access Journals (Sweden)

    L. M. Kurtasova

    2014-01-01

    Full Text Available We have observed forty-four patients with metastatic renal cancer before and after interferon therapy. Immune markers of of peripheral blood lymphocytes were determined by flow cytometry. Activity of NAD (P-dependent dehydrogenase in blood lymphocytes was studied by means of bioluminescence technique. Changes of immune marker profiles and enzymatic activities of peripheral blood lymphocytes were found in patients with renal cancer after a course of interferon therapy.

  18. DMPD: IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17046325 IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. Suzu...ki N, Saito T. Trends Immunol. 2006 Dec;27(12):566-72. (.png) (.svg) (.html) (.csml) Show IRAK-4--a shared NF-kappaB activa...tor in innate and acquired immunity. PubmedID 17046325 Title IRAK-4--a shared NF-kappaB activa

  19. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  20. Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity.

    Science.gov (United States)

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-08-01

    Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine-deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34(+) progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1-specific T-cell receptor and GD2-specific chimeric antigen receptor-engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches.

  1. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin

    Institute of Scientific and Technical Information of China (English)

    Hong LI; Yun-yi ZHANG; Ya-nan SUN; Xi-yi HUANG; Yong-feng JIA; Duan LI

    2004-01-01

    AIM: To establish an animal model for systemic lupus erythematosus (SLE)-like syndrome in mice. METHODS:BALB/c mice were immunized with active chromatin isolated from ConA-actived syngeneic spleno-lymphocytes.Plasma samples of mice were tested by enzyme-linked immunosorbent assays (ELISA) for the presence of IgG anti-dsDNA, -ssDNA, and anti-histone antibodies. Tumor necrosis factor-α (TNF-α) in serum was measured by ELISA. Spleno-lymphocyte proliferation assays and the levels of interferon-γ (IFN-γ) in supernatants were tested respectively. Proteinuria was measured. Kidneys were examined by direct immunohistochemical method and light microscopy. RESULTS: Anti-ds DNA, ssDNA, and histone antibodies were induced in active chromatin-immunized mice, the proliferation response of splenocytes to ConA and LPS were reduced, levels of interferon-γ in supernatants and TNF-α in serum were lowered. Lupus nephritis was assessed by the presence of Ig deposits,glomerular pathology and proteinuria. CONCLUSION: The active chromatin-induced SLE-like mouse model was similar to idiopathic SLE in human.

  2. The lipopolysaccharide-activated innate immune response network of the horseshoe crab

    Directory of Open Access Journals (Sweden)

    S Kawabata

    2009-06-01

    Full Text Available Primary stimulation of the horseshoe crab innate immune system by bacterial lipopolysaccharide (LPS activates a network of responses to ensure host defense against invading pathogens. Granular hemocytes selectively respond to LPS via a G protein-dependent exocytic pathway that critically depends on the proteolytic activity of the LPS-responsive coagulation factor C. In response to stimulation by LPS, the hemocyte secretes transglutaminase (TGase and several kinds of defense molecules, such as coagulation factors, lectins, antimicrobial peptides, and protein substrates for TGase. LPS-induced hemocyte exocytosis is enhanced by a feedback mechanism in which the antimicrobial peptide tachyplesin serves as an endogenous mediator. The coagulation cascade triggered by LPS or β-1,3-D-glucans results in the formation of coagulin fibrils that are subsequently stabilized by TGase-dependent cross-linking. A cuticle-derived chitin-binding protein additionally forms a TGase-stabilized mesh at sites of injury. Invading pathogens are agglutinated by both hemocyte- and plasma-derived lectins. In addition, the proclotting enzyme and tachyplesin functionally convert hemocyanin to phenoloxidase. In the plasma, coagulation factor C acts an LPS-sensitive complement C3 convertase on the surface of Gram-negative bacteria. In this manner, LPS-induced hemocyte exocytosis leads not only to coagulation but also activates a sophisticated innate immune response network that coordinately effects pathogen recognition, prophenoloxidase activation, pathogen clearance, and TGase-dependent wound healing

  3. Activation Effects of Polysaccharides of Flammulina velutipes Mycorrhizae on the T Lymphocyte Immune Function

    Directory of Open Access Journals (Sweden)

    Zheng-Fei Yan

    2014-01-01

    Full Text Available Flammulina velutipes mycorrhizae have increasingly been produced with increasing of F. velutipes production. A mouse model was thus used to examine potential effect of F. velutipes mycorrhizae on the immune function. Fifty female Wistar mice (5-weeks-old weighed 15–20 g were randomly allocated into five groups. Polysaccharide of F. velutipes mycorrhizae were treated with mice and mice spleen lymphocytes. The levels of CD3+, CD4+, and CD8+ T lymphocyte, interleukin-2 (IL-2, and tumor necrosis factor-a (TNF-α were determined. The results showed that the proportions of CD3+, and CD4+ T lymphocyte, the ratio of CD4+/CD8+, and the levels of IL-2 and TNF-a were significantly increased in polysaccharide of F. velutipes mycorrhizae, while the proportion of CD8+ T lymphocyte was decreased in polysaccharide of F. velutipes mycorrhizae-dose dependent manner. Our findings indicated that a long term exposure of polysaccharide of F. velutipes mycorrhizae could activate the T lymphocyte immune function. Polysaccharide of F. velutipes mycorrhizae was expected to develop into the immune health products.

  4. Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity

    Directory of Open Access Journals (Sweden)

    Maezawa Izumi

    2006-08-01

    Full Text Available Abstract Background Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4 co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE: APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice. Methods We measured in vivo changes in dendrite length in hippocampal CA1 neurons using Golgi staining and determined hippocampal apoE levels by Western blot. Neurite outgrowth of cultured primary neurons in response to astrocyte conditioned medium was assessed by measuring neuron length and branch number. Results Our results showed that TR APOE4 mice had slightly but significantly shorter dendrites at 6 weeks of age. Following exposure to intracerebroventricular LPS, there was comparable loss of dendrite length at 24 hr among the three TR APOE mice. Recovery of dendrite length over the next 48 hr was greater in TR APOE2 than TR APOE3 mice, while TR APOE4 mice had failure of dendrite regeneration. Cell culture experiments indicated that the enhanced neurotrophic effect of TR APOE2 was LDL related protein-dependent. Conclusion The data indicate that the environment within TR APOE2 mouse hippocampus was most supportive of dendrite regeneration

  5. In vitro effects of Thai medicinal plants on human lymphocyte activity

    Directory of Open Access Journals (Sweden)

    Pranee Chavalittumrong

    2007-03-01

    Full Text Available We assessed the effects of Cleistocalyx nervosum var paniala, Gynostemma pentaphyllum, Gynura procumbens, Houttuynia cordata, Hyptis suaveolens, Portulaca grandiflora, Phytolacca americana and Tradescantia spathacea on lymphocyte proliferation and the effects of C. nervosum, G. pentaphyllum, H. suaveolens and P. grandiflora on natural killer (NK cells activity. All of the extracts significantly stimulated human lymphocyte proliferative responses at various concentrations depending on each extract. The extracts of C. nervosum and H. suaveolens were significantly enhanced NK cells activity while those of G. pentaphyllum and P. grandiflora did not alter NK cells function. Our results suggested that the extracts of those plants have stimulating activity on human lymphocytes and could be clinically useful for modulating immune functions of the body.

  6. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  7. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  8. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  9. Antitubercular activity and phytochemical screening of selected medicinal plants

    Directory of Open Access Journals (Sweden)

    Rajandeep Kaur

    2015-03-01

    Full Text Available Medicinal plants offer a hope for developing alternate medicines for the treatment of Tuberculosis.. The present study was done to evaluate in vitro anti-tubercular activity of five medicinal plants viz., Syzygium aromaticum, Piper nigrum, Glycyrrhiza glabra, Aegele marmelos and Lawsonia inermis. Solvent extracts of Syzygium aromaticum, Piper nigrum, Glycyrrhiza glabra, Aegele marmelos and Lawsonia inermis were tested in vitro for their activity against Mycobacterium tuberculosis H37Rv strain using Microplate Alamar Blue Assay. Activity in MABA was evaluated by lowest concentration of sample that prevents color change to pink. Extracts of all the five plants Syzygium aromaticum, Piper nigrum, Glycyrrhiza glabra, Aegele marmelos and Lawsonia inermis exhibited anti-tuberculosis activity, the proportion of inhibition of these plants extracts for M. tuberculosis H37Rv, inhibition was found to be 0.8µg/ml, 50µg/ml, 12.5µg/ml and 50µg/ml respectively. Our findings showed that all these plants exhibited activity against MDR isolates of H37Rv M. tuberculosis strain. Further studies aimed at isolation and identification of active substances from the extracts needs to be carried out

  10. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    Science.gov (United States)

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  11. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    Science.gov (United States)

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean. PMID:26795155

  12. Plant Pigment Identification: A Classroom and Outreach Activity

    Science.gov (United States)

    Garber, Kathleen C. A.; Odendaal, Antoinette Y.; Carlson, Erin E.

    2013-01-01

    Anthocyanins are a class of pigments responsible for the bright colors of many flowers, fruits, and vegetables typically resulting in shades of red, blue, and purple. Students were asked to perform an activity to enable them to identify which anthocyanin was present in one of several possible plant materials through a hands-on activity. Students…

  13. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response.

    Science.gov (United States)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-10-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment. PMID:27481244

  14. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. PMID:24631200

  15. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  16. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  17. Immune receptor signaling: from ubiquitination to NF-κB activation

    Institute of Scientific and Technical Information of China (English)

    Shao-Cong Sun

    2012-01-01

    The immune system functions as a dynamic and sophisticated network that ensures efficient response to foreign antigens and tolerance to self-tissues.1 The function of the immune system relies on signal transduction that connects immune cells to the extracellular environment and mediates communication among the different types of immune cells.

  18. Immune Activation, Viral Gene Product Expression and Neurotoxicity in the HIV-1 Transgenic Rat

    OpenAIRE

    Royal, Walter; Zhang, Li; Guo, Ming; Jones, Odell; Davis, Harry; Bryant, Joseph L.

    2012-01-01

    The HIV-1 transgenic (TG) rat has been shown to be a useful model of nervous system disease that occurs in human HIV-1 infection. Studies were, therefore, performed to examine characteristics of the immune response in the periphery and brain of the animals and expression of factors in the nervous system that might be associated with neurotoxicity. Activated splenocytes from wild-type (WT) and TG rats were stimulated with either CD3/CD28 or with lipopolysaccharide (LPS) and examined for prolif...

  19. Antitumor and immune regulation activities of the extracts of some Chinese marine invertebrates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lixin; FAN Xiao; HAN Lijun

    2005-01-01

    Extracts of 21 marine invertebrates belonging to Coelenterata, Mollusca, Annelida, Bryozoa,Echiura, Arthropoda, Echinodermata and Urochordata were screened for the studies on their antitumor and immune regulation activities. Antitumor activity was determined by MTT method and immune regulation activity was studied using T- and B-lymphocytes in mice spleen in vitro. It was found that the n-butanol part of Asterina pectinifera, the acetic ether part of Tubuaria marina, 95% ethanol extract of Acanthochiton rubrolineatus have a high inhibition rate of 96.7%, 63.9% and 50.5% respectively on tumor cell line HL-60 at the concentration of 0.063 mg/ml. The inhibition rate of the acetic ether part of Tubuaria marina on the tumor cell line A-549 is 65.4 % at concentration of 0.063 mg/mL. The 95% ethanol extract of Meretrix meretrix has so outstanding promoting effect on T-lymphocyfes that their multiplication increases 25% when the sample concentration is only 1 μg/ml. On B-lymphocytes, the 95% extract of Rapana venosa, at concentration of 100μg/ml, has a promotion percentage of 60%. On the other hand, under the condition of no cytotoxic effect, the 95% ethanol extracts of Acanthochiton rubrolineatus and Cellana toreum can reach 92% inhibition rate on T lymphocyte at concentration of 100 μg/ml, while the inhibition rate on B lymphocyte of the 95% extract of Acanthochiton rubrolineatus reaches 92% at the same concentration.

  20. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells.

    Science.gov (United States)

    Swaims, Alison Y; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I; Devadas, Satish; Shi, Yufang; Rabson, Arnold B

    2010-10-21

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulated by the HTLV-1 LTR. T-cell receptor stimulation of LTR-Tax CD4(+) T cells induced Tax expression, hyper-proliferation, and immortalization in culture. The transition to cellular immortalization was accompanied by markedly increased expression of the antiapoptotic gene, mcl-1, previously implicated as important in T-cell survival. Immortalized cells exhibited a CD4(+)CD25(+)CD3(-) phenotype commonly observed in ATL. Engraftment of activated LTR-Tax CD4(+) T cells into NOD/Shi-scid/IL-2Rγ null mice resulted in a leukemia-like phenotype with expansion and tissue infiltration of Tax(+), CD4(+) lymphocytes. We suggest that immune activation of infected CD4(+) T cells plays an important role in the induction of Tax expression, T-cell proliferation, and pathogenesis of ATL in HTLV-1-infected individuals. PMID:20634377

  1. Biological activity of diterpenoids isolated from Anatolian Lamiaceae Plants

    Directory of Open Access Journals (Sweden)

    Gülaçtı Topçu

    2007-05-01

    Full Text Available In this study, antibacterial, antifungal, antimycobacterial, cytotoxic, antitumor, cardiovascular, antifeedant, insecticidal, antileishmanial and some other single activities of diterpenoids and norditerpenoids isolated from Turkish Lamiaceae plants, are reviewed. The diterpenoids were isolated from species of Salvia, Sideritis, and Ballota species growing in Anatolia. Fifty abietanes, ten kaurenes, seven pimaranes, six labdanes with their biological activities were reported. While twenty five diterpenoids showed antibacterial activity, eight of which showed activity against fungi. The most cytotoxic one was found to be taxodione (44 isolated from species of Salvia. Antifeedant, insecticidal and insect repellent activity of kaurenes, antimycobacterial activity and cardioactivity of abietanes and norabietanes together with labdanes were also reported.

  2. ANTIMICROBIAL ACTIVITY OF NINE MEDICINAL PLANTS FROM VERACRUZ, MEXICO

    OpenAIRE

    Chena-Becerra, F; Palmeros-Sánchez, B; Fernández, M.S; Lozada-García, J.A

    2014-01-01

    The medicinal plants are an alternative source to the treatment of primary health care problems. An ethnobotanical study performed on Tlalchy, Ixhuacán de los Reyes, Veracruz, México, allowed the selection of nine plant species involved in infectious diseases treatments. Antimicrobial activities of ethanolic crude extracts were tested on fifteen bacterial and yeast clinical isolates. Every extract showed a level of inhibition against almost all the microorganisms assayed. According to the Cli...

  3. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    Science.gov (United States)

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  4. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  5. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  6. Antimalarial activity of extracts of Malaysian medicinal plants.

    Science.gov (United States)

    Najib Nik A Rahman, N; Furuta, T; Kojima, S; Takane, K; Ali Mohd, M

    1999-03-01

    In vitro and in vivo studies revealed that Malaysian medicinal plants, Piper sarmentosum, Andrographis paniculata and Tinospora crispa produced considerable antimalarial effects. Chloroform extract in vitro did show better effect than the methanol extract. The chloroform extract showed complete parasite growth inhibition as low as 0.05 mg/ml drug dose within 24 h incubation period (Andrographis paniculata) as compared to methanol extract of drug dose of 2.5 mg/ml but under incubation time of 48 h of the same plant spesies. In vivo activity of Andrographis paniculata also demonstrated higher antimalarial effect than other two plant species. PMID:10363840

  7. Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals.

    Science.gov (United States)

    Wolff, Amy R; Bilkey, David K

    2015-08-01

    Prenatal maternal immune activation (MIA) is a risk factor for several developmental neuropsychiatric disorders, including autism, bipolar disorder and schizophrenia. Adults with these disorders display alterations in memory function that may result from changes in the structure and function of the hippocampus. In the present study we use an animal model to investigate the effect that a transient prenatal maternal immune activation episode has on the spatially-modulated firing activity of hippocampal neurons in adult animals. MIA was induced in pregnant rat dams with a single injection of the synthetic cytokine inducer polyinosinic:polycytidylic acid (poly I:C) on gestational day 15. Control dams were given a saline equivalent. Firing activity and local field potentials (LFPs) were recorded from the CA1 region of the adult male offspring of these dams as they moved freely in an open arena. Most neurons displayed characteristic spatially-modulated 'place cell' firing activity and while there was no between-group difference in mean firing rate between groups, place cells had smaller place fields in MIA-exposed animals when compared to control-group cells. Cells recorded in MIA-group animals also displayed an altered firing-phase synchrony relationship to simultaneously recorded LFPs. When the floor of the arena was rotated, the place fields of MIA-group cells were more likely to shift in the same direction as the floor rotation, suggesting that local cues may have been more salient for these animals. In contrast, place fields in control group cells were more likely to shift firing position to novel spatial locations suggesting an altered response to contextual cues. These findings show that a single MIA intervention is sufficient to change several important characteristics of hippocampal place cell activity in adult offspring. These changes could contribute to the memory dysfunction that is associated with MIA, by altering the encoding of spatial context and by

  8. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations

    OpenAIRE

    Letty, Jerome; Fouchet, David; Aubineau, Jacky; Berger, Francis; Leonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; PERALTA, Brigitte

    2014-01-01

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the...

  9. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Science.gov (United States)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  10. HLA-G in human early pregnancy: Control of uterine immune cell activation and likely

    Directory of Open Access Journals (Sweden)

    Philippe Le Bouteiller

    2015-02-01

    Full Text Available Despite a number of controversies, the functional importance of human leukocyte antigen G (HLA-G in early human pregnancy is now sustained by a large amount of sound data. Membrane-bound and soluble HLA-G isoforms, either as β2-microglobulin-free or -associated as monomers or dimers, are expressed by different trophoblast subpopulations, the only fetal-derived cells that are directly in contact with maternal cells (maternal-fetal interfaces. Trophoblast HLA-G is the specific ligand of multiple cellular receptors present in maternal immune and non-immune cells, including CD8, leukocyte immunoglobulin-like receptor (LILR B1, LILRB2, killer cell immunoglobulin-like receptor (KIR 2DL4, and possibly CD160. Trophoblast HLA-G specific engagement of these cellular receptors triggers either inhibitory or activating signals in decidual CD8 + T cells, CD4 + T cells, natural killer (NK cells, macrophages, dendritic cells, or endothelial cells. Such HLA-G-receptor specific interactions first contribute to limit potentially harmful maternal anti-paternal immune response by impairment of decidual NK cell cytotoxicity, inhibition of CD4 + and CD8 + T-cell and B-cell proliferation, and induction of apoptosis of activated CD8 + T cells. Second, these HLA-G specific interactions contribute to stimulate placental development through secretion of angiogenic factors by decidual NK cells and macrophages, and to provide a protective effect for the outcome of pregnancy by the secretion of interleukin (IL-4 by decidual trophoblast antigen-specific CD4 + T cells.

  11. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows

    Directory of Open Access Journals (Sweden)

    Foley Cathriona

    2012-09-01

    Full Text Available Abstract Background All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR. Results mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P P SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. Conclusions The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in

  12. Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela; Ulloa-Urizar; Miguel; Angel; Aguilar-Luis; María; del; Carmen; De; Lama-Odría; José; Camarena-Lizarzaburu; Juana; del; Valle; Mendoza

    2015-01-01

    Objective: To evaluate the susceptibility of Pseudomonas aeruginosa(P. aeruginosa)in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants.Methods: The plants were chopped and soaked in absolute ethanol(1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cupplate agar diffusion method.Results: The extracts from Maytenus macrocarpa("Chuchuhuasi"), Dracontium loretense Krause("Jergon Sacha"), Tabebuia impetiginosa("Tahuari"), Eucalyptus camaldulensis Dehn(eucalyptus), Uncaria tomentosa("U?a de gato") exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity.Conclusions: The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  13. Screening of some Nigerian plants for molluscicidal activity.

    Science.gov (United States)

    Kela, S L; Ogunsusi, R A; Ogbogu, V C; Nwude, N

    1989-01-01

    Methanolic (MEOH), evaporated crude water (ECW) and unevaporated crude water (UECW) extracts of 25 Nigerian plants, used for different medicinal and domestic purposes were screened for molluscacidal activity on laboratory-reared Lymnaea natalensis Krauss. Seven of the plants were not active; extracts from 18 (72 per cent) of the plants, some of which are renowned fish poisons, had molluscicidal activity. These were Acacia nilotica, Aristolochia albida, Balanites aegyptiaca, Blighia sapida, Boswellia dalzielii, Detarium microcarpum, Gnidia kraussiana, Kigelia africana, Nauclea latifolia, Opilia celtidefolia, Parkia clappertoniana, Polygonum limbatum, Pseudocedrela kotschyi, Sclerocarya birrea, Securidaca longipedunculata, Ximenia americana, Vetiveria nigritana and Ziziphus abyssinica. The LC50 of these extracts were determined. It is strongly recommended that the toxic effects of these extracts against fish, cercariae, snail eggs and mammals be further investigated so as to determine the right concentration, especially for use in fish ponds. PMID:2626572

  14. Antioxidant activity of the medicinal plant Enicostemma littorale Blume

    Directory of Open Access Journals (Sweden)

    P Abirami

    2011-01-01

    Full Text Available Medicinal plants are the source for wide variety of natural antioxidants. In the study reported here, we have conducted a comparative study between the different parts of the plant Enicostemma littorale. The amount of total phenols and antioxidant enzymes Glutathione-S-Transferase, Superoxide Dismutase, Catalase and Peroxidase activities were evaluated and also the non-enzymatic antioxidants ascorbic acid, α- tocopherol and Glutathione activities were evaluated. The results showed that the antioxidant activities varied greatly among the different plant parts used in this study and some parts are rich in natural antioxidants especially the flowers of E. littorale. These results suggest that Enicostemma littorale have strong antioxidant potential. Further study is necessary for isolation and characterization of antioxidant agents, which can be used to treat various oxidative stress-related diseases.

  15. Antibacterial activity of ifve Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela Ulloa-Urizar; Miguel Angel Aguilar-Luis; Mara del Carmen De Lama-Odra; Jos Camarena-Lizarzaburu; Juana del Valle Mendoza

    2015-01-01

    Objective:To evaluate the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants. Methods:The plants were chopped and soaked in absolute ethanol (1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cup-plate agar diffusion method. Results:The extracts from Maytenus macrocarpa (“Chuchuhuasi”), Dracontium loretense Krause (“Jergon Sacha”), Tabebuia impetiginosa (“Tahuari”), Eucalyptus camaldulensis Dehn (eucalyptus), Uncaria tomentosa (“Uña de gato”) exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity. Conclusions:The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  16. The use of NPAR [Nuclear Plant Aging Research] results in plant inspection activities

    International Nuclear Information System (INIS)

    The US NRC's Nuclear Plant Aging Research (NPAR) Program is a hardware oriented research program which has produced a large data base of equipment and system operating, maintenance, and testing information. Equipment and systems which have a propensity for age related degradation are identified, and methods for detecting and mitigating aging effects have been evaluated. As plants age, it becomes increasingly important that NRC inspectors be cognizant of plant aging phenomena. This paper describes the NPAR information which can enhance inspection activities, and provides a mechanism for making pertinent research available to the inspectors. 7 refs., 2 figs

  17. The use of NPAR (Nuclear Plant Aging Research) results in plant inspection activities

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, W.; Taylor, J.

    1989-01-01

    The US NRC's Nuclear Plant Aging Research (NPAR) Program is a hardware oriented research program which has produced a large data base of equipment and system operating, maintenance, and testing information. Equipment and systems which have a propensity for age related degradation are identified, and methods for detecting and mitigating aging effects have been evaluated. As plants age, it becomes increasingly important that NRC inspectors be cognizant of plant aging phenomena. This paper describes the NPAR information which can enhance inspection activities, and provides a mechanism for making pertinent research available to the inspectors. 7 refs., 2 figs.

  18. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine.

    Science.gov (United States)

    Ren, Wenkai; Duan, Jielin; Yin, Jie; Liu, Gang; Cao, Zhong; Xiong, Xia; Chen, Shuai; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Wu, Guoyao

    2014-10-01

    This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.

  19. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.

    Science.gov (United States)

    Jones, R Mark; Chichester, Jessica A; Mett, Vadim; Jaje, Jennifer; Tottey, Stephen; Manceva, Slobodanka; Casta, Louis J; Gibbs, Sandra K; Musiychuk, Konstantin; Shamloul, Moneim; Norikane, Joey; Mett, Valentina; Streatfield, Stephen J; van de Vegte-Bolmer, Marga; Roeffen, Will; Sauerwein, Robert W; Yusibov, Vidadi

    2013-01-01

    Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based 'launch' vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20-30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the 'launch' vector technology for the production of VLP-based recombinant vaccines against infectious diseases. PMID:24260245

  20. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.

    Directory of Open Access Journals (Sweden)

    R Mark Jones

    Full Text Available Malaria transmission blocking vaccines (TBVs are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs. We engineered VLPs (Pfs25-CP VLP comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based 'launch' vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter with an estimated 20-30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the 'launch' vector technology for the production of VLP-based recombinant vaccines against infectious diseases.

  1. Hemagglutinin from the H5N1 virus activates Janus kinase 3 to dysregulate innate immunity.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause severe disease in humans. There are no effective vaccines or antiviral therapies currently available to control fatal outbreaks due in part to the lack of understanding of virus-mediated immunopathology. In our study, we used hemagglutinin (HA of H5N1 virus to investigate the related signaling pathways and their relationship to dysregulated innate immune reaction. We found the HA of H5N1 avian influenza triggered an abnormal innate immune signalling in the pulmonary epithelial cells, through an unusual process involving activation of Janus kinase 3 (JAK3 that is exclusively associated with γc chain and is essential for signaling via all γc cytokine receptors. By using a selective JAK3 inhibitor and JAK3 knockout mice, we have, for the first time, demonstrated the ability to target active JAK3 to counteract injury to the lungs and protect immunocytes from acute hypercytokinemia -induced destruction following the challenge of H5N1 HA in vitro and in vivo. On the basis of the present data, it appears that the efficacy of selective JAK3 inhibition is likely based on its ability to block multiple cytokines and protect against a superinflammatory response to pathogen-associated molecular patterns (PAMPs attack. Our findings highlight the potential value of selective JAK3 inhibitor in treating the fatal immunopathology caused by H5N1 challenge.

  2. IgG1 Fc N-glycan galactosylation as a biomarker for immune activation.

    Science.gov (United States)

    de Jong, Sanne E; Selman, Maurice H J; Adegnika, Ayola A; Amoah, Abena S; van Riet, Elly; Kruize, Yvonne C M; Raynes, John G; Rodriguez, Alejandro; Boakye, Daniel; von Mutius, Erika; Knulst, André C; Genuneit, Jon; Cooper, Philip J; Hokke, Cornelis H; Wuhrer, Manfred; Yazdanbakhsh, Maria

    2016-01-01

    Immunoglobulin G (IgG) Fc N-glycosylation affects antibody-mediated effector functions and varies with inflammation rooted in both communicable and non-communicable diseases. Worldwide, communicable and non-communicable diseases tend to segregate geographically. Therefore, we studied whether IgG Fc N-glycosylation varies in populations with different environmental exposures in different parts of the world. IgG Fc N-glycosylation was analysed in serum/plasma of 700 school-age children from different communities of Gabon, Ghana, Ecuador, the Netherlands and Germany. IgG1 galactosylation levels were generally higher in more affluent countries and in more urban communities. High IgG1 galactosylation levels correlated with low total IgE levels, low C-reactive protein levels and low prevalence of parasitic infections. Linear mixed modelling showed that only positivity for parasitic infections was a significant predictor of reduced IgG1 galactosylation levels. That IgG1 galactosylation is a predictor of immune activation is supported by the observation that asthmatic children seemed to have reduced IgG1 galactosylation levels as well. This indicates that IgG1 galactosylation levels could be used as a biomarker for immune activation of populations, providing a valuable tool for studies examining the epidemiological transition from communicable to non-communicable diseases. PMID:27306703

  3. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  4. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  5. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice.

    Science.gov (United States)

    Zhang, Zhi; van Praag, Henriette

    2015-03-01

    Schizophrenia is associated with deficits in the hippocampus, a brain area important for learning and memory. The dentate gyrus (DG) of the hippocampus develops both before and after birth. To study the relative contribution of mature and adult-born DG granule cells to disease etiology, we compared both cell populations in a mouse model of psychiatric illness resulting from maternal immune activation. Polyriboinosinic-polyribocytidilic acid (PolyIC, 5mg/kg) or saline was given on gestation day 15 to pregnant female C57Bl/6 mice. Male offspring (n=105), was administered systemic bromodeoxyuridine (BrdU, 50mg/kg) (n=52) or intracerebral retroviral injection into the DG (n=53), to label dividing cells at one month of age. Two months later behavioral tests were performed to evaluate disease phenotype. Immunohistochemistry and whole-cell patch clamping were used to assess morphological and physiological characteristics of DG cells. Three-month-old PolyIC exposed male offspring exhibited deficient pre-pulse inhibition, spatial maze performance and motor coordination, as well as increased depression-like behavior. Histological analysis showed reduced DG volume and parvalbumin positive interneuron number. Both mature and new hippocampal neurons showed modifications in intrinsic properties such as increased input resistance and lower current threshold, and decreased action potential number. Reduced GABAergic inhibitory transmission was observed only in mature DG neurons. Differential impairments in mature DG cells and adult-born new neurons may have implications for behavioral deficits associated with maternal immune activation. PMID:25449671

  6. IgG1 Fc N-glycan galactosylation as a biomarker for immune activation

    Science.gov (United States)

    de Jong, Sanne E.; Selman, Maurice H. J.; Adegnika, Ayola A.; Amoah, Abena S.; van Riet, Elly; Kruize, Yvonne C. M.; Raynes, John G.; Rodriguez, Alejandro; Boakye, Daniel; von Mutius, Erika; Knulst, André C.; Genuneit, Jon; Cooper, Philip J.; Hokke, Cornelis H.; Wuhrer, Manfred; Yazdanbakhsh, Maria

    2016-01-01

    Immunoglobulin G (IgG) Fc N-glycosylation affects antibody-mediated effector functions and varies with inflammation rooted in both communicable and non-communicable diseases. Worldwide, communicable and non-communicable diseases tend to segregate geographically. Therefore, we studied whether IgG Fc N-glycosylation varies in populations with different environmental exposures in different parts of the world. IgG Fc N-glycosylation was analysed in serum/plasma of 700 school-age children from different communities of Gabon, Ghana, Ecuador, the Netherlands and Germany. IgG1 galactosylation levels were generally higher in more affluent countries and in more urban communities. High IgG1 galactosylation levels correlated with low total IgE levels, low C-reactive protein levels and low prevalence of parasitic infections. Linear mixed modelling showed that only positivity for parasitic infections was a significant predictor of reduced IgG1 galactosylation levels. That IgG1 galactosylation is a predictor of immune activation is supported by the observation that asthmatic children seemed to have reduced IgG1 galactosylation levels as well. This indicates that IgG1 galactosylation levels could be used as a biomarker for immune activation of populations, providing a valuable tool for studies examining the epidemiological transition from communicable to non-communicable diseases. PMID:27306703

  7. Savannah River Plant history plantwide activities, July 1954--December 1972

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1972-12-31

    This report recounts the yearly activities of the Savannah River Plant nonproduction agencies and is concerned mainly with Plant personnel and items of general interest. The ``History of Plantwide Activities`` is published as an accumulative document; at the end of each year a new writeup is added to the volume to bring it up to date. Writeups for 1955 and 1956 are based on the governmental fiscal year; those for 1957 and subsequent years are on a calendar year basis. The history of the period from prestartup through June 30, 1953, is presented in DPSP 53-368; the history from July 1953 through June 1954 is presented in DPSP 54-448.

  8. Late effects of selected immunosuppressants on immunocompetence, disease incidence, and mean life-span. II. Cell-mediated immune activity. [Mice, X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, W.J.; Perkins, E.H.; Goodman, S.A.; Hori, Y.; Halsall, M.K.; Makinodan, T.

    1975-01-01

    The late effects of various immunosuppressive insults on cell-mediated immunity in mice were studied in an attempt to assess the role of immune surveillance in the aging process. Results were obtained using susceptibility to allogeneic tumor cell challenge, graft-versus-host reaction (GVHR), blastogenic response to PHA, a thymus derived T cell-specific plant mitogen, and cytolytic activity against allogeneic tumor cells as measures of immunologic activity. In vivo studies late in life show that resistance to allogeneic tumor cells is significantly decreased in thymectomized mice, whereas those treated with cortisone, cyclophosphamide and sublethal x-ray remain unchanged. Spleen cells from only the thymectomized and the sublethally irradiated mice show reduced activity in the GVHR. No difference is seen in the activity of bone marrow cells. Results consistent with these findings were obtained in in vitro studies. Thus spleen cells from thymectomized or sublethally irradiated mice show decreased activity in response to PHA, whereas no change is seen in spleen cells from other treated groups. Hence, surgical and physical insults are more likely to induce long-lasting immunosuppression in those immunocompetent tissues whose activity normally diminishes with advancing age. Furthermore, the degree of immunosuppression seen in this study is not of the order of magnitude that one could reasonably predict a significant decrease in mean life-span.

  9. The Impact of Membrane Lipid Composition on Macrophage Activation in the Immune Defense against Rhodococcus equi and Pseudomonas aeruginosa

    OpenAIRE

    Julia Schumann; Herbert Fuhrmann; Stephanie Adolph; Axel Schoeniger

    2011-01-01

    Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model ...

  10. A Viral Vectored Prime-Boost Immunization Regime Targeting the Malaria Pfs25 Antigen Induces Transmission-Blocking Activity

    OpenAIRE

    Goodman, Anna L.; Blagborough, Andrew M.; Sumi Biswas; Yimin Wu; Hill, Adrian V.; Sinden, Robert E.; Draper, Simon J

    2011-01-01

    The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63), human adenovirus serotype 5 (AdHu5) and modified vaccinia virus Ankara (MVA) viral vectored vaccines. Two immunizations were administered to mice in a ...

  11. Platelet-Activating Factor Is Crucial in Psoralen and Ultraviolet A-Induced Immune Suppression, Inflammation, and Apoptosis

    OpenAIRE

    Wolf, Peter; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Byrne, Scott; Matsumura, Yumi; Matsumura, Yasuhiro; Bucana, Cora; Ananthaswamy, Honnavara N.; Ullrich, Stephen E.

    2006-01-01

    Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immun...

  12. Cytotoxic activity of Thai medicinal plants for cancer treatment

    Directory of Open Access Journals (Sweden)

    Chawaboon Dechsukum

    2005-08-01

    Full Text Available Twelve Thai medicinal plants as the ingredients of a Southern Thai traditional formula for cancer treatment were selected to test cytotoxicity activity against two types of human cancer cell lines ; large cell lung carcinoma (CORL-23 and prostate cancer cell lines (PC3 and one type of normal human cell line, fibroblast cells (10FS. SRB assay was used to test cytotoxic activity against all the cell types. Two of the extracts (water and ethanolic extracts procedures used were similar to those practised by Thai traditional doctors. One concentration (50 μg/ml of two different extracts was tested first against cell lines and the active plant extracts were diluted and tested for calculating IC50. The ethanolic extracts of six plants (Bridelia ovata, Curcuma zedoaria, Derris scandens, Dioscorea membranacea, Nardostachys jatamansi and Rhinacanthus nasutus showed cytotoxic activity (IC50< 30 μg/ml against lung and prostate cancer cell lines. Dioscorea membranacea roots showed the highest cytotoxic activity against lung cancer cell lines ( IC50= 4.6 μg/ml but it exhibited low cytotoxic activity against prostate cancer cell lines (IC50= 17.55 μg/ml and less cytotoxic activity against normal cell lines (IC50= 66.05 μg/ml. Curcuma zedoaria showed cytotoxic activity against COR L-23 and PC3 but less cytotoxic activity against 10FS (IC50 = 6.05, 17.84 and 55.50 μg/ml respectively Rhinacanthus nasutus root extract showed the highest cytotoxic activity against PC3 ( IC50 = 2.01 μg/ml and this extract also showed high activity against COR L-23 and 10FS (IC50=5.05 and 10.95 μg/ml respectively. The water extract of all plants exhibited no activity against all types of human cells. Two ethanolic plant extracts (Dioscorea membranacea and Curcuma zedoaria which showed specific activity against lung cancer cell lines and less cytotoxic activity against normal cells should be further investigated for active compounds against lung cancer cell.

  13. Induced prion protein controls immune-activated retroviruses in the mouse spleen.

    Directory of Open Access Journals (Sweden)

    Marius Lötscher

    Full Text Available The prion protein (PrP is crucially involved in transmissible spongiform encephalopathies (TSE, but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.

  14. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  15. Antibacterial, Antifungal and antioxidant activities of some medicinal plants.

    Science.gov (United States)

    Wazir, Asma; Mehjabeen, -; Jahan, Noor; Sherwani, Sikander Khan; Ahmad, Mansoor

    2014-11-01

    The purpose of this study was to evaluate the antibacterial, antifungal and antioxidant activities of medicinal plants. The antibacterial activity of methanolic extracts of three medicinal plants (Swertia chirata, Terminalia bellerica and Zanthoxylum armatum) were tested against Gentamicin (standard drug) on eleven gram positive and seventeen gram negative bacteria by agar well method. It was revealed that seven-gram negative and six gram positive bacterial species were inhibited by these plant extracts. Minimum inhibitory concentrations (MIC) of the extracts were determined by broth micro-dilution method. The significant MIC value of Swertia chirata was 20mg/ml against Serratia marcesens, Zanthoxylum armatum was 10 mg/ml against Aeromonas hydrophila and Terminali bellerica was 20mg/ml against Acinetobacter baumanii as well as Serratia marcesens. Antifungal screening was done for methanolic extracts of these plants by agar well method with the 6 saprophytic, 5 dermatophytic and 6 yeasts. In this case Griseofulvin was used as a standard. All saprophytes and dermatophytes were showed resistance by these plants extracts except Microsporum canis, which was inhibited by Z. armatum and S. chirata extracts. The significant MIC value of Zanthoxylum armatum was 10mg/ml against Microsporum canis and Swertia chirata was 10mg/ml against Candida tropicalis. The anti-oxidant study was performed by DPPH free radical scavenging assay using ascorbic acid as a reference standard. Significant antioxidant activities were observed by Swertia chirata and Zanthoxylum armatum at concentration 200μg/ml was 70% DPPH scavenging activity (EC50=937.5μg/ml) while Terminalia bellerica showed 55.6% DPPH scavenging activity (EC50=100μg/ml). This study has shown that these plants could provide potent antibacterial compounds and may possible preventive agents in ROS related ailments. PMID:26045377

  16. Association of Interleukin-15–Induced Peripheral Immune Activation with Hepatic Stellate Cell Activation in Persons Coinfected with Hepatitis C Virus and HIV

    Science.gov (United States)

    Allison, Robert D.; Katsounas, Antonios; Koziol, Deloris E.; Kleiner, David E.; Alter, Harvey J.; Lempicki, Richard A.; Wood, Brad; Yang, Jun; Fullmer, Brandie; Cortez, Karoll J.; Polis, Michael A.; Kottilil, Shyam

    2009-01-01

    Hepatic stellate cells (HSCs) mediate hepatitis C virus (HCV)–related liver fibrosis, and increased HSC activation in human immunodeficiency virus (HIV)/HCV coinfection may be associated with accelerated fibrosis. We examined the level of HSC activation in HIV/HCV-coinfected and HCV-monoinfected subjects and its relationship to the level of activation and gene expression of peripheral immune cells in coinfected subjects. HSC activation levels positively correlated with peripheral CD4+ and CD8+ T cell immune activation and were associated with enhanced interleukin-15 (IL-15) gene expression, suggesting a pathogenic role for IL-15–driven immunomediated hepatic fibrosis. Future strategies that reduce immune activation and HSC activation may delay progression of liver fibrosis. PMID:19594300

  17. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  18. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity.

    Science.gov (United States)

    Wagner, Stephan; Stuttmann, Johannes; Rietz, Steffen; Guerois, Raphael; Brunstein, Elena; Bautor, Jaqueline; Niefind, Karsten; Parker, Jane E

    2013-12-11

    Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.

  19. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  20. Evaluation of some medicinal plant extracts for antidiarrhoeal activity.

    Science.gov (United States)

    Atta, Attia H; Mouneir, Samar M

    2005-06-01

    The antidiarrhoeal effect of seven plant extracts namely: the aerial parts of Euphorbia paralias L. (EP), Bidens bipinnata L. (BB), Cynachum acutum L. (CyAc), Diplotaxis acris (Forssk.) Boiss (DA), Convolvulus fatmensis (CF) and Schouwia thebaica Webb (ST) and the leaves of Plantago major L. (PM), was evaluated on castor oil-induced diarrhoea, gastrointestinal movement in rats (charcoal meal) and on the motility of duodenum isolated from freshly slaughtered rabbits. A significant antidiarrhoeal effect of the tested plant extracts against castor oil-induced diarrhoea in rats was achieved by 200 and 400 mg/kg. The tested plant extracts decreased the gastrointestinal movement as indicated by the significantly (pmajor active constituents of the tested plants.

  1. Plant-Derived Compounds with Potential Sedative and Anxiolytic Activities

    Directory of Open Access Journals (Sweden)

    Theresa Ibibia Edewor-Kuponiyi

    2013-07-01

    Full Text Available A wide variety of active phytochemicals such as flavonoids, alkaloids, saponins, etc., have been isolated and identified in different plants. Pharmacological and chemical investigations of medicinal plants have provided important advances in therapeutic approach to several pathologies as well as extremely useful tools for the theoretical study of physiology and pharmacology. With increased use of herbal medicine, medicinal plants are receiving more attention from the scientific and pharmaceutical communities. Several compounds have been isolated and evaluated for their sedative and anxiolytic properties. Although most of the reported works are more of academic interest and very few find entry at clinical trials; one is hopeful that as more discoveries of sedative and anxiolytic compounds from plants are made, it will lead to generation of more effective drugs.

  2. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation

    Science.gov (United States)

    Cheng, Yu Ti; Li, Yingzhong; Huang, Shuai; Huang, Yan; Dong, Xinnian; Zhang, Yuelin; Li, Xin

    2011-01-01

    The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity. PMID:21873230

  3. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    OpenAIRE

    Ajit Kumar Passari; Vineet Kumar Mishra; Vijai Kumar Gupta; Mukesh Kumar Yadav; Ratul Saikia; Bhim Pratap Singh

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using...

  4. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity.

    Science.gov (United States)

    Vinutha, B; Prashanth, D; Salma, K; Sreeja, S L; Pratiti, D; Padmaja, R; Radhika, S; Amit, A; Venkateshwarlu, K; Deepak, M

    2007-01-19

    Seventy-six plant extracts including methanolic and successive water extracts from 37 Indian medicinal plants were investigated for acetylcholinesterase (AChE) inhibitory activity (in vitro). Results indicated that methanolic extracts to be more active than water extracts. The potent AChE inhibiting methanolic plant extracts included Withania somnifera (root), Semecarpus anacardium (stem bark), Embelia ribes (Root), Tinospora cordifolia (stem), Ficus religiosa (stem bark) and Nardostachys jatamansi (rhizome). The IC(50) values obtained for these extracts were 33.38, 16.74, 23.04, 38.36, 73.69 and 47.21mug/ml, respectively. These results partly substantiate the traditional use of these herbs for improvement of cognition. PMID:16950584

  5. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  6. Cytotoxic activity screening of Bangladeshi medicinal plant extracts.

    Science.gov (United States)

    Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin

    2014-01-01

    The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development. PMID:23846168

  7. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation.

    Science.gov (United States)

    Izcue, Ana; Coombes, Janine L; Powrie, Fiona

    2006-08-01

    The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way. PMID:16903919

  8. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation.

    Directory of Open Access Journals (Sweden)

    Sophia Maschalidi

    Full Text Available Intracellular Toll-like receptors (TLRs expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV, a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+ T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases.

  9. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation.

    Science.gov (United States)

    Maschalidi, Sophia; Hässler, Signe; Blanc, Fany; Sepulveda, Fernando E; Tohme, Mira; Chignard, Michel; van Endert, Peter; Si-Tahar, Mustapha; Descamps, Delphyne; Manoury, Bénédicte

    2012-01-01

    Intracellular Toll-like receptors (TLRs) expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV), a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP) deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+) T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases. PMID:22916010

  10. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  11. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice.

    Science.gov (United States)

    Weiser, Michael J; Mucha, Brittany; Denheyer, Heather; Atkinson, Devon; Schanz, Norman; Vassiliou, Evros; Benno, Robert H

    2016-03-01

    The prevalence of autism spectrum disorders over the last several decades has risen at an alarming rate. Factors such as broadened clinical definitions and increased parental age only partially account for this precipitous increase, suggesting that recent changes in environmental factors may also be responsible. One such factor could be the dramatic decrease in consumption of anti-inflammatory dietary omega-3 (n-3) polyunsaturated fatty acids (PUFAs) relative to the amount of pro-inflammatory omega-6 (n-6) PUFAs and saturated fats in the Western diet. Docosahexaenoic acid (DHA) is the principle n-3 PUFA found in neural tissue and is important for optimal brain development, especially during late gestation when DHA rapidly and preferentially accumulates in the brain. In this study, we tested whether supplementation of a low n-3 PUFA diet with DHA throughout development could improve measures related to autism in a mouse model of maternal immune activation. We found that dietary DHA protected offspring from the deleterious effects of gestational exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid on behavioral measures of autism and subsequent adulthood immune system reactivity. These data suggest that elevated dietary levels of DHA, especially during pregnancy and nursing, may help protect normal neurodevelopment from the potentially adverse consequences of environmental insults like maternal infection. PMID:26703213

  12. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response.

    Directory of Open Access Journals (Sweden)

    Rinath M Jeselsohn

    Full Text Available Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted.

  13. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes.

    Science.gov (United States)

    Tilburgs, Tamara; Crespo, Ângela C; van der Zwan, Anita; Rybalov, Basya; Raj, Towfique; Stranger, Barbara; Gardner, Lucy; Moffett, Ashley; Strominger, Jack L

    2015-06-01

    Invading human leukocyte antigen-G+ (HLA-G+) extravillous trophoblasts (EVT) are rare cells that are believed to play a key role in the prevention of a maternal immune attack on foreign fetal tissues. Here highly purified HLA-G+ EVT and HLA-G- villous trophoblasts (VT) were isolated. Culture on fibronectin that EVT encounter on invading the uterus increased HLA-G, EGF-Receptor-2, and LIF-Receptor expression on EVT, presumably representing a further differentiation state. Microarray and functional gene set enrichment analysis revealed a striking immune-activating potential for EVT that was absent in VT. Cocultures of HLA-G+ EVT with sample matched decidual natural killer cells (dNK), macrophages, and CD4+ and CD8+ T cells were established. Interaction of EVT with CD4+ T cells resulted in increased numbers of CD4+CD25(HI)FOXP3+CD45RA+ resting regulatory T cells (Treg) and increased the expression level of the Treg-specific transcription factor FOXP3 in these cells. However, EVT did not enhance cytokine secretion in dNK, whereas stimulation of dNK with mitogens or classical natural killer targets confirmed the distinct cytokine secretion profiles of dNK and peripheral blood NK cells (pNK). EVT are specialized cells involved in maternal-fetal tolerance, the properties of which are not imitated by HLA-G-expressing surrogate cell lines. PMID:26015573

  14. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans.

    Science.gov (United States)

    Hwang, Jae-Kwan; Shim, Jae-Seok; Chung, Jae-Youn

    2004-09-01

    The methanol extracts of five tropical plants, Baeckea frutescens, Glycyrrhiza glabra, Kaempferia pandurata, Physalis angulata and Quercus infectoria, exhibited potent antibacterial activity against the cariogenic bacterium Streptococcus mutans. In particular, G. glabra, K. pandurata and P. angulata conferred fast killing bactericidal effect against S. mutans in 2 min at 50 microg/ml of extract concentration. PMID:15351117

  15. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni.

    Science.gov (United States)

    Kurekci, Cemil; Bishop-Hurley, Sharon L; Vercoe, Philip E; Durmic, Zoey; Al Jassim, Rafat A M; McSweeney, Christopher S

    2012-02-01

    Campylobacter jejuni is the most common cause of acute enteritis in humans, with symptoms such as diarrhoea, fever and abdominal cramps. In this study, 115 extracts from 109 Australian plant species were investigated for their antimicrobial activities against two C. jejuni strains using an in vitro broth microdilution assay. Among the plants tested, 107 (93%) extracts showed activity at a concentration between 32 and 1024 µg/mL against at least one C. jejuni strain. Seventeen plant extracts were selected for further testing against another six C. jejuni strains, as well as Campylobacter coli, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Proteus mirabilis and Enterococcus faecalis. The extract from Eucalyptus occidentalis demonstrated the highest antimicrobial activity, with an inhibitory concentration of 32 µg/mL against C. jejuni and B. cereus. This study has shown that extracts of selected Australian plants possess antimicrobial activity against C. jejuni and thus may have application in the control of this organism in live poultry and retail poultry products.

  16. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  17. Phytochemicals and Their Biological Activities of Plants in Tagetes L.

    Institute of Scientific and Technical Information of China (English)

    XU Li-wei; CHEN Juan; QI Huan-yang; SHI Yan-ping

    2012-01-01

    Tagetes L.,the genus in the family Asteraceae,consists of about 30 species spread in South and Middle America as well as Mexico.More than one hundred secondary metabolites have been obtained in phytochemical investigation on the species,some of which have potent biological activities.The advances in phytochemical studies and biological activities of the plants in Tagetes L.from 1925 to 2011 are summarized in this paper.

  18. In vitro antiplasmodial activity of extracts of Argentinian plants.

    Science.gov (United States)

    Debenedetti, S; Muschietti, L; van Baren, C; Clavin, M; Broussalis, A; Martino, V; Houghton, P J; Warhurst, D; Steele, J

    2002-05-01

    Fifteen extracts from nine selected Argentine medicinal plants were tested for their antiplasmodial activity in vitro by assessing their ability to inhibit the uptake of [3H]-hypoxanthine into the Plasmodium falciparum K1 pyrimethamine/chloroquine resistant strain. The methanol extract of Satureja parvifolia showed good antiplasmodial activity (IC(50) 3 microg/ml). Inhibition of the growth of P. falciparum was also observed with aqueous extracts of Buddleja globosa and S. parvifolia.

  19. Screening of Iranian plants for antifungal activity: Part 1

    Directory of Open Access Journals (Sweden)

    Amin Gh.R

    2002-07-01

    Full Text Available In this study, 250 species from 37 families of native Iranian plants were screened for in vitro antifungal activity against 19 fungal strains in vitro. Primarily, the crude extracts at concentration of 100μg/ml were tested. Of 250 extracts tested, 185(74% showed antifungal activity against at least one fungal strain. The outstanding species were Artemisia aucheri, Artemisia scoparia, Carthamus oxyacantha, Francoeuria undulate, Tripleurospermum disciform, and Xanthium spinosum.

  20. Cytotoxic activity of Thai medicinal plants for cancer treatment

    OpenAIRE

    Chawaboon Dechsukum; Pranee Ratanasuwan; Niwat Keawpradub; Chatchai Wattanapiromsakul; Arunporn Itharat; Athima Saetung

    2005-01-01

    Twelve Thai medicinal plants as the ingredients of a Southern Thai traditional formula for cancer treatment were selected to test cytotoxicity activity against two types of human cancer cell lines ; large cell lung carcinoma (CORL-23) and prostate cancer cell lines (PC3) and one type of normal human cell line, fibroblast cells (10FS). SRB assay was used to test cytotoxic activity against all the cell types. Two of the extracts (water and ethanolic extracts) procedures used were similar to tho...

  1. Making the right connections: Network biology and plant immune system dynamics

    Directory of Open Access Journals (Sweden)

    Maggie E. McCormack

    2016-04-01

    Full Text Available Network analysis has been a recent focus in biological sciences due to its ability to synthesize global visualizations of cellular processes and predict functions based on inferences from network properties. A protein–protein interaction network, or interactome, captures the emergent cellular states from gene regulation and environmental conditions. Given that proteins are involved in extensive local and systemic molecular interactions such as signaling and metabolism, understanding protein functions and interactions are essential for a systems view of biology. However, in plant sciences these network-based approaches to data integration have been few and far between due to limited data, especially protein–protein interaction data. In this review, we cover network construction from experimental data, network analysis based on topological properties, and finally we discuss advances in networks in plants and other organisms in a comparative approach. We focus on applications of network biology to discover the dynamics of host–pathogen interactions as these have potential agricultural uses in improving disease resistance in commercial crops.

  2. Innate Immune Memory: Activation of Macrophage Killing Ability by Developmental Duties.

    Science.gov (United States)

    Schneider, David; Tate, Ann Thomas

    2016-06-20

    Innate immune systems in many taxa exhibit hallmarks of memory in response to previous microbial exposure. A new study demonstrates that innate immune memory in Drosophila embryonic macrophages can also be induced by the successful engulfment of apoptotic cells, highlighting the importance of early exposure events for developing responsive immune systems.

  3. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Institute of Scientific and Technical Information of China (English)

    Krimat Soumia; Dob Tahar; Lamari Lynda; Boumeridja Saida; Chelghoum Chabane; Metidji Hafidha

    2014-01-01

    Objective:To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods:Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results:The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03%to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL), while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity inβ-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions:The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  4. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Directory of Open Access Journals (Sweden)

    Krimat Soumia

    2014-06-01

    Full Text Available Objective: To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods: Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results: The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03% to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL, while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity in β-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions: The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  5. Antimicrobial activity of Northwestern Mexican plants against Helicobacter pylori.

    Science.gov (United States)

    Robles-Zepeda, Ramón E; Velázquez-Contreras, Carlos A; Garibay-Escobar, Adriana; Gálvez-Ruiz, Juan C; Ruiz-Bustos, Eduardo

    2011-10-01

    Helicobacter pylori is the major etiologic agent of such gastric disorders as chronic active gastritis and gastric carcinoma. Over the past few years, the appearance of antibiotic-resistant bacteria has led to the development of better treatments, such as the use of natural products. This study evaluated the anti-H. pylori activity of 17 Mexican plants used mainly in the northwestern part of Mexico (Sonora) for the empirical treatment of gastrointestinal disorders. The anti-H. pylori activity of methanolic extracts of the plants was determined by using the broth microdilution method. The 50% minimum inhibitory concentrations ranged from less than 200 to 400 μg/mL for Castella tortuosa, Amphipterygium adstringens, Ibervillea sonorae, Pscalium decompositum, Krameria erecta, Selaginella lepidophylla, Pimpinella anisum, Marrubium vulgare, Ambrosia confertiflora, and Couterea latiflora and were greater than 800 μg/mL for Byophyllum pinnatum, Tecoma stans linnaeus, Kohleria deppena, Jatropha cuneata, Chenopodium ambrosoides, and Taxodium macronatum. Only Equisetum gigantum showed no activity against H. pylori. This study suggests the important role that these plants may have in the treatment of gastrointestinal disorders caused by H. pylori. The findings set the groundwork for further characterization and elucidation of the active compounds responsible for such activity. PMID:21663492

  6. Community Immunity (Herd Immunity)

    Science.gov (United States)

    ... Read more information on enabling JavaScript. Skip Content Marketing Share this: Main Content Area ​Community Immunity ("Herd" ... population is immunized, protecting most community members. The principle of community immunity applies to control of a ...

  7. Relationship between regulatory T cells and immune activation in human immunodeficiency virus-infected patients interrupting antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Laurence Weiss

    Full Text Available UNLABELLED: Persistent immune activation plays a central role in driving Human Immunodeficiency Virus (HIV disease progression. Whether CD4+CD25+ regulatory T cells (Tregs are harmful by suppressing HIV-specific immune responses and/or beneficial through a decrease in immune activation remains debatable. We analysed the relationship between proportion and number of regulatory T cells (Tregs and immune activation in HIV-infected patients interrupting an effective antiretroviral therapy (ART. Twenty-five patients were included in a substudy of a prospective multicenter trial of treatment interruption (TI (ANRS 116. Proportions and numbers of Tregs and the proportion of activated CD4 and CD8 T cells were assessed at baseline and month 12 (M12 of TI. Specific anti-HIV CD4 and CD8 responses were investigated at baseline and M12. Non parametric univariate analyses and multivariate linear regression models were conducted. At baseline, the proportion of Tregs negatively correlated with the proportion of HLA-DR+CD8+T cells (r=-0.519. Following TI, the proportion of Tregs increased from 6.3% to 7.2% (p=0.029; absolute numbers of Tregs decreased. The increase in the proportion of HLA-DR+CD38+CD8+T cells was significantly related to the increase in proportion of Tregs (p=0.031. At M12, the proportion of Tregs did not negatively correlate with CD8 T-cell activation. Nevertheless, Tregs retain a suppressive function since depletion of Treg-containing CD4+CD25+ cells led to an increase in lymphoproliferative responses in most patients studied. Our data suggest that Tregs are efficient in controlling residual immune activation in patients with ART-mediated viral suppression. However, the insufficient increase in the proportion and/or the decrease in the absolute number of Tregs result in a failure to control immune activation following TI. TRIAL REGISTRATION: ClinicalTrials.gov NCT00118677.

  8. Screening and antibacterial activity analysis of some important medicinal plants

    Directory of Open Access Journals (Sweden)

    G. Senthilmurugan Viji

    2013-02-01

    Full Text Available The screening and study of five different plant specimens belonging to different families for phytochemical constituents was performed using generally accepted laboratory technique for qualitative determinations. The constituents screened were saponins, combined anthraquinones, terpenoids, flavonoids, carotenoids, steroids, xantho proteins, couramins, alkaloids, quinones, vitamin C. The distribution of these constituents in the plant specimens were assessed and compared. The medicinal plant studied were Acalypha indica, Camellia sinensis, Plectranthus amboinicus, Curcuma longa, Rauvolfia tetraphylla. All the plant speciemens were found to contain terpenoids, xantho proteins, couramins and vitamin C. They also contain Saponins (except Curcuma longa, Combined anthroquinones (except Acalypha indica, Camellia sinensis, Curcuma longa flavonoids (except Acalypha indica, Camellia sinensis, Carotenoids (except Acalypha indica, Curcuma longa, and steroids (except Plectranthus amboinicus, Rauvolfia tetraphylla Quinones were found in one out of the five specimens. Some of the medicinal plant seemed to have potential as source of useful drugs. Though the one percent extracts of all the plants showed some degree of antimicrobial activity, it was significant in Acalypha indica, Camellia sinensis, Plectranthus amboinicus, Curcuma longa, and Rauvolfia tetraphylla. The extract of Camellia sinensis and Acalypha indica was most effective against Enterobacter faecalis (ZI = 3 cm and ZI = 1.7cm and Camellia sinensis and Acalypha indica was most effective against Staphylococcus aureus (ZI = 2.1 cm.

  9. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Francesca Avogadri

    Full Text Available BACKGROUND: Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. METHODOLOGY/PRINCIPAL FINDINGS: VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2, which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. CONCLUSIONS/SIGNIFICANCE: This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  10. T cell immune response is correlated with fibrosis and inflammatory activity in hepatitis B cirrhotics

    Institute of Scientific and Technical Information of China (English)

    Jie-Ting Tang; Jing-Yuan Fang; Wei-Qi Gu; En-Lin Li

    2006-01-01

    AIM: To explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity.METHODS: Peripheral blood samples from a total of 43 hepatitis B cirrhotic patients (LC) and 19 healthy controls (NC) were collected to measure their serum levels of IFN-γ, interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R), interleukin-10 (IL-10) and three serological markers of fibrosis including hyaluronic acid (HA), procollagen type Ⅲ peptide (PⅢP), and type Ⅳ collagen were measured using a double antibody sandwich ELISA. Also,serum total bilirubin (TB) and alanine aminotransferase (ALT) were measured by routine measures.RESULTS: The concentrations of serological markers of fibrosis in patients with active cirrhosis (ALC) were significantly higher than those in stationary liver cirrhosis (SLC) or NC groups. The levels of serological markers in HBeAg-positive patients were significantly higher than those in HBeAg-negative patients. In SLC and ALC patients, a negative linear correlation was found between IFN-γ levels and the serological markers of fibrosis. IFN-γ and IL-2 levels in the ALC group were significantly higher than those in the SLC and NC groups, but the statistical difference was not significant between the latter two. In contrast, IL-10 levels in the SLC group were significantly higher than that in the NC group, but no significant difference was found between SLC and ALC groups. The sIL-2R level was elevated gradually in all these groups,and the differences were significant. Positive linear correlations were seen between IFN-γ activity and ALT levels (r = 0.339, P < 0.05), and IL-2 activity and TB levels (r = 0.517, P < 0.05). sIL-2R expression was positively correlated with both ALT and TB levels (r = 0.324, 0.455,P < 0.05), whereas there was no statistically significant correlation between IL-10 expression and serum ALT and TB levels (r = -0.102, -0.093, P > 0.05). Finally

  11. Association of markers of bacterial translocation with immune activation in decompensated cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian; Jensen, Jørgen Skov; Hobolth, Lise;

    2014-01-01

    to be a promising surrogate marker for BT, although its clinical relevance has been questioned. MATERIALS AND METHODS: In 38 cirrhotic patients with and without SBP, bDNA in blood and ascites were assessed by 16S rDNA quantitative PCR. Levels of lipopolysaccharide-binding protein in plasma and highly sensitive C......BACKGROUND: Bacterial translocation (BT) may cause infections, in particular, spontaneous bacterial peritonitis (SBP). In the absence of overt infection, BT may further stimulate the immune system and contribute to haemodynamic alterations and complications. Bacterial DNA (bDNA) is claimed......-reactive protein, tumour necrosis factor-α, soluble urokinase plasminogen activating receptor, interleukin-6, interleukin 8, interferon-γ inducible protein-10 and vascular endothelial growth factor in plasma and ascites were measured by multiplex cytokine and ELISA assays. RESULTS: In patients without signs of SBP...

  12. Influence of aerogenic contamination on phytoncide activity of woody plants

    Directory of Open Access Journals (Sweden)

    S. O. Volodarez

    2015-07-01

    Full Text Available The main objective of this paper is to determine variations of antimicrobial activity of the volatile organic compounds from leaves of woody plants, which are growing on the areas with the different air pollution degree in the south-east of Ukraine. The research objects were Aesculus hippocastanum L., Betula pendula Roth, Salix alba L., Picea pungens Engelm. in Donetsk, Ukraine, and 6 species (Betula pendula Roth, Fraxinus excelsior L., Robinia pseudoacacia L., Populus nigra L., Tilia cordata Mill., Picea pungens Engelm. in Kramatorsk, Ukraine. Samples were collected in Donetsk every month during 2012 and 2013 years on four sample areas. Three research areas border with Donetsk Metallurgical Plant PSC, heavy traffic road and Kalinin coal mine, that feature such pollutants as CO2, SO2, NO2, and marsh gas. The fourth research area is the recreation zone (Donetsk Culture and Leisure Park near Donbass Arena stadium. The control area is located in the Donetsk Botanical Garden. The leaves from trees in Kramatorsk were collected in July and August 2013 on the sample area. The research area borders with Novokramatorsk Machine-building Plant JSC, which also features CO2, SO2, NO2 and other pollutants. The control area is located in the Jubilejnyi park. The research proves that antimicrobial activity of the volatile organic compounds from leaves of species under studyis sensitive to the impact of pollutants. Moreover, the antimicrobial activity of leaves B. pendula, S. alba, F. excelsior, R. pseudoacacia, P. nigra increases under the influence of pollutants from metallurgical plants and traffic exhausts. The antimicrobial ability of A. hippocastanum, T. cordata and P. pungens enhances in the areas with the cleaner air. These species are not gas-resistant species. Consequently, gas-resistant species feature the higher antimicrobial activity in the conditions of contamination. The other benefit of this study consists in monitoring of the seasonal

  13. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity.

    Directory of Open Access Journals (Sweden)

    Robert W Thompson

    2008-03-01

    Full Text Available Cationic amino acid transporters (CAT are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/- mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/- mice developed stronger IFN-gamma responses, nitric oxide (NO production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/- mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/- mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.

  14. Toll-Like Receptor-Dependent Immune Complex Activation of B Cells and Dendritic Cells.

    Science.gov (United States)

    Moody, Krishna L; Uccellini, Melissa B; Avalos, Ana M; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2016-01-01

    High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated the endosomal Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7. The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. As the endosomal TLR7 and TLR9 function optimally from intracellular acidic compartments, we developed a facile methodology to monitor the trafficking of defined DNA ICs by flow cytometry and confocal microscopy. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA and will help illuminate the role of IC trafficking in the response.

  15. Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit.

    Science.gov (United States)

    Yang, Xiao-Ming; Yu, Wei; Ou, Zhong-Ping; Ma, Hai-le; Liu, Wei-Ming; Ji, Xue-Lin

    2009-06-01

    The antioxidative activities of water extract (WE) and crude hot-water soluble polysaccharide (PS) from Ficus carica L. fruit were investigated using various assays in vitro, including scavenging abilities on DPPH, superoxide and hydroxyl radicals and reducing power. The immunity activities of PS were evaluated using the carbon clearance test and serum hemolysin analysis in mice. In addition, total phenolics and flavonoids contents were also determined. Both WE and PS have notable scavenging activities on DPPH with the EC(50) values of 0.72 and 0.61 mg/ml, respectively. The PS showed higher scavenging activity than WE on superoxide radical (EC(50), 0.95 mg/ml) and hydroxyl anion radical (scavenging rate 43.4% at concentration of 4 mg/ml). The PS (500 mg/kg) also has a significant increase in the clearance rate of carbon particles and serum hemolysin level of normal mice. The results indicate that both WE and PS might be applicable in healthy medicine and food industry.

  16. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism.

    Science.gov (United States)

    Ertani, Andrea; Pizzeghello, Diego; Francioso, Ornella; Tinti, Anna; Nardi, Serenella

    2016-01-01

    The influence of vegetal extracts derived from red grape, blueberry fruits and hawthorn leaves on Zea mays L. plant growth and the activity of phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid pathway, was investigated in laboratory experiments. The extracts were characterized using FT-IR and Raman spectroscopies in order to obtain a pattern of the main functional groups. In addition, phenols content was determined by HPLC, whereas the content of indoleacetic acid and isopentenyladenosine hormones was determined by ELISA test and the auxin and gibberellin-like activities by plant-bioassays. The treated maize revealed increased root and leaf biomass, chlorophyll and sugars content with respect to untreated plants. Hawthorn, red grape skin and blueberry at 1.0 mL/L induced high p-coumaric content values, whilst hawthorn also showed high amounts of gallic and p-hydroxybenzoic acids. PAL activity induced by hawthorn at 1.0 mL/L had the highest values (11.1-fold UNT) and was strongly and linearly related with the sum of leaf phenols. Our results suggest that these vegetal extracts contain more than one group of plant-promoting substances.

  17. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2016-02-01

    Full Text Available The influence of vegetal extracts derived from red grape, blueberry fruits and hawthorn leaves on Zea mays L. plant growth and the activity of phenylalanine ammonia-lyase (PAL, a key enzyme of the phenylpropanoid pathway, was investigated in laboratory experiments. The extracts were characterized using FT-IR and Raman spectroscopies in order to obtain a pattern of the main functional groups. In addition, phenols content was determined by HPLC, whereas the content of indoleacetic acid and isopentenyladenosine hormones was determined by ELISA test and the auxin and gibberellin-like activities by plant-bioassays. The treated maize revealed increased root and leaf biomass, chlorophyll and sugars content with respect to untreated plants. Hawthorn, red grape skin and blueberry at 1.0 mL/L induced high p-coumaric content values, whilst hawthorn also showed high amounts of gallic and p-hydroxybenzoic acids. PAL activity induced by hawthorn at 1.0 mL/L had the highest values (11.1-fold UNT and was strongly and linearly related with the sum of leaf phenols. Our results suggest that these vegetal extracts contain more than one group of plant-promoting substances.

  18. ANTIFUNGAL ACTIVITY OF SOME PLANT EXTRACT S AGAINST FUSARIUM SOLANI

    Directory of Open Access Journals (Sweden)

    S.K. BHARADWAJ

    2007-01-01

    Full Text Available The aqueous extracts of twenty plants were screened for their antifungal activity Fusarium solani, causal organism if Sudden Death Syndrome (SDS of Soybean (Glycine max wilt diseases, soft rot of potato. The maximum inhibitory effect was shown by leaf extracts of Camellia sinensis (67.17%, root extracts of Asparagus racemosus (54.43%. Some of the other plants showed moderate to intermediate inhibition against the mycelium growth of test fungi whcih varied in the following range Callistemon lanceolatus> Agegle marmelos> Azadirachta> Acacia catechu> Aloevera.

  19. Determination Of Antioxidant Activities In Freshliver (Salvia Officinalis) Plant

    OpenAIRE

    Rana Arıduru; Gülnur Arabacı

    2013-01-01

    In this study, we determined the antioxidant activities of four different solvent fractions obtained from Freshliver plant leaves (Salvia officinalis) by employing two different assays such as 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) and Folin-Ciocaltaeu method. The results showed that ethanol-extract of freshliver plant exhibited the highest total phenolic contents mg GAE/g extract; 43,55, methanol-extract of 23.62, ethyl acetate extract 18.29, and acetone extract 11.58. All the extracti...

  20. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)