WorldWideScience

Sample records for activates neuronal gene

  1. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S.

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagoni...

  2. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons.

    William J Freed

    Full Text Available BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS. Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons.

  3. Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons

    Lee, Philip R.; Cohen, Jonathan E.; Iacobas, Dumitru A.; Iacobas, Sanda; Fields, R. Douglas

    2017-01-01

    Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. PMID:28256583

  4. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-05

    In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 9999: 1-16, 2016. © 2016 Wiley Periodicals, Inc.

  5. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

  6. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  7. A model of calcium-mediated coupling between membrane activity and clock gene expression in neurons of the suprachiasmatic nucleus

    Casado, J M

    2015-01-01

    Rhythms in electrical activity in the membrane of cells in the suprachiasmatic nucleus (SCN) are crucial for the function of the circadian timing system, which is characterized by the expression of the so-called clock genes. Intracellular Ca$^{2+}$ ions seem to connect, at least in part, the electrical activity of SCN neurons with the expression of clock genes. In this paper, we introduce a simple mathematical model describing the linking of membrane activity to the transcription of one gene by means of a feedback mechanism based on the dynamics of intracellular calcium ions.

  8. Extracellular ATP activates NFAT-dependent gene expression in neuronal PC12 cells via P2X receptors

    Becker Walter

    2011-09-01

    Full Text Available Abstract Background Treatment of neuronal PC12 cells with ATP induces depolarisation and increases intracellular calcium levels via purinergic receptors. In many cell types, sustained elevation of intracellular calcium levels cause changes in gene expression via activation of the transcription factor NFAT (nuclear factor of activated T cells. We have therefore characterised the signalling pathway by which ATP regulates NFAT-dependent gene expression in PC12 cells. Results The activation of NFAT transcriptional activity by extracellular ATP was characterised with the help of reporter gene assays. Treatment of PC12 cells with ATP elicited a dose-dependent increase in luciferase activity (EC50 = 78 μM. UTP, 4-benzoylbenzoyl ATP and α,β-methylene ATP did not mimic the effect of ATP, which was abolished by treatment with the P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS. This pharmacological characterisation provides evidence for a critical role of ionotropic P2X receptors. Blockade of L-type voltage-dependent calcium channels by nifedipine reduced the response of NFAT to ATP, indicating that a depolarisation-mediated calcium influx was required for maximal NFAT activation. Inhibition of store-operated calcium entry by the pyrazole derivative BTP2 also diminished ATP-dependent NFAT activation. Furthermore, ATP-induced NFAT activation was associated with the activation of the mitogen-activated protein kinases ERK1/2. Finally, treatment with ATP increased the levels of the NFAT target transcripts, RCAN1-4 (regulator of calcineurin and BDNF (brain derived neurotrophic factor. Conclusion The present data show that ATP induces NFAT-dependent changes in gene expression in PC12 cells by acting on P2X receptors. Maximal NFAT activation depends on both depolarisation-induced calcium influx and store-operated calcium entry and requires the activity of the protein phosphatase calcineurin and the mitogen-activated protein

  9. Exploring neuronal activity with photons

    Bourdieu, Laurent; Léger, Jean-François

    2015-10-01

    The following sections are included: * Introduction * Information coding * Optical recordings of neuronal activity * Functional organization of the cortex at the level of a cortical column * Microarchitecture of a cortical column * Dynamics of neuronal populations * Outlook * Bibliography

  10. Epigenetic Activation of Neuronal Gene Expression by JMJD3 is Required for Postnatal and Adult Brain Neurogenesis

    Park, Dae Hwi; Hong, Sung Jun; Salinas, Ryan D.; Liu, Siyuan John; Sun, Shawn W.; Sgualdino, Jacopo; Testa, Giuseppe; Matzuk, Martin M.; Iwamori, Naoki; Lim, Daniel A.

    2014-01-01

    SUMMARY The epigenetic mechanisms that enable lifelong neurogenesis from neural stem cells (NSCs) in the adult mammalian brain are poorly understood. Here we show that JMJD3, a histone H3-lysine 27 (H3K27) demethylase, acts as a critical activator of neurogenesis from adult subventricular zone (SVZ) NSCs. JMJD3 is upregulated in neuroblasts, and Jmjd3-deletion targeted to SVZ NSCs in both developing and adult mice impairs neuronal differentiation. JMJD3 regulates neurogenic gene expression via interaction at not only promoter regions, but also neurogenic enhancer elements. JMJD3 localizes at neural enhancers genome-wide in embryonic brain, and in SVZ NSCs, JMJD3 regulates the I12b enhancer of Dlx2. In Jmjd3-deleted SVZ cells, I12b remains enriched with H3K27me3, and Dlx2-dependent neurogenesis fails. These findings support a model in which JMJD3 and the poised state of key transcriptional regulatory elements comprise an epigenetic mechanism that enables the activation of neurogenic gene expression in adult NSCs throughout life. PMID:25176653

  11. Activation of Neuronal Gene Expression by the JMJD3 Demethylase Is Required for Postnatal and Adult Brain Neurogenesis

    Dae Hwi Park

    2014-09-01

    Full Text Available The epigenetic mechanisms that enable lifelong neurogenesis from neural stem cells (NSCs in the adult mammalian brain are poorly understood. Here, we show that JMJD3, a histone H3 lysine 27 (H3K27 demethylase, acts as a critical activator of neurogenesis from adult subventricular zone (SVZ NSCs. JMJD3 is upregulated in neuroblasts, and Jmjd3 deletion targeted to SVZ NSCs in both developing and adult mice impairs neuronal differentiation. JMJD3 regulates neurogenic gene expression via interaction at not only promoter regions but also neurogenic enhancer elements. JMJD3 localizes at neural enhancers genome-wide in embryonic brain, and in SVZ NSCs, JMJD3 regulates the I12b enhancer of Dlx2. In Jmjd3-deleted SVZ cells, I12b remains enriched with H3K27me3 and Dlx2-dependent neurogenesis fails. These findings support a model in which JMJD3 and the poised state of key transcriptional regulatory elements comprise an epigenetic mechanism that enables the activation of neurogenic gene expression in adult NSCs throughout life.

  12. The recombination activation gene 1 (Rag1 is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection

    Friedrich Rainer W

    2005-07-01

    Full Text Available Abstract Background Rag1 (Recombination activation gene-1 mediates genomic rearrangement and is essential for adaptive immunity in vertebrates. This gene is also expressed in the olfactory epithelium, but its function there is unknown. Results Using a transgenic zebrafish line and immunofluorescence, we show that Rag1 is expressed and translated in a subset of olfactory sensory neurons (OSNs. Neurons expressing GFP under the Rag1 promoter project their axons to the lateral region of the olfactory bulb only, and axons with the highest levels of GFP terminate in a single glomerular structure. A subset of GFP-expressing neurons contain Gαo, a marker for microvillous neurons. None of the GFP-positive neurons express Gαolf, Gαq or the olfactory marker protein OMP. Depletion of RAG1, by morpholino-mediated knockdown or mutation, did not affect axon targeting. Calcium imaging indicates that amino acids evoke chemotopically organized glomerular activity patterns in a Rag1 mutant. Conclusion Rag1 expression is restricted to a subpopulation of zebrafish olfactory neurons projecting to the lateral olfactory bulb. RAG1 catalytic activity is not essential for axon targeting, nor is it likely to be required for regulation of odorant receptor expression or the response of OSNs to amino acids.

  13. Enrichment of Conserved Synaptic Activity-Responsive Element in Neuronal Genes Predicts a Coordinated Response of MEF2, CREB and SRF

    Rodríguez-Tornos, Fernanda M.; San Aniceto, Iñigo; Cubelos, Beatriz; Nieto, Marta

    2013-01-01

    A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease. PMID:23382855

  14. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  15. Tetracycline inducible gene manipulation in serotonergic neurons.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  16. Increasing levels of wild-type CREB up-regulates several activity-regulated inhibitor of death (AID genes and promotes neuronal survival

    Tan Yan-Wei

    2012-05-01

    Full Text Available Abstract Background CREB (cAMP-response element binding protein is the prototypical signal-regulated transcription factor. In neurons, it is the target of the synaptic activity-induced nuclear calcium-calcium/calmodulin dependent protein kinase (CaMK IV signaling pathway that controls the expression of genes important for acquired neuroprotection as well as other long-lasting adaptive processes in the nervous system. The function of CREB as a transcriptional activator is controlled by its phosphorylation on serine 133, which can be catalyzed by CaMKIV and leads to the recruitment of the co-activator, CREB binding protein (CBP. Activation of CBP function by nuclear calcium-CaMKIV signaling is a second regulatory step required for CREB/CBP-mediated transcription. Results Here we used recombinant adeno-associated virus (rAAV to increase the levels of wild type CREB or to overexpress a mutant version of CREB (mCREB containing a serine to alanine mutation at position amino acid 133 in mouse hippocampal neurons. Increasing the levels of CREB was sufficient to boost neuroprotective activity even under basal conditions (i.e., in the absence of stimulation of synaptic activity. In contrast, overexpression of mCREB increased cell death. The ratio of phospho(serine 133CREB to CREB immunoreactivity in unstimulated hippocampal neurons was similar for endogenous CREB and overexpressed wild type CREB and, as expected, dramatically reduced for overexpressed mCREB. A gene expression analysis revealed that increased expression of CREB but not that of mCREB in hippocampal neurons led to elevated expression levels of bdnf as well as that of several members of a previously characterized set of Activity-regulated Inhibitor of Death (AID genes, which include atf3, btg2, gadd45β, and gadd45γ. Conclusions Our findings indicate that the expression levels of wild type CREB are a critical determinant of the ability of hippocampal neurons to survive harmful conditions

  17. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Sandra J Kuhlman

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  18. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner.

    Page, S C; Hamersky, G R; Gallo, R A; Rannals, M D; Calcaterra, N E; Campbell, M N; Mayfield, B; Briley, A; Phan, B N; Jaffe, A E; Maher, B J

    2017-03-14

    Disruption of the laminar and columnar organization of the brain is implicated in several psychiatric disorders. Here, we show in utero gain-of-function of the psychiatric risk gene transcription factor 4 (TCF4) severely disrupts the columnar organization of medial prefrontal cortex (mPFC) in a transcription- and activity-dependent manner. This morphological phenotype was rescued by co-expression of TCF4 plus calmodulin in a calcium-dependent manner and by dampening neuronal excitability through co-expression of an inwardly rectifying potassium channel (Kir2.1). For we believe the first time, we show that N-methyl-d-aspartate (NMDA) receptor-dependent Ca(2+) transients are instructive to minicolumn organization because Crispr/Cas9-mediated mutation of NMDA receptors rescued TCF4-dependent morphological phenotypes. Furthermore, we demonstrate that the transcriptional regulation by the psychiatric risk gene TCF4 enhances NMDA receptor-dependent early network oscillations. Our novel findings indicate that TCF4-dependent transcription directs the proper formation of prefrontal cortical minicolumns by regulating the expression of genes involved in early spontaneous neuronal activity, and thus our results provides insights into potential pathophysiological mechanisms of TCF4-associated psychiatric disorders.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.37.

  19. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS......Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  20. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...... of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin...... and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor...

  1. Active properties of neuronal dendrites.

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  2. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  3. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  4. Stiff substrates enhance cultured neuronal network activity.

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  5. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons.

    Fang, Hung; Chartier, Joanne; Sodja, Caroline; Desbois, Angele; Ribecco-Lutkiewicz, Maria; Walker, P Roy; Sikorska, Marianna

    2003-07-18

    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.

  6. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2017-02-15

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  7. Sloppiness in spontaneously active neuronal networks.

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca; Hennig, Matthias H

    2015-06-01

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function.

  8. Managing Brain Extracellular K(+) during Neuronal Activity

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit...... isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K......(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic...

  9. Reverberatory activity in neuronal networks in vitro

    LAU PakMing; BI GuoQiang

    2009-01-01

    It has been proposed that during cognitive processes, "online" memory traces in the brain are carried by reverberatory activity in neuronal circuits. However, the nature of such reverberation has remained elusive from experimental studies, largely due to the enormous complexity of intact circuits. Recent works have attempted to address this issue using cultured neuronal network and have revealed new dynamic properties of network reverberation as well as the underlying cellular mechanisms. These results demonstrate the effectiveness of in vitro networks as a useful tool for mechanistic dissection of neuronal circuit dynamics.

  10. Current status of gene therapy for motor neuron disease

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  11. Background activity drives criticality of neuronal avalanches

    Juanico, D E; Monterola, C [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines)

    2007-08-03

    We establish a general framework that explains how leaky, dissipative systems, such as neuronal networks (NN), can exhibit robust self-organized criticality (SOC). Consistent with recent experiments, we propose that persistent membrane potential fluctuations allow NNs to transform from a sub-critical to a critical state. Our results also account for the tendency in small networks to tip towards an epileptiform state (the case of largely synchronized neurons) when background activity is strong.

  12. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway.

    Wulf-Johansson, H; Amrutkar, D V; Hay-Schmidt, A; Poulsen, A N; Klaerke, D A; Olesen, J; Jansen-Olesen, I

    2010-06-02

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS11021 on CGRP release from isolated TG and TNC was investigated. By RT-PCR, BK(Ca) channel mRNA was detected in the TG and the TNC. A significant difference in BK(Ca) channel mRNA transcript levels were found using qPCR between the TNC as compared to the TG. The BK(Ca) channel protein was more expressed in the TNC as compared to the TG shown by western blotting. Immunohistochemistry identified BK(Ca) channels in the nerve cell bodies of the TG and the TNC. The beta2- and beta4-subunit proteins were found in the TG and the TNC. They were both more expressed in the TNC as compared to TG shown by western blotting. In isolated TNC, the BK(Ca) channel blocker iberiotoxin induced a concentration-dependent release of CGRP that was attenuated by the BK(Ca) channel opener NS11021. No effect on basal CGRP release was found by NS11021 in isolated TG or TNC or by iberiotoxin in TG. In conclusion, we found both BK(Ca) channel mRNA and protein expression in the TG and the TNC. The BK(Ca) channel protein and the modulatory beta2- and beta4-subunt proteins were more expressed in the TNC than in the TG. Iberiotoxin induced an increase in CGRP release from the TNC that was attenuated by NS11021. Thus, BK(Ca) channels might have a role in trigeminovascular pain transmission.

  13. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    Malkki, H.A.I.; Mertens, P.E.C.; Lankelma, J.V.; Vinck, M.; van Schalkwijk, F.J.; van Mourik-Donga, L.B.; Battaglia, F.P.; Mahlke, C.; Kuhl, D.; Pennartz, C.M.A.

    2016-01-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1

  14. Experimental strategy to identify genes susceptible to oxidative stress in nigral dopaminergic neurons.

    Yoo, Myung S; Kawamata, Hibiki; Kim, Dae J; Chun, Hong S; Son, Jin H

    2004-06-01

    Neuropathological evidence from both human and experimental models of Parkinson's disease (PD) firmly supports a significant role for oxidative stress (OS) in the death of dopaminergic (DA) neurons in substantia nigra. Largely unknown are the genes underlying selective susceptibility of nigral DA neuron to OS and how they effect nigral DA cell death. The major barriers to high-throughput identification of candidate genes are the paucity of nigral DA neurons as well as the dilution effect of non-DA cells both in primary cultures and brain tissues. To overcome these barriers, we have developed a DA cell line model, SN4741, appropriate for cDNA microarray analysis. Candidate genes were selected from both the microarray analysis and the molecular implication of their pathological mechanisms (i.e., decreased mitochondrial complex I activity and proteasomal dysfunction) of PD. Subsequent secondary validation tests were devised to characterize genes including clone #45 that may underlie selective vulnerability of nigral DA neuron to OS.

  15. Neuronal avalanches in spontaneous activity in vivo.

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  16. Genes and brain malformations associated with abnormal neuron positioning.

    Moffat, Jeffrey J; Ka, Minhan; Jung, Eui-Man; Kim, Woo-Yang

    2015-11-05

    Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development.

  17. Active dendrites enhance neuronal dynamic range.

    Leonardo L Gollo

    2009-06-01

    Full Text Available Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB. Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.

  18. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  19. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace

    Keiichiro eMinatohara

    2016-01-01

    Full Text Available In the brain, neuronal gene expression is dynamically changed in response to neuronal activity. In particular, the expression of immediate-early genes (IEGs such as egr-1, c-fos, and Arc is rapidly and selectively upregulated in subsets of neurons in specific brain regions associated with learning and memory formation. IEG expression has therefore been widely used as a molecular marker for neuronal populations that undergo plastic changes underlying formation of long-term memory. In recent years, optogenetic and pharmacogenetic studies of neurons expressing c-fos or Arc have revealed that, during learning, IEG-positive neurons encode and store information that is required for memory recall, suggesting that they may be involved in formation of the memory trace. However, despite accumulating evidence for the role of IEGs in synaptic plasticity, the molecular and cellular mechanisms associated with this process remain unclear. In this review, we first summarize recent literature concerning the role of IEG-expressing neuronal ensembles in organizing the memory trace. We then focus on the physiological significance of IEGs, especially Arc, in synaptic plasticity, and describe our hypotheses about the importance of Arc expression in various types of input-specific circuit reorganization. Finally, we offer perspectives on Arc function that would unveil the role of IEG-expressing neurons in the formation of memory traces in the hippocampus and other brain areas.

  20. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  1. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  2. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.

  3. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    Malkki, Hemi A I; Mertens, Paul E C; Lankelma, Jan V; Vinck, Martin; van Schalkwijk, Frank J; van Mourik-Donga, Laura B; Battaglia, Francesco P; Mahlke, Claudia; Kuhl, Dietmar; Pennartz, Cyriel M A

    2016-05-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages.

  4. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration.

    Anastasiadou, Sofia; Knöll, Bernd

    2016-05-01

    Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes.

  5. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  6. Models of the stochastic activity of neurones

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  7. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  8. Neurofibromatosis: The role of guanosine triphosphatase activating proteins in sensory neuron function

    Cynthia M. Hingtgen

    2008-01-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibromin, the protein product of the Nfl gene, is a gnanosine triphosphatase activating protein (GAP) for p21Ras (Ras). Loss of Nfl results in an increase in activity of the Ras transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the Ras transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), from primary sensory neurons of mice with a mutation of the Nfl gene (NfI+1-). Measuring the levels of SP and CGRP by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropep-tides is 3-5 folds higher in spinal cord slices from Nfl+1-mice than that from wildtype mouse tissue. In addition, the potassium- and capsaicin-stimulated release of CGRP from the culture of sensory neurons isolated from Nfl+1- mice was more than double that from the culture of wildtype neurons. Using patch-clamp electrophysiological techniques, we also examined the excitability of capsaicin-sensitive sensory neurons. It was found that the number of action potentials generated by the neurons from Nfl+1- mice, responsing to a ramp of depolarizing current, was more than three times of that generated by wildtype neurons. Consistent with that observation, neurons from Nfl+1- mice had lower firing thresholds, lower rheobase currents and shorter firing latencies compared with wildtype neurons. These data clearly demonstrate that GAPs, such as neurofihromin, can alter the excitability of nociceptive sensory neurons. The augmented response of sensory neurons with altered Ras signaling may explain the abnormal pain sensations experienced by people with NFI and suggests an important

  9. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

  10. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  11. Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss

    Lee, Yunjong; Karuppagounder, Senthilkumar S.; Shin, Joo-Ho; Lee, Yun-Il; Ko, Han Seok; Swing, Debbie; Jiang, Haisong; Kang, Sung-Ung; Lee, Byoung Dae; Kang, Ho Chul; Kim, Donghoon; Tessarollo, Lino; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    The defining pathogenic feature of Parkinson’s disease is the age dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, cause Parkinson’s disease through accumulation of pathogenic substrates. Here we show that transgenic overexpression of the parkin substrate, aminoacyl-tRNA synthetase complex interacting multifunctional protein-2 (AIMP2) leads to a selective, age-dependent progressive loss of dopaminergic neurons via activation of poly(ADP-ribose) polymerase-1 (PARP1). AIMP2 accumulation in vitro and in vivo results in PARP1 overactivation and dopaminergic cell toxicity via direct association of these proteins in the nucleus providing a new path to PARP1 activation other than DNA damage. Inhibition of PARP1 through gene deletion or drug inhibition reverses behavioral deficits and protects in vivo against dopamine neuron death in AIMP2 transgenic mice. These data indicate that brain permeable PARP inhibitors could be effective in delaying or preventing disease progression in Parkinson’s disease. PMID:23974709

  12. Invisible Brain: Knowledge in Research Works and Neuron Activity

    Aviv Segev; Dorothy Curtis; Sukhwan Jung; Suhyun Chae

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the kn...

  13. Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons.

    Murase, Sachiko; Kim, Eunyoung; Lin, Lin; Hoffman, Dax A; McKay, Ronald D

    2012-10-31

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.

  14. Persistently active, pacemaker-like neurons in neocortex

    Morgane Le Bon-Jego

    2007-10-01

    Full Text Available The neocortex is spontaneously active, however, the origin of this self-generated, patterned activity remains unknown. To detect potential pacemaker cells, we use calcium imaging to directly identify neurons that discharge action potentials in the absence of synaptic transmissionin slices from juvenile mouse visual cortex. We characterize 60 of these neurons electrophysiologically and morphologically, finding that they belong to two classes of cells: one class composed of pyramidal neurons with a thin apical dendritic tree and a second class composed of ascending axon interneurons (Martinotti cells located in layer 5. In both types of neurons, persistent sodium currents are necessary for the generation of the spontaneous activity. Our data demonstrate that subtypes of neocortical neurons have intrinsic mechanisms to generate persistent activity. Like in central pattern generators (CPGs, these neurons may act as pacemakers to initiate or pattern spontaneous activity in the neocortex.

  15. Nicotinic activation of laterodorsal tegmental neurons

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...... depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased......, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non...

  16. Identification of optogenetically activated striatal medium spiny neurons by Npas4 expression.

    Asim K Bepari

    Full Text Available Optogenetics is a powerful neuromodulatory tool with many unique advantages to explore functions of neuronal circuits in physiology and diseases. Yet, interpretation of cellular and behavioral responses following in vivo optogenetic manipulation of brain activities in experimental animals often necessitates identification of photoactivated neurons with high spatial resolution. Although tracing expression of immediate early genes (IEGs provides a convenient approach, neuronal activation is not always followed by specific induction of widely used neuronal activity markers like c-fos, Egr1 and Arc. In this study we performed unilateral optogenetic stimulation of the striatum in freely moving transgenic mice that expressed a channelrhodopsin-2 (ChR2 variant ChR2(C128S in striatal medium spiny neurons (MSNs. We found that in vivo blue light stimulation significantly altered electrophysiological activity of striatal neurons and animal behaviors. To identify photoactivated neurons we then analyzed IEG expression patterns using in situ hybridization. Upon light illumination an induction of c-fos was not apparent whereas another neuronal IEG Npas4 was robustly induced in MSNs ipsilaterally. Our results demonstrate that tracing Npas4 mRNA expression following in vivo optogenetic modulation can be an effective tool for reliable and sensitive identification of activated MSNs in the mouse striatum.

  17. A new era for functional labeling of neurons: activity-dependent promoters have come of age

    Takashi eKawashima

    2014-04-01

    Full Text Available Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field.

  18. Suppression of Sin3A activity promotes differentiation of pluripotent cells into functional neurons

    Halder, Debasish; Lee, Chang-Hee; Hyun, Ji Young; Chang, Gyeong-Eon; Cheong, Eunji; Shin, Injae

    2017-01-01

    Sin3 is a transcriptional corepressor for REST silencing machinery that represses multiple neuronal genes in non-neuronal cells. However, functions of Sin3 (Sin3A and Sin3B) in suppression of neuronal phenotypes are not well characterized. Herein we show that Sin3A knockdown impedes the repressive activity of REST and enhances differentiation of pluripotent P19 cells into electrophysiologically active neurons without inducing astrogenesis. It is also found that silencing Sin3B induces neurogenesis of P19 cells with a lower efficiency than Sin3A knockdown. The results suggest that Sin3A has a more profound effect on REST repressive machinery for silencing neuronal genes in P19 cells than Sin3B. Furthermore, we show that a peptide inhibitor of Sin3A-REST interactions promotes differentiation of P19 cells into functional neurons. Observations made in studies using genetic deletion and a synthetic inhibitor suggests that Sin3A plays an important role in the repression of neuronal genes by the REST regulatory mechanism. PMID:28303954

  19. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons.

    Rocha, Emily M; Smith, Gaynor A; Park, Eric; Cao, Hongmei; Brown, Eilish; Hayes, Melissa A; Beagan, Jonathan; McLean, Jesse R; Izen, Sarah C; Perez-Torres, Eduardo; Hallett, Penelope J; Isacson, Ole

    2015-10-01

    Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein.

  20. Mkp1 is a c-Jun target gene that antagonizes JNK-dependent apoptosis in sympathetic neurons.

    Kristiansen, Mark; Hughes, Rosie; Patel, Pritika; Jacques, Thomas S; Clark, Andrew R; Ham, Jonathan

    2010-08-11

    Developing sympathetic neurons depend on NGF for survival. When sympathetic neurons are deprived of NGF in vitro, a well documented series of events, including c-Jun N-terminal kinase (JNK) pathway activation, release of cytochrome c from the mitochondria, and caspase activation, culminates in the death of the neuron by apoptosis within 24-48 h. This process requires de novo gene expression, suggesting that increased expression of specific genes activates the cell death program. Using rat gene microarrays, we found that NGF withdrawal induces the expression of many genes, including mkp1, which encodes a MAPK phosphatase that can dephosphorylate JNKs. The increase in mkp1 mRNA level requires the MLK-JNK-c-Jun pathway, and we show that Mkp1 is an important regulator of JNK-dependent apoptosis in sympathetic neurons. In microinjection experiments, Mkp1 overexpression can inhibit JNK-mediated phosphorylation of c-Jun and protect sympathetic neurons from apoptosis, while Mkp1 knockdown accelerates NGF withdrawal-induced death. Accordingly, the number of superior cervical ganglion (SCG) neurons is reduced in mkp1-/- mice at P1 during the period of developmental sympathetic neuron death. We also show that c-Jun and ATF2 bind to two conserved ATF binding sites in the mkp1 promoter in vitro and in chromatin. Both of these ATF sites contribute to basal promoter activity and are required for mkp1 promoter induction after NGF withdrawal. These results demonstrate that Mkp1 is part of a negative feedback loop induced by the MLK-JNK-c-Jun signaling pathway that modulates JNK activity and the rate of neuronal death in rat sympathetic neurons following NGF withdrawal.

  1. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    Reiner, O. [Weizmann Institute of Science, Rehovot (Israel)]|[Baylor College of Medicine, Houston, TX (United States); Gal-Gerber, O.; Sapir, T. [Weizmann Institute of Science, Rehovot (Israel)] [and others

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  2. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism.

    Maria H Chahrour

    Full Text Available Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18 encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.

  3. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  4. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    Nicole R. Newell

    2016-08-01

    Full Text Available Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1 underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.

  5. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri;

    2014-01-01

    Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP...

  6. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    Yang, Jiangyan

    2014-07-28

    L-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. L-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, L-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of L-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of L-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived L-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of L-lactate as a signaling molecule for neuronal plasticity.

  7. Nicotinamide mononucleotide adenylyltransferase 1 gene NMNAT1 regulates neuronal dendrite and axon morphogenesis in vitro

    ZHAO Hong; ZHANG Jing-yu; YANGZi-chao; LIU Ming; GANG Bao-zhi; ZHAO Qing-jie

    2011-01-01

    Background Wallerian degeneration is a self-destructive process of axonal degeneration that occurs after an axonal injury or during neurodegenerative disorders such as Parkinson's or Alzheimer's disease.Recent studies have found that the activity of the nicotinamide adenine dinucleotide (NAD) synthase enzyme,nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) can affect the rate of Wallerian degeneration in mice and drosophila.NMNAT1 protects neurons and axons from degeneration.However,the role of NMNAT1 in neurons of central nervous system is still not well understood.Methods We set up the culture of primary mouse neurons in vitro and manipulated the expression level of NMNAT1 by RNA interference and gene overexpression methods.Using electroporation transfection we can up-regulate or down-regulate NMNAT1 in cultured mouse dendrites and axons and study the neuronal morphogenesis by immunocytochemistry.In all functional assays,FK-866 (CAS 658084-64-1),a highly specific non-competitive inhibitor of nicotinamide phosphoribosyltransferase was used as a pharmacological and positive control.Results Our results showed that knocking down NMNAT1 by RNA interference led to a marked decrease in dendrite outgrowth and branching and a significant decrease in axon growth and branching in developing cortical neurons in vitro.Conclusions These findings reveal a novel role for NMNAT1 in the morphogenesis of developing cortical neurons,which indicate that the loss of function of NMNAT1 may contribute to different neurodegenerative disorders in central nervous system.

  8. Optimizing NTS-polyplex as a tool for gene transfer to cultured dopamine neurons.

    Hernandez-Baltazar, Daniel; Martinez-Fong, Daniel; Trudeau, Louis-Eric

    2012-01-01

    The study of signal transduction in dopamine (DA)-containing neurons as well as the development of new therapeutic approaches for Parkinson's disease requires the selective expression of transgenes in such neurons. Here we describe optimization of the use of the NTS-polyplex, a gene carrier system taking advantage of neurotensin receptor internalization, to transfect mouse DA neurons in primary culture. The plasmids DsRed2 (4.7 kbp) and VGLUT2-Venus (11 kbp) were used to compare the ability of this carrier system to transfect plasmids of different sizes. We examined the impact of age of the neurons (1, 3, 5 and 8 days after seeding), of culture media used during the transfection (Neurobasal with B27 vs. conditioned medium) and of three molar ratios of plasmid DNA to carrier. While the NTS-polyplex successfully transfected both plasmids in a control N1E-115 cell line, only the pDsRed2 plasmid could be transfected in primary cultured DA neurons. We achieved 20% transfection efficiency of pDsRed2 in DA neurons, with 80% cell viability. The transfection was demonstrated pharmacologically to be dependent on activation of neurotensin receptors and to be selective for DA neurons. The presence of conditioned medium for transfection was found to be required to insure cell viability. Highest transfection efficiency was achieved in the most mature neurons. In contrast, transfection with the VGLUT2-Venus plasmid produced cell damage, most likely due to the high molar ratios required, as evidenced by a 15% cell viability of DA neurons at the three molar ratios tested (1:36, 1:39 and 1:42). We conclude that, when used at molar ratios lower than 1:33, the NTS-polyplex can selectively transfect mature cultured DA neurons with only low levels of toxicity. Our results provide evidence that the NTS-polyplex has good potential for targeted gene delivery in cultured DA neurons, an in vitro system of great use for the screening of new therapeutic approaches for Parkinson's disease.

  9. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

    Nagoshi, Emi; Sugino, Ken; Kula, Ela; Okazaki, Etsuko; Tachibana, Taro; Nelson, Sacha; Rosbash, Michael

    2013-01-01

    Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. PMID:19966839

  10. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis

    Schlamp Cassandra L

    2010-05-01

    Full Text Available Abstract Background Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs following an acute injury to the optic nerve. Results Histone deacetylase 3 (HDAC3 translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. Conclusions These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.

  11. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.

  12. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.

    Courtin, Julien; Chaudun, Fabrice; Rozeske, Robert R; Karalis, Nikolaos; Gonzalez-Campo, Cecilia; Wurtz, Hélène; Abdi, Azzedine; Baufreton, Jerome; Bienvenu, Thomas C M; Herry, Cyril

    2014-01-02

    Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.

  13. Glycine activates myenteric neurones in adult guinea-pigs.

    Neunlist, M; Michel, K; Reiche, D; Dobreva, G; Huber, K; Schemann, M

    2001-11-01

    1. We studied the effects of glycine on myenteric neurones and muscle activity in the colon and stomach of adult guinea-pigs. 2. Intracellular recordings revealed that myenteric neurones responded to local microejection of glycine (1 mM) with a fast, transient membrane potential depolarisation (57 % of 191 colonic neurones and 26 % of 50 gastric neurones). Most glycine-sensitive neurones had ascending projections and were choline acetyltransferase immunoreactive. Glycine preferentially activated neurones with a late afterhyperpolarisation (AH-neurones) and tonic spiking neurones with fast synaptic inputs (tonic S-neurones) but less frequently phasic S-neurones and inexcitable (non-spiking) neurones. The depolarisation had a reversal potential at -19 +/- 13 mV, which was increased by 18 +/- 10 % upon lowering extracellular chloride concentration and decreased by 38 +/- 14 % in furosemide (frusemide, 2 mM). 3. Strychnine (300 nM) reversibly abolished the glycine-induced depolarisation and the Cl(-) channel blocker picrotoxin (100 microM) reduced the amplitude of the depolarisation by 55 +/- 5 %. The glycine effect was a postsynaptic response because it was not changed after nerve blockade with tetrodotoxin (1 microM) or blockade of synaptic transmission in reduced extracellular [Ca(2+)]. The effect was specific since the response was not changed by the nicotinic antagonists hexamethonium (200 microM) and mecamylamine (100 microM), the GABA(A) receptor antagonist bicuculline (10 microM), the NMDA antagonist MK-801 (20 microM) or the 5-HT(3) antagonist ICS 205930 (1 microM). 4. Glycine (1 mM) induced a tetrodotoxin- and strychnine-sensitive contractile response in the colon; the contractile response in the stomach was tetrodotoxin insensitive. 5. Glycine activated myenteric neurones in the adult enteric nervous system through strychnine-sensitive mechanisms. The glycine-evoked depolarisation was caused by Cl(-) efflux and the maintenance of relatively high

  14. Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons.

    Hagmann, M; Georgiev, O; Schaffner, W; Douville, P

    1995-01-01

    Interference with VP16-mediated activation of herpes virus immediate-early (or alpha) genes is thought to be the major cause of establishing viral latency in sensory neurons. This could be brought about by lack of a key activating transcription factor(s) or active repression. In this study we find that sensory neurons express all important components for VP16-mediated alpha gene induction, such as the POU transcription factor Oct-1, host cell factor (HCF) and GABP alpha/beta. However, Oct-1 and GABP alpha/beta are only present at low levels and the VP16-induced complex (VIC) appears different. We do not find protein expression of the transcription factor Oct-2, implicated by others as an alpha gene repressor. The POU factor N-Oct3 (Brn 2 or POU3F2) is also present in sensory neurons and binds viral TAATGARAT motifs with higher affinity than Oct-1, indicating that it may be a candidate repressor for competitive binding to TAATGARAT motifs. When transfected into HeLa cells, where Oct-1 and GABP alpha/beta are highly abundant, N-Oct3 represses model promoters with multimerized TAATGARAT motifs, but fails to repress complete alpha gene promoters. Taken together our findings suggest that modulation of alpha gene promoters could contribute to viral latency when low concentrations of the activating transcription factors Oct-1 and GABP alpha/beta prevail. Our data, however, refute the notion that competing Oct factors are able to block alpha gene transcription to achieve viral latency. Images PMID:8559654

  15. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model.

    Barth, Lydia; Sütterlin, Rosmarie; Nenniger, Markus; Vogt, Kaspar E

    2014-01-01

    Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2) gene (MeCP2-/y) and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind RTT pathophysiology.

  16. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals.

    Chattopadhyay, Munmun; Goss, James; Lacomis, David; Goins, William C; Glorioso, Joseph C; Mata, Marina; Fink, David J

    2003-02-01

    The distinct distribution of trkA receptors on small neurons and trkC receptors on large neurons in the dorsal root ganglion correlates with the dependence of these two classes of neurons on nerve growth factor and neurotrophin-3, respectively, for survival during development. In adult animals, the distribution of high affinity neurotrophin (trk) is complex and overlapping; neurotrophins are not required for cell survival, but may influence cell phenotype and the response to injury. In order to test the functional activity of trkA receptors in the sensory ganglia of adult animals in vivo, we examined the ability of a nerve growth factor-expressing recombinant replication-defective herpes simplex virus-based vector to prevent the selective degeneration of large sensory fibres caused by intoxication with pyridoxine. Transduction of dorsal root ganglion neurons in vivo by subcutaneous inoculation of the nerve growth factor-expressing vector prevented the development of pyridoxine-induced neuropathy measured by electrophysiological, morphological and behavioural measures. These results demonstrate a functional activity of trkA receptors expressed on large neurons in the dorsal root ganglion in mature animals; this observation has important implications for the choice of neurotrophic factors for treatment of peripheral nerve disease.

  17. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  18. Modanifil activates the histaminergic system through the orexinergic neurons.

    Ishizuka, Tomoko; Murotani, Tomotaka; Yamatodani, Atsushi

    2010-10-15

    Modafinil is a drug used to treat hypersomnolence of narcolepsy. We previously reported that modafinil increases hypothalamic histamine release in rats but did not increase locomotor activity in histamine-depleted mice, suggesting that modafinil-induced locomotor activity involves the histaminergic system. Modafinil is also thought to express its effect through the orexinergic neurons, and orexin increases hypothalamic histamine release. These findings led us to investigate whether modafinil activates the histaminergic system via the orexinergic system. In the present study, we performed in vivo microdialysis and c-Fos immunohistochemistry to investigate whether the orexinergic system mediates the activation of the histaminergic system by modafinil using orexin neuron-deficient mice. Two hours after the injection, modafinil (150 mg/kg) caused a significant increase of histamine release compared to the basal release in wild type mice. However, modafinil had no effect on the histamine release in orexin neuron-deficient mice. By immunohistochemical study, we found that there was no neuronal activation in the tuberomammillary nucleus where the cell bodies of the histaminergic neurons exclusively exist in orexin neuron-deficient mice. These findings indicate that modafinil-induced increment of histamine release requires intact orexinergic neurons.

  19. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  20. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  1. Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.

    Mandy Ka Man Kam

    Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.

  2. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  3. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    Anthony J E Berndt

    2015-12-01

    Full Text Available Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE that binds BMP-activated pMad, and a homeodomain-response element (HD-RE that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp, as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP

  4. GM1 ganglioside is involved in epigenetic activation loci of neuronal cells

    Tsai, Yi-Tzang; Itokazu, Yutaka; Yu, Robert K.

    2015-01-01

    Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells. PMID:26498762

  5. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

    Görlich, Andreas; Antolin-Fontes, Beatriz; Ables, Jessica L.; Frahm, Silke; Ślimak, Marta A.; Dougherty, Joseph D.; Ibañez-Tallon, Inés

    2013-01-01

    The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse. PMID:24082085

  6. Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury.

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Lee, Bo Eun; Lee, Song Hee; Kho, A Ra; Jung, Hee Jae; Sohn, Min; Song, Hong Ki; Suh, Sang Won

    2016-07-01

    Excitatory amino acid carrier type 1 (EAAC1), a high-affinity glutamate transporter, can expend energy to move glutamate into neurons. However, under normal physiological conditions, EAAC1 does not have a great effect on glutamate clearance but rather participates in the neuronal uptake of cysteine. This process is critical to maintaining neuronal antioxidant function by providing cysteine for glutathione synthesis. Previous study showed that mice lacking EAAC1 show increased neuronal oxidative stress following transient cerebral ischemia. In the present study, we sought to characterize the role of EAAC1 in neuronal resistance after traumatic brain injury (TBI). Young adult C57BL/6 wild-type or EAAC1 (-/-) mice were subjected to a controlled cortical impact model for TBI. Neuronal death after TBI showed more than double the number of degenerating neurons in the hippocampus in EAAC1 (-/-) mice compared with wild-type mice. Superoxide production, zinc translocation and microglia activation similarly showed a marked increase in the EAAC1 (-/-) mice. Pretreatment with N-acetyl cysteine (NAC) reduced TBI-induced neuronal death, superoxide production and zinc translocation. These findings indicate that cysteine uptake by EAAC1 is important for neuronal antioxidant function and survival following TBI. This study also suggests that administration of NAC has therapeutic potential in preventing TBI-induced neuronal death.

  7. Targeting single neuronal networks for gene expression and cell labeling in vivo.

    Marshel, James H; Mori, Takuma; Nielsen, Kristina J; Callaway, Edward M

    2010-08-26

    To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.

  8. Mechanical stress activates neurites and somata of myenteric neurons

    Eva Maria Kugler

    2015-09-01

    Full Text Available The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN, slowly (SAMEN or ultra-slowly (USAMEN. The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut.

  9. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  10. Ginsenoside Rb1 attenuates activated microglia-induced neuronal damage

    Lining Ke; Wei Guo; Jianwen Xu; Guodong Zhang; Wei Wang; Wenhua Huang

    2014-01-01

    The microglia-mediated inlfammatory reaction promotes neuronal damage under cerebral isch-emia/hypoxia conditions. We therefore speculated that inhibition of hypoxia-induced microglial activation may alleviate neuronal damage. To test this hypothesis, we co-cultured ginsenoside Rb1, an active component of ginseng, and cortical neurons. Ginsenoside Rb1 protected neuronal morphology and structure in a single hypoxic culture system and in a hypoxic co-culture system with microglia, and reduced neuronal apoptosis and caspase-3 production. The protective effect was observable prior to placing in co-culture. Additionally, ginsenoside Rb1 inhibited levels of tumor necrosis factor-αin a co-culture system containing activated N9 microglial cells. Ginse-noside Rb1 also signiifcantly decreased nitric oxide and superoxide production induced by N9 microglia. Our ifndings indicate that ginsenoside Rb1 attenuates damage to cerebral cortex neu-rons by downregulation of nitric oxide, superoxide, and tumor necrosis factor-αexpression in hypoxia-activated microglia.

  11. Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death

    Kristiansen Mark

    2011-11-01

    Full Text Available Abstract Background Developing sympathetic neurons depend on nerve growth factor (NGF for survival and die by apoptosis after NGF withdrawal. This process requires de novo gene expression but only a small number of genes induced by NGF deprivation have been identified so far, either by a candidate gene approach or in mRNA differential display experiments. This is partly because it is difficult to obtain large numbers of sympathetic neurons for in vitro studies. Here, we describe for the first time, how advances in gene microarray technology have allowed us to investigate the expression of all known genes in sympathetic neurons cultured in the presence and absence of NGF. Results We have used Affymetrix Exon arrays to study the pattern of expression of all known genes in NGF-deprived sympathetic neurons. We identified 415 up- and 813 down-regulated genes, including most of the genes previously known to be regulated in this system. NGF withdrawal activates the mixed lineage kinase (MLK-c-Jun N-terminal kinase (JNK-c-Jun pathway which is required for NGF deprivation-induced death. By including a mixed lineage kinase (MLK inhibitor, CEP-11004, in our experimental design we identified which of the genes induced after NGF withdrawal are potential targets of the MLK-JNK-c-Jun pathway. A detailed Gene Ontology and functional enrichment analysis also identified genetic pathways that are highly enriched and overrepresented amongst the genes expressed after NGF withdrawal. Five genes not previously studied in sympathetic neurons - trib3, ddit3, txnip, ndrg1 and mxi1 - were validated by real time-PCR. The proteins encoded by these genes also increased in level after NGF withdrawal and this increase was prevented by CEP-11004, suggesting that these genes are potential targets of the MLK-JNK-c-Jun pathway. Conclusions The sympathetic neuron model is one of the best studied models of neuronal apoptosis. Overall, our microarray data gives a comprehensive

  12. Human Temporal Cortical Single Neuron Activity during Language: A Review

    George A. Ojemann

    2013-04-01

    Full Text Available Findings from recordings of human temporal cortical single neuron activity during several measures of language, including object naming and word reading are reviewed and related to changes in activity in the same neurons during recent verbal memory and verbal associative learning measures, in studies conducted during awake neurosurgery for the treatment of epilepsy. The proportion of neurons changing activity with language tasks was similar in either hemisphere. Dominant hemisphere activity was characterized by relative inhibition, some of which occurred during overt speech, possibly to block perception of one’s own voice. However, the majority seems to represent a dynamic network becoming active with verbal memory encoding and especially verbal learning, but inhibited during performance of overlearned language tasks. Individual neurons are involved in different networks for different aspects of language, including naming or reading and naming in different languages. The majority of the changes in activity were tonic sustained shifts in firing. Patterned phasic activity for specific language items was very infrequently recorded. Human single neuron recordings provide a unique perspective on the biologic substrate for language, for these findings are in contrast to many of the findings from other techniques for investigating this.

  13. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-01

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.

  14. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  15. Study of rat neuronal genes with ordered differential display method

    KANG; Jiansheng; (

    2001-01-01

    [1]Wang, Y., Du, Z. W., eds., Neurobiology and Molecular Biology, Beijing: People's Medical Publishing House, 1997, 184-207, 244-248.[2]Liang, P., Pardee, A., Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science, 1992, 257: 967-971.[3]Michiels, L., Van Leuven, F., van den Oord, J. J. et al., Representational difference analysis using minute quantities of DNA, Nucleic Acids Res., 1998, 26(15): 3608-3610.[4]Diatchenko, L., Lau, Y. F., Campbell, A. P. et al., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc. Natl. Acad. Sci. USA, 1996, 93(12): 6025-6030.[5]Matz, M., Lukyanov, S., Different strategies of differential display: areas of application, Nucleic Acids Res., 1998, 26: 5537-5543.[6]Matz, M., Usman, N., Shagin, D. et al., Ordered differential display: a simple method for systematic comparison of gene expression profiles, Nucleic Acids Res, 1997, 25: 2541-2542.[7]Chen, X. X., Guan, L. C., Bao, S. M. et al., Comparison and study of memory and open field behavior of four different mouse strain, Psychological Science, 1994, 17(1): 39-41.[8]Chapman, C. R., Casey, K. L., Dubner, R. et al., Pain measurement: an overview, Pain, 1985, 22: 1-31.[9]Mitchell, .D., Hellon, R. F., Neuronal and behavioral responses in rats during noxious stimulation of the tail, Proc. R. Soc. Lond., 1977, 197: 169-194.[10]Shen, Y., Yan, Y. S., eds., Medical Statistics, Shanghai: Shanghai Medical University Press, 1999, 39-44.[11]Kang, J. S., Li, R. X., Du, Y. C., Ordered differential display, Chemistry of Life, 1999, 19(6): 282-283.[12]Mou, L., Miller, H., Li, J. et al., Improvements to the differential display method for gene analysis, Biochem. Biophys. Res. Commun., 1994, 199: 564-569.[13]Lee, H. N., Weinstock, K. G., Kirkness, E. F. et al., Comparative expressed-sequence-tag analysis of differential gene

  16. Caenorhabditis elegans glia modulate neuronal activity and behavior

    Randy F Stout; Alexei eVerkhratsky; Vladimir eParpura

    2014-01-01

    Glial cells of Caenorhabditis elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more spe...

  17. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina;

    2008-01-01

    Several lines of evidence support the theory of schizophrenia (SZ) being a neurodevelopmental disorder. The structural, cytoarchitectural and functional brain abnormalities reported in patients with SZ, might be due to aberrant neuronal migration, since the final position of neurons affects...... neuronal function, morphology, and formation of synaptic connections. We have investigated the putative association between SZ and gene variants engaged in the neuronal migration process, by performing an association study on 839 cases and 1,473 controls of Scandinavian origin. Using a gene-wide approach......, tagSNPs in 18 candidate genes have been genotyped, with gene products involved in the neuron-to-glial cell adhesion, interactions with the DISC1 protein and/or rearrangements of the cytoskeleton. Of the 289 markers tested, 19 markers located in genes MDGA1, RELN, ITGA3, DLX1, SPARCL1, and ASTN1...

  18. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. Conclusion A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.

  19. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  20. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation.

    Di Carlo, Valerio; Grossi, Elena; Laneve, Pietro; Morlando, Mariangela; Dini Modigliani, Stefano; Ballarino, Monica; Bozzoni, Irene; Caffarelli, Elisa

    2013-12-01

    TDP-43 (TAR DNA-binding protein 43) is an RNA-binding protein implicated in RNA metabolism at several levels. Even if ubiquitously expressed, it is considered as a neuronal activity-responsive factor and a major signature for neurological pathologies, making the comprehension of its activity in the nervous system a very challenging issue. TDP-43 has also been described as an accessory component of the Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) microprocessor complex, which is crucially involved in basal and tissue-specific RNA processing events. In the present study, we exploited in vitro neuronal differentiation systems to investigate the TDP-43 demand for the microprocessor function, focusing on both its canonical microRNA biosynthetic activity and its alternative role as a post-transcriptional regulator of gene expression. Our findings reveal a novel role for TDP-43 as an essential factor that controls the stability of Drosha protein during neuronal differentiation, thus globally affecting the production of microRNAs. We also demonstrate that TDP-43 is required for the Drosha-mediated regulation of Neurogenin 2, a master gene orchestrating neurogenesis, whereas post-transcriptional control of Dgcr8, another Drosha target, resulted to be TDP-43-independent. These results implicate a previously uncovered contribution of TDP-43 in regulating the abundance and the substrate specificity of the microprocessor complex and provide new insights into TDP-43 as a key player in neuronal differentiation.

  1. Mechanisms for multiple activity modes of VTA dopamine neurons

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  2. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo.

    Nudelman, Aaron S; DiRocco, Derek P; Lambert, Talley J; Garelick, Michael G; Le, Josh; Nathanson, Neil M; Storm, Daniel R

    2010-04-01

    Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h of stimulation. Expression levels of primary and mature-miR-132 increased significantly between postnatal Days 10 and 24. We conclude that miR-132 is an activity-dependent microRNA in vivo, and may contribute to the long-lasting proteomic changes required for experience-dependent neuronal plasticity.

  3. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  4. Network activity of mirror neurons depends on experience.

    Ushakov, Vadim L; Kartashov, Sergey I; Zavyalova, Victoria V; Bezverhiy, Denis D; Posichanyuk, Vladimir I; Terentev, Vasliliy N; Anokhin, Konstantin V

    2013-03-01

    In this work, the investigation of network activity of mirror neurons systems in animal brains depending on experience (existence or absence performance of the shown actions) was carried out. It carried out the research of mirror neurons network in the C57/BL6 line mice in the supervision task of swimming mice-demonstrators in Morris water maze. It showed the presence of mirror neurons systems in the motor cortex M1, M2, cingular cortex, hippocampus in mice groups, having experience of the swimming and without it. The conclusion is drawn about the possibility of the new functional network systems formation by means of mirror neurons systems and the acquisition of new knowledge through supervision by the animals in non-specific tasks.

  5. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  6. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  7. Neuronal c-Abl activation leads to induction of cell cycle and interferon signaling pathways

    Schlatterer Sarah D

    2012-08-01

    Full Text Available Abstract Background Expression of active c-Abl in adult mouse forebrain neurons in the AblPP/tTA mice resulted in severe neurodegeneration, particularly in the CA1 region of the hippocampus. Neuronal loss was preceded and accompanied by substantial microgliosis and astrocytosis. In contrast, expression of constitutively active Arg (Abl-related gene in mouse forebrain neurons (ArgPP/tTA mice caused no detectable neuronal loss or gliosis, although protein expression and kinase activity were at similar levels to those in the AblPP/tTA mice. Methods To begin to elucidate the mechanism of c-Abl-induced neuronal loss and gliosis, gene expression analysis of AblPP/tTA mouse forebrain prior to development of overt pathology was performed. Selected results from gene expression studies were validated with quantitative reverse transcription PCR , immunoblotting and bromodeoxyuridine (BrdU labeling, and by immunocytochemistry. Results Two of the top pathways upregulated in AblPP/tTA mice with c-Abl expression for 2 weeks were cell cycle and interferon signaling. However, only the expression of interferon signaling pathway genes remained elevated at 4 weeks of c-Abl induction. BrdU incorporation studies confirm that, while the cell cycle pathway is upregulated in AblPP/tTA mice at 2 weeks of c-Abl induction, the anatomical localization of the pathway is not consistent with previous pathology seen in the AblPP/tTA mice. Increased expression and activation of STAT1, a known component of interferon signaling and interferon-induced neuronal excitotoxicity, is an early consequence of c-Abl activation in AblPP/tTA mice and occurs in the CA1 region of the hippocampus, the same region that goes on to develop severe neurodegenerative pathology and neuroinflammation. Interestingly, no upregulation of gene expression of interferons themselves was detected. Conclusions Our data suggest that the interferon signaling pathway may play a role in the pathologic processes

  8. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  9. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex.

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld; Noraberg, Jens; Jensen, Niels A

    2014-05-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.

  10. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-06-17

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.

  11. Loss of STAT3 signaling during elevated activity causes vulnerability in hippocampal neurons

    2012-01-01

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2 and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylatio...

  12. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice

    Li, Xueyi, E-mail: xli12@partners.org [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B. [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); DiFiglia, Marian, E-mail: difiglia@helix.mgh.harvard.edu [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Primary Huntington's disease neurons are impaired in taking up glucose. Black-Right-Pointing-Pointer Rab11 modulates glucose uptake in neurons. Black-Right-Pointing-Pointer Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. Black-Right-Pointing-Pointer We provide a novel mechanism for glucose hypometabolism in Huntington's disease. -- Abstract: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD{sup 140Q/140Q}). Primary HD{sup 140Q/140Q} cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD{sup 140Q/140Q} neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD{sup 140Q/140Q} neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  13. Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2014-02-01

    A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.

  14. Phasic dopamine neuron activity elicits unique mesofrontal plasticity in adolescence.

    Mastwal, Surjeet; Ye, Yizhou; Ren, Ming; Jimenez, Dennisse V; Martinowich, Keri; Gerfen, Charles R; Wang, Kuan Hong

    2014-07-16

    The mesofrontal dopaminergic circuit, which connects the midbrain motivation center to the cortical executive center, is engaged in control of motivated behaviors. In addition, deficiencies in this circuit are associated with adolescent-onset psychiatric disorders in humans. Developmental studies suggest that the mesofrontal circuit exhibits a protracted maturation through adolescence. However, whether the structure and function of this circuit are modifiable by activity in dopaminergic neurons during adolescence remains unknown. Using optogenetic stimulation and in vivo two-photon imaging in adolescent mice, we found that phasic, but not tonic, dopamine neuron activity induces the formation of mesofrontal axonal boutons. In contrast, in adult mice, the effect of phasic activity diminishes. Furthermore, our results showed that dopaminergic and glutamatergic transmission regulate this axonal plasticity in adolescence and inhibition of dopamine D2-type receptors restores this plasticity in adulthood. Finally, we found that phasic activation of dopamine neurons also induces greater changes in mesofrontal circuit activity and psychomotor response in adolescent mice than in adult mice. Together, our findings demonstrate that the structure and function of the mesofrontal circuit are modifiable by phasic activity in dopaminergic neurons during adolescence and suggest that the greater plasticity in adolescence may facilitate activity-dependent strengthening of dopaminergic input and improvement in behavioral control.

  15. Leptin excites POMC neurons via activation of TRPC channels

    Qiu, Jian; Fang, Yuan; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    Leptin can exert its potent appetite-suppressing effects via activation of hypothalamic proopiomelanocortin (POMC) neurons. It depolarizes POMC neurons via activation of a yet unidentified non-selective cation current. Therefore, we sought to identify the conductance activated by leptin using whole cell recording in EGFP-POMC neurons from transgenic mice. The TRPC channel blockers SKF96365, FFA and 2-APB potently inhibited the leptin-induced current. Also, lanthanum (La3+) and intracellular Ca2+ potentiated the effects of leptin. Moreover, the DAG permeable analog OAG failed to activate any TRPC current. Using a Cs+-gluconate-based internal solution, leptin-activated current reversed near -20 mV. After replacement of external Na+ and K+ with Cs+, the reversal shifted to near 0 mV, and the I/V curve exhibited a negative slope conductance at voltages more negative than –40 mV. Based on scRT-PCR, TRPC1 and TRPC4-7 mRNA were expressed in POMC neurons with TRPC5 being the most prevalent. The leptin-induced current was blocked by Jak2 inhibitor AG490, the PI3 Kinase inhibitor wortmannin and the phospholipase C inhibitors, U73122 and ET-18-OCH3. Notably, we identified PLCγ1 transcripts in the majority of POMC neurons. Therefore, leptin through a Jak2-PI3 kinase-PLCγ pathway activates TRPC channels, and TRPC1, 4 and 5 appear to be the key channels mediating the depolarizing effects of leptin in POMC neurons. PMID:20107083

  16. The role of the ETS gene PEA3 in the development of motor and sensory neurons.

    Ladle, David R; Frank, Eric

    2002-12-01

    The ETS family of transcription factors includes two members, ER81 and PEA3, which are expressed in groups of sensory and motor neurons supplying individual muscles. To investigate a possible role of these genes in determining sensory and/or motor neuron phenotype, we studied mice in which each of these genes was deleted. In contrast to the deletion of ER81, which blocks the formation of projections from muscle sensory neurons to motor neurons in the spinal cord, deletion of PEA3 causes no obvious effects on sensory neurons or on their synaptic connections with motor neurons. PEA3 does play a major role in the formation of some brachial motoneurons however. Motoneurons innervating the cutaneous maximus muscle, which are normally PEA3(+), fail to develop normally so that postnatally the muscle is innervated by few motoneurons and is severely atrophic. Other studies suggest that these motoneurons initially appear during development but fail to contact their normal muscle targets.

  17. Neuronal activity enhances tau propagation and tau pathology in vivo.

    Wu, Jessica W; Hussaini, S Abid; Bastille, Isle M; Rodriguez, Gustavo A; Mrejeru, Ana; Rilett, Kelly; Sanders, David W; Cook, Casey; Fu, Hongjun; Boonen, Rick A C M; Herman, Mathieu; Nahmani, Eden; Emrani, Sheina; Figueroa, Y Helen; Diamond, Marc I; Clelland, Catherine L; Wray, Selina; Duff, Karen E

    2016-08-01

    Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimer's disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimer's disease and other tauopathies.

  18. Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury.

    Shearer, Joseph; Boone, Deborah; Weisz, Harris; Jennings, Kristofer; Uchida, Tatsuo; Parsley, Margaret; DeWitt, Douglas; Prough, Donald; Hellmich, Helen

    2016-04-01

    Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.

  19. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    Huan Meng

    2014-12-01

    Full Text Available The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons.

  20. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  1. Action observation activates neurons of the monkey ventrolateral prefrontal cortex

    Simone, Luciano; Bimbi, Marco; Rodà, Francesca; Fogassi, Leonardo; Rozzi, Stefano

    2017-01-01

    Prefrontal cortex is crucial for exploiting contextual information for the planning and guidance of behavioral responses. Among contextual cues, those provided by others’ behavior are particularly important, in primates, for selecting appropriate reactions and suppressing the inappropriate ones. These latter functions deeply rely on the ability to understand others’ actions. However, it is largely unknown whether prefrontal neurons are activated by action observation. To address this issue, we recorded the activity of ventrolateral prefrontal (VLPF) neurons of macaque monkeys during the observation of videos depicting biological movements performed by a monkey or a human agent, and object motion. Our results show that a population of VLPF neurons respond to the observation of biological movements, in particular those representing goal directed actions. Many of these neurons also show a preference for the agent performing the action. The neural response is present also when part of the observed movement is obscured, suggesting that these VLPF neurons code a high order representation of the observed action rather than a simple visual description of it. PMID:28290511

  2. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    William J Buchser

    Full Text Available Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs. Peripheral nervous system (PNS neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG or permissive (laminin substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX. Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  3. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  4. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  5. Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction.

    Kim, Minkyung; Fontelonga, Tatiana; Roesener, Andrew P; Lee, Haeram; Gurung, Suman; Mendonca, Philipe R F; Mastick, Grant S

    2015-03-01

    Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.

  6. Behavioural effects of chemogenetic dopamine neuron activation

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific p

  7. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  8. Central vagal stimulation activates enteric cholinergic neurons in the stomach and VIP neurons in the duodenum in conscious rats.

    Yuan, Pu-Qing; Kimura, Hiroshi; Million, Mulugeta; Bellier, Jean-Pierre; Wang, Lixin; Ohning, Gordon V; Taché, Yvette

    2005-04-01

    The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.

  9. Neuronal Activity Regulates Hippocampal miRNA Expression

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a re

  10. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida;

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  11. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  12. The proapoptotic dp5 gene is a direct target of the MLK-JNK-c-Jun pathway in sympathetic neurons.

    Towers, Emily; Gilley, Jonathan; Randall, Rebecca; Hughes, Rosie; Kristiansen, Mark; Ham, Jonathan

    2009-05-01

    The death of sympathetic neurons after nerve growth factor (NGF) withdrawal requires de novo gene expression. Dp5 was one of the first NGF withdrawal-induced genes to be identified and it encodes a proapoptotic BH3-only member of the Bcl-2 family. To study how dp5 transcription is regulated by NGF withdrawal we cloned the regulatory regions of the rat dp5 gene and constructed a series of dp5-luciferase reporter plasmids. In microinjection experiments with sympathetic neurons we found that three regions of dp5 contribute to its induction after NGF withdrawal: the promoter, a conserved region in the single intron, and sequences in the 3' untranslated region of the dp5 mRNA. A construct containing all three regions is efficiently activated by NGF withdrawal and, like the endogenous dp5, its induction requires mixed-lineage kinase (MLK) and c-Jun N-terminal kinase (JNK) activity. JNKs phosphorylate the AP-1 transcription factor c-Jun, and thereby increase its activity. We identified a conserved ATF site in the dp5 promoter that binds c-Jun and ATF2, which is critical for dp5 promoter induction after NGF withdrawal. These results suggest that part of the mechanism by which the MLK-JNK-c-Jun pathway promotes neuronal apoptosis is by activating the transcription of the dp5 gene.

  13. Activating STAT3 Alpha for Promoting Healing of Neurons

    Conway, Greg

    2008-01-01

    A method of promoting healing of injured or diseased neurons involves pharmacological activation of the STAT3 alpha protein. Usually, injured or diseased neurons heal incompletely or not at all for two reasons: (1) they are susceptible to apoptosis (cell death); and (2) they fail to engage in axogenesis that is, they fail to re-extend their axons to their original targets (e.g., muscles or other neurons) because of insufficiency of compounds, denoted neurotrophic factors, needed to stimulate such extension. The present method (see figure) of treatment takes advantage of prior research findings to the effect that the STAT3 alpha protein has anti-apoptotic and pro-axogenic properties.

  14. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression.

    Benoit, Marie E; Tenner, Andrea J

    2011-03-02

    Activation of the complement cascade, a powerful effector mechanism of the innate immune system, is associated with neuroinflammation but also with elimination of inappropriate synapses during development. Synthesis of C1q, a recognition component of the complement system, occurs in brain during ischemia/reperfusion and Alzheimer's disease, suggesting that C1q may be a response to injury. In vitro, C1q, in the absence of other complement proteins, improves neuronal viability and neurite outgrowth and prevents β-amyloid-induced neuronal death, suggesting that C1q may have a direct neuroprotective role. Here, investigating the molecular basis for this neuroprotection in vitro, addition of C1q to rat primary cortical neurons significantly upregulated expression of genes associated with cholesterol metabolism, such as cholesterol-25-hydroxylase and insulin induced gene 2, and transiently decreased cholesterol levels in neurons, known to facilitate neurite outgrowth. In addition, the expression of syntaxin-3 and its functional association with synaptosomal-associated protein 25 was increased. C1q also increased the nuclear translocation of cAMP response element-binding protein and CCAAT/enhancer-binding protein-δ (C/EBP-δ), two transcription factors involved in nerve growth factor (NGF) expression and downregulated specific microRNAs, including let-7c that is predicted to target (and thus inhibit) NGF and neurotrophin-3 (NT-3) mRNA. Accordingly, C1q increased expression of NGF and NT-3, and small interfering RNA inhibition of C/EBP-δ, NGF, or NT-3 expression prevented the C1q-dependent neurite outgrowth. No such neuroprotective effect is seen in the presence of C3a or C5a. Finally, the induced neuronal gene expression required conformationally intact C1q. These results show that C1q can directly promote neuronal survival, thereby demonstrating new interactions between immune proteins and neuronal cells that may facilitate neuroprotection.

  15. Communities in Neuronal Complex Networks Revealed by Activation Patterns

    Costa, Luciano da Fontoura

    2008-01-01

    Recently, it has been shown that the communities in neuronal networks of the integrate-and-fire type can be identified by considering patterns containing the beginning times for each cell to receive the first non-zero activation. The received activity was integrated in order to facilitate the spiking of each neuron and to constrain the activation inside the communities, but no time decay of such activation was considered. The present article shows that, by taking into account exponential decays of the stored activation, it is possible to identify the communities also in terms of the patterns of activation along the initial steps of the transient dynamics. The potential of this method is illustrated with respect to complex neuronal networks involving four communities, each of a different type (Erd\\H{o}s-R\\'eny, Barab\\'asi-Albert, Watts-Strogatz as well as a simple geographical model). Though the consideration of activation decay has been found to enhance the communities separation, too intense decays tend to y...

  16. Both barium and calcium activate neuronal potassium currents

    Ribera, A.B.; Spitzer, N.C.

    1987-09-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium from the currents produced without cadmium but in the presence of permeant divalent cations. These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 ..mu..M tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, whole blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems.

  17. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity

    Yves eKellner

    2014-03-01

    Full Text Available The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF, are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron’s maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

  18. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  19. Human temporal cortical single neuron activity during working memory maintenance.

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  20. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice.

    Achour, Mayada; Le Gras, Stéphanie; Keime, Céline; Parmentier, Frédéric; Lejeune, François-Xavier; Boutillier, Anne-Laurence; Néri, Christian; Davidson, Irwin; Merienne, Karine

    2015-06-15

    Huntington's disease (HD) is a neurodegenerative disease associated with extensive down-regulation of genes controlling neuronal function, particularly in the striatum. Whether altered epigenetic regulation underlies transcriptional defects in HD is unclear. Integrating RNA-sequencing (RNA-seq) and chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq), we show that down-regulated genes in HD mouse striatum associate with selective decrease in H3K27ac, a mark of active enhancers, and RNA Polymerase II (RNAPII). In addition, we reveal that decreased genes in HD mouse striatum display a specific epigenetic signature, characterized by high levels and broad patterns of H3K27ac and RNAPII. Our results indicate that this signature is that of super-enhancers, a category of broad enhancers regulating genes defining tissue identity and function. Specifically, we reveal that striatal super-enhancers display extensive H3K27 acetylation within gene bodies, drive transcription characterized by low levels of paused RNAPII, regulate neuronal function genes and are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Together, our results provide evidence for preferential down-regulation of genes controlled by super-enhancers in HD striatum and indicate that enhancer topography is a major parameter determining the propensity of a gene to be deregulated in a neurodegenerative disease.

  1. Persistent dynamic attractors in activity patterns of cultured neuronal networks

    Wagenaar, Daniel A.; Nadasdy, Zoltan; Potter, Steve M.

    2006-05-01

    Three remarkable features of the nervous system—complex spatiotemporal patterns, oscillations, and persistent activity—are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these “superbursts,” the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours—and thus are capable of representing and preserving information—cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity.

  2. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity.

    Hausen, A Christine; Ruud, Johan; Jiang, Hong; Hess, Simon; Varbanov, Hristo; Kloppenburg, Peter; Brüning, Jens C

    2016-12-06

    Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IR(ΔMCH)) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IR(ΔMCH) mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.

  3. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  4. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states

    Barry, Guy; Briggs, James A.; Hwang, Do Won; Nayler, Sam P.; Fortuna, Patrick R. J.; Jonkhout, Nicky; Dachet, Fabien; Maag, Jesper L. V.; Mestdagh, Pieter; Singh, Erin M.; Avesson, Lotta; Kaczorowski, Dominik C.; Ozturk, Ezgi; Jones, Nigel C.; Vetter, Irina; Arriola-Martinez, Luis; Hu, Jianfei; Franco, Gloria R.; Warn, Victoria M.; Gong, Andrew; Dinger, Marcel E.; Rigo, Frank; Lipovich, Leonard; Morris, Margaret J.; O’Brien, Terence J.; Lee, Dong Soo; Loeb, Jeffrey A.; Blackshaw, Seth; Mattick, John S.; Wolvetang, Ernst J.

    2017-01-01

    Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy. PMID:28054653

  5. Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures.

    Nishikawa, Shin; Hirashima, Naohide; Tanaka, Masahiko

    2014-09-01

    The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

  6. Non-viral gene therapy that targets motor neurons in vivo

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  7. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice.

    Fan, Jing; Stemkowski, Patrick L; Gandini, Maria A; Black, Stefanie A; Zhang, Zizhen; Souza, Ivana A; Chen, Lina; Zamponi, Gerald W

    2016-01-01

    Genetic ablation of cellular prion protein (PrP(C)) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrP(C) profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrP(C). The amplitude of voltage sag, a characteristic of activating HCN channel current (I h), was decreased in null mice. Moreover, I h peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrP(C). These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  8. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-01

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  9. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  10. Activity of protease-activated receptors in primary cultured human myenteric neurons

    Eva Maria Kugler

    2012-09-01

    Full Text Available Activity of the four known protease-activated receptors (PARs has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (AP. Application of the PAR1-AP (TFLLR or PAR4-AP (GYPGQV evoked spike discharge in 79% or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs of PAR1/PAR2 in 51%, PAR1/PAR4 in 43% and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.

  11. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Ryge, J.; Winther, Ole; Wienecke, J.;

    2010-01-01

    expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials...... of modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use......Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence...

  12. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter.

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P; Geller, Alfred I

    2007-05-01

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine

  13. Neuronal Activity Regulates Hippocampal miRNA Expression

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  14. Neuronal activity regulates hippocampal miRNA expression.

    Stephen M Eacker

    Full Text Available Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control.

  15. Physical activity: genes & health

    2002-01-01

    Carl Johan SUNDBERG is an Associate Professor in Physiology and Licenced Physician. His research focus is Molecular mechanisms involved in the adaptation of human skeletal muscle to physical activity.

  16. Inhibition of propofol on single neuron and neuronal ensemble activity in prefrontal cortex of rats during working memory task.

    Xu, Xinyu; Tian, Yu; Wang, Guolin; Tian, Xin

    2014-08-15

    Working memory (WM) refers to the temporary storage and manipulation of information necessary for performance of complex cognitive tasks. There is a growing interest in whether and how propofol anesthesia inhibits WM function. The aim of this study is to investigate the possible inhibition mechanism of propofol anesthesia from the view of single neuron and neuronal ensemble activities. Adult SD rats were randomly divided into two groups: propofol group (0.9 mg kg(-1)min(-1), 2h via a tail vein catheter) and control group. All the rats were tested for working memory performances in a Y-maze-rewarded alternation task (a task of delayed non-matched-to-sample) at 24, 48, 72 h after propofol anesthesia, and the behavior results of WM tasks were recorded at the same time. Spatio-temporal trains of action potentials were obtained from the original signals. Single neuron activity was characterized by peri-event time histograms analysis and neuron ensemble activities were characterized by Granger causality to describe the interactions within the neuron ensemble. The results show that: comparing with the control group, the percentage of neurons excited and related to WM was significantly decreased (pneuron ensemble were significantly weakened (p0.05), which were consistent with the behavior results. These findings could lead to improved understanding of the mechanism of anesthesia inhibition on WM functions from the view of single neuron activity and neuron ensemble interactions.

  17. Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits.

    Haam, Juhee; Halmos, Katalin C; Di, Shi; Tasker, Jeffrey G

    2014-04-30

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal-glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal-glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal-glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis.

  18. Using expression profiles of Caenorhabditis elegans neurons to identify genes that mediate synaptic connectivity.

    Baruch, Leehod; Itzkovitz, Shalev; Golan-Mashiach, Michal; Shapiro, Ehud; Segal, Eran

    2008-07-11

    Synaptic wiring of neurons in Caenorhabditis elegans is largely invariable between animals. It has been suggested that this feature stems from genetically encoded molecular markers that guide the neurons in the final stage of synaptic formation. Identifying these markers and unraveling the logic by which they direct synapse formation is a key challenge. Here, we address this task by constructing a probabilistic model that attempts to explain the neuronal connectivity diagram of C. elegans as a function of the expression patterns of its neurons. By only considering neuron pairs that are known to be connected by chemical or electrical synapses, we focus on the final stage of synapse formation, in which neurons identify their designated partners. Our results show that for many neurons the neuronal expression map of C. elegans can be used to accurately predict the subset of adjacent neurons that will be chosen as its postsynaptic partners. Notably, these predictions can be achieved using the expression patterns of only a small number of specific genes that interact in a combinatorial fashion.

  19. Using expression profiles of Caenorhabditis elegans neurons to identify genes that mediate synaptic connectivity.

    Leehod Baruch

    Full Text Available Synaptic wiring of neurons in Caenorhabditis elegans is largely invariable between animals. It has been suggested that this feature stems from genetically encoded molecular markers that guide the neurons in the final stage of synaptic formation. Identifying these markers and unraveling the logic by which they direct synapse formation is a key challenge. Here, we address this task by constructing a probabilistic model that attempts to explain the neuronal connectivity diagram of C. elegans as a function of the expression patterns of its neurons. By only considering neuron pairs that are known to be connected by chemical or electrical synapses, we focus on the final stage of synapse formation, in which neurons identify their designated partners. Our results show that for many neurons the neuronal expression map of C. elegans can be used to accurately predict the subset of adjacent neurons that will be chosen as its postsynaptic partners. Notably, these predictions can be achieved using the expression patterns of only a small number of specific genes that interact in a combinatorial fashion.

  20. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  1. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli

    Kenichi eTokita

    2014-07-01

    Full Text Available The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN, a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH. We made injections of the retrograde tracer Fluorogold (FG into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl. Fos-like immunoreactivity (FLI was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose and bitter (0.003 M quinine compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.

  2. Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability.

    Montgomery, Jenna R; Meredith, Andrea L

    2012-11-13

    Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.

  3. Aspects of calcium-activated chloride currents: a neuronal perspective.

    Scott, R H; Sutton, K G; Griffin, A; Stapleton, S R; Currie, K P

    1995-06-01

    Ca(2+)-activated Cl- channels are expressed in a variety of cell types, including central and peripheral neurones. These channels are activated by a rise in intracellular Ca2+ close to the cell membrane. This can be evoked by cellular events such as Ca2+ entry through voltage- and ligandgated channels or release of Ca2+ from intracellular stores. Additionally, these Ca(2+)-activated Cl currents (ICl(Ca)) can be activated by raising intracellular Ca2+ through artificial experimental procedures such as intracellular photorelease of Ca2+ from "caged" photolabile compounds (e.g. DM-nitrophen) or by treating cells with Ca2+ ionophores. The potential changes that result from activation of Ca(2+)-activated Cl- channels are dependent on resting membrane potential and the equilibrium potential for Cl-. Ca2+ entry during a single action potential is sufficient to produce substantial after potentials, suggesting that the activity of these Cl- channels can have profound effects on cell excitability. The whole cell ICl(Ca) can be identified by sensitivity to increased Ca2+ buffering capacity of the cell, anion substitution studies and reversal potential measurements, as well as by the actions of Cl- channel blockers. In cultured sensory neurones, there is evidence that the ICl(Ca) deactivates as Ca2+ is buffered or removed from the intracellular environment. To date, there is no evidence in mammalian neurones to suggest these Ca(2+)-sensitive Cl- channels undergo a process of inactivation. Therefore, ICl(Ca) can be used as a physiological index of intracellular Ca2+ close to the cell membrane. The ICl(Ca) has been shown to be activated or prolonged as a result of metabolic stress, as well as by drugs that disturb intracellular Ca2+ homeostatic mechanisms or release Ca2+ from intracellular stores. In addition to sensitivity to classic Cl- channel blockers such as niflumic acid, derivatives of stilbene (4,4'diisothiocyanostilbene-2,2'-disulphonic acid, 4-acetamido-4

  4. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  5. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees.

    Taketoshi Kiya

    Full Text Available Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as 'dance communication'. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.

  6. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  7. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    Mamoru Takeda

    2016-10-01

    Full Text Available Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  8. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Zhenyi Liu

    Full Text Available The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH-Cre and dopamine active transporter (DAT or Slc6a3-Cre, by using a combination of immunohistochemistry (IHC and mRNA fluorescence in situ hybridization (FISH as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  9. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  10. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms.

    Angela M Mabb

    Full Text Available Topoisomerase 1 (TOP1 inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.

  11. Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity

    Maezawa Izumi

    2006-08-01

    Full Text Available Abstract Background Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4 co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE: APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice. Methods We measured in vivo changes in dendrite length in hippocampal CA1 neurons using Golgi staining and determined hippocampal apoE levels by Western blot. Neurite outgrowth of cultured primary neurons in response to astrocyte conditioned medium was assessed by measuring neuron length and branch number. Results Our results showed that TR APOE4 mice had slightly but significantly shorter dendrites at 6 weeks of age. Following exposure to intracerebroventricular LPS, there was comparable loss of dendrite length at 24 hr among the three TR APOE mice. Recovery of dendrite length over the next 48 hr was greater in TR APOE2 than TR APOE3 mice, while TR APOE4 mice had failure of dendrite regeneration. Cell culture experiments indicated that the enhanced neurotrophic effect of TR APOE2 was LDL related protein-dependent. Conclusion The data indicate that the environment within TR APOE2 mouse hippocampus was most supportive of dendrite regeneration

  12. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons.

    Caitrín M Coffey

    Full Text Available BACKGROUND: Fetal Alcohol Spectrum Disorders (FASD are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS: The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS: Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.

  13. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  14. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  15. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  16. Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.

    Dario Greco

    Full Text Available In the mammalian central nervous system (CNS an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.

  17. Activity-dependent Phosphorylation of Neuronal Kv2.1 Potassium Channels by CDK5*

    Cerda, Oscar; Trimmer, James S.

    2011-01-01

    Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible,...

  18. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    Chwalla Barbara

    2008-07-01

    Full Text Available Abstract Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common

  19. Energetics of neuronal signaling and fMRI activity.

    Maandag, Natasja J G; Coman, Daniel; Sanganahalli, Basavaraju G; Herman, Peter; Smith, Arien J; Blumenfeld, Hal; Shulman, Robert G; Hyder, Fahmeed

    2007-12-18

    Energetics of resting and evoked fMRI signals were related to localized ensemble firing rates (nu) measured by electrophysiology in rats. Two different unstimulated, or baseline, states were established by anesthesia. Halothane and alpha-chloralose established baseline states of high and low energy, respectively, in which forepaw stimulation excited the contralateral primary somatosensory cortex (S1). With alpha-chloralose, forepaw stimulation induced strong and reproducible fMRI activations in the contralateral S1, where the ensemble firing was dominated by slow signaling neurons (SSN; nu range of 1-13 Hz). Under halothane, weaker and less reproducible fMRI activations were observed in the contralateral S1 and elsewhere in the cortex, but ensemble activity in S1 was dominated by rapid signaling neurons (RSN; nu range of 13-40 Hz). For both baseline states, the RSN activity (i.e., higher frequencies, including the gamma band) did not vary upon stimulation, whereas the SSN activity (i.e., alpha band and lower frequencies) did change. In the high energy baseline state, a large majority of total oxidative energy [cerebral metabolic rate of oxygen consumption (CMR(O2))] was devoted to RSN activity, whereas in the low energy baseline state, it was roughly divided between SSN and RSN activities. We hypothesize that in the high energy baseline state, the evoked changes in fMRI activation in areas beyond S1 are supported by rich intracortical interactions represented by RSN. We discuss implications for interpreting fMRI data where stimulus-specific DeltaCMR(O2) is generally small compared with baseline CMR(O2).

  20. Bmi1 is down-regulated in the aging brain and displays antioxidant and protective activities in neurons.

    Mohamed Abdouh

    Full Text Available Aging increases the risk to develop several neurodegenerative diseases, although the underlying mechanisms are poorly understood. Inactivation of the Polycomb group gene Bmi1 in mice results in growth retardation, cerebellar degeneration, and development of a premature aging-like phenotype. This progeroid phenotype is characterized by formation of lens cataracts, apoptosis of cortical neurons, and increase of reactive oxygen species (ROS concentrations, owing to p53-mediated repression of antioxidant response (AOR genes. Herein we report that Bmi1 expression progressively declines in the neurons of aging mouse and human brains. In old brains, p53 accumulates at the promoter of AOR genes, correlating with a repressed chromatin state, down-regulation of AOR genes, and increased oxidative damages to lipids and DNA. Comparative gene expression analysis further revealed that aging brains display an up-regulation of the senescence-associated genes IL-6, p19(Arf and p16(Ink4a, along with the pro-apoptotic gene Noxa, as seen in Bmi1-null mice. Increasing Bmi1 expression in cortical neurons conferred robust protection against DNA damage-induced cell death or mitochondrial poisoning, and resulted in suppression of ROS through activation of AOR genes. These observations unveil that Bmi1 genetic deficiency recapitulates aspects of physiological brain aging and that Bmi1 over-expression is a potential therapeutic modality against neurodegeneration.

  1. Do sensory calcitonin gene-related peptide nerve fibres in the rat pelvic plexus supply autonomic neurons projecting to the uterus and cervix?

    Houdeau, E; Barranger, E; Rossano, B

    2002-10-25

    Sensory nerve fibres containing calcitonin gene-related peptide (CGRP) innervate neurons of the paracervical ganglion (PCG) in the female rat pelvic plexus. We have combined retrograde tracing with immunocytochemistry to investigate whether CGRP-immunoreactive (-IR) fibres supply neurons targeting the genital tract. Of the total neurons projecting to either the uterine horns or the cervix, 38 and 41% received CGRP-IR innervation, respectively. All these neurons displayed choline acetyltransferase-IR, thus are cholinergic. They were found throughout the PCG and other pelvic plexus ganglia, namely accessory ganglia (AG) and hypogastric plexus (HP). Pelvic nerve section showed that afferent fibres in these nerves provided most of the CGRP-IR fibres supplying uterine- or cervical-related neurons in the PCG/AG, none in HP. It is suggested that such sensory-motor network may provide a local pathway for reflex control of genital tract activity, acting through cholinergic nerve projections.

  2. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    Durham Paul L

    2010-12-01

    Full Text Available Abstract Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization.

  3. Splicing regulation of the Survival Motor Neuron genes and implications for treatment of spinal muscular atrophy

    Bebee, Thomas W.; Gladman, Jordan T.; Chandler, Dawn S.

    2010-01-01

    Proximal spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of the survival motor neuron (SMN) protein. The reduced SMN levels are due to loss of the survival motor neuron-1 (SMN1) gene. Humans carry a nearly identical SMN2 gene that generates a truncated protein, due to a C to T nucleotide alteration in exon 7 that leads to inefficient RNA splicing of exon 7. This exclusion of SMN exon 7 is central to the onset of the SMA disease, however, this offers a unique ther...

  4. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line.

    Claudia Giovanna Leotta

    Full Text Available Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1 and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways.

  5. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models

    Katrina Albert

    2017-02-01

    Full Text Available Gene delivery using adeno-associated virus (AAV vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson′s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson′s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson′s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson′s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-a-synuclein (a-syn to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP, which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in

  6. Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron.

    Wogram, Emile; Wendt, Stefan; Matyash, Marina; Pivneva, Tatyana; Draguhn, Andreas; Kettenmann, Helmut

    2016-06-01

    Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction. Indeed, ultrastructural analysis revealed closely attached plasma membranes of satellite microglia and neurons. However, we found no apparent morphological specializations of the contact, and biocytin injection into satellite microglia showed no dye-coupling with the apposed neurons or any other cell. Likewise, evoked local field potentials or action potentials and postsynaptic potentials of the associated neuron did not lead to any transmembrane currents or non-capacitive changes in the membrane potential of the satellite microglia in the cortex and hippocampus. Both satellite and non-satellite microglia, however, showed spontaneous transient membrane depolarizations that were not correlated with neuronal activity. These events could be divided into fast-rising and slow-rising depolarizations, which showed different characteristics in satellite and non-satellite microglia. Fast-rising and slow-rising potentials differed with regard to voltage dependence. The frequency of these events was not affected by the application of tetrodotoxin, but the fast-rising event frequency decreased after application of GABA. We conclude that microglia show spontaneous electrical activity that is uncorrelated with the activity of adjacent neurons.

  7. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity.

    Heck, Angela; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Bickel, Horst; Coynel, David; Gschwind, Leo; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G; Ripke, Stephan; Spalek, Klara; Sullivan, Patrick; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2014-03-05

    Working memory, the capacity of actively maintaining task-relevant information during a cognitive task, is a heritable trait. Working memory deficits are characteristic for many psychiatric disorders. We performed genome-wide gene set enrichment analyses in multiple independent data sets of young and aged cognitively healthy subjects (n = 2,824) and in a large schizophrenia case-control sample (n = 32,143). The voltage-gated cation channel activity gene set, consisting of genes related to neuronal excitability, was robustly linked to performance in working memory-related tasks across ages and to schizophrenia. Functional brain imaging in 707 healthy participants linked this gene set also to working memory-related activity in the parietal cortex and the cerebellum. Gene set analyses may help to dissect the molecular underpinnings of cognitive dimensions, brain activity, and psychopathology.

  8. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons.

    Bucelli, Robert C; Gonsiorek, Eugene A; Kim, Woo-Yang; Bruun, Donald; Rabin, Richard A; Higgins, Dennis; Lein, Pamela J

    2008-03-01

    Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.

  9. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  10. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Lefler, Sharon; Cohen, Malkiel A; Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  11. Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity.

    Zemianek, Jill M; Shultz, Abraham M; Lee, Sangmook; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2013-04-01

    A predominance of excitatory activity, with protracted appearance of inhibitory activity, accompanies cortical neuronal development. It is unclear whether or not inhibitory neuronal activity is solicited exclusively by excitatory neurons or whether the transient excitatory activity displayed by developing GABAergic neurons contributes to an excitatory threshold that fosters their conversion to inhibitory activity. We addressed this possibility by culturing murine embryonic neurons on multi-electrode arrays. A wave of individual 0.2-0.4 mV signals ("spikes") appeared between approx. 20-30 days in culture, then declined. A transient wave of high amplitude (>0.5 mV) epileptiform activity coincided with the developmental decline in spikes. Bursts (clusters of ≥3 low-amplitude spikes within 0.7s prior to returning to baseline) persisted following this decline. Addition of the GABAergic antagonist bicuculline initially had no effect on signaling, consistent with delayed development of GABAergic synapses. This was followed by a period in which bicuculline inhibited overall signaling, confirming that GABAergic neurons initially display excitatory activity in ex vivo networks. Following the transient developmental wave of epileptiform signaling, bicuculline induced a resurgence of epileptiform signaling, indicating that GABAergic neurons at this point displayed inhibitory activity. The appearance of transition after the developmental and decline of epileptiform activity, rather than immediately after the developmental decline in lower-amplitude spikes, suggests that the initial excitatory activity of GABAergic neurons contributes to their transition into inhibitory neurons, and that inhibitory GABAergic activity is essential for network development. Prior studies indicate that a minority (25%) of neurons in these cultures were GABAergic, suggesting that inhibitory neurons regulate multiple excitatory neurons. A similar robust increase in signaling following cessation of

  12. Nicotine Elicits Convulsive Seizures by Activating Amygdalar Neurons

    Iha, Higor A.; Kunisawa, Naofumi; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Ikeda, Akio; Ito, Hidefumi; Serikawa, Tadao; Ohno, Yukihiro

    2017-01-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of epileptic disorders; however, the mechanisms of nACh receptors in seizure generation remain unknown. Here, we performed behavioral and immunohistochemical studies in mice and rats to clarify the mechanisms underlying nicotine-induced seizures. Treatment of animals with nicotine (1–4 mg/kg, i.p.) produced motor excitement in a dose-dependent manner and elicited convulsive seizures at 3 and 4 mg/kg. The nicotine-induced seizures were abolished by a subtype non-selective nACh antagonist, mecamylamine (MEC). An α7 nACh antagonist, methyllycaconitine, also significantly inhibited nicotine-induced seizures whereas an α4β2 nACh antagonist, dihydro-β-erythroidine, affected only weakly. Topographical analysis of Fos protein expression, a biological marker of neural excitation, revealed that a convulsive dose (4 mg/kg) of nicotine region-specifically activated neurons in the piriform cortex, amygdala, medial habenula, paratenial thalamus, anterior hypothalamus and solitary nucleus among 48 brain regions examined, and this was also suppressed by MEC. In addition, electric lesioning of the amygdala, but not the piriform cortex, medial habenula and thalamus, specifically inhibited nicotine-induced seizures. Furthermore, microinjection of nicotine (100 and 300 μg/side) into the amygdala elicited convulsive seizures in a dose-related manner. The present results suggest that nicotine elicits convulsive seizures by activating amygdalar neurons mainly via α7 nACh receptors.

  13. In vitro neuronal network activity in NMDA receptor encephalitis

    Jantzen Sabine U

    2013-02-01

    Full Text Available Abstract Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF from an anti-N-methyl-D-aspartate receptor (NMDAR encephalitis patient on in vitro neuronal network activity (ivNNA. In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes.

  14. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  15. Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds.

    Tarciso A F Velho

    Full Text Available Norepinephrine (NE is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain's response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM, an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations.

  16. Effects of weak electric fields on the activity of neurons and neuronal networks

    Jeffreys, J.G.R.; Deans, J.; Bikson, M.; Fox, J

    2003-07-01

    Electric fields applied to brain tissue will affect cellular properties. They will hyperpolarise the ends of cells closest to the positive part of the field, and depolarise ends closest to the negative. In the case of neurons this affects excitability. How these changes in transmembrane potential are distributed depends on the length constant of the neuron, and on its geometry; if the neuron is electrically compact, the change in transmembrane potential becomes an almost linear function of distance in the direction of the field. Neurons from the mammalian hippocampus, maintained in tissue slices in vitro, are significantly affected by fields of around 1-5 Vm{sup -1}. (author)

  17. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  18. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  19. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval

    Morikawa, Shota; Ikegaya, Yuji; Narita, Minoru; Tamura, Hideki

    2017-01-01

    Perineuronal nets (PNNs), proteoglycan-rich extracellular matrix structures, are thought to be expressed around inhibitory neurons and contribute to critical periods of brain function and synaptic plasticity. However, in some specific brain regions such as the amygdala, PNNs were predominantly expressed around excitatory neurons. These neurons were recruited during auditory fear conditioning and memory retrieval. Indeed, the activation of PNN-expressing excitatory neurons predicted cognitive performance. PMID:28378772

  20. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  1. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization

    Cady Ryan J

    2011-12-01

    Full Text Available Abstract Background Calcitonin gene-related peptide (CGRP, a neuropeptide released from trigeminal nerves, is implicated in the underlying pathology of temporomandibular joint disorder (TMD. Elevated levels of CGRP in the joint capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD. Results Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ capsule of male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42 in microglia at 2 and 24 hours post injection. Conclusions Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD, stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD.

  2. The cln-3 genes of Caenorhabditis elegans : making C. elegans models for Juvenile Neuronal Ceroid Lipofuscinosis.

    Voer, Gert de

    2008-01-01

    The most common neurodegenerative genetic childhood disease, juvenile neuronal ceroid lipofuscinosis (JNCL), is a lysosomal storage disorder that is caused by mutations in the CLN3 gene. In patients' lysosomes material accumulates primarily composed of Subunit c. How mutations in CLN3 lead to this d

  3. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  4. NAA and NAAG variation in neuronal activation during visual stimulation

    Castellano, G.; Dias, C.S.B. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Foerster, B. [Philips Medical Systems, São Paulo, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Li, L.M. [Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Covolan, R.J.M. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil)

    2012-08-17

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  5. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  6. Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation.

    Elisa Barbarese

    Full Text Available In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.

  7. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  8. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  9. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.

    Alam, Md Aftab; Kumar, Sunil; McGinty, Dennis; Alam, Md Noor; Szymusiak, Ronald

    2014-01-01

    The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.

  10. CTCF Is Required for Neural Development and Stochastic Expression of Clustered Pcdh Genes in Neurons

    Teruyoshi Hirayama

    2012-08-01

    Full Text Available The CCCTC-binding factor (CTCF is a key molecule for chromatin conformational changes that promote cellular diversity, but nothing is known about its role in neurons. Here, we produced mice with a conditional knockout (cKO of CTCF in postmitotic projection neurons, mostly in the dorsal telencephalon. The CTCF-cKO mice exhibited postnatal growth retardation and abnormal behavior and had defects in functional somatosensory mapping in the brain. In terms of gene expression, 390 transcripts were expressed at significantly different levels between CTCF-deficient and control cortex and hippocampus. In particular, the levels of 53 isoforms of the clustered protocadherin (Pcdh genes, which are stochastically expressed in each neuron, declined markedly. Each CTCF-deficient neuron showed defects in dendritic arborization and spine density during brain development. Their excitatory postsynaptic currents showed normal amplitude but occurred with low frequency. Our results indicate that CTCF regulates functional neural development and neuronal diversity by controlling clustered Pcdh expression.

  11. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons.

    Cox, Julia; Pinto, Lucas; Dan, Yang

    2016-02-25

    The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca(2+) imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep.

  12. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression.

    Upton, Montana; Lotfipour, Shahrdad

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.

  13. Imaging electrical activity of neurons with metamaterial nanosensors

    Beletskiy, Roman V

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and reliably working either within cultured cell populations or during chronic implantations in vivo. In my research project, I design and justify a novel nanobiosensors, capable to detect and optically report the electric fields across cellular membrane and investigate properties of that specially engineered plasmonic nanoantennas. In the following literature survey, I observe the current state of electrophysiology methods and after recalling the basics of fluorescence, discuss benefits and drawbacks of today's voltage sensi...

  14. Asymmetric pallidal neuronal activity in patients with cervical dystonia

    Christian KE eMoll

    2014-02-01

    Full Text Available The origin of asymmetric clinical manifestation of symptoms in patients suffering from cervical dystonia (CD is hitherto poorly understood. Dysregulated neuronal activity in the basal ganglia has been suggested to have a role in the pathophysiology of CD. Here, we re-assessed the question to what extent relative changes occur in the direct versus indirect basal ganglia pathway in CD, whether these circuit changes are lateralized, and how these alterations relate to CD symptoms. To this end, we recorded ongoing single cell and local field potential (LFP activity from the external (GPe and internal pallidal segment (GPi of thirteen CD patients undergoing microelectrode-guided stereotactic surgery for deep brain stimulation in the GPi. We compared pallidal recordings from CD patients operated under local anaesthesia (LA with those obtained in CD patients operated under general anaesthesia (GA. In awake patients, mean GPe discharge rate (52 Hz was lower than that of GPi (72 Hz. Mean GPi discharge ipsilateral to the side of head turning was higher than contralateral and correlated with torticollis symptom severity. Lateralized differences were absent at the level of the GPe and in recordings from patients operated under GA. Furthermore, in the GPi of CD patients there was a subpopulation of theta-oscillatory cells with unique bursting characteristics. Power and coherence of GPe- and GPi-LFPs were dominated by a theta peak and also exhibited band-specific interhemispheric differences. Strong cross-frequency coupling of low-gamma amplitude to theta phase was a feature of pallidal LFPs recorded under LA, but not GA. These results indicate that CD is associated with an asymmetric pallidal outflow. Based on the finding of symmetric neuronal discharges in the GPe, we propose that an imbalanced interhemispheric direct pathway gain may be involved in CD pathophysiology.

  15. Relationship between inter-stimulus-intervals and intervals of autonomous activities in a neuronal network.

    Ito, Hidekatsu; Minoshima, Wataru; Kudoh, Suguru N

    2015-08-01

    To investigate relationships between neuronal network activity and electrical stimulus, we analyzed autonomous activity before and after electrical stimulus. Recordings of autonomous activity were performed using dissociated culture of rat hippocampal neurons on a multi-electrodes array (MEA) dish. Single stimulus and pared stimuli were applied to a cultured neuronal network. Single stimulus was applied every 1 min, and paired stimuli was performed by two sequential stimuli every 1 min. As a result, the patterns of synchronized activities of a neuronal network were changed after stimulus. Especially, long range synchronous activities were induced by paired stimuli. When 1 s inter-stimulus-intervals (ISI) and 1.5 s ISI paired stimuli are applied to a neuronal network, relatively long range synchronous activities expressed in case of 1.5 s ISI. Temporal synchronous activity of neuronal network is changed according to inter-stimulus-intervals (ISI) of electrical stimulus. In other words, dissociated neuronal network can maintain given information in temporal pattern and a certain type of an information maintenance mechanism was considered to be implemented in a semi-artificial dissociated neuronal network. The result is useful toward manipulation technology of neuronal activity in a brain system.

  16. Neuroligin-1 links neuronal activity to sleep-wake regulation

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  17. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (PGR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (PGR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (PGR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.

  18. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator.

    Tsirka, S E; Gualandris, A; Amaral, D G; Strickland, S

    1995-09-28

    Neuronal degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced. The activity of tPA in neural tissue is correlated with neurite outgrowth, regeneration and migration, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  19. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  20. Firing behavior and network activity of single neurons in human epileptic hypothalamic hamartoma

    Peter N. Steinmetz

    2013-12-01

    Full Text Available Objective: Human hypothalamic hamartomas (HH are intrinsically epileptogenic and are associated with treatment-resistant gelastic seizures. The basic cellular mechanisms responsible for seizure onset within HH are unknown. We used intra-operative microwire recordings of single neuron activity to measure the spontaneous firing rate of neurons and the degree of functional connection between neurons within the tumor.Technique: Fourteen patients underwent transventricular endoscopic resection of HH for treatment-resistant epilepsy. Prior to surgical resection, single neuron recordings from bundled microwires (total of 9 contacts were obtained from HH tissue. Spontaneous activity was recorded for two or three 5-minute epochs under steady-state general anesthesia. Off-line analysis included cluster analysis of single unit activity and probability analysis of firing relationships between pairs of neurons.Results: Altogether, 222 neurons were identified (mean 6 neurons per recording epoch. Cluster analysis of single neuron firing utilizing a mixture of Gaussians model identified two distinct populations on the basis of firing rate (median firing frequency 0.6 versus 15.0 spikes per second; p<10-5. Cluster analysis identified three populations determined by levels of burst-firing (median burst indices of 0.015, 0.18, and 0.39; p<10-15. Unbiased analysis of spontaneous single unit behavior showed that 51% of all possible neuron pairs within each recording epoch had a significant level of firing synchrony (p<10-15. The subgroup of neurons with higher median firing frequencies was more likely to demonstrate synchronous firing (p<10-7. Conclusions: HH tissue in-vivo contains neurons which fire spontaneously. The activity of single neurons is diverse but distributes into at least two electrophysiological phenoytpes. Functional linkage between single neurons suggests that HH neurons exist within local networks that may contribute to ictogenesis.

  1. Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity.

    Buhner, Sabine; Braak, Breg; Li, Qin; Kugler, Eva Maria; Klooker, Tamira; Wouters, Mira; Donovan, Jemma; Vignali, Sheila; Mazzuoli-Weber, Gemma; Grundy, David; Boeckxstaens, Guy; Schemann, Michael

    2014-10-01

    Based on the discomfort/pain threshold during rectal distension, irritable bowel syndrome (IBS) patients may be subtyped as normo- or hypersensitive. We previously showed that mucosal biopsy supernatants from IBS patients activated enteric and visceral afferent neurons. We tested the hypothesis that visceral sensitivity is linked to the degree of neuronal activation. Normo- and hypersensitive IBS patients were distinguished by their discomfort/pain threshold to rectal balloon distension with a barostat. Using potentiometric and Ca(2+) dye imaging, we recorded the response of guinea-pig enteric submucous and mouse dorsal root ganglion (DRG) neurons, respectively, to mucosal biopsy supernatants from normosensitive (n = 12 tested in enteric neurons, n = 9 tested in DRG) and hypersensitive IBS patients (n = 9, tested in both types of neurons). In addition, we analysed the association between neuronal activation and individual discomfort/pain pressure thresholds. The IBS supernatants evoked Ca(2+) transients in DRG neurons and spike discharge in submucous neurons. Submucous and DRG neurons showed significantly stronger responses to supernatants from hypersensitive IBS patients as reflected by higher spike frequency or stronger [Ca(2+)]i transients in a larger proportion of neurons. The neuroindex as a product of spike frequency or [Ca(2+)]i transients and proportion of responding neurons correlated significantly with the individual discomfort/pain thresholds of the IBS patients. Supernatants from hypersensitive IBS patients caused stronger activation of enteric and DRG neurons. The level of activation correlated with the individual discomfort/pain threshold pressure values. These findings support our hypothesis that visceral sensitivity is linked to activation of peripheral neurons by biopsy supernatants.

  2. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

    Belrose Jillian C

    2012-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2 is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.

  3. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons.

  4. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  5. Antiapoptotic effect both in vivo and in vitro of A20 gene when transfected into rat hippocampal neurons

    Hong-sheng MIAO; Lu-yang YU; Guo-zhen HUI; Li-he GUO

    2005-01-01

    Aim: To evaluate the antiapoptotic effect of the A20 gene in primary hippocampal neurons both in vivo and in vitro. Methods: Primary hippocampal neurons in embryonic day 18 (El 8) rats were transfected with the A20 gene by using the new Nucleofector electroporation transfection method. We then examined, whether A20 -neurons possessed anti-apoptotic abilities after TNF-α stimulation in vitro.A20-neurons and pcDNA3 -neurons were transplanted into the penumbra of the brains of rats that had been subjected to 90-min of ischemia induced by left middle cerebral artery occlusion (MCAO). Results: A20-neurons resisted TNF-α induced apoptosis in vitro. The apoptosis rate of neurons overexpressing A20(28.46%±3.87%) was lower than that in neurons transfected with pcDNA3(53.06%±5.36%). More A20-neurons survived in the penumbra both 3-d and 7-d after transplantation than did sham pcDNA3 neurons. Conclusion: The novel function of A20 may make it a potential targets for the gene therapy for neurological diseases.

  6. Heritable and inducible gene knockdown in astrocytes or neurons in vivo by a combined lentiviral and RNAi approach.

    Fabrice eHeitz

    2014-03-01

    Full Text Available Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformations or lethality. Conditional gene knockdown has emerged as a compelling alternative to gene knockout, an approach well established in vitro but that remains challenging in vivo, especially in the adult brain. Here, we report a method for conditional and cell-specific gene knockdown in the mouse brain in vivo that combines Cre-mediated RNA interference (RNAi with classical and lentivirus-mediated transgenesis. The method is based on the inducible expression of a silencing short hairpin RNA (shRNA introduced in mice by lentivirus-mediated transgenesis, and on its activation by excision of a floxed stop EGFP reporter with an inducible Cre recombinase expressed in astrocytes or in neurons. This dual system should be of broad utility for comparative studies of gene functions in these two cell types in vivo.

  7. A neuron model with trainable activation function (TAF) and its MFNN supervised learning

    吴佑寿; 赵明生

    2001-01-01

    This paper addresses a new kind of neuron model, which has trainable activation function (TAF) in addition to only trainable weights in the conventional M-P model. The final neuron activation function can be derived from a primitive neuron activation function by training. The BP like learning algorithm has been presented for MFNN constructed by neurons of TAF model. Several simulation examples are given to show the network capacity and performance advantages of the new MFNN in comparison with that of conventional sigmoid MFNN.

  8. Serotonergic neurons in the caudal raphe nuclei discharge in association with activity of masticatory muscles

    Ribeiro-do-Valle L.E.

    1997-01-01

    Full Text Available There is a dense serotonergic projection from nucleus raphe pallidus and nucleus raphe obscurus to the trigeminal motor nucleus and serotonin exerts a strong facilitatory action on the trigeminal motoneurons. Some serotonergic neurons in these caudal raphe nuclei increase their discharge during feeding. The objective of the present study was to investigate the possibility that the activity of these serotonergic neurons is related to activity of masticatory muscles. Cats were implanted with microelectrodes and gross electrodes. Caudal raphe single neuron activity, electrocorticographic activity, and splenius, digastric and masseter electromyographic activities were recorded during active behaviors (feeding and grooming, during quiet waking and during sleep. Seven presumed serotonergic neurons were identified. These neurons showed a long duration action potential (>2.0 ms, and discharged slowly (2-7 Hz and very regularly (interspike interval coefficient of variation <0.3 during quiet waking. The activity of these neurons decreased remarkably during fast wave sleep (78-100%. Six of these neurons showed tonic changes in their activity positively related to digastric and/or masseter muscle activity but not to splenius muscle activity during waking. These data are consistent with the hypothesis that serotonergic neurons in the caudal raphe nuclei play an important role in the control of jaw movements

  9. ELF-magnetic field induced effects on the bioelectric activity of single neurone cells

    Azanza, Maria J.; del Moral, A.

    1998-01-01

    The membrane bioelectric activity recorded from single neurones is dramatically modified under applied extremely low frequency magnetic fields (ELF-MF) of 50 Hz and 1-15 mT peak intensity. In ≌27% of the neurones studied a firing rhythm is generated for ≌7 mT, which resembles synchronous oscillations activity. The possibility that ELF-MF could generate neuronal networks synchrony firing does exist as an explanatory physical model shows.

  10. Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation

    Kim, Woo-Yang; Gonsiorek, Eugene A.; Barnhart, Chris; Davare, Monika A.; Engebose, Abby J.; Lauridsen, Holly; Bruun, Donald; Lesiak, Adam; Wayman, Gary; Bucelli, Robert; Higgins, Dennis; Lein, Pamela J.

    2009-01-01

    Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly...

  11. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    Kim, Sooyun; Guzman, Segundo J.; Hu, Hua; Jonas, Peter

    2012-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic dom...

  12. Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds.

    Streit, Anne K; Fan, Yuen Ngan; Masullo, Laura; Baines, Richard A

    2016-01-01

    Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds

  13. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    Tenner Andrea J

    2005-01-01

    Full Text Available Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(--2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist, which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.

  14. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  15. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  16. Interferon γ Gene Expression in Sensory Neurons: Evidence for Autocrine Gene Regulation

    1997-01-01

    We explored expression and possible function of interferon-γ (IFN-γ) in cultured fetal (E15) rat dorsal root ganglion neurons combining whole cell patch-clamp electrophysiology with single cell reverse transcriptase polymerase chain reaction and confocal laser immunocytochemistry. Morphologically, we located IFN-γ protein in the cytoplasm of the neurons in culture as well as in situ during peri- and postnatal development. Transcripts for classic IFN-γ and for its receptor were determined in p...

  17. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  18. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  19. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock.

    Marie Picot

    2007-11-01

    Full Text Available Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest-activity rhythms and relies upon different groups of PERIOD (PER-expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs that express the pigment-dispersing factor (PDF drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO drives the activity rhythms, whereas the LN evening oscillator (LN-EO does not. Since mutants devoid of functional CRYPTOCHROME (CRY, as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day-night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.

  20. Activity of basal forebrain neurons in the rat during motivated behaviors.

    Mink, J W; Sinnamon, H M; Adams, D B

    1983-04-01

    The activity of single neurons in the basal forebrain was recorded in the freely-moving rat with moveable fine-wire electrodes. Neural activity was observed while the water-deprived male rat was exposed to three different types of motivating stimuli that elicit locomotion in a running wheel: an estrous female rat; a drinking tube containing water; and grasping and lifting by the experimenter. The neural activity was also observed when the subject was presented with standardized sensory tests and during single pulse stimulation of other brain structures. A majority of the 76 neurons recorded in the forebrain changed their firing rate during orienting and/or locomotion in general (23 neurons) or during behavior related to only one of the specific motivational contexts: the conspecific female (4 neurons); water (7 neurons); or grasp by the experimenter (8 neurons). Whereas the neurons related to orienting and/or locomotion in general were scattered through various brain structures, those neurons related to specific motivational contexts were concentrated in specific areas: the sexually dimorphic nucleus of the medial preoptic area (conspecific female); lateral septum (water); and lateral preoptic area (water and grasp). The present results, although based on relatively few neurons, are consonant with results of research using other techniques. This indicates that analyses at the level of the single neuron promise to be useful for understanding the role of the basal forebrain in motivational systems.

  1. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter.

    Tata, Ada Maria; De Stefano, M Egle; Tomassy, Giulio Srubek; Vilaró, M Teresa; Levey, Allan I; Biagioni, Stefano

    2004-01-15

    The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.

  2. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.

    Turrigiano, G; LeMasson, G; Marder, E

    1995-05-01

    We study the electrical activity patterns and the expression of conductances in adult stomatogastric ganglion (STG) neurons as a function of time in primary cell culture. When first plated in culture, these neurons had few active properties. After 1 d in culture they produced small action potentials that rapidly inactivated during maintained depolarization. After 2 d in culture they fired large action potentials tonically when depolarized, and their properties resembled very closely the properties of STG neurons pharmacologically isolated in the ganglion. After 3-4 d in culture, however, their electrical properties changed and they fired in bursts when depolarized. We characterized the currents expressed by these neurons in culture. They included two TTX-sensitive sodium currents, a calcium current, a delayed-rectifier-like current, a calcium-dependent potassium current, and two A-type currents. The changes in firing properties with time in culture were accompanied by an increase in inward and decrease in outward current densities. A single-compartment conductance-based model of an STG neuron was constructed by fitting the currents measured in the biological neurons. When the current densities in the model neuron were matched to those measured for the biological neurons in each activity state, the model neuron closely reproduced each state, indicating that the changes in current densities are sufficient to account for the changes in intrinsic properties. These data indicate that STG neurons isolated in culture change their intrinsic electrical properties by selectively adjusting the magnitudes of their ionic conductances.

  3. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease.

    Yoo, Myung S; Chun, Hong S; Son, Jessica J; DeGiorgio, Lorraine A; Kim, Dae J; Peng, Chu; Son, Jin H

    2003-01-31

    Oxidative stress (OS) is a primary pathogenic mechanism of nigral dopaminergic (DA) cell death in Parkinson's disease (PD). Oxidative damage, Lewy body formation and decreased mitochondrial complex I activity are the consistent pathological findings in PD. In nigral DA neurons, however, it is unknown whether any gene expressional changes induced by OS contribute to the typical PD pathology. Here, using microarray analysis, we identified several groups of genes in the nigral DA cell line, SN4741 [J. Neurosci. 19 (1999) 10; J. Neurochem. 76 (2001) 1010], that were regulated by OS. Approximately 36 significantly regulated genes that encode functional molecules of nuclear subunits of mitochondrial complex I, exocytosis and membrane trafficking proteins, markers for OS and oxidoreductases, regulatory molecules of apoptosis and unidentified EST clones were further analysed. OS modulated the expression of specific genes, of which physiological dysfunctions have been implicated in PD. For instance, the expression of the nuclear-encoded subunits of mitochondrial complex I, B8 and B17, were significantly down-regulated by OS, possibly contributing to selective defect in mitochondrial complex I activity in PD. Furthermore, syntaxin 8 and heme oxygenase-1 (HO-1) are most dramatically up-regulated by OS in DA cells. Syntaxin 8 is a SNARE protein, regulating lipid vesicle docking and fusion as well as early endosome membrane recycling. Lipid membranes are significantly oxidative-damaged in PD. HO-1 is an important cytoplasmic constituent of Lewy bodies, a pathological hallmark of idiopathic PD. Thus, our findings provide novel molecular probes that may be useful in unraveling the molecular mechanism(s) of OS-induced pathogenesis in PD. Further functional characterization of the affected genes including ESTs can help elucidate the underlying molecular pathology as well as develop biomarkers for monitoring degenerating DA neurons in PD.

  4. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats

    Noetzel, Steffen; Inhoff, Tobias; Goebel, Miriam; Taché, Yvette; Veh, Rüdiger W.; Bannert, Norbert; Grötzinger, Carsten; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2014-01-01

    Cholecystokinin (CCK) plays a role in the short-term inhibition of food intake. Cocaine- and amphetamine-regulated transcript (CART) peptide has been observed in neurons of the paraventricular nucleus (PVN). It has been reported that intracerebroventricular injection of CART peptide inhibits food intake in rodents. The aim of the study was to determine whether intraperitoneally (ip) injected CCK-8S affects neuronal activity of PVN-CART neurons. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive neurons was determined in the PVN, arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS). CCK-8S dose-dependently increased the number of c-Fos-immunoreactive neurons in the PVN (mean ± SEM: 102 ± 6 vs. 150 ± 5 neurons/section, p < 0.05) and compared to vehicle treated rats (18 ± 7, p < 0.05 vs. 6 and 10 μg/kg CCK-8S). CCK-8S at both doses induced an increase in the number of c-Fos-immunoreactive neurons in the NTS (65 ± 13, p < 0.05, and 182 ± 16, p < 0.05). No effect on the number of c-Fos neurons was observed in the ARC. Immunostaining for CART and c-Fos revealed a dose-dependent increase of activated CART neurons (19 ± 3 vs. 29 ± 7; p < 0.05), only few activated CART neuron were observed in the vehicle group (1 ± 0). The present observation shows that CCK-8S injected ip induces an increase in neuronal activity in PVN-CART neurons and suggests that CART neurons in the PVN may play a role in the mediation of peripheral CCK-8S's anorexigenic effects. PMID:20307613

  5. Striatal GDNF Production Is Independent to Circulating Estradiol Level Despite Pan-Neuronal Activation in the Female Mouse

    Enterría-Morales, Daniel; López-López, Ivette; López-Barneo, José; d’Anglemont de Tassigny, Xavier

    2016-01-01

    Gender difference in Parkinson’s disease (PD) suggests that female sex steroids may promote dopaminergic neuron survival and protect them from degeneration. The glial cell line-derived neurotrophic factor (GDNF) is believed to be dopaminotrophic; thus it is considered as a potential therapeutic target in PD. Additionally, GDNF is endogenously synthetized in the caudate/putamen of humans and striatum in rodents. A neuroprotective role of estrogens on the nigrostriatal pathway via the stimulation of GDNF has been proposed. Since the GDNF-producing parvalbumin (Parv) interneurons express the estrogen receptor alpha in the mouse striatum, we sought to determine whether ectopic estrogenic compound modulates the GDNF synthesis in mice. Using an ovariectomized-estradiol (E2) replacement regimen, which reliably generates a rise of plasma estradiol, we assessed the effects of different levels of E2 on the activation of striatal neuronal populations, and GDNF production. A strong correlation was found between plasma E2 and the expression of the immediate early gene cFos in the striatum, as well as in other cortical regions. However, moderate and high E2 treatments failed to induce any striatal GDNF mRNA and protein synthesis. High E2 only stimulates cFos induction in a low percentage of striatal Parv neurons whereas the majority of cFos-positive cells are medium spiny neurons. Activation of these projecting neurons by E2 suggests a role of circulating sex steroids in the modulation of striatal neural pathways. PMID:27741271

  6. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease.

    Mudò, Giuseppa; Mäkelä, Johanna; Di Liberto, Valentina; Tselykh, Timofey V; Olivieri, Melania; Piepponen, Petteri; Eriksson, Ove; Mälkiä, Annika; Bonomo, Alessandra; Kairisalo, Minna; Aguirre, Jose A; Korhonen, Laura; Belluardo, Natale; Lindholm, Dan

    2012-04-01

    Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but little is known about the molecular mechanisms controlling these events. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that is a master regulator of oxidative stress and mitochondrial metabolism. We show here that transgenic mice overexpressing PGC-1α in dopaminergic neurons are resistant against cell degeneration induced by the neurotoxin MPTP. The increase in neuronal viability was accompanied by elevated levels of mitochondrial antioxidants SOD2 and Trx2 in the substantia nigra of transgenic mice. PGC-1α overexpression also protected against MPTP-induced striatal loss of dopamine, and mitochondria from PGC-1α transgenic mice showed an increased respiratory control ratio compared with wild-type animals. To modulate PGC-1α, we employed the small molecular compound, resveratrol (RSV) that protected dopaminergic neurons against the MPTP-induced cell degeneration almost to the same extent as after PGC-1α overexpression. As studied in vitro, RSV activated PGC-1α in dopaminergic SN4741 cells via the deacetylase SIRT1, and enhanced PGC-1α gene transcription with increases in SOD2 and Trx2. Taken together, the results reveal an important function of PGC-1α in dopaminergic neurons to combat oxidative stress and increase neuronal viability. RSV and other compounds acting via SIRT1/PGC-1α may prove useful as neuroprotective agents in PD and possibly in other neurological disorders.

  7. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the ...

  8. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  9. Roles of noncanonical Wnt/PCP pathway genes in neuronal migration and neurulation in zebrafish.

    Wada, Hironori; Okamoto, Hitoshi

    2009-03-01

    Noncanonical Wnt/planar cell polarity (PCP) pathways regulate oriented cell movement during development in both Drosophila and vertebrates. Recent studies have revealed similarities and differences between these pathways in the tissues on which they act. In zebrafish, PCP pathway genes regulate the directional migration of a specific population of motor neurons in the hindbrain, as well as morphogenesis of the neuroepithelium. In the present review, neuronal and neuroepithelial defects in zebrafish PCP pathway mutants are compared, and the possible cellular and molecular mechanisms underlying these phenotypes are discussed. Future analyses of zebrafish PCP mutants will reveal the general mechanisms underlying the development of the neuroepithelium and provide novel insights into both conserved and diverse functions of PCP pathway genes in vertebrate development.

  10. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons.

    Nicoll, Michael P; Hann, William; Shivkumar, Maitreyi; Harman, Laura E R; Connor, Viv; Coleman, Heather M; Proença, João T; Efstathiou, Stacey

    2016-04-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir.

  11. A Subset of Autism-associated Genes Regulate the Structural Stability of Neurons

    Yu-Chih Lin

    2016-11-01

    Full Text Available Autism spectrum disorder (ASD comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into 1 cytoskeletal regulators, e.g. motors and small RhoGTPase regulators; 2 adhesion molecules, e.g. cadherins, NCAM, and neurexin superfamily; 3 cell surface receptors, e.g. glutamatergic receptors and receptor tyrosine kinases; 4 signaling molecules, e.g. protein kinases and phosphatases; and 5 synaptic proteins, e.g. vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.

  12. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  13. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion.

    Lamy, Christophe M; Sanno, Hitomi; Labouèbe, Gwenaël; Picard, Alexandre; Magnan, Christophe; Chatton, Jean-Yves; Thorens, Bernard

    2014-03-04

    Glucose-sensing neurons in the brainstem participate in the regulation of energy homeostasis but have been poorly characterized because of the lack of specific markers to identify them. Here we show that GLUT2-expressing neurons of the nucleus of the tractus solitarius form a distinct population of hypoglycemia-activated neurons. Their response to low glucose is mediated by reduced intracellular glucose metabolism, increased AMP-activated protein kinase activity, and closure of leak K(+) channels. These are GABAergic neurons that send projections to the vagal motor nucleus. Light-induced stimulation of channelrhodospin-expressing GLUT2 neurons in vivo led to increased parasympathetic nerve firing and glucagon secretion. Thus GLUT2 neurons of the nucleus tractus solitarius link hypoglycemia detection to counterregulatory response. These results may help identify the cause of hypoglycemia-associated autonomic failure, a major threat in the insulin treatment of diabetes.

  14. Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter.

    Andersen, J K; Frim, D M; Isacson, O; Breakefield, X O

    1993-10-01

    1. Herpesvirus infection with genetically engineered vectors is a way to deliver foreign gene products to various cell populations in culture and in vivo. Selective neuronal gene expression can be achieved using the neuron-specific enolase (NSE) promoter regulating expression of a transgene placed in and delivered by a herpesvirus vector. 2. We sought to determine the anatomical specificity and efficiency of herpesvirus-mediated gene transfer into the rat brain following placement of virus particles carrying a transgene (lacZ) under control of the NSE promoter. The virus utilized was thymidine kinase (TK) deficient and therefore replication deficient in the brain. 3. Infusion of 10(6) plaque-forming units of virus into the striatum caused a limited number of striatal neurons to express the lacZ transgene mRNA and protein product 7 days postinfection. In addition, small numbers of neurons expressing the transgene mRNA and protein were found ipsilateral to the viral injection in the frontal cortex, substantia nigra pars compacta, and thalamus. Neurons at these anatomic loci project directly to the striatal injection site. No other cells within the brains of injected animals expressed the lacZ gene. 4. While this herpesvirus NSE vector was capable of introducing novel functional genetic information into postmitotic neurons within defined neuroanatomic constraints, the numbers of neurons expressing detectable levels of beta-galactosidase was minimal. The calculated efficiency of delivery and transgene expression at 7 days postinfection was 1 transgenic neuron per 10(4) virus particles infused. 5. We conclude that NSE probably is not an optimal promoter for use in gene delivery to CNS neurons in herpesvirus vectors and that the efficacy of gene delivery using other neuron-specific promoters placed at various sites in the herpes viral genome needs to be explored.

  15. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  16. Highly efficient method for gene delivery in mouse dorsal root ganglia neurons

    Lingli eYu

    2015-02-01

    Full Text Available The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5 to 16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60 – 80% and low toxicity (> 60% survival were achieved with robust differentiation in response to Nerve growth factor (NGF. Moreover, 3-50 times fewer cells are needed (6x104 compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.

  17. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons.

    Christoph Straub

    Full Text Available The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.

  18. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes.

    Charbord, Jérémie; Poydenot, Pauline; Bonnefond, Caroline; Feyeux, Maxime; Casagrande, Fabrice; Brinon, Benjamin; Francelle, Laetitia; Aurégan, Gwenaelle; Guillermier, Martine; Cailleret, Michel; Viegas, Pedro; Nicoleau, Camille; Martinat, Cécile; Brouillet, Emmanuel; Cattaneo, Elena; Peschanski, Marc; Lechuga, Marc; Perrier, Anselme L

    2013-09-01

    Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease.

  19. Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose.

    Liu, Yao-Wu; Cheng, Ya-Qin; Liu, Xiao-Li; Hao, Yun-Chao; Li, Yu; Zhu, Xia; Zhang, Fan; Yin, Xiao-Xing

    2016-06-18

    Mangiferin, a natural C-glucoside xanthone, has anti-inflammatory, anti-oxidative, neuroprotective actions. Our previous study showed that mangiferin could attenuate diabetes-associated cognitive impairment of rats by enhancing the function of glyoxalase 1 (Glo-1) in brain. The aim of this study was to investigate whether Glo-1 upregulation by mangiferin in central neurons exposed to chronic high glucose may be related to activation of Nrf2/ARE pathway. Compared with normal glucose (25 mmol/L) culture, Glo-1 protein, mRNA, and activity levels were markedly decreased in primary hippocampal and cerebral cortical neurons cultured with high glucose (50 mmol/L) for 72 h, accompanied by the declined Nrf2 nuclear translocation and protein expression of Nrf2 in cell nucleus, as well as protein expression and mRNA level of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase activity, target genes of Nrf2/ARE signaling. Nonetheless, high glucose cotreating with mangiferin or sulforaphane, a typical inducer of Nrf2 activation, attenuated the above changes in both central neurons. In addition, mangiferin and sulforaphane significantly prevented the formation of advanced glycation end-products (AGEs) reflecting Glo-1 activity, while elevated the level of glutathione, a cofactor of Glo-1 activity and production of γ-GCS, in high glucose cultured central neurons. These findings demonstrated that Glo-1 was greatly downregulated in central neurons exposed to chronic high glucose, which is expected to lead the formation of AGEs and oxidative stress damages. We also proved that mangiferin enhanced the function of Glo-1 under high glucose condition by inducing activation of Nrf2/ARE signaling pathway.

  20. Phase Locking Phenomena and Electroencephalogram-Like Activities in Dynamic Neuronal Systems

    XU Xin-Jian; WANG Sheng-Jun; TANG Wei; WANG Ying-Hai

    2005-01-01

    @@ We study signal detection and transduction of dynamic neuronal systems under the influence of external noise,white and coloured. Based on simulations, we show explicitly phase locking phenomena between the output and the input of a single neuron and Electroencephalogram-like activities on neural networks with small-world connectivity. The numerical results prove that the dynamic neuronal system can be adjusted to an optimal sensitive state for signal processing in the presence of additive noise.

  1. ATP released by injured neurons activates Schwann cells

    Samuele eNegro

    2016-05-01

    Full Text Available Injured nerve terminals of neuromuscular junctions (NMJs can regenerate. This remarkable and complex response is governed by molecular signals that are exchanged among the cellular components of this synapse: motor axon nerve terminal (MAT, perisynaptic Schwann cells (PSCs, and muscle fibre. The nature of signals that govern MAT regeneration is ill-known. In the present study the spider toxin α-Latrotoxin has been used as tool to investigate the mechanisms underlying peripheral neuroregeneration. Indeed this neurotoxin induces an acute, specific, localized and fully reversible damage of the presynaptic nerve terminal, and its action mimics the cascade of events that leads to nerve terminal degeneration in injured patients and in many neurodegenerative conditions. Here we provide evidence of an early release by degenerating neurons of ATP as alarm messenger, that contributes to the activation of a series of intracellular pathways within SCs that are crucial for nerve regeneration: Ca2+, cAMP, ERK1/2, and CREB. These results contribute to define the cross-talk taking place among degenerating nerve terminals and PSCs, involved in the functional recovery of the NMJ.

  2. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons.

    Frickenhaus, Marie; Wagner, Marina; Mallik, Moushami; Catinozzi, Marica; Storkebaum, Erik

    2015-03-16

    To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.

  3. Neuronal and glial expression of the multidrug resistance gene product in an experimental epilepsy model.

    Lazarowski, Alberto; Ramos, Alberto Javier; García-Rivello, Hernán; Brusco, Alicia; Girardi, Elena

    2004-02-01

    1. Failure of anticonvulsive drugs to prevent seizures is a common complication of epilepsy treatment known as drug-refractory epilepsy but their causes are not well understood. It is hypothesized that the multidrug resistance P-glycoprotein (Pgp-170), the product of the MDR-1 gene that is normally expressed in several excretory tissues including the blood brain barrier, may be participating in the refractory epilepsy. 2. Using two monoclonal antibodies against Pgp-170, we investigated the expression and cellular distribution of this protein in the rat brain during experimentally induced epilepsy. Repeated seizures were induced in male Wistar rats by daily administration of 3-mercaptopropionic acid (MP) 45 mg/kg i.p. for either 4 days (MP-4) or 7 days (MP-7). Control rats received an equivalent volume of vehicle. One day after the last injection, rats were sacrificed and brains were processed for immunohistochemistry for Pgp-170. As it was previously described, Pgp-170 immunostaining was observed in some brain capillary endothelial cells of animals from control group. 3. Increased Pgp-170 immunoreactivity was detected in MP-treated animals. Besides the Pgp-170 expressed in blood vessels, neuronal, and glial immunostaining was detected in hippocampus, striatum, and cerebral cortex of MP-treated rats. Pgp-170 immunolabeled neurons and glial cells were observed in a nonhomogeneous distribution. MP-4 animals presented a very prominent Pgp-170 immunostaining in the capillary endothelium, surrounding astrocytes and some neighboring neurons while MP-7 group showed increased neuronal labeling. 4. Our results demonstrate a selective increase in Pgp-170 immunoreactivity in the brain capillary endothelial cells, astrocytes, and neurons during repetitive MP-induced seizures. 5. The role for this Pgp-170 overexpression in endothelium and astrocytes as a clearance mechanism in the refractory epilepsy, and the consequences of neuronal Pgp-170 expression remain to be disclosed.

  4. Mutations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar disorder: a preliminary study

    Martinez-Aran Anabel; Geijo-Barrientos Emilio; Vieta Eduard; Rubio Cristina; Selva Gabriel; Salazar Jose; Balanza Vicent; Martinez-Gimenez Juan; Escamez Teresa; Tabares-Seisdedos Rafael; Reiner Orly; Martinez Salvador

    2006-01-01

    Both neurodevelopmental processes and prefrontal cortex function are known to be abnormal in schizophrenia and bipolar disorder. The hypothesis to be tested was that these features are related with genes that regulate neuronal migration.

  5. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Sidiropoulou, Kyriaki; Poirazi, Panayiota

    2012-01-01

    Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC), which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP) latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code

  6. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  7. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  8. Both barium and calcium activate neuronal potassium currents.

    Ribera, A B; Spitzer, N C

    1987-01-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium (100-500 microM) from the currents produced without cadmium but in the presence of permeant divalent cations (50-100 micro...

  9. Prior high corticosterone exposure reduces activation of immature neurons in the ventral hippocampus in response to spatial and nonspatial memory.

    Workman, Joanna L; Chan, Melissa Y T; Galea, Liisa A M

    2015-03-01

    Chronic stress or chronically high glucocorticoids attenuate adult hippocampal neurogenesis by reducing cell proliferation, survival, and differentiation in male rodents. Neurons are still produced in the dentate gyrus during chronically high glucocorticoids, but it is not known whether these new neurons are appropriately activated in response to spatial memory. Thus, the goal of this study was to determine whether immature granule neurons generated during chronically high glucocorticoids (resulting in a depressive-like phenotype) are differentially activated by spatial memory retrieval. Male Sprague Dawley rats received either 40 mg/kg corticosterone (CORT) or vehicle for 18 days prior to behavioral testing. Rats were tested in the forced swim test (FST) and then tested in a spatial (hippocampus-dependent) or cued (hippocampus-independent) Morris Water Maze. Tissue was then processed for doublecortin (DCX) to identify immature neurons and zif268, an immediate early gene product. As expected, CORT increased depressive-like behavior (greater immobility in the FST) however, prior CORT modestly enhanced spatial learning and memory compared with oil. Prior CORT reduced the number of DCX-expressing cells and proportion of DCX-expressing cells colabeled for zif268, but only in the ventral hippocampus. Prior CORT shifted the proportion of cells in the ventral hippocampus away from postmitotic cells and toward immature, proliferative cells, likely due to the fact that postmitotic cells were produced and matured during CORT exposure but proliferative cells were produced after high CORT exposure ceased. Compared with cue training, spatial training slightly increased DCX-expressing cells and shifted cells toward the postmitotic stage in the ventral hippocampus. These data suggest that the effects of CORT and spatial training on immature neurons are more pronounced in the ventral hippocampus. Further, high CORT reduced activation of immature neurons, suggesting that exposure

  10. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort.

    Qu, Yu-jin; Ge, Xiu-shan; Bai, Jin-li; Wang, Li-wen; Cao, Yan-yan; Lu, Yan-yu; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-03-01

    We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP.

  11. A SAGE-based screen for genes expressed in sub-populations of neurons in the mouse dorsal root ganglion

    Garces Alain

    2007-11-01

    Full Text Available Abstract Background The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG using SAGE (serial analysis of gene expression methodology. Thermo-nociceptors constitute up to 80 % of the neurons in the DRG. In TrkA mutant DRGs, the nociceptor sub-class of sensory neurons is lost due to absence of nerve growth factor survival signaling through its receptor TrkA. Thus, comparison of wild-type and TrkA mutants allows the identification of transcripts preferentially expressed in the nociceptor or mechano-proprioceptor subclasses, respectively. Results Our comparison revealed 240 genes differentially expressed between the two tissues (P Conclusion We have identified and characterized the detailed expression patterns of three genes in the developing DRG, placing them in the context of the known major neuronal sub-types defined by molecular markers. Further analysis of differentially expressed genes in this tissue promises to extend our knowledge of the molecular diversity of different cell types and forms the basis for understanding their particular functional specificities.

  12. Neuronal differentiation of human iPS cells induced by baicalin via regulation of bHLH gene expression.

    Morita, Akihiro; Soga, Kohei; Nakayama, Hironobu; Ishida, Torao; Kawanishi, Shosuke; Sato, Eisuke F

    2015-09-25

    Efficient differentiation is important for regenerative medicine based on pluripotent stem cells, including treatment of neurodegenerative disorders and trauma. Baicalin promotes neuronal differentiation of neural stem/progenitor cells of rats and mice. To evaluate the suitability of baicalin for neuronal differentiation of human iPS cells, we investigated whether it promotes neuronal differentiation in human iPS cells and monitored basic helix-loop-helix (bHLH) gene expression during neuronal differentiation. Baicalin promoted neuronal differentiation and inhibited glial differentiation, suggesting that baicalin can influence the neuronal fate decision in human iPS cells. Notch signaling, which is upstream of bHLH proteins, was not involved in baicalin-induced neuronal differentiation. Baicalin treatment did not down-regulate Hes1 gene expression, but it reduced Hes1 protein levels and up-regulated Ascl1 gene expression. Thus, baicalin promoted neuronal differentiation via modulation of bHLH transcriptional factors. Therefore, baicalin has potential to be used as a small-molecule drug for regenerative treatment of neurodegenerative disorders.

  13. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model.

    Lin, Chung-Yin; Hsieh, Han-Yi; Chen, Chiung-Mei; Wu, Shang-Rung; Tsai, Chih-Hung; Huang, Chiung-Yin; Hua, Mu-Yi; Wei, Kuo-Chen; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-08-10

    Focused ultrasound (FUS)-induced with microbubbles (MBs) is a promising technique for noninvasive opening of the blood-brain barrier (BBB) to allow targeted delivery of therapeutic substances into the brain and thus the noninvasive delivery of gene vectors for CNS treatment. We have previously demonstrated that a separated gene-carrying liposome and MBs administration plus FUS exposure can deliver genes into the brain, with the successful expression of the reporter gene and glial cell line-derived neurotrophic factor (GDNF) gene. In this study, we further modify the delivery system by conjugating gene-carrying liposomes with MBs to improve the GDNF gene-delivery efficiency, and to verify the possibility of using this system to perform treatment in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal disease model. FUS-BBB opening was verified by contrast-enhanced MRI, and GFP gene expression was verified via in vivo imaging system (IVIS). Western blots as well as enzyme-linked immunosorbent assay (ELISA) were conducted to measure protein expression, and immunohistochemistry (IHC) was conducted to test the Tyrosine hydroxylase (TH)-neuron distribution. Dopamine (DA) and its metabolites as well as dopamine active transporter (DAT) were quantitatively analyzed to show dopaminergic neuronal dopamine secretion/activity/metabolism. Motor performance was evaluated by rotarod test weekly. Results demonstrated that the LpDNA-MBs (gene-liposome-MBs) complexes successfully serve as gene carrier and BBB-opening catalyst, and outperformed the separated LpDNA/MBs administration both in terms of gene delivery and expression. TH-positive IHC and measurement of DA and its metabolites DOPAC and HVA confirmed improved neuronal function, and the proposed system also provided the best neuroprotective effect to retard the progression of motor-related behavioral abnormalities. Immunoblotting and histological staining further confirmed the expression of reporter genes in

  14. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (Pneuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  15. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity

    Ruaro Maria

    2009-01-01

    Full Text Available Abstract Background Neuronal plasticity is initiated by transient elevations of neuronal networks activity leading to changes of synaptic properties and providing the basis for memory and learning 1. An increase of electrical activity can be caused by electrical stimulation 2 or by pharmacological manipulations: elevation of extracellular K+ 3, blockage of inhibitory pathways 4 or by an increase of second messengers intracellular concentrations 5. Neuronal plasticity is mediated by several biochemical pathways leading to the modulation of synaptic strength, density of ionic channels and morphological changes of neuronal arborisation 6. On a time scale of a few minutes, neuronal plasticity is mediated by local protein trafficking 7 while, in order to sustain modifications beyond 2–3 h, changes of gene expression are required 8. Findings In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABAA receptor antagonist gabazine (GabT causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors. Conclusion These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.

  16. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two...

  17. [Use of the recurrence plot method in stochastic analysis of neuronal activity].

    Novák, V; Schmidt, J

    1996-09-01

    The recurrence plot method is described together with its application to the analysis of inner time relations in the sequences of interspike intervals. The depicted method was employed to analyze results from the computer model of the neuronal stochastic activity. It can be also used to analyze sequences of interspike intervals in the records from life neurons.

  18. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.

  19. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence.

  20. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  1. Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: a preliminary study.

    Tabarés-Seisdedos, R; Escámez, T; Martínez-Giménez, J A; Balanzá, V; Salazar, J; Selva, G; Rubio, C; Vieta, E; Geijó-Barrientos, E; Martínez-Arán, A; Reiner, O; Martínez, S

    2006-01-01

    Both neural development and prefrontal cortex function are known to be abnormal in schizophrenia and bipolar disorder. In order to test the hypothesis that these features may be related with genes that regulate neuronal migration, we analyzed two genomic regions: the lissencephaly critical region (chromosome 17p) encompassing the LIS1 gene and which is involved in human lissencephaly; and the genes related to the platelet-activating-factor, functionally related to LIS1, in 52 schizophrenic patients, 36 bipolar I patients and 65 normal control subjects. In addition, all patients and the 25 control subjects completed a neuropsychological battery. Thirteen (14.8%) patients showed genetic variations in either two markers related with lissencephaly or in the platelet-activating-factor receptor gene. These patients performed significantly worse in the Wisconsin Card Sorting Test-Perseverative Errors in comparison with patients with no lissencephaly critical region/platelet-activating-factor receptor variations. The presence of lissencephaly critical region/platelet-activating-factor receptor variations was parametrically related to perseverative errors, and this accounted for 17% of the variance (P = 0.0001). Finally, logistic regression showed that poor Wisconsin Card Sorting Test-Perseverative Errors performance was the only predictor of belonging to the positive lissencephaly critical region/platelet-activating-factor receptor group. These preliminary findings suggest that the variations in genes involved in neuronal migration predict the severity of the prefrontal cognitive deficits in both disorders.

  2. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Andrea M Santangelo

    2007-10-01

    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  3. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus

    Atsushi eFukushima

    2015-03-01

    Full Text Available There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation, gonadal steroids (i.e., testosterone and estradiol, and diet (i.e., western-style diet vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day, but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.

  4. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  5. Circadian and dark-pulse activation of orexin/hypocretin neurons

    Marston Oliver J

    2008-12-01

    Full Text Available Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH. Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock.

  6. Spatial Frequency Components of Images Modulate Neuronal Activity in Monkey Amygdala.

    Montes-Lourido, Pilar; Bermudez, M A; Romero, M C; Vicente, A F; Gonzalez, F

    2016-04-01

    Processing the spatial frequency components of an image is a crucial feature for visual perception, especially in recognition of faces. Here, we study the correlation between spatial frequency components of images of faces and neuronal activity in monkey amygdala while performing a visual recognition task. The frequency components of the images were analyzed using a fast Fourier transform for 40 spatial frequency ranges. We recorded 65 neurons showing statistically significant responses to at least one of the images used as a stimulus. A total of 37 of these neurons (n = 37) showed significant responses to at least three images, and in eight of them (8/37, 22%), we found a statistically significant correlation between neuron response and the modulus amplitude of at least one frequency range present in the images. Our results indicate that high spatial frequency and low spatial frequency components of images influence the activity of amygdala neurons.

  7. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons.

    Singh, Shilpee; Zhuo, Ming; Gorgun, Falih M; Englander, Ella W

    2013-08-01

    Surges of nitric oxide compromise mitochondrial respiration primarily by competitive inhibition of oxygen binding to cytochrome c oxidase (complex IV) and are particularly injurious in neurons, which rely on oxidative phosphorylation for all their energy needs. Here, we show that transgenic overexpression of the neuronal globin protein, neuroglobin, helps diminish protein nitration, preserve mitochondrial function and sustain ATP content of primary cortical neurons challenged by extended nitric oxide exposure. Specifically, in transgenic neurons, elevated neuroglobin curtailed nitric oxide-induced alterations in mitochondrial oxygen consumption rates, including baseline oxygen consumption, consumption coupled with ATP synthesis, proton leak and spare respiratory capacity. Concomitantly, activation of genes involved in sensing and responding to oxidative/nitrosative stress, including the early-immediate c-Fos gene and the phase II antioxidant enzyme, heme oxygenase-1, was diminished in neuroglobin-overexpressing compared to wild-type neurons. Taken together, these differences reflect a lesser insult produced by similar concentrations of nitric oxide in neuroglobin-overexpressing compared to wild-type neurons, suggesting that abundant neuroglobin buffers nitric oxide and raises the threshold of nitric oxide-mediated injury in neurons.

  8. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

  9. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.

    Youngseok Lee

    Full Text Available In both vertebrates and invertebrates, Transient Receptor Potential (TRP channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs, which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.

  10. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.

    Lee, Youngseok

    2013-01-01

    In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.

  11. Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging.

    Bushey, Daniel; Tononi, Giulio; Cirelli, Chiara

    2015-04-14

    Sleep in Drosophila shares many features with mammalian sleep, but it remains unknown whether spontaneous and evoked activity of individual neurons change with the sleep/wake cycle in flies as they do in mammals. Here we used calcium imaging to assess how the Kenyon cells in the fly mushroom bodies change their activity and reactivity to stimuli during sleep, wake, and after short or long sleep deprivation. As before, sleep was defined as a period of immobility of >5 min associated with a reduced behavioral response to a stimulus. We found that calcium levels in Kenyon cells decline when flies fall asleep and increase when they wake up. Moreover, calcium transients in response to two different stimuli are larger in awake flies than in sleeping flies. The activity of Kenyon cells is also affected by sleep/wake history: in awake flies, more cells are spontaneously active and responding to stimuli if the last several hours (5-8 h) before imaging were spent awake rather than asleep. By contrast, long wake (≥29 h) reduces both baseline and evoked neural activity and decreases the ability of neurons to respond consistently to the same repeated stimulus. The latter finding may underlie some of the negative effects of sleep deprivation on cognitive performance and is consistent with the occurrence of local sleep during wake as described in behaving rats. Thus, calcium imaging uncovers new similarities between fly and mammalian sleep: fly neurons are more active and reactive in wake than in sleep, and their activity tracks sleep/wake history.

  12. Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade.

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-09-07

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT(3) receptor by intrathecal injection of a selective 5-HT(3) receptor agonist, SR57227, induced spinal glial hyperactivity, neuronal hyperexcitability, and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via the cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous brain-derived neurotrophic factor-induced descending pain facilitation was accompanied by upregulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, and these events were significantly prevented by functional blockade of spinal 5-HT(3) receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia.

  13. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    Williams Alun

    2007-01-01

    Full Text Available Abstract Background Platelet-activating factor (PAF is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD. Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF.

  14. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice.

    Shankar Sadasivan

    Full Text Available BACKGROUND: Methylphenidate (MPH is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT and the norepinephrine transporter (NET, resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. METHODOLOGY/PRINCIPAL FINDINGS: Through the use of stereological counting methods, we observed a significant reduction (∼20% in dopamine neuron numbers in the substantia nigra pars compacta (SNpc following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. CONCLUSION: Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at

  15. Motor neuron-expressed microRNAs 218 and their enhancers are nested within introns of Slit2/3 genes.

    Punnamoottil, Beena; Rinkwitz, Silke; Giacomotto, Jean; Svahn, Adam J; Becker, Thomas S

    2015-05-01

    miR218-1 and miR218-2 are embedded in introns of SLIT2 and SLIT3, respectively, an arrangement conserved throughout vertebrate genomes. Both miR218 genes are predicted to be transcribed in the same orientation as their host genes and were assumed to be spliced from Slit2/3 primary transcripts. In zebrafish miR218 is active in cranial nerve motor nuclei and spinal cord motor neurons, while slit2 and slit3 are expressed predominantly in the midline. This differential expression pattern suggested independent regulation of miR218 genes by distinct enhancers. We tested conserved noncoding elements for regulatory activity by reporter gene transgenesis in zebrafish. Two human enhancers, 76 kb and 130 kb distant from miR218-2, were identified that drove GFP expression in zebrafish in an almost complete miR218 expression pattern. In the zebrafish slit3 locus, two enhancers with identical activity were discovered. In human SLIT2 one enhancer 52 kb upstream of miR218-1 drove an expression pattern very similar to the enhancers of miR218-2. This establishes that miR218-1/-2 regulatory units are nested within SLIT2/3 and that they are duplicates of an ancestral single locus. Due to the strong activity of the enhancers, unique transgenic lines were created that facilitate morphological and gene functional genetic experiments in motor neurons.

  16. Neurotrophin/Trk receptor signaling mediates C/EBPα, -β and NeuroD recruitment to immediate-early gene promoters in neuronal cells and requires C/EBPs to induce immediate-early gene transcription

    von Bohlen und Halbach Oliver

    2007-01-01

    Full Text Available Abstract Background Extracellular signaling through receptors for neurotrophins mediates diverse neuronal functions, including survival, migration and differentiation in the central nervous system, but the transcriptional targets and regulators that mediate these diverse neurotrophin functions are not well understood. Results We have identified the immediate-early (IE genes Fos, Egr1 and Egr2 as transcriptional targets of brain derived neurotrophic factor (BDNF/TrkB signaling in primary cortical neurons, and show that the Fos serum response element area responds to BDNF/TrkB in a manner dependent on a combined C/EBP-Ebox element. The Egr1 and Egr2 promoters contain homologous regulatory elements. We found that C/EBPα/β and NeuroD formed complexes in vitro and in vivo, and were recruited to all three homologous promoter regions. C/EBPα and NeuroD co-operatively activated the Fos promoter in transfection assays. Genetic depletion of Trk receptors led to impaired recruitment of C/EBPs and NeuroD in vivo, and elimination of Cebpa and Cebpb alleles reduced BDNF induction of Fos, Egr1 and Egr2 in primary neurons. Finally, defective differentiation of cortical dendrites, as measured by MAP2 staining, was observed in both compound Cebp and Ntrk knockout mice. Conclusion We here identify three IE genes as targets for BDNF/TrkB signaling, show that C/EBPα and -β are recruited along with NeuroD to target promoters, and that C/EBPs are essential mediators of Trk signaling in cortical neurons. We show also that C/EBPs and Trks are required for cortical dendrite differentiation, consistent with Trks regulating dendritic differentiation via a C/EBP-dependent mechanism. Finally, this study indicates that BDNF induction of IE genes important for neuronal function depends on transcription factors (C/EBP, NeuroD up-regulated during neuronal development, thereby coupling the functional competence of the neuronal cells to their differentiation.

  17. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W; Yu, Tian; Basson, M A; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

  18. TGFβ1 inhibits IFNγ-mediated microglia activation and protects mDA neurons from IFNγ-driven neurotoxicity.

    Zhou, Xiaolai; Zöller, Tanja; Krieglstein, Kerstin; Spittau, Björn

    2015-07-01

    Microglia-mediated neuroinflammation has been reported as a common feature of familial and sporadic forms of Parkinson's disease (PD), and a growing body of evidence indicates that onset and progression of PD correlates with the extent of neuroinflammatory responses involving Interferon γ (IFNγ). Transforming growth factor β1 (TGFβ1) has been shown to be a major player in the regulation of microglia activation states and functions and, thus, might be a potential therapeutic agent by shaping microglial activation phenotypes during the course of neurodegenerative diseases such as PD. In this study, we demonstrate that TGFβ1 is able to block IFNγ-induced microglia activation by attenuating STAT1 phosphorylation and IFNγRα expression. Moreover, we identified a set of genes involved in microglial IFNγ signaling transduction that were significantly down-regulated upon TGFβ1 treatment, resulting in decreased sensitivity of microglia toward IFNγ stimuli. Interestingly, genes mediating negative regulation of IFNγ signaling, such as SOCS2 and SOCS6, were up-regulated after TGFβ1 treatment. Finally, we demonstrate that TGFβ1 is capable of protecting midbrain dopaminergic (mDA) neurons from IFNγ-driven neurotoxicity in mixed neuron-glia cultures derived from embryonic day 14 (E14) midbrain tissue. Together, these data underline the importance of TGFβ1 as a key immunoregulatory factor for microglia by silencing IFNγ-mediated microglia activation and, thereby, rescuing mDA neurons from IFNγ-induced neurotoxicity. Interferon γ (IFNγ) is a potent pro-inflammatory factor that triggers the activation of microglia and the subsequent release of neurotoxic factors. Transforming growth factor β1 (TGFβ1) is able to inhibit the IFNγ-mediated activation of microglia, which is characterized by the release of nitric oxide (NO) and tumor necrosis factor α (TNFα). By decreasing the expression of IFNγ-induced genes as well as the signaling receptor IFNγR1, TGFβ1

  19. Differential effects of histamine on the activity of hypothalamic dopaminergic neurons in the rat.

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-01-01

    The effect of intracerebroventricular administration of histamine on hypothalamic dopaminergic neuronal activity was estimated in male rats by measuring concentrations of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in brain regions containing terminals or perikarya of these neurons. Three distinct, regionally specific neurochemical responses were apparent. In the median eminence and intermediate lobe of the pituitary, histamine affected neither DOPAC nor dopamine concentrations, suggesting no effect on tuberoinfundibular or periventricular-hypophysial dopaminergic neuronal activity. In the medial zona incerta and in the dorsomedial, rostral periventricular and medial preoptic hypothalamic nuclei, histamine effected a dose- and time-related increase in both DOPAC and dopamine concentrations; these effects were blocked by destruction of noradrenergic neurons projecting to these regions, suggesting that these changes are attributable to noradrenergic neuronal activation, and that histamine does not affect the activity of incertohypothalamic or periventricular-preoptic dopaminergic neurons located in these brain regions. In the suprachiasmatic, caudal periventricular and paraventricular hypothalamic nuclei, histamine effected a dose- and time-related increase in DOPAC, but not dopamine, concentrations; these effects were blocked by the H1 antagonist mepyramine, but not the H2 antagonist zolantidine. Destruction of noradrenergic neurons projecting to these regions did not prevent the histamine-induced increases in DOPAC concentrations. These data indicate that histamine increases the activity of dopaminergic neurons projecting to the suprachiasmatic, caudal periventricular and paraventricular nuclei via an action at H1 receptors. Overall, these results reveal that i.c.v. administration of histamine differentially affects the activity of the various dopaminergic neuronal systems of the rat hypothalamus.

  20. Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus

    Ken-Ichi eOkada

    2013-05-01

    Full Text Available The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Reportedly, neurons in the dorsal raphe nucleus, one major source of serotonin, continually track the state of expectation of future rewards by showing a correlated response to the start of a behavioral task, reward cue presentation, and reward delivery. Here, we show that neurons in the pedunculopontine tegmental nucleus (PPTN, one major source of acetylcholine, showed similar encoding of the expectation of future rewards by a systematic increase or decrease in tonic activity. We recorded and analyzed PPTN neuronal activity in monkeys during a reward conditioned visually guided saccade task. The firing patterns of many PPTN neurons were tonically increased or decreased throughout the task period. The tonic activity pattern of neurons was correlated with their encoding of the predicted reward value; neurons exhibiting an increase or decrease in tonic activity showed higher or lower activity in the large reward-predicted trials, respectively. Tonic activity and reward-related modulation ended around the time of reward delivery. Additionally, some tonic changes in activity started prior to the appearance of the initial stimulus, and were related to the anticipatory fixational behavior. A partially overlapping population of neurons showed both the initial anticipatory response and subsequent predicted reward value-dependent activity modulation by their systematic increase or decrease of tonic activity. These bi-directional reward- and anticipatory behavior-related modulation patterns are suitable for the presumed role of the PPTN in reward processing and

  1. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  2. Neuronal injury induces the release of pro-interleukin-1beta from activated microglia in vitro.

    Wang, Penglian; Rothwell, Nancy J; Pinteaux, Emmanuel; Brough, David

    2008-10-21

    Microglia activated after brain injury, are a major source of the pro-inflammatory cytokine interleukin-1 (IL-1), which is known to further exacerbate damage. However, the mechanisms that control IL-1 release in acute neuronal injury are unknown and the purpose of this study was to test the hypothesis that neuronal injury induces IL-1beta release from microglial cells. Here we report that lipopolysaccharide (LPS)-activated rat microglia co-cultured with healthy rat neurons express pro-IL-1beta, which in the absence of cell death accumulates in the cells. Treatment of co-cultures with the excitotoxin N-methyl-D-aspartate (NMDA) induced neuronal cell death leading to the appearance of pro-IL-1beta in the culture supernatant. This effect was reversed by the NMDA receptor antagonist MK-801, and was neuron-dependent, since NMDA had no effect on cell death or pro-IL-1beta release in mixed glial cell cultures. In addition, we show that pro-IL-1beta release from LPS-treated mixed glia or LPS-treated microglia is significantly reduced in the presence of conditioned medium from healthy co-cultures or neuronal cultures respectively. These results demonstrate that injured neurons promote the release of pro-IL-1beta from microglia, possibly by regulating microglial cell viability, and suggest an important alternative mechanism of IL-1beta release that occurs in response to neuronal injury.

  3. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor

    Güler, Ali D.; Rainwater, Aundrea; Parker, Jones G.; Jones, Graham L.; Argilli, Emanuela; Arenkiel, Benjamin R.; Ehlers, Michael D.; Bonci, Antonello; Zweifel, Larry s.; Palmiter, Richard D.

    2013-01-01

    The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches. PMID:22434189

  4. Bacteria activate sensory neurons that modulate pain and inflammation

    Chiu, Isaac M.; Heesters, Balthasar A.; Ghasemlou, Nader; Von Hehn, Christian A.; Zhao, Fan; Tran, Johnathan; Wainger, Brian; Strominger, Amanda; Muralidharan, Sriya; Horswill, Alexander R.; Wardenburg, Juliane Bubeck; Hwang, Sun Wook; Carroll, Michael C.; Woolf, Clifford J.

    2013-01-01

    Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune a

  5. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels;

    2007-01-01

    Cholecystokinin (CCK) is abundantly expressed in the CNS, in which it regulates feeding behavior and long-term memory. Moreover, CCK has been implicated in mental disorders, such as anxiety and schizophrenia. Despite its manifest physiological and pathophysiological role, the molecular targets...... could be identified. Comparison with forskolin- and nerve growth factor (NGF)-treated PC12 cells showed that CCK induced a separate set of target genes. Taken together, we propose that neuronal CCK may have a role in the regulation of the circadian rhythm, the metabolism of cerebral cholesterol...

  6. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Prevedel, R; Hoffmann, M; Pak, N; Wetzstein, G; Kato, S; Schrödel, T; Raskar, R; Zimmer, M; Boyden, E S; Vaziri, A

    2014-01-01

    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.

  7. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

    Anamthathmakula, Prashanth; Sahu, Maitrayee; Sahu, Abhiram

    2015-09-14

    Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

  8. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

    Yan Jin

    Full Text Available Sodium salicylate (NaSal, a tinnitus inducing agent, can activate serotonergic (5-HTergic neurons in the dorsal raphe nucleus (DRN and can increase serotonin (5-HT level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

  9. Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons

    Tarallo Raffaella

    2006-10-01

    Full Text Available Abstract Background The homeodomain transcription factor Orthopedia (Otp is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. Results Here, we identified two otp orthologues in zebrafish (otp1 and otp2 and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO (anterior alar plate and the posterior tuberculum (PT (posterior basal plate. The latter structure is characterized by Tyrosine Hydroxylase (TH-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA neurons. Disruptions of Hedgehog (HH and Fibroblast Growth Factor (FGF pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. Conclusion In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates.

  10. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  11. Cis- and trans-regulatory mechanisms of gene expression in the ASJ sensory neuron of Caenorhabditis elegans

    M. González-Barrios (María); J.C. Fierro-González (Juan Carlos); E. Krpelanova (Eva); J.A. Mora-Lorca (José Antonio); J. Rafael Pedrajas (José); X. Peñate (Xenia); S. Chavez (Sebastián); P. Swoboda (Peter); G. Jansen (Gert); A. Miranda-Vizuet (Antonio)

    2015-01-01

    textabstractThe identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ

  12. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  13. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones

    Magherini Pier C

    2010-09-01

    Full Text Available Abstract Protease-activated receptors (PAR1-4 are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.

  14. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease

    Mariani, M. M.; Malm, T.; Lamb, R.; Jay, T. R.; Neilson, L.; Casali, B.; Medarametla, L.; Landreth, G. E.

    2017-01-01

    Alzheimer’s disease (AD) is characterized by extensive neuron loss that accompanies profound impairments in memory and cognition. We examined the neuronally directed effects of the retinoid X receptor agonist bexarotene in an aggressive model of AD. We report that a two week treatment of 3.5 month old 5XFAD mice with bexarotene resulted in the clearance of intraneuronal amyloid deposits. Importantly, neuronal loss was attenuated by 44% in the subiculum in mice 4 months of age and 18% in layer V of the cortex in mice 8 months of age. Moreover, bexarotene treatment improved remote memory stabilization in fear conditioned mice and improved olfactory cross habituation. These improvements in neuron viability and function were correlated with significant increases in the levels of post-synaptic marker PSD95 and the pre-synaptic marker synaptophysin. Moreover, bexarotene pretreatment improved neuron survival in primary 5XFAD neurons in vitro in response to glutamate-induced excitotoxicity. The salutary effects of bexarotene were accompanied by reduced plaque burden, decreased astrogliosis, and suppression of inflammatory gene expression. Collectively, these data provide evidence that bexarotene treatment reduced neuron loss, elevated levels of markers of synaptic integrity that was linked to improved cognition and in an aggressive model of AD. PMID:28205585

  15. 50 Hz-Sinusoidal magnetic field induced effects on the bioelectric activity of single unit neurone cells

    Azanza, María. J.; Calvo, Ana C.; del Moral, A.

    2001-05-01

    Neurones recruiting and synchronized bioelectric activity recorded from Helix aspersa brain ganglia, under exposure to 50 Hz sinusoidal magnetic fields of 1-15 mT intensity, is reported. We show recruiting responses from single neurones and the synchronization of pairs of neurones activity. Experimental evidence and model theoretical explanation for the spreading of synchronization are presented.

  16. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease.

  17. Size-dependent regulation of synchronized activity in living neuronal networks

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  18. Size-dependent regulation of synchronized activity in living neuronal networks.

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  19. Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons.

    Véronique Dorval

    Full Text Available BACKGROUND: The small non-protein-coding microRNAs (miRNAs have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25 misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. CONCLUSIONS/SIGNIFICANCE: Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.

  20. CAMKII activation is not required for maintenance of learning-induced enhancement of neuronal excitability.

    Ori Liraz

    Full Text Available Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC and extracellular regulated kinase (ERK activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.

  1. CAMKII activation is not required for maintenance of learning-induced enhancement of neuronal excitability.

    Liraz, Ori; Rosenblum, Kobi; Barkai, Edi

    2009-01-01

    Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC) and extracellular regulated kinase (ERK) activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.

  2. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p ACM produced a significant increase in BKα1 and BKβ3 expression (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  3. Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons.

    Takahashi, Norimasa; Wada, Yuichi; Ohtori, Seiji; Saisu, Takashi; Moriya, Hideshige

    2003-09-30

    There have been several reports on the use of extracorporeal shock waves in the treatment of pseudarthrosis, calcifying tendinitis, and tendinopathies of the elbow. However, the pathomechanism of pain relief has not been clarified. To investigate the analgesic properties of shock wave application, we analyzed changes in calcitonin gene-related peptide (CGRP)-immunoreactive (ir) dorsal root ganglion (DRG) neurons. In the nontreated group, fluorogold-labeled dorsal root ganglion neurons innervating the most middle foot pad of hind paw were distributed in the L4 and L5 dorsal root ganglia. Of these neurons, 61% were CGRP-ir. However, in the shock wave-treated group, the percentage of FG-labeled CGRP-ir DRG neurons decreased to 18%. These data show that relief of clinical pain after shock wave application may result from reduced CGRP expression in DRG neurons.

  4. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  5. The interplay of microRNA and neuronal activity in health and disease

    Eacker, Stephen M.; Dawson, Ted M.; Dawson, Valina L.

    2013-01-01

    MicroRNAs (miRNAs) are small 19–23 nucleotide regulatory RNAs that function by modulating mRNA translation and/or turnover in a sequence-specific fashion. In the nervous system, miRNAs regulate the production of numerous proteins involved in synaptic transmission. In turn, neuronal activity can regulate the production and turnover of miRNA through a variety of mechanisms. In this way, miRNAs and neuronal activity are in a reciprocal homeostatic relationship that balances neuronal function. The miRNA function is critical in pathological states related to overexcitation such as epilepsy and stroke, suggesting miRNA’s potential as a therapeutic target. We review the current literature relating the interplay of miRNA and neuronal activity and provide future directions for defining miRNA’s role in disease. PMID:23986658

  6. The interplay of microRNA and neuronal activity in health and disease

    Stephen Matthew Eacker

    2013-08-01

    Full Text Available  MicroRNA (miRNA are small 19-23nt regulatory RNAs that function by modulating mRNA translation and/or turnover in a sequence-specific fashion. In the nervous system, miRNA regulate the production of numerous proteins involved in synaptic transmission. In turn neuronal activity can regulate the production and turnover of miRNA through a variety of mechanisms. In this way, miRNAs and neuronal activity are in a reciprocal homeostatic relationship that balances neuronal function. MiRNA function is critical in pathological states related to over-excitation such as epilepsy and stroke, suggesting miRNA’s potential as a therapeutic target. We review the current literature relating the interplay of miRNA and neuronal activity and provide future directions for defining miRNA’s role in disease.

  7. Glutamate transporter activity promotes enhanced Na+/K+-ATPase-mediated extracellular K+ management during neuronal activity

    Larsen, Brian Roland; Holm, Rikke; Vilsen, Bente;

    2016-01-01

    , in addition, Na+/K+-ATPase-mediated K+ clearance could be governed by astrocytic [Na+]i. During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+-coupled glutamate transporters, thereby elevating [Na+]i. It thus remains unresolved whether the different Na...... constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+/K+-ATPase was not fully saturated at basal astrocytic [Na+]i, irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na+ affinity to the α1 and α2...

  8. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-03-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pH(i), [Ca(2+)](i) or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices--instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.

  9. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  10. Microglia activation and interaction with neuronal cells in a biochemical model of mevalonate kinase deficiency.

    Tricarico, Paola Maura; Piscianz, Elisa; Monasta, Lorenzo; Kleiner, Giulio; Crovella, Sergio; Marcuzzi, Annalisa

    2015-08-01

    Mevalonate kinase deficiency is a rare disease whose worst manifestation, characterised by severe neurologic impairment, is called mevalonic aciduria. The progressive neuronal loss associated to cell death can be studied in vitro with a simplified model based on a biochemical block of the mevalonate pathway and a subsequent inflammatory trigger. The aim of this study was to evaluate the effect of the mevalonate blocking on glial cells (BV-2) and the following effects on neuronal cells (SH-SY5Y) when the two populations were cultured together. To better understand the cross-talk between glial and neuronal cells, as it happens in vivo, BV-2 and SH-SY5Y were co-cultured in different experimental settings (alone, transwell, direct contact); the effect of mevalonate pathway biochemical block by Lovastatin, followed by LPS inflammatory trigger, were evaluated by analysing programmed cell death and mitochondrial membrane potential, cytokines' release and cells' morphology modifications. In this experimental condition, glial cells underwent an evident activation, confirmed by elevated pro-inflammatory cytokines release, typical of these disorders, and a modification in morphology. Moreover, the activation induced an increase in apoptosis. When glial cells were co-cultured with neurons, their activation caused an increase of programmed cell death also in neuronal cells, but only if the two populations were cultured in direct contact. Our findings, being aware of the limitations related to the cell models used, represent a preliminary step towards understanding the pathological and neuroinflammatory mechanisms occurring in mevalonate kinase diseases. Contact co-culture between neuronal and microglial cells seems to be a good model to study mevalonic aciduria in vitro, and to contribute to the identification of potential drugs able to block microglial activation for this orphan disease. In fact, in such a pathological condition, we demonstrated that microglial cells are

  11. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands.

    Hao, Shuzhen; Sternini, Catia; Raybould, Helen E

    2008-01-01

    G-protein-coupled receptors signaling bitter taste (T2Rs) in the oral gustatory system and the alpha-subunit of the taste-specific G-protein gustducin are expressed in the gastrointestinal (GI) tract. alpha-Subunit of the taste-specific G-protein gustducin colocalizes with markers of enteroendocrine cells in human and mouse GI mucosa, including peptide YY. Activation of T2Rs increases cholecystokinin (CCK) release from the enteroendocrine cell line, STC-1. The aim of this study was to determine whether T2R agonists in the GI tract activate neurons in the nucleus of the solitary tract (NTS) and whether this activation is mediated by CCK and peptide YY acting at CCK(1) and Y(2) receptors. Immunocytochemistry for the protooncogene c-Fos protein, a marker for neuronal activation, was used to determine activation of neurons in the midregion of the NTS, the region where vagal afferents from the GI tract terminate. Intragastric administration of the T2R agonist denatonium benzoate (DB), or phenylthiocarbamide (PTC), or a combination of T2R agonists significantly increased the number of Fos-positive neurons in the mid-NTS; subdiaphragmatic vagotomy abolished the NTS response to the mixture of T2R agonists. Deletion of CCK(1) receptor gene or blockade of CCK(1) receptors with devazepide abolishes the activation of NTS neurons in response to DB, but had no effect on the response to PTC. Administration of the Y(2) receptor antagonist BIIE0246 blocks the activation of NTS neurons to DB, but not PTC. These findings suggest that activation of neurons in the NTS following administration of T2R agonists to the GI tract involves CCK(1) and Y(2) receptors located on vagal afferent terminals in the gut wall. T2Rs may regulate GI function via release of regulatory peptides and activation of the vagal reflex pathway.

  12. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  13. Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats

    Frommelt, Lisa; Inhoff, Tobias; Lommel, Reinhardt; Stengel, Andreas; Taché, Yvette; Grötzinger, Carsten; Bannert, Norbert; Wiedenmann, Bertram; Klapp, Burghard F.; Kobelt, Peter

    2014-01-01

    The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n=4/group). The number of c-Fosimmunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p<0.05) compared to vehicle treated rats (4 ± 1, p<0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p<0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects. PMID:20933028

  14. Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors

    Clément eVitrac

    2014-02-01

    Full Text Available The primary motor cortex (M1 is involved in fine voluntary movements control. Previous studies have shown the existence of a dopamine (DA innervation in M1 of rats and monkeys that could directly modulate M1 neuronal activity. However, none of these studies have described the precise distribution of DA terminals within M1 functional region nor have quantified the density of this innervation. Moreover, the precise role of DA on pyramidal neuron activity still remains unclear due to conflicting results from previous studies regarding D2 effects on M1 pyramidal neurons.In this study we assessed in mice the neuroanatomical characteristics of DA innervation in M1 using unbiased stereological quantification of dopamine transporter-immunostained fibers. We demonstrated for the first time in mice that DA innervates the deep layers of M1 targeting preferentially the forelimb representation area of M1. To address the functional role of the DA innervation on M1 neuronal activity, we performed electrophysiological recordings of single neurons activity in vivo and pharmacologically modulated D2 receptors activity. Local D2 receptors activation by quinpirole enhanced pyramidal neurons spike firing rate without changes in spike firing pattern. Altogether, these results indicate that DA innervation in M1 can increase neuronal activity through D2 receptors activation and suggest a potential contribution to the modulation of fine forelimb movement. Given the demonstrated role for DA in fine motor skill learning in M1, our results suggest that altered D2 modulation of M1 activity may be involved in the pathophysiology of movement disorders associated with disturbed DA homeostasis.

  15. Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures

    M. van Spronsen (Myrrhe); E.Y. van Battum (Eljo); M. Kuijpers (Marijn); V.R. Vangoor (Vamshidhar); M.L. Rietman (M. Liset); J. Pothof (Joris); L.F. Gumy (Laura); W.F.J. van IJcken (Wilfred); A.S. Akhmanova (Anna); R.J. Pasterkamp (Jeroen); C.C. Hoogenraad (Casper)

    2013-01-01

    textabstractMicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA exp

  16. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol.

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc(+) neurons at 1000ppm and Fos(+) neurons at ≥300ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure.

  17. Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons.

    Cantrell, A R; Ma, J Y; Scheuer, T; Catterall, W A

    1996-05-01

    Phosphorylation of brain Na+ channels by protein kinase C (PKC) decreases peak Na+ current and slows macroscopic inactivation, but receptor-activated modulation of Na+ currents via the PKC pathway has not been demonstrated. We have examined modulation of Na+ channels by activation of muscarinic receptors in acutely-isolated hippocampal neurons using whole-cell voltage-clamp recording. Application of the muscarinic agonist carbachol reduced peak Na+ current and slowed macroscopic inactivation at all potentials, without changing the voltage-dependent properties of the channel. These effects were mediated by PKC, since they were eliminated when the specific PKC inhibitor (PKCI19-36) was included in the pipette solution and mimicked by the extracellular application of the PKC activator, OAG. Thus, activation of endogenous muscarinic receptors on hippocampal neurons strongly modulates Na+ channel activity by activation of PKC. Cholinergic input from basal forebrain neurons may have this effect in the hippocampus in vivo.

  18. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  19. Endocytosis following dopamine D2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons.

    Shioda, N; Yabuki, Y; Wang, Y; Uchigashima, M; Hikida, T; Sasaoka, T; Mori, H; Watanabe, M; Sasahara, M; Fukunaga, K

    2016-12-06

    Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.Molecular Psychiatry advance online publication, 6 December 2016; doi:10.1038/mp.2016.200.

  20. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles

    Mario Sanhueza

    2013-12-01

    Amyotrophic Lateral Sclerosis (ALS is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.

  1. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  2. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  3. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase.

    Allen, Melissa P; Linseman, Daniel A; Udo, Hiroshi; Xu, Mei; Schaack, Jerome B; Varnum, Brian; Kandel, Eric R; Heidenreich, Kim A; Wierman, Margaret E

    2002-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the reproductive axis. Normal sexual maturation depends on the migration of GnRH neurons from the olfactory placode to the hypothalamus during development. Previously, we showed restricted expression of the membrane receptor adhesion-related kinase (Ark) in immortalized cell lines derived from migratory but not postmigratory GnRH neurons. In addition, Ark and GnRH transcripts were detected along the GnRH neuron migratory route in the E13 mouse cribriform plate. In the present study, we examined the role of Ark and its ligand, Gas6 (encoded by growth arrest-specific gene 6), in GnRH neuron migration. Gas6 stimulated lamellipodial extension, membrane ruffling, and chemotaxis of immortalized NLT GnRH neuronal cells via the Ark receptor. Gas6/Ark signaling promoted activation of the Rho family GTPase Rac, and adenoviral-mediated expression of dominant negative N17Rac abolished Gas6/Ark-induced actin cytoskeletal reorganization and migration of GnRH neuronal cells. In addition, p38 MAPK was activated downstream of Ark and Rac, and inhibition of p38 MAPK with either SB203580 or adenoviral dominant negative p38alpha also blocked Gas6/Ark-mediated migration. Finally, downstream of Rac and p38 mitogen-activated protein kinase (MAPK), Gas6/Ark signaling promoted activation of MAPK-activated protein kinase 2 and induced phosphorylation of HSP25, a known regulator of cortical actin remodeling. The data are the first to demonstrate a migratory signaling pathway downstream of Ark/Axl family receptors and suggest a previously unidentified role for p38 MAPK in neuronal migration. Furthermore, these studies support a potential role for Ark in the regulation of GnRH neuronal migration.

  4. [Effect of nootropic agents on impulse activity of cerebral cortex neurons].

    Iasnetsov, V V; Pravdivtsev, V A; Krylova, I N; Kozlov, S B; Provornova, N A; Ivanov, Iu V; Iasnetsov, V V

    2001-01-01

    The effect of nootropes (semax, mexidol, and GVS-111) on the activity of individual neurons in various cerebral cortex regions was studied by microelectrode and microionophoresis techniques in cats immobilized by myorelaxants. It was established that the inhibiting effect of mexidol upon neurons in more than half of cases is prevented or significantly decreased by the GABA antagonists bicuculline and picrotoxin. The inhibiting effect of semax and GVS-111 upon neurons in more than half of cases is related to stimulation of the M-choline and NMDA receptors, respectively.

  5. The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats.

    Guzmán-Ruiz, M; Saderi, N; Cazarez-Márquez, F; Guerrero-Vargas, N N; Basualdo, M C; Acosta-Galván, G; Buijs, R M

    2014-02-01

    Timing of metabolic processes is crucial for balanced physiology; many studies have shown the deleterious effects of untimely food intake. The basis for this might be an interaction between the arcuate nucleus (ARC) as the main integration site for metabolic information and the suprachiasmatic nucleus (SCN) as the master clock. Here we show in male rats that the SCN influences ARC daily neuronal activity by imposing a daily rhythm on the α-MSH neurons with a peak in neuronal activity at the end of the dark phase. Bilateral SCN lesions showed a complete disappearance of ARC neuronal rhythms and unilateral SCN lesions showed a decreased activation in the ARC at the lesioned side. Moreover light exposure during the dark phase inhibited ARC and α-MSH neuronal activity. The daily inhibition of ARC neuronal activity occurred in light-dark conditions as well as in dark-dark conditions, demonstrating the inhibitory effect to be mediated by increased SCN (subjective) day neuronal activity. Injections into the SCN with the neuronal tracer cholera toxin B showed that α-MSH neurons receive direct projections from the SCN. The present study demonstrates that the SCN activates and possibly also inhibits depending on the moment of the circadian cycle ARC α-MSH neurons via direct neuronal input. The persistence of these activity patterns in fasted animals demonstrates that this SCN-ARC interaction is not necessarily satiety associated but may support physiological functions associated with changes in the sleep-wake cycle.

  6. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes.

    Robert C Cannon

    Full Text Available Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.

  7. The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior

    Hirofumi Toda

    2012-06-01

    Full Text Available Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD, is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court females or to court males perfumed with 7,11-HD. Artificial activation of these ppk23+ neurons stimulates male-male courtship even without 7,11-HD perfuming. These data identify the ppk23+ sensory neurons as the primary targets for female sex pheromones in Drosophila.

  8. The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior.

    Toda, Hirofumi; Zhao, Xiaoliang; Dickson, Barry J

    2012-06-28

    Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD), is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court females or to court males perfumed with 7,11-HD. Artificial activation of these ppk23(+) neurons stimulates male-male courtship even without 7,11-HD perfuming. These data identify the ppk23(+) sensory neurons as the primary targets for female sex pheromones in Drosophila.

  9. Structured PDMS Chambers for Enhanced Human Neuronal Cell Activity on MEA Platforms

    Joose Kreutzer; Laura Yl(a)-Outinen; Paula K(a)irn(a); Tiina Kaarela; Jarno Mikkonen; Heli Skottman; Susanna Narkilahti; Pasi Kallio

    2012-01-01

    Structured poly(dimethylsiloxane) (PDMS) chambers were designed and fabricated to enhance the signaling of human Embryonic Stem Cell (hESC) - derived neuronal networks on Microelectrode Array (MEA) platforms.The structured PDMS chambers enable cell seeding on restricted areas and thus,reduce the amount of needed coating materials and cells.In addition,the neuronal cells formed spontaneously active networks faster in the structured PDMS chambers than that in control chainbers.In the PDMS chambers,the neuronal networks were more active and able to develop their signaling into organized signal trains faster than control cultures.The PDMS chamber design enables much more repeatable analysis and rapid growth of functional neuronal network in vitro.Moreover,due to its easy and cheap fabrication process,new configurations can be easily fabricated based on investigator requirements.

  10. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  11. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  12. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms.

    Morikawa, H; Paladini, C A

    2011-12-15

    Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.

  13. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  14. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Juan Andrés Orellana

    2015-04-01

    Full Text Available Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  15. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  16. A Radio-Telemetry System for Navigation and Recording Neuronal Activity in Free-Roaming Rats

    Dian Zhang; Yanling Dong; Megan Li; Houjun Wang

    2012-01-01

    A radio-telemetry recording system is presented which is applied to stimulate specific brain areas and record neuronal activity in a free-roaming rat.The system consists of two major parts:stationary section and mobile section.The stationary section contains a laptop,a Micro Control Unit (MCU),an FM transmitter and a receiver.The mobile section is composed of the headstage and the backpack (which includes the mainboard,FM transmitter,and receiver),which can generate biphasic microcurrent pulses and simultaneously acquire neuronal activity.Prior to performing experiments,electrodes are implanted in the Ventral Posterolateral (VPL) thalamic nucleus,primary motor area (M 1) and Medial Forebrain Bundle (MFB) of the rat.The stationary section modulates commands from the laptop for stimulation and demodulates signals for neuronal activity recording.The backpack is strapped on the back of the rat and executes commands from the stationary section,acquires neuronal activity,and transmits the neuronal activity singles of the waking rat to the stationary section.All components in the proposed system are commercially available and are fabricated from Surface Mount Devices (SMD) in order to reduce the size (25 mm × 15 mm × 2 mm) and weight (10 g with battery).During actual experiments,the backpack,which is powered by a rechargeable Lithium battery (4 g),can generate biphasic microcurrent pulse stimuli and can also record neuronal activity via the FM link with a maximum transmission rate of 1 kbps for more than one hour within a 200 m range in an open field or in a neighboring chamber.The test results show that the system is able to remotely navigate and control the rat without any prior training,and acquire neuronal activity with desirable features such as small size,low power consumption and high precision when compared with a commercial 4-channel bio-signal acquisition and processing system.

  17. Enhanced adenoviral gene delivery to motor and dorsal root ganglion neurons following injection into demyelinated peripheral nerves.

    Zhang, Yongjie; Zheng, Yiyan; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Yu, Panpan; Burke, Darlene A; Wang, Heming; Jun, Cai; Byers, Jonathan; Whittemore, Scott R; Shields, Christopher B

    2010-08-15

    Injection of viral vectors into peripheral nerves may transfer specific genes into their dorsal root ganglion (DRG) neurons and motoneurons. However, myelin sheaths of peripheral axons block the entry of viral particles into nerves. We studied whether mild, transient peripheral nerve demyelination prior to intraneural viral vector injection would enhance gene transfer to target DRG neurons and motoneurons. The right sciatic nerve of C57BL/6 mice was focally demyelinated with 1% lysolecithin, and the left sciatic nerve was similarly injected with saline (control). Five days after demyelination, 0.5 microl of Ad5-GFP was injected into both sciatic nerves at the site of previous injection. The effectiveness of gene transfer was evaluated by counting GFP(+) neurons in the DRGs and ventral horns. After peripheral nerve demyelination, there was a fivefold increase in the number of infected DRG neurons and almost a 15-fold increase in the number of infected motoneurons compared with the control, nondemyelinated side. Focal demyelination reduced the myelin sheath barrier, allowing greater virus-axon contact. Increased CXADR expression on the demyelinated axons facilitated axoplasmic viral entry. No animals sustained any prolonged neurological deficits. Increased gene delivery into DRG neurons and motoneurons may provide effective treatment for amyotrophic lateral sclerosis, pain, and spinal cord injury.

  18. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain.

    Gibson, Erin M; Purger, David; Mount, Christopher W; Goldstein, Andrea K; Lin, Grant L; Wood, Lauren S; Inema, Ingrid; Miller, Sarah E; Bieri, Gregor; Zuchero, J Bradley; Barres, Ben A; Woo, Pamelyn J; Vogel, Hannes; Monje, Michelle

    2014-05-01

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.

  19. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  20. Activation of Lumbar Spinal Wide-Dynamic Range Neurons by a Sanshool Derivative

    Sawyer, Carolyn M.; Carstens, Mirela Iodi; Simons, Christopher T.; Slack, Jay; McCluskey, T. Scott; Furrer, Stefan; Carstens, E.

    2009-01-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR a...

  1. Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains

    2011-01-12

    specific memories in the hippocampus . Our current data show the principle of a stable topography at the neuron level in the amygdala. Both the finding of...an attended novelty oddball task. Psychophysiology. 16. Veening JG, Bocker KB, Verdouw PM, Olivier B, De Jongh R, et al. (2009) Activation of the...neuronal ensembles in the human hippocampus . Curr Biol 19: 546–554. 24. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA (2010) Decoding individual episodic

  2. Activation of Dopamine Neurons is Critical for Aversive Conditioning and Prevention of Generalized Anxiety

    2011-01-01

    Generalized anxiety is thought to result, in part, from impairments in contingency awareness during conditioning to cues that predict aversive or fearful outcomes. Dopamine neurons of the ventral midbrain exhibit heterogeneous responses to aversive stimuli that are thought to provide a critical modulatory signal to facilitate orienting to environmental changes and assignment of motivational value to unexpected events. Here, we describe a mouse model in which activation of dopamine neurons in ...

  3. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  4. Selective optogenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice.

    Abbott, Stephen B G; DePuy, Seth D; Nguyen, Thanh; Coates, Melissa B; Stornetta, Ruth L; Guyenet, Patrice G

    2013-02-13

    Activation of rostral ventrolateral medullary catecholaminergic (RVLM-CA) neurons e.g., by hypoxia is thought to increase sympathetic outflow thereby raising blood pressure (BP). Here we test whether these neurons also regulate breathing and cardiovascular variables other than BP. Selective expression of ChR2-mCherry by RVLM-CA neurons was achieved by injecting Cre-dependent vector AAV2-EF1α-DIO-ChR2-mCherry unilaterally into the brainstem of dopamine-β-hydroxylase(Cre/0) mice. Photostimulation of RVLM-CA neurons increased breathing in anesthetized and conscious mice. In conscious mice, photostimulation primarily increased breathing frequency and this effect was fully occluded by hypoxia (10% O(2)). In contrast, the effects of photostimulation were largely unaffected by hypercapnia (3 and 6% CO(2)). The associated cardiovascular effects were complex (slight bradycardia and hypotension) and, using selective autonomic blockers, could be explained by coactivation of the sympathetic and cardiovagal outflows. ChR2-positive RVLM-CA neurons expressed VGLUT2 and their projections were mapped. Their complex cardiorespiratory effects are presumably mediated by their extensive projections to supraspinal sites such as the ventrolateral medulla, the dorsal vagal complex, the dorsolateral pons, and selected hypothalamic nuclei (dorsomedial, lateral, and paraventricular nuclei). In sum, selective optogenetic activation of RVLM-CA neurons in conscious mice revealed two important novel functions of these neurons, namely breathing stimulation and cardiovagal outflow control, effects that are attenuated or absent under anesthesia and are presumably mediated by the numerous supraspinal projections of these neurons. The results also suggest that RVLM-CA neurons may underlie some of the acute respiratory response elicited by carotid body stimulation but contribute little to the central respiratory chemoreflex.

  5. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.

  6. Effects of kisspeptin1 on electrical activity of an extrahypothalamic population of gonadotropin-releasing hormone neurons in medaka (Oryzias latipes).

    Zhao, Yali; Wayne, Nancy L

    2012-01-01

    Kisspeptin (product of the kiss1 gene) is the most potent known activator of the hypothalamo-pituitary-gonadal axis. Both kiss1 and the kisspeptin receptor are highly expressed in the hypothalamus of vertebrates, and low doses of kisspeptin have a robust and long-lasting stimulatory effect on the rate of action potential firing of hypophysiotropic gonadotropin releasing hormone-1 (GnRH1) neurons in mice. Fish have multiple populations of GnRH neurons distinguished by their location in the brain and the GnRH gene that they express. GnRH3 neurons located in the terminal nerve (TN) associated with the olfactory bulb are neuromodulatory and do not play a direct role in regulating pituitary-gonadal function. In medaka fish, the electrical activity of TN-GnRH3 neurons is modulated by visual cues from conspecifics, and is thought to act as a transmitter of information from the external environment to the central nervous system. TN-GnRH3 neurons also play a role in sexual motivation and arousal states, making them an important population of neurons to study for understanding coordination of complex behaviors. We investigated the role of kisspeptin in regulating electrical activity of TN-GnRH3 neurons in adult medaka. Using electrophysiology in an intact brain preparation, we show that a relatively brief treatment with 100 nM of kisspeptin had a long-lasting stimulatory effect on the electrical activity of an extrahypothalamic population of GnRH neurons. Dose-response analysis suggests a relatively narrow activational range of this neuropeptide. Further, blocking action potential firing with tetrodotoxin and blocking synaptic transmission with a low Ca(2+)/high Mg(2+) solution inhibited the stimulatory action of kisspeptin on electrical activity, indicating that kisspeptin is acting indirectly through synaptic regulation to excite TN-GnRH3 neurons. Our findings provide a new perspective on kisspeptin's broader functions within the central nervous system, through its

  7. A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1 Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models.

    Polly P Huang

    Full Text Available Gonadotropin-releasing hormone (GnRH, a neuropeptide released from a small population of neurons in the hypothalamus, is the central mediator of the hypothalamic-pituitary-gonadal axis, and is required for normal reproductive development and function. Evolutionarily conserved regulatory elements in the mouse, rat, and human Gnrh1 gene include three enhancers and the proximal promoter, which confer Gnrh1 gene expression specifically in GnRH neurons. In immortalized mouse hypothalamic GnRH (GT1-7 neurons, which show pulsatile GnRH release in culture, RNA sequencing and RT-qPCR revealed that expression of a novel long noncoding RNA at Gnrh1 enhancer 1 correlates with high levels of GnRH mRNA expression. In GT1-7 neurons, which contain a transgene carrying 3 kb of the rat Gnrh1 regulatory region, both the mouse and rat Gnrh1 enhancer-derived noncoding RNAs (GnRH-E1 RNAs are expressed. We investigated the characteristics and function of the endogenous mouse GnRH-E1 RNA. Strand-specific RT-PCR analysis of GnRH-E1 RNA in GT1-7 cells revealed GnRH-E1 RNAs that are transcribed in the sense and antisense directions from distinct 5' start sites, are 3' polyadenylated, and are over 2 kb in length. These RNAs are localized in the nucleus and have a half-life of over 8 hours. In GT1-7 neurons, siRNA knockdown of mouse GnRH-E1 RNA resulted in a significant decrease in the expression of the Gnrh1 primary transcript and Gnrh1 mRNA. Over-expression of either the sense or antisense mouse GnRH-E1 RNA in immature, migratory GnRH (GN11 neurons, which do not express either GnRH-E1 RNA or GnRH mRNA, induced the transcriptional activity of co-transfected rat Gnrh1 gene regulatory elements, where the induction requires the presence of the rat Gnrh1 promoter. Together, these data indicate that GnRH-E1 RNA is an inducer of Gnrh1 gene expression. GnRH-E1 RNA may play an important role in the development and maturation of GnRH neurons.

  8. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.

  9. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.

    Hassfurth, Benjamin; Magnusson, Anna K; Grothe, Benedikt; Koch, Ursula

    2009-10-01

    Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are highly expressed in the superior olivary complex, the primary locus for binaural information processing. This hyperpolarization-activated current (I(h)) regulates the excitability of neurons and enhances the temporally precise analysis of the binaural acoustic cues. By using the whole-cell patch-clamp technique, we examined the properties of I(h) current in neurons of the lateral superior olive (LSO) and the medial nucleus of the trapezoid body (MNTB) before and after hearing onset. Moreover, we tested the hypothesis that I(h) currents are actively regulated by sensory input activity by performing bilateral and unilateral cochlear ablations before hearing onset, resulting in a chronic auditory deprivation. The results show that after hearing onset, I(h) currents are rapidly upregulated in LSO neurons, but change only marginally in neurons of the MNTB. We also found a striking difference in maximal current density, voltage dependence and activation time constant between the LSO and the MNTB in mature-like animals. Following bilateral cochlear ablations before hearing onset, the I(h) currents were scaled up in the LSO and scaled down in the MNTB. Consequently, in the LSO this resulted in a depolarized resting membrane potential and a lower input resistance of these neurons. This type of activity-dependent homeostatic change could thus result in an augmented response to the remaining inputs.

  10. Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination

    Hernández, Adrián; Nácher, Verónica; Luna, Rogelio; Alvarez, Manuel; Zainos, Antonio; Cordero, Silvia; Camarillo, Liliana; Vázquez, Yuriria; Lemus, Luis; Romo, Ranulfo

    2008-01-01

    We report a procedure for recording the simultaneous activity of single neurons distributed across five cortical areas in behaving monkeys. The procedure consists of a commercially available microdrive adapted to a commercially available neural data collection system. The critical advantage of this procedure is that, in each cortical area, a configuration of seven microelectrodes spaced 250–500 μm can be inserted transdurally and each can be moved independently in the z axis. For each microelectrode, the data collection system can record the activity of up to five neurons together with the local field potential (LFP). With this procedure, we normally monitor the simultaneous activity of 70–100 neurons while trained monkeys discriminate the difference in frequency between two vibrotactile stimuli. Approximately 20–60 of these neurons have response properties previously reported in this task. The neuronal recordings show good signal-to-noise ratio, are remarkably stable along a 1-day session, and allow testing several protocols. Microelectrodes are removed from the brain after a 1-day recording session, but are reinserted again the next day by using the same or different x-y microelectrode array configurations. The fact that microelectrodes can be moved in the z axis during the recording session and that the x-y configuration can be changed from day to day maximizes the probability of studying simultaneous interactions, both local and across distant cortical areas, between neurons associated with the different components of this task. PMID:18946031

  11. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    Luigi Bozzo

    Full Text Available Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM. To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM or switched to different glucose concentrations (0.5 or 10 mM. None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  12. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  13. Importance of being Nernst: Synaptic activity andfunctional relevance in stem cell-derived neurons

    2015-01-01

    Functional synaptogenesis and network emergence aresignature endpoints of neurogenesis. These behaviorsprovide higher-order confirmation that biochemicaland cellular processes necessary for neurotransmitterrelease, post-synaptic detection and network propagation of neuronal activity have been properly expressed andcoordinated among cells. The development of synapticneurotransmission can therefore be considered a definingproperty of neurons. Although dissociated primaryneuron cultures readily form functioning synapsesand network behaviors in vitro , continuously culturedneurogenic cell lines have historically failed to meet thesecriteria. Therefore, in vitro -derived neuron models thatdevelop synaptic transmission are critically needed for awide array of studies, including molecular neuroscience,developmental neurogenesis, disease research andneurotoxicology. Over the last decade, neurons derivedfrom various stem cell lines have shown varying ability todevelop into functionally mature neurons. In this review,we will discuss the neurogenic potential of various stemcells populations, addressing strengths and weaknessesof each, with particular attention to the emergenceof functional behaviors. We will propose methods tofunctionally characterize new stem cell-derived neuron(SCN) platforms to improve their reliability as physiologicalrelevant models. Finally, we will review howsynaptically active SCNs can be applied to accelerateresearch in a variety of areas. Ultimately, emphasizingthe critical importance of synaptic activity and networkresponses as a marker of neuronal maturation is anticipatedto result in in vitro findings that better translateto efficacious clinical treatments.

  14. Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow.

    Contreras-Hernández, E; Chávez, D; Rudomin, P

    2015-05-15

    Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks.

  15. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes.

    Wightman, Bruce; Ebert, Bryan; Carmean, Nicole; Weber, Katherine; Clever, Sheila

    2005-11-01

    The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.

  16. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  17. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.

  18. Laser speckle contrast reveals cerebral blood flow dynamics evoked by optogenetically controlled neuronal activity

    Li, Nan; Thakor, Nitish V.; Pelled, Galit

    2013-03-01

    As a critical basis of functional brain imaging, neurovascular coupling describes the link between neuronal and hemodynamic changes. The majority of in vivo neurovascular coupling studies was performed by inducing sensory stimulation via afferent inputs. Unfortunately such an approach results in recruiting of multiple types of cells, which confounds the explanation of neuronal roles in stimulus evoked hemodynamic changes. Recently optogenetics has emerged to provide immediate control of neurons by exciting or inhibiting genetically engineered neurons expressing light sensitive proteins. However, there is a need for optical methods capable of imaging the concurrent hemodynamic changes. We utilize laser speckle contrast imaging (LSCI) to obtain high resolution display of cerebral blood flow (CBF) in the vicinity of the targeted neural population. LSCI is a minimally invasive method for imaging CBF in microvessels through thinned skull, and produces images with high spatiotemporal resolution, wide field of view. In the integrated system light sources with different wavelengths and band-passing/blocking filters were used to allow simultaneous optical manipulation of neuronal activities and optical imaging of corresponding CBF. Experimental studies were carried out in a rodent model expressing channalrhodopsin (ChR2) in excitatory neurons in the somatosensory cortex (S1). The results demonstrated significant increases of CBF in response to ChR2 stimulation (exciting neuronal firing) comparable to the CBF response to contralateral forepaw stimulation. The approach promises to be an exciting minimally invasive method to study neurovascular coupling. The complete system provides a novel approach for broad neuroscience applications.

  19. Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila.

    Liu, Weiwei; Liang, Xinhua; Gong, Jianxian; Yang, Zhen; Zhang, Yao-Hua; Zhang, Jian-Xu; Rao, Yi

    2011-06-19

    When two socially naive Drosophila males meet, they will fight. However, prior social grouping of males reduces their aggression. We found olfactory communication to be important for modulating Drosophila aggression. Although acute exposure to the male-specific pheromone 11-cis-vaccenyl acetate (cVA) elicited aggression through Or67d olfactory receptor neurons (ORNs), chronic cVA exposure reduced aggression through Or65a ORNs. Or65a ORNs were not acutely involved in aggression, but blockade of synaptic transmission of Or65a ORNs during social grouping or prior chronic cVA exposure eliminated social modulation of aggression. Artificial activation of Or65a ORNs by ectopic expression of the Drosophila gene TrpA1 was sufficient to reduce aggression. Social suppression of aggression requires subsets of local interneurons in the antennal lobe. Our results indicate that activation of Or65a ORNs is important for social modulation of male aggression, demonstrate that the acute and chronic effects of a single pheromone are mediated by two distinct types of ORNs, reveal a behaviorally important role for interneurons and suggest a chemical method to reduce aggression in animals.

  20. Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation.

    Pillat, Micheli M; Lameu, Claudiana; Trujillo, Cleber A; Glaser, Talita; Cappellari, Angélica R; Negraes, Priscilla D; Battastini, Ana M O; Schwindt, Telma T; Muotri, Alysson R; Ulrich, Henning

    2016-09-15

    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neuron-generating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67(+) cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation.

  1. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive permane

  2. Microarray and synchronization of neuronal differentiation with pathway changes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databank in nerve growth factor-treated PC12 cells.

    Lin, Chih-Ming; Feng, Wayne

    2012-08-01

    The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database creates networks from interrelations between molecular biology and underlying chemical elements. This allows for analysis of biologic networks, genomic information, and higher-order functional information at a systems level. We performed microarray experiments and used the KEGG database, systems biology analysis, and annotation of pathway function to study nerve growth factor (NGF)-induced differentiation of PC12 cells. Cells were cultured to 70%-80% confluence, treated with NGF for 1 or 3 hours (h), and RNA was extracted. Stage 1 data analysis involved analysis of variance (ANOVA), and stage 2 involved cluster analysis and heat map generation. We identified 2020 NGF-induced PC12 genes (1038 at 1 h and 1554 at 3 h). Results showed changes in gene expression over time. We compared these genes with 6035 genes from the KEGG database. Cross-matching resulted in 830 genes. Among these, we identified 395 altered genes (155 at 1 h and 301 at 3 h; 2-fold increase from 1 h to 3 h). We identified 191 biologic pathways in the KEGG database; the top 15 showed correlations with neuronal differentiation (mitogen-activated protein kinase [MAPK] pathway: 35 genes at 1 h, 54 genes at 3 h; genes associated with axonal guidance: 12 at 1 h, 26 at 3 h; Wnt pathway: 16 at 1 h, 25 at 3 h; neurotrophin pathway: 4 at 1 h, 14 at 3 h). Thus, we identified changes in neuronal differentiation pathways with the KEGG database, which were synchronized with NGF-induced differentiation.

  3. Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability

    Tomasz eWójtowicz

    2015-08-01

    Full Text Available Learning and memory require alteration in number and strength of existing synaptic connections. Extracellular proteolysis within the synapses has been shown to play a pivotal role in synaptic plasticity by determining synapse structure, function, and number. Although synaptic plasticity of excitatory synapses is generally acknowledged to play a crucial role in formation of memory traces, some components of neural plasticity are reflected by nonsynaptic changes. Since information in neural networks is ultimately conveyed with action potentials, scaling of neuronal excitability could significantly enhance or dampen the outcome of dendritic integration, boost neuronal information storage capacity and ultimately learning. However, the underlying mechanism is poorly understood. With this regard, several lines of evidence and our most recent study support a view that activity of extracellular proteases might affect information processing in neuronal networks by affecting targets beyond synapses. Here we review the most recent studies addressing the impact of extracellular proteolysis on plasticity of neuronal excitability and discuss how enzymatic activity may alter input-output/transfer function of neurons, supporting cognitive processes. Interestingly, extracellular proteolysis may alter intrinsic neuronal excitability and excitation/inhibition balance both rapidly (time of minutes to hours and in long-term window. Moreover, it appears that by cleavage of extracellular matrix constituents, proteases may modulate function of ion channels or alter inhibitory drive and hence facilitate active participation of dendrites and axon initial segments in adjusting neuronal input/output function. Altogether, a picture emerges whereby both rapid and long-term extracellular proteolysis may influence some aspects of information processing in neurons, such as initiation of action potential, spike frequency adaptation, properties of action potential and dendritic

  4. The sensitivity of neurons with non-periodic activity to sympathetic stimulation in rat injured dorsal root ganglion

    Hong-Jun YANG; San-Jue HU; Pu-Lin GONG; Jian-Hong DUAN

    2006-01-01

    Objective The relationship between firing pattern and sensitivity of neurons was studied in chronically compressed dorsal root ganglion (DRG) neurons and the Hindmarsh-Rose (HR) neuronal model. Methods Spontaneous activities from single fibers of chronically compressed DRG neurons in rats were recorded, and divided into periodic and non-periodic firing patterns. The sensitivity of the two kinds of firing pattern neuron to sympathetic stimulation (SS)was compared. Result It was found that 27.3% of periodic firing neurons and 93.2% of non-periodic firing neurons responded to SS respectively ( periodic vs non-periodic, P < 0.01 ). The responses to SS with different stimulation time were greater non-periodic firing neurons than periodic firing neurons (P < 0.01 ). The non-periodic firing neurons obviously responded to SS. After the firing pattern of these neurons transformed to periodic firing pattern, their responses to SS disappeared or decreased obviously. The HR neuronal model exhibited a significantly greater response to perturbation in non-periodic (chaotic) firing pattern than in periodic firing pattern. Conclusion The non-periodic firing neurons with deterministic chaos are more sensitive to external stimuli than the periodic firing neurons.

  5. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld;

    2013-01-01

    reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus...

  6. Estimation of the neuronal activation using fMRI data: An observer-based approach

    Laleg-Kirati, Taous-Meriem

    2013-06-01

    This paper deals with the estimation of the neuronal activation and some unmeasured physiological information using the Blood Oxygenation Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). We propose to use an observer-based approach applied to the balloon hemodynamic model. The latter describes the relation between the neural activity and the BOLD signal. The balloon model can be expressed in a nonlinear state-space representation where the states, the parameters and the input (neuronal activation), are unknown. This study focuses only on the estimation of the hidden states and the neuronal activation. The model is first linearized around the equilibrium and an observer is applied to this linearized version. Numerical results performed on synthetic data are presented.

  7. A new kind of neuron model with a tunable activation function and its applications

    吴佑寿; 赵明生; 丁晓青

    1997-01-01

    A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.

  8. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity.

    Baron, A; Montagne, A; Cassé, F; Launay, S; Maubert, E; Ali, C; Vivien, D

    2010-05-01

    Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.

  9. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro.

    Lavian, Hagar; Korngreen, Alon

    2016-04-01

    The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.

  10. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1.

    Klodjan Stafa

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene are the most common cause of autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1. LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is

  11. The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty.

    Sheth, Archana; Berretta, Sabina; Lange, Nicholas; Eichenbaum, Howard

    2008-01-01

    Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses.

  12. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.

    Wise, Andrew K; Tu, Tian; Atkinson, Patrick J; Flynn, Brianna O; Sgro, Beatrice E; Hume, Cliff; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2011-08-01

    A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the

  13. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  14. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  15. Visual input controls the functional activity of goldfish Mauthner neuron through the reciprocal synaptic mechanism.

    Moshkov, Dmitry A; Shtanchaev, Rashid S; Mikheeva, Irina B; Bezgina, Elena N; Kokanova, Nadezhda A; Mikhailova, Gulnara Z; Tiras, Nadezhda R; Pavlik, Lyubov' L

    2013-03-01

    Goldfish are known to exhibit motor asymmetry due to functional asymmetry of their Mauthner neurons that induce the turns to the right or left during free swimming. It has been previously found that if the less active neuron is subjected to prolonged aimed visual stimulation via its ventral dendrite, the motor asymmetry of goldfish is inverted, testifying that this neuron becomes functionally dominant, while the size of the ventral dendrite under these conditions is reduced 2-3 times compared to its counterpart in mirror neuron. Earlier it has been also revealed that training optokinetic stimulation induces adaptation, a substantial resistance of both fish motor asymmetry and morphofunctional state of Mauthner neurons against prolonged optokinetic stimulation. The aim of this work was to study the cellular mechanisms of the effect of an unusual visual afferent input on goldfish motor asymmetry and Mauthner neuron function in norm and under adaptation. It was shown that serotonin applied onto Mauthner neurons greatly reduces their activity whereas its antagonist ondansetron increases it. Against the background of visual stimulation, serotonin strengthens functional asymmetry between neurons whereas ondansetron smoothes it. Taken together these data suggest the involvement of serotonergic excitatory synaptic transmission in the regulation of Mauthner neurons by vision. Ultrastructural study of the ventral dendrites after prolonged optokinetic stimulation has revealed depletions of numeral axo-axonal synapses with specific morphology, identified by means of immunogold label as serotonergic ones. These latter in turn are situated mainly on shaft boutons, which according to specific ultrastructural features are assigned to axo-dendritic inhibitory synapses. Thus, the excitatory serotonergic synapses seem to affect Mauthner neuron indirectly through inhibitory synapses. Further, it was morphometrically established that adaptation is accompanied by the significant

  16. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  17. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  18. Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.

    Cui, Ran Ji; Roberts, Brandon L; Zhao, Huan; Zhu, Mingyan; Appleyard, Suzanne M

    2012-11-14

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.

  19. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  20. Neuronal activity in primate orbitofrontal cortex reflects the value of time.

    Roesch, Matthew R; Olson, Carl R

    2005-10-01

    Neurons in monkey orbitofrontal cortex (OF) are known to respond to reward-predicting cues with a strength that depends on the value of the predicted reward as determined 1) by intrinsic attributes including size and quality and 2) by extrinsic factors including the monkey's state of satiation and awareness of what other rewards are currently available. We pose here the question whether another extrinsic factor critical to determining reward value-the delay expected to elapse before delivery-influences neuronal activity in OF. To answer this question, we recorded from OF neurons while monkeys performed a memory-guided saccade task in which a cue presented early in each trial predicted whether the delay before the monkey could respond and receive a reward of fixed size would be short or long. OF neurons tended to fire more strongly in response to a cue predicting a short delay. The tendency to fire more strongly in anticipation of a short delay was correlated across neurons with the tendency to fire more strongly before a large reward. We conclude that neuronal activity in OF represents the time-discounted value of the expected reward.

  1. Antioxidant activity of X-34 in synaptosomal and neuronal systems.

    Kanski, Jaroslaw; Sultana, Rukhsana; Klunk, William; Butterfield, D Allan

    2003-10-24

    Inhibiting aggregation and deposition of amyloid beta-peptide (Abeta) in brain is a therapeutic strategy for Alzheimer's disease (AD). A Congo-red-like molecule, X-34, is reported to bind to Abeta deposits. Oxidative stress associated with Abeta is hypothesized to be critical for the neurotoxic properties of this peptide. The present study was undertaken to test the hypothesis that X-34, with its salicylate groups, would act as an antioxidant. When challenged by hydroxyl or peroxyl free radicals or Abeta(1-42), oxidative stress and neurotoxicity occurred in neural systems as assessed by several indices. However, pretreatment of synaptosomes and primary neuronal cell culture with X-34 greatly ameliorated lipid peroxidation induced by these free radicals and Abeta(1-42). Protein oxidation was not prevented by X-34. These results are discussed in terms of potential therapeutic use of X-34 and related compounds in AD.

  2. Control of abdominal and expiratory intercostal muscle activity during vomiting - Role of ventral respiratory group expiratory neurons

    Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro

    1987-01-01

    The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.

  3. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  4. Regulation of gene expression in neuronal tissue by RNA interference and editing

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  5. Changing channels in pain and epilepsy: Exploiting ion channel gene therapy for disorders of neuronal hyperexcitability.

    Snowball, Albert; Schorge, Stephanie

    2015-06-22

    Chronic pain and epilepsy together affect hundreds of millions of people worldwide. While traditional pharmacotherapy provides essential relief to the majority of patients, a large proportion remains resistant, and surgical intervention is only possible for a select few. As both disorders are characterised by neuronal hyperexcitability, manipulating the expression of the most direct modulators of excitability - ion channels - represents an attractive common treatment strategy. A number of viral gene therapy approaches have been explored to achieve this. These range from the up- or down-regulation of channels that control excitability endogenously, to the delivery of exogenous channels that permit manipulation of excitability via optical or chemical means. In this review we highlight the key experimental successes of each approach and discuss the challenges facing their clinical translation.

  6. Identification of potentially neuroprotective genes upregulated by neurotrophin treatment of CA3 neurons in the injured brain.

    Malik, Saafan Z; Motamedi, Shahab; Royo, Nicolas C; LeBold, David; Watson, Deborah J

    2011-03-01

    Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI.

  7. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis.

    Xu, Z; Maroney, A C; Dobrzanski, P; Kukekov, N V; Greene, L A

    2001-07-01

    Neuronal apoptotic death induced by nerve growth factor (NGF) deprivation is reported to be in part mediated through a pathway that includes Rac1 and Cdc42, mitogen-activated protein kinase kinases 4 and 7 (MKK4 and -7), c-Jun N-terminal kinases (JNKs), and c-Jun. However, additional components of the pathway remain to be defined. We show here that members of the mixed-lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper kinase [DLK]) are expressed in neuronal cells and are likely to act between Rac1/Cdc42 and MKK4 and -7 in death signaling. Overexpression of MLKs effectively induces apoptotic death of cultured neuronal PC12 cells and sympathetic neurons, while expression of dominant-negative forms of MLKs suppresses death evoked by NGF deprivation or expression of activated forms of Rac1 and Cdc42. CEP-1347 (KT7515), which blocks neuronal death caused by NGF deprivation and a variety of additional apoptotic stimuli and which selectively inhibits the activities of MLKs, effectively protects neuronal PC12 cells from death induced by overexpression of MLK family members. In addition, NGF deprivation or UV irradiation leads to an increase in both level and phosphorylation of endogenous DLK. These observations support a role for MLKs in the neuronal death mechanism. With respect to ordering the death pathway, dominant-negative forms of MKK4 and -7 and c-Jun are protective against death induced by MLK overexpression, placing MLKs upstream of these kinases. Additional findings place the MLKs upstream of mitochondrial cytochrome c release and caspase activation.

  8. Effects of histamine on 5-hydroxytryptaminergic neuronal activity in the rat hypothalamus.

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-03-11

    Effects of pharmacological manipulations which mimic or enhance histaminergic neuronal transmission were determined on the activity of 5-hydroxytryptaminergic neurons projecting to the hypothalamus of male rats. Intracerebroventricular administration of histamine decreased 5-hydroxytryptamine (5-HT) and increased 5-hydroxyindoleacetic acid (5-HIAA) concentrations in several hypothalamic nuclei; these effects were blocked by the histamine H1 receptor antagonist mepyramine but not the histamine H2 receptor antagonist zolantidine. Blockade of the 5-HT reuptake system by fluoxetine did not prevent histamine-induced decreases in 5-HT concentrations suggesting that histamine is not transported into nerve terminals via the 5-HT reuptake system to subsequently displace 5-HT stores. These data suggest that exogenous histamine increases 5-hydroxytryptaminergic neuronal activity through an action at histamine H1 receptors. In contrast, neither the histamine H3 receptor antagonist thioperamide, the histamine-N-methyltransferase inhibitor metoprine, nor combined thioperamide-metoprine treatment affected concentrations of 5-HT or 5-HIAA suggesting these agents, which purportedly enhance endogenous histaminergic transmission, do not affect 5-hydroxytryptaminergic neuronal activity. These results reveal that procedures commonly employed to study central actions of histamine differentially affect 5-hydroxytryptaminergic neuronal activity in the rat hypothalamus.

  9. Independent complexity patterns in single neuron activity induced by static magnetic field.

    Spasić, S; Nikolić, Lj; Mutavdžić, D; Saponjić, J

    2011-11-01

    We applied a combination of fractal analysis and Independent Component Analysis (ICA) method to detect the sources of fractal complexity in snail Br neuron activity induced by static magnetic field of 2.7 mT. The fractal complexity of Br neuron activity was analyzed before (Control), during (MF), and after (AMF) exposure to the static magnetic field in six experimental animals. We estimated the fractal dimension (FD) of electrophysiological signals using Higuchi's algorithm, and empirical FD distributions. By using the Principal Component Analysis (PCA) and FastICA algorithm we determined the number of components, and defined the statistically independent components (ICs) in the fractal complexity of signal waveforms. We have isolated two independent components of the empirical FD distributions for each of three groups of data by using FastICA algorithm. ICs represent the sources of fractal waveforms complexity of Br neuron activity in particular experimental conditions. Our main results have shown that there could be two opposite intrinsic mechanisms in single snail Br neuron response to static magnetic field stimulation. We named identified ICs that correspond to those mechanisms - the component of plasticity and the component of elasticity. We have shown that combination of fractal analysis with ICA method could be very useful for the decomposition and identification of the sources of fractal complexity of bursting neuronal activity waveforms.

  10. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  11. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  12. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

    Choi, Kyuhyun; Lee, Youngin; Lee, Changwoo; Hong, Seokheon; Lee, Soonje; Kang, Shin Jung; Shin, Ki Soon

    2016-01-01

    The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons. PMID:27703268

  13. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children

    Vernon Furtado da Silva

    2016-08-01

    Full Text Available ABSTRACT This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA, 10 with intellectual impairments (GDI, and 10 non-autistics (GCN had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  14. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice.

    Holloway, Benjamin B; Stornetta, Ruth L; Bochorishvili, Genrieta; Erisir, Alev; Viar, Kenneth E; Guyenet, Patrice G

    2013-11-27

    The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.

  15. SIRT1 Activating Compounds Reduce Oxidative Stress and Prevent Cell Death in Neuronal Cells

    Reas S Khan

    2012-12-01

    Full Text Available Activation of SIRT1, an NAD+-dependent deacetylase, prevents retinal ganglion cell (RGC loss in optic neuritis, an inflammatory demyelinating optic nerve disease. While SIRT1 deacetylates numerous protein targets, downstream mechanisms of SIRT1 activation mediating this neuroprotective effect are unknown. SIRT1 increases mitochondrial function and reduces oxidative stress in muscle and other cells, and oxidative stress occurs in neuronal degeneration. We examined whether SIRT1 activators reduce oxidative stress and promote mitochondrial function in neuronal cells. Oxidative stress, marked by reactive oxygen species (ROS accumulation, was induced in RGC-5 cells by serum deprivation, or addition of doxorubicin or hydrogen peroxide, and resulted in significant cell loss. SIRT1 activators resveratrol and SRTAW04 reduced ROS levels, and promoted cell survival in RGC-5 cells as well as primary RGC cultures. Effects were blocked by SIRT1 siRNA. SIRT1 activators also increased expression of succinate dehydrogenase, a mitochondrial enzyme, and promoted deacetylation of PGC-1α, a co-enzyme involved in mitochondrial function. Results show SIRT1 activators prevent cell loss by reducing oxidative stress and promoting mitochondrial function in a neuronal cell line. Results suggest SIRT1 activators can mediate neuroprotective effects during optic neuritis by these mechanisms, and they have the potential to preserve neurons in other neurodegenerative diseases that involve oxidative stress.

  16. Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.

    Gruene, Tina; Flick, Katelyn; Rendall, Sam; Cho, Jin Hyung; Gray, Jesse; Shansky, Rebecca

    2016-07-22

    The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc- neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc- neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity.

  17. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Boccella, Serena; Vacca, Valentina; Errico, Francesco; Marinelli, Sara; Squillace, Marta; Di Maio, Anna; Vitucci, Daniela; Palazzo, Enza; De Novellis, Vito; Maione, Sabatino; Pavone, Flaminia; Usiello, Alessandro

    2015-01-01

    D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/−) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4–L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions. PMID:25629055

  18. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  19. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David; Watson, Deborah J.

    2011-01-01

    Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking d...

  20. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex.

    Che, Alicia; Truong, Dongnhu T; Fitch, R Holly; LoTurco, Joseph J

    2016-09-01

    Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.

  1. LINGO-1 receptor promotes neuronal apoptosis by inhibiting WNK3 kinase activity.

    Zhang, Zhaohuan; Xu, Xiaohui; Xiang, Zhenghua; Yu, Zhongwang; Feng, Jifeng; He, Cheng

    2013-04-26

    LINGO-1 is a functional component of the Nogo receptor 1 · p75(NTR) · LINGO-1 and Nogo receptor 1 · TAJ (TNFRSF19/TROY)·LINGO-1 signaling complexes. It has recently been shown that LINGO-1 antagonists significantly improve neuronal survival after neural injury. However, the mechanism by which LINGO-1 signaling influences susceptibility to apoptosis remains unknown. In an effort to better understand how LINGO-1 regulates these signaling pathways, we used an established model of serum deprivation (SD) to induce neuronal apoptosis. We demonstrate that treatment either with a construct containing the intracellular domain of LINGO-1 or with Nogo66, a LINGO-1 receptor complex agonist, resulted in an enhanced rate of apoptosis in primary cultured cortical neurons under SD. Reducing the expression levels of the serine/threonine kinase WNK3 using shRNA or inhibiting its kinase activity had similar effects on the survival of serum-deprived neurons. Consistent with these observations, we found that LINGO-1 and WNK3 co-localized and co-precipitated in cultured cortical neurons and brain tissue. Significantly, this co-association was enhanced by Nogo66 treatment. Binding of WNK3 to the intracellular domain of LINGO-1 led to a reduction in WNK3 kinase activity, as did Nogo66 stimulation. Moreover, in vitro and in vivo evidence indicates that endogenous WNK3 suppresses SD-induced neuronal apoptosis in a kinase-dependent manner, as the expression of either a WNK3 RNAi construct or a kinase-dead N-terminal fragment of WNK3 led to increased apoptosis. Taken together, our results show that LINGO-1 potentiates neuronal apoptosis, likely by inhibiting WNK3 kinase activity.

  2. Cell-type-specific expression and regulation of a c-fos-NGF fusion gene in neurons and astrocytes of transgenic mice.

    Onténiente, B; Horellou, P; Neveu, I; Makeh, I; Suzuki, F; Bourdet, C; Grimber, G; Colin, P; Brachet, P; Mallet, J

    1994-02-01

    A mouse line transgenic for nerve growth factor (NGF) was developed using the mouse prepro-NGF cDNA inserted within a plasmid containing the proximal region (-10 to -550 bp) of the c-fos promoter and the transcription termination and polyadenylation signals of the rabbit beta-globin gene. No significant modification of gross behavior or central nervous system anatomy was detected in adult animals as assessed by immunohistochemistry and in situ hybridization for NGF and choline acetyltransferase. The expression of the transgene and the possible regulation of its expression by agents acting on the promoter were investigated in vitro. Despite the presence of an additional pool of NGF mRNA specific to the transgene, basal levels of NGF in the supernatant of transgenic astrocytes were similar to normal ones. On the other hand, transgenic neurons spontaneously synthesized and released levels of NGF two to three times higher than normal neurons, while mRNA levels were barely detectable by conventional Northern blotting. The tissue-specificity of NGF expression was respected, with higher levels in hippocampal than neocortical neurons. Increases of NGF mRNA by agents acting on the promoter could be observed in normal and transgenic astrocytes only after inhibition of the protein synthesis by cycloheximide, suggesting a similar rapid turnover of normal and transgenic transcripts. Cyclic AMP agonists specifically increased the secretion of NGF protein by transgenic astrocytes and neurons, while activators of the protein kinase C had a similar effect on transgenic and normal cells. Differences between amounts of NGF secreted by neurons and astrocytes with regards to their respective content in mRNA suggest that transgenic transcripts are subject to normal cell- and tissue-specific post-transcriptional regulations. Agents acting on the c-fos promoter through the protein kinase C or cyclic AMP routes differentially increased the secretion of NGF by transgenic astrocytes or

  3. Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats.

    Anai, H; Ueta, Y; Serino, R; Nomura, M; Nakashima, Y; Yamashita, H

    2001-02-01

    The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.

  4. Activation of mesolimbic dopaminergic neurons following central administration of histamine is mediated by H1 receptors.

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1993-01-01

    The effect of intracerebroventricular administration of histamine on the activity of mesolimbic and nigrostriatal dopaminergic (DA) neurons was determined in male rats. The activity of these neurons was estimated by measuring: (1) the accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor, and (2) the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens and striatum, which contain the terminals of these neurons. Central administration of histamine increased both DOPA accumulation and DOPAC concentrations in the nucleus accumbens, but was without effect in the striatum. The increase in DOPAC concentrations in the nucleus accumbens occurred within 10 min and was sustained for at least 120 min. The H1 antagonist mepyramine blocked whereas the H2 antagonist zolantidine did not affect histamine-induced increases in DOPAC concentrations in the nucleus accumbens. Neither mepyramine nor zolantidine affected basal DOPAC concentrations in the nucleus accumbens. These results indicate that central administration of histamine stimulates mesolimbic DA neurons through an action at the H1 receptor, but has no effect upon the activity of nigrostriatal DA neurons.

  5. Lidocaine alters the input resistance and evokes neural activity in crayfish sensory neurons.

    Keceli, M B; Purali, N

    2007-03-01

    Lidocaine, a use-dependent Na(+) channel blocker, paradoxically evokes neural activation in the slowly adapting stretch receptor organ of crayfish at 5-10 mmol/l concentration. For elucidating the underlying mechanisms of this paradoxical effect, a series of conventional electrophysiological experiments were performed in the stretch receptor neurons of crayfish. In the presence of tetrodotoxin, lidocaine did not evoke impulse activity, however, a slowly developing and dose-dependent depolarization occurred in both the rapidly and slowly adapting stretch receptors. Similar effects were observed by perfusion of equivalent concentrations of benzocaine but not of procaine or prilocaine. Lidocaine did not evoke neural activity in the rapidly adapting neuron which fires action potential(s) in response to rapid changes in membrane potential. Slowly developing mode of the depolarization indicated the reason why only depolarization but not action potential responses were observed in the rapidly adapting neuron. The depolarizing effect of lidocaine was independent from any ionic channel or exchanger system. However, lidocaine and benzocaine but not procaine and prilocaine evoked a dose-dependent alteration in the input resistance of the neuron. It was proposed that the principal mechanism of the effect could stem from a change in the physical properties of the neuronal membrane.

  6. Iron entry in neurons and astrocytes: a link with synaptic activity

    Franca eCodazzi

    2015-06-01

    Full Text Available Iron plays a fundamental role in the development of the central nervous system (CNS as well as in several neuronal functions including synaptic plasticity. Accordingly, neuronal iron supply is tightly controlled: it depends not only on transferrin-bound iron but also on non-transferrin-bound iron (NTBI, which represents a relevant quote of the iron physiologically present in the cerebrospinal fluid (CSF. Different calcium permeable channels as well as the divalent metal transporter 1 (DMT1 have been proposed to sustain NTBI entry in neurons and astrocytes even though it remains an open issue. In both cases, it emerges that the control of iron entry is tightly linked to synaptic activity. The iron-induced oxidative tone can, in physiological conditions, positively influence the calcium levels and thus the synaptic plasticity. On the other hand, an excess of iron, with the ensuing uncontrolled production of reactive oxygen species (ROS, is detrimental for neuronal survival. A protective mechanism can be played by astrocytes that, more resistant to oxidative stress, can uptake iron, thereby buffering its concentration in the synaptic environment. This competence is potentiated when astrocytes undergo activation during neuroinflammation and neurodegenerative processes. In this minireview we focus on the mechanisms responsible for NTBI entry in neurons and astrocytes and on how they can be modulated during synaptic activity. Finally, we speculate on the relevance they may have in both physiological and pathological conditions.

  7. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement.

    Tolu, S; Eddine, R; Marti, F; David, V; Graupner, M; Pons, S; Baudonnat, M; Husson, M; Besson, M; Reperant, C; Zemdegs, J; Pagès, C; Hay, Y A H; Lambolez, B; Caboche, J; Gutkin, B; Gardier, A M; Changeux, J-P; Faure, P; Maskos, U

    2013-03-01

    Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.

  8. Direct Evaluation of L-DOPA Actions on Neuronal Activity of Parkinsonian Tissue In Vitro

    Víctor Plata

    2013-01-01

    Full Text Available Physiological and biochemical experiments in vivo and in vitro have explored striatal receptor signaling and neuronal excitability to posit pathophysiological models of Parkinson's disease. However, when therapeutic approaches, such as dopamine agonists, need to be evaluated, behavioral tests using animal models of Parkinson's disease are employed. To our knowledge, recordings of population neuronal activity in vitro to assess anti-Parkinsonian drugs and the correlation of circuit dynamics with disease state have only recently been attempted. We have shown that Parkinsonian pathological activity of neuronal striatal circuits can be characterized in in vitro cerebral tissue. Here, we show that calcium imaging techniques, capable of recording dozens of neurons simultaneously with single-cell resolution, can be extended to assess the action of therapeutic drugs. We used L-DOPA as a prototypical anti-Parkinsonian drug to show the efficiency of this proposed bioassay. In a rodent model of early Parkinson's disease, Parkinsonian neuronal activity can be returned to control levels by the bath addition of L-DOPA in a reversible way. This result raises the possibility to use calcium imaging techniques to measure, quantitatively, the actions of anti-Parkinsonian drugs over time and to obtain correlations with disease evolution and behavior.

  9. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  10. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex

    Heiko J Luhmann

    2009-10-01

    Full Text Available Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic nonsynaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10 to 20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity.

  11. Global gene expression shift during the transition from early neural development to late neuronal differentiation in Drosophila melanogaster.

    Rafael Cantera

    Full Text Available Regulation of transcription is one of the mechanisms involved in animal development, directing changes in patterning and cell fate specification. Large temporal data series, based on microarrays across the life cycle of the fly Drosophila melanogaster, revealed the existence of groups of genes which expression increases or decreases temporally correlated during the life cycle. These groups of genes are enriched in different biological functions. Here, instead of searching for temporal coincidence in gene expression using the entire genome expression data, we searched for temporal coincidence in gene expression only within predefined catalogues of functionally related genes and investigated whether a catalogue's expression profile can be used to generate larger catalogues, enriched in genes necessary for the same function. We analyzed the expression profiles from genes already associated with early neurodevelopment and late neurodifferentiation, at embryonic stages 16 and 17 of Drosophila life cycle. We hypothesized that during this interval we would find global downregulation of genes important for early neuronal development together with global upregulation of genes necessary for the final differentiation of neurons. Our results were consistent with this hypothesis. We then investigated if the expression profile of gene catalogues representing particular processes of neural development matched the temporal sequence along which these processes occur. The profiles of genes involved in patterning, neurogenesis, axogenesis or synaptic transmission matched the prediction, with largest transcript values at the time when the corresponding biological process takes place in the embryo. Furthermore, we obtained catalogues enriched in genes involved in temporally matching functions by performing a genome-wide systematic search for genes with their highest expression levels at the corresponding embryonic intervals. These findings imply the use of gene

  12. Conditional Probability Analyses of the Spike Activity of Single Neurons

    Gray, Peter R.

    1967-01-01

    With the objective of separating stimulus-related effects from refractory effects in neuronal spike data, various conditional probability analyses have been developed. These analyses are introduced and illustrated with examples based on electrophysiological data from auditory nerve fibers. The conditional probability analyses considered here involve the estimation of the conditional probability of a firing in a specified time interval (defined relative to the time of the stimulus presentation), given that the last firing occurred during an earlier specified time interval. This calculation enables study of the stimulus-related effects in the spike data with the time-since-the-last-firing as a controlled variable. These calculations indicate that auditory nerve fibers “recover” from the refractory effects that follow a firing in the following sense: after a “recovery time” of approximately 20 msec, the firing probabilities no longer depend on the time-since-the-last-firing. Probabilities conditional on this minimum time since the last firing are called “recovered probabilities.” The recovered probabilities presented in this paper are contrasted with the corresponding poststimulus time histograms, and the differences are related to the refractory properties of the nerve fibers. Imagesp[762]-a PMID:19210997

  13. Calcium-activated potassium conductance noise in snail neurons.

    Westerfield, M; Lux, H D

    1982-11-01

    Current fluctuations were measured in small, 3-6 micrometers-diameter patches of soma membrane in bursting neurons of the snail, Helix pomatia. The fluctuations dramatically increased in magnitude with depolarization of the membrane potential under voltage clamp conditions. Two components of conductance noise were identified in the power spectra calculated from the membrane currents. One component had a corner frequency which increased with depolarization. This component was blocked by intracellular injection of TEA and was relatively insensitive to extracellular calcium levels (as long as the total number of effective divalent cations remained constant). It was identified as fluctuations of the voltage-dependent component of delayed outward current. The second component of conductance noise had a corner frequency which decreased with depolarization. It was relatively unaffected by TEA injection and was reversibly blocked by substitution of extracellular calcium with magnesium, cobalt, or nickel. This second component of noise was identified as fluctuations of the calcium-dependent potassium current. The results suggest that the two components of delayed outward current are conducted through physically distinct channels.

  14. Drosophila olfactory local interneurons and projection neurons derive from a common neuroblast lineage specified by the empty spiracles gene

    Ito Kei

    2008-12-01

    Full Text Available Abstract Background Encoding of olfactory information in insects occurs in the antennal lobe where the olfactory receptor neurons interact with projection neurons and local interneurons in a complex sensory processing circuitry. While several studies have addressed the developmental mechanisms involved in specification and connectivity of olfactory receptor neurons and projection neurons in Drosophila, the local interneurons are far less well understood. Results In this study, we use genetic marking techniques combined with antibody labelling and neuroblast ablation to analyse lineage specific aspects of local interneuron development. We find that a large set of local interneurons labelled by the GAL4-LN1 (NP1227 and GAL4-LN2 (NP2426 lines arise from the lateral neuroblast, which has also been shown to generate uniglomerular projection neurons. Moreover, we find that a remarkable diversity of local interneuron cell types with different glomerular innervation patterns and neurotransmitter expression derives from this lineage. We analyse the birth order of these two distinct neuronal types by generating MARCM (mosaic analysis with a repressible cell marker clones at different times during larval life. This analysis shows that local interneurons arise throughout the proliferative cycle of the lateral neuroblast beginning in the embryo, while uniglomerular projection neurons arise later during the second larval instar. The lateral neuroblast requires the function of the cephalic gap gene empty spiracles for the development of olfactory interneurons. In empty spiracles null mutant clones, most of the local interneurons and lateral projection neurons are lacking. These findings reveal similarities in the development of local interneurons and projection neurons in the olfactory system of Drosophila. Conclusion We find that the lateral neuroblast of the deutocerebrum gives rise to a large and remarkably diverse set of local interneurons as well as to

  15. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.

    Sakai, K

    2014-02-28

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms, such as the cycle of sleep and wakefulness. Using extracellular single unit recordings, we have determined, for the first time, the discharge activity of individual SCN neurons during the complete wake-sleep cycle in non-anesthetized, head restrained mice. SCN neurons (n=79) were divided into three types according to their regular (type I; n=38) or irregular (type II; n=19) discharge activity throughout the wake-sleep cycle or their quiescent activity during waking and irregular discharge activity during sleep (type III; n=22). The type I and II neurons displayed a long-duration action potential, while the type III neurons displayed either a short-duration or long-duration action potential. The type I neurons discharged exclusively as single isolated spikes, whereas the type II and III neurons fired as single isolated spikes, clusters, or bursts. The type I and II neurons showed wake-active, wake/paradoxical (or rapid eye movement) sleep-active, or state-unrelated activity profiles and were, respectively, mainly located in the ventral or dorsal region of the SCN. In contrast, the type III neurons displayed sleep-active discharge profiles and were mainly located in the lateral region of the SCN. The majority of type I and II neurons tested showed an increase in discharge rate following application of light to the animal's eyes. Of the 289 extra-SCN neurons recorded, those displaying sleep-active discharge profiles were mainly located dorsal to the SCN, whereas those displaying wake-active discharge profiles were mainly located lateral or dorsolateral to the SCN. This study shows heterogeneity of mouse SCN and surrounding anterior hypothalamic neurons and suggests differences in their topographic organization and roles in mammalian circadian rhythms and the regulation of sleep and wakefulness.

  16. Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.

    Bałkowiec-Iskra, E; Vermehren-Schmaedick, A; Balkowiec, A

    2011-04-28

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-h treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic AMP-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression is accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo synthesis of BDNF in

  17. Encoding of social state information by neuronal activities in the macaque caudate nucleus.

    Santos, Gustavo S; Nagasaka, Yasuo; Fujii, Naotaka; Nakahara, Hiroyuki

    2012-01-01

    Social animals adjust their behavior according to social relationships and momentary circumstances. Dominant-submissive relationships modulate, but do not completely determine, their competitive behaviors. For example, a submissive monkey's decision to retrieve food depends not only on the presence of dominant partners but also on their observed behavior. Thus, behavioral expression requires a dynamic evaluation of reward outcome and momentary social states. The neural mechanisms underlying this evaluation remain elusive. The caudate nucleus (CN) plays a pivotal role in representing reward expectation and translating it into action selection. To investigate whether their activities encode social state information, we recorded from CN neurons in monkeys while they performed a competitive food-grab task against a dominant competitor. We found two groups of CN neurons: one primarily responded to reward outcome, while the other primarily tracked the monkey's social state. These social state-dependent neurons showed greater activity when the monkeys freely retrieved food without active challenges from the competitor and reduced activity when the monkeys were in a submissive state due to the competitor's active behavior. These results indicate that different neuronal activities in the CN encode social state information and reward-related information, which may contribute to adjusting competitive behavior in dynamic social contexts.

  18. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward.

  19. Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels.

    Wang, Shouping; Zhang, An-Ping; Kurada, Lalitha; Matsui, Toshimitsu; Lei, Saobo

    2011-09-01

    Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain, where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2). Activation of both CCK receptors increases the activity of PLC, resulting in increases in intracellular calcium ion (Ca(2+)) release and activation of PKC. Whereas high density of CCK receptors has been detected in the superficial layers of the entorhinal cortex (EC), the functions of CCK in this brain region have not been determined. Here, we studied the effects of CCK on neuronal excitability of layer III pyramidal neurons in the EC. Our results showed that CCK remarkably increased the firing frequency of action potentials (APs). The effects of CCK on neuronal excitability were mediated via activation of CCK-2 receptors and required the functions of G proteins and PLC. However, CCK-mediated facilitation of neuronal excitability was independent of inositol trisphosphate receptors and PKC. CCK facilitated neuronal excitability by activating a cationic channel to generate membrane depolarization. The effects of CCK were suppressed by the generic, nonselective cationic channel blockers, 2-aminoethyldiphenyl borate and flufenamic acid, but potentiated by gadolinium ion and lanthanum ion at 100 μM. Depletion of extracellular Ca(2+) also counteracted CCK-induced increases in AC firing frequency. Moreover, CCK-induced enhancement of neuronal excitability was inhibited significantly by intracellular application of the antibody to transient receptor potential channel 5 (TRPC5), suggesting the involvement of TRPC5 channels. Our results provide a cellular and molecular mechanism to help explain the functions of CCK in vivo.

  20. Erratum to "Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices".

    Basta, Dietmar; Ernst, Arne

    2005-02-01

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant