WorldWideScience

Sample records for activates multiple metabolic

  1. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  2. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, N; Glerup, H; Rungby, Jørgen

    2000-01-01

    In order to evaluate the use of recently developed assays of bone metabolism in multiple myeloma we performed a histomorphometric study of bone biopsies in 16 myeloma patients. Furthermore, we measured the levels of interleukin-6 (IL-6), soluble IL-6 receptor (IL-6sR), IL-1beta, tumour necrosis f...

  3. Metabolic activity of tree saps of different origin towards cultured human cells in the light of grade correspondence analysis and multiple regression modeling

    Directory of Open Access Journals (Sweden)

    Artur Wnorowski

    2017-06-01

    Full Text Available Tree saps are nourishing biological media commonly used for beverage and syrup production. Although the nutritional aspect of tree saps is widely acknowledged, the exact relationship between the sap composition, origin, and effect on the metabolic rate of human cells is still elusive. Thus, we collected saps from seven different tree species and conducted composition-activity analysis. Saps from trees of Betulaceae, but not from Salicaceae, Sapindaceae, nor Juglandaceae families, were increasing the metabolic rate of HepG2 cells, as measured using tetrazolium-based assay. Content of glucose, fructose, sucrose, chlorides, nitrates, sulphates, fumarates, malates, and succinates in sap samples varied across different tree species. Grade correspondence analysis clustered trees based on the saps’ chemical footprint indicating its usability in chemotaxonomy. Multiple regression modeling showed that glucose and fumarate present in saps from silver birch (Betula pendula Roth., black alder (Alnus glutinosa Gaertn., and European hornbeam (Carpinus betulus L. are positively affecting the metabolic activity of HepG2 cells.

  4. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  5. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  6. Natural AMPK Activators: An Alternative Approach for the Treatment and Management of Metabolic Syndrome.

    Science.gov (United States)

    Sharma, Hitender; Kumar, Sunil

    2017-01-01

    This review covers recent discoveries of phytoconstituents, herbal extracts and some semi-synthetic compounds for treating metabolic syndrome with AMPK activation as one of their mechanisms of action. Recent researches have demonstrated AMPK activation to ameliorate multiple components of metabolic syndrome by regulating a balance between anabolic and catabolic cellular reactions. The review attempts to delineate the AMPK activation by natural agents from the perspective of its functional consequences on enzymes, transcription factors and signaling molecules and also on other potential factors contributing in the amelioration of metabolic syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  8. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism.

    Directory of Open Access Journals (Sweden)

    Yazmin Macotela

    Full Text Available Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD. Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.

  9. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Lidia De Riccardis

    2016-12-01

    Full Text Available Glatiramer acetate (GA; Copaxone is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS. Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  10. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients.

    Science.gov (United States)

    De Riccardis, Lidia; Ferramosca, Alessandra; Danieli, Antonio; Trianni, Giorgio; Zara, Vincenzo; De Robertis, Francesca; Maffia, Michele

    2016-12-01

    Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4 + , the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4 + T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs) and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4 + T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4 + T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  11. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  12. Pulmonary metabolism of foreign compounds: Its role in metabolic activation

    International Nuclear Information System (INIS)

    Cohen, G.M.

    1990-01-01

    The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity

  13. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  14. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.

    Science.gov (United States)

    Chen, Wenbin; Hendrix, William; Samatova, Nagiza F

    2017-12-01

    The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.

  15. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder.

    Science.gov (United States)

    Zhao, Jianping; Khan, Shabana I; Wang, Mei; Vasquez, Yelkaira; Yang, Min Hye; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Smillie, Troy J; Khan, Ikhlas A

    2014-03-28

    Six new octulosonic acid derivatives (1-6) were isolated from the flower heads of Roman chamomile (Chamaemelum nobile). Their structures were elucidated by means of spectroscopic interpretation. The biological activity of the isolated compounds was evaluated toward multiple targets related to inflammation and metabolic disorder such as NAG-1, NF-κB, iNOS, ROS, PPARα, PPARγ, and LXR. Similar to the action of NSAIDs, all the six compounds (1-6) increased NAG-1 activity 2-3-fold. They also decreased cellular oxidative stress by inhibiting ROS generation. Compounds 3, 5, and 6 activated PPARγ 1.6-2.1-fold, while PPARα was activated 1.4-fold by compounds 5 and 6 only. None of the compounds showed significant activity against iNOS or NF-κB. This is the first report of biological activity of octulosonic acid derivatives toward multiple pathways related to inflammation and metabolic disorder. The reported anti-inflammatory, hypoglycemic, antiedemic, and antioxidant activities of Roman chamomile could be partly explained as due to the presence of these constituents.

  16. Multiple correlation analyses of metabolic and endocrine profiles with fertility in primiparous and multiparous cows.

    Science.gov (United States)

    Wathes, D C; Bourne, N; Cheng, Z; Mann, G E; Taylor, V J; Coffey, M P

    2007-03-01

    Results from 4 studies were combined (representing a total of 500 lactations) to investigate the relationships between metabolic parameters and fertility in dairy cows. Information was collected on blood metabolic traits and body condition score at 1 to 2 wk prepartum and at 2, 4, and 7 wk postpartum. Fertility traits were days to commencement of luteal activity, days to first service, days to conception, and failure to conceive. Primiparous and multiparous cows were considered separately. Initial linear regression analyses were used to determine relationships among fertility, metabolic, and endocrine traits at each time point. All metabolic and endocrine traits significantly related to fertility were included in stepwise multiple regression analyses alone (model 1), including peak milk yield and interval to commencement of luteal activity (model 2), and with the further addition of dietary group (model 3). In multiparous cows, extended calving to conception intervals were associated prepartum with greater concentrations of leptin and lesser concentrations of nonesterified fatty acids and urea, and postpartum with reduced insulin-like growth factor-I at 2 wk, greater urea at 7 wk, and greater peak milk yield. In primiparous cows, extended calving to conception intervals were associated with more body condition and more urea prepartum, elevated urea postpartum, and more body condition loss by 7 wk. In conclusion, some metabolic measurements were associated with poorer fertility outcomes. Relationships between fertility and metabolic and endocrine traits varied both according to the lactation number of the cow and with the time relative to calving.

  17. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  18. Prokaryote metabolism activity

    OpenAIRE

    Biederman, Lori

    2017-01-01

    I wrote this activity to emphasize that prokaryotic organisms can carry out 6 different types of metabolisms (as presented in Freeman’s Biological Science textbook) and this contrasts to eukaryotes, which can only use 2 metabolism pathways (photoautotroph and heterotroph).    For in class materials I remove the  red box (upper right corner) and print slides 3-10, place them back-to-back and laminate them.  The students get a key (slide 2) and a two-sided organism sheet...

  19. Sedentary activity associated with metabolic syndrome independent of physical activity

    DEFF Research Database (Denmark)

    Bankoski, Andrea; Harris, Tamara B; McClain, James J

    2011-01-01

    This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults.......This study examined the association between objectively measured sedentary activity and metabolic syndrome among older adults....

  20. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.

    Science.gov (United States)

    Eichmann, Thomas Oliver; Lass, Achim

    2015-10-01

    The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

  1. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  2. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    Science.gov (United States)

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  4. Relationship between metabolic syndrome and moderate-to-vigorous physical activity in youth.

    Science.gov (United States)

    Machado-Rodrigues, Aristides M; Leite, Neiva; Coelho e Silva, Manuel J; Valente-dos-Santos, João; Martins, Raul A; Mascarenhas, Luis P G; Boguszewski, Margaret C S; Padez, Cristina; Malina, Robert M

    2015-01-01

    Associations of metabolic syndrome (MetS) with lifestyle behaviors in youth is potentially important for identifying subgroups at risk and encourage interventions. This study evaluates the associations among the clustering of metabolic risk factors and moderate-to-vigorous physical activity (MVPA) in youth. The sample comprised 522 girls and 402 boys (N = 924) aged 11 to 17 years. Height, weight, waist circumference (WC), fasting glucose, high-density lipoprotein cholesterol, triglycerides, and blood pressures were measured. Cardiorespiratory fitness (CRF) was assessed using the 20-m shuttle run test. MVPA was estimated with a 3-day diary. Outcome variables were statistically normalized and expressed as z scores. A clustered metabolic risk score was computed as the mean of z scores. Multiple linear regression was used to test associations between metabolic risk and MVPA by sex, adjusted for age, WC, and CRF. After adjustment for potential confounders, MVPA was inversely associated with the clustering of metabolic risk factors in girls, but not in boys; in addition, after adjusting for WC, the statistical model of that relationship was substantially improved in girls. MVPA was independently associated with increased risk of MetS in girls. Additional efforts are needed to encourage research with different analytical approach and standardization of criteria for MetS in youth.

  5. Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women

    Directory of Open Access Journals (Sweden)

    Katarina Melzer

    2016-07-01

    Full Text Available “Metabolic Equivalent” (MET represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O2/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry were measured in adolescent males (n = 50 and females (n = 50, women during pregnancy (gestation week 35–41, n = 46, women 24–53 weeks postpartum (n = 27, and active men (n = 30, and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h was significantly higher than that of adolescent females (1.11 kcal/kg × h, with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h and overweight (0.89 kcal/kg × h adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard.

  6. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  7. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  8. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  9. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  10. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  11. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  12. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  13. Physical activity does not attenuate the relationship between daily cortisol and metabolic syndrome in obese youth.

    Science.gov (United States)

    Guseman, Emily Hill; Pfeiffer, Karin A; Carlson, Joseph J; Stansbury, Kathy; Eisenmann, Joey C

    2016-01-01

    We examined the associations among daily cortisol, physical activity (MVPA) and continuous metabolic syndrome score (cMetS) in obese youth. Fifty adolescents (mean age 14.8 ± 1.9 years) were recruited from medical clinics. Daily MVPA (min/day) was assessed by accelerometry. Saliva was sampled at prescribed times: immediately upon waking; 30 min after waking; and 3, 6 and 9 h after waking. Fasting lipids, glucose, waist circumference and blood pressure were used to calculate a continuous metabolic syndrome score (cMetS). Multiple linear regression analysis was used to examine associations among variables. The mean cMetS score was 4.16 ± 4.30 and did not differ by clinic or sex. No significant relationship was found between cortisol area under the curve (cAUC) and cMetS, nor did the interaction of MVPA with cAUC significantly predict cMetS. Physical activity, cortisol, and metabolic risk were not associated in this sample of obese adolescents. Future research should examine the role of insulin sensitivity in these relationships.

  14. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  15. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  16. Effects of bagging on sugar metabolism and the activity of sugar ...

    African Journals Online (AJOL)

    To investigate the effects of bagging on sugar metabolism and the activity of sugar metabolism related enzymes in Qingzhong loquat fruit development, the contents of sucrose, glucose and soluble solids as well as the activities of sugar metabolism related enzymes were evaluated. The content of sucrose, glucose and ...

  17. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  18. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    Directory of Open Access Journals (Sweden)

    Júlia T. Novaes

    2017-10-01

    Full Text Available Tetrahydrocurcumin (THC, curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa. Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC activity, histone acetyltransferase (HAT activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

  19. Defining active progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie

    2017-01-01

    BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive...

  20. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  1. Long-term follow-up of metabolic activity in human alveolar echinococcosis using FDG-PET

    International Nuclear Information System (INIS)

    Reuter, S.; Gruener, B.; Kern, P.; Buck, A.K.; Blumstein, N.; Reske, S.N.

    2008-01-01

    Aim: [ 18 F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. Patients, methods: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. Results: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. Conclusion: treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion. (orig.)

  2. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  3. Metabolic regulation of inflammation.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  4. Metabolic alkalosis with multiple salt unbalance: an atypical onset of cystic fibrosis in a child

    Directory of Open Access Journals (Sweden)

    Dimitri Poddighe

    2017-12-01

    Full Text Available Dehydration with multiple salt abnormalities is frequently encountered in the paediatric emergency department, during acute illnesses complicated by loss of body fluids. Metabolic alkalosis is not a common finding in dehydrated children. The presence of unusual electrolyte unbalance, such as metabolic alkalosis, hyponatremia, hypochloremia and hypokalemia, without evidence of renal tubular defects, is named as pseudo-Bartter syndrome. It can occur in several clinical settings and, in infancy, it is described as a potential complication of cystic fibrosis. We report a case of pseudo-Bartter syndrome representing the onset of cystic fibrosis in childhood.

  5. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  6. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  7. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Science.gov (United States)

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  8. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  9. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  10. An in vitro model for screening estrogen activity of environmental samples after metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Chahbane, N.; Schramm, K.W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Oekologische Chemie; Kettrup, A. [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Oekologische Chemie

    2004-09-15

    For a few years, yeast estrogen assay (YES) was accepted as a reliable and economic model for screening of environmental estrogens. Though the chemicals directly act with estrogen receptor (ER) can be filtered out by this model, there are still chemicals act with ER only after metabolism and some chemicals eliminate their estrogen activities after metabolism. That is to say, their metabolites exert or have stronger estrogen activities than themselves, which can be called bio-activation. In this case, for the lack of the metabolism enzyme system as human and other animals, only the assay with recombinant yeast cells is insufficient. So, it is necessary to combine the YES with metabolism procedure to evaluate the estrogen activities of these chemicals. The most common method used currently for in vitro metabolic activation in mutagenicity testing and also be applied to the estrogen screening field is S-9 mixture. Also, there is an attempt to develop a chemical model for cytochrome P450 as a bio-mimetic metabolic activation system. All these methods can be used as in vitro models for metabolism. Compare with these models, using whole H4II E cells for metabolism is an alternative and with superiorities. It has the excellence of short experiment period as all other in vitro models, but is much more close to the real surroundings as in vivo. Furthermore, the activity of 7-ethoxyresorufin-O-deethylase (EROD) can be easily measured during the whole incubation period for us to discuss the metabolic activities in a quantitative foundation, not only in qualitative. Methoxychlor is one of the chemicals with bio-activation ability. When directly used in the YES, it shows weak estrogen activity. But a main metabolite of methoxychlor, 2,2-bis (p-hydroxyphenyl) - 1,1,1-trichloroethane (HPTE) is a known estrogen mimic. For the long time using methoxychlor as a pesticide and its clear background, it is an ideal chemical to establish this in vitro system.

  11. Hypothalamic digoxin, hemispheric chemical dominance, and oncogenesis: evidence from multiple myeloma.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol, and ubiquinone in multiple myeloma. The isoprenoid pathway and digoxin status were also studied for comparison in individuals of differing hemispheric dominance to find out the rote of cerebral dominance in the genesis of multiple myeloma and neoplasms. The following parameters were assessed: isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition, and free radical metabolism--in multiple myeloma, as well as in individuals of differing hemispheric dominance. There was elevation in plasma HMG CoA reductase activity, serum digoxin, and dolichol, and a reduction in RBC membrane Na(+)-K+ ATPase activity, serum ubiquinone, and magnesium levels. Serum tryptophan, serotonin, nicotine, strychnine, and quinolinic acid were elevated, while tyrosine, dopamine, noradrenaline, and morphine were decreased. The total serum glycosaminoglycans and glycosaminoglycan fractions, the activity of GAG degrading enzymes and glycohydrolases, carbohydrate residues of glycoproteins, and serum glycolipids were elevated. The RBC membrane glycosaminoglycans, hexose, and fucose residues of glycoproteins, cholesterol, and phospholipids were reduced. The activity of all free-radical scavenging enzymes, concentration of glutathione, iron binding capacity, and ceruloplasmin decreased significantly, while the concentration of lipid peroxidation products and nitric oxide increased. Hyperdigoxinemia-related altered intracellular Ca++/Mg++ ratios mediated oncogene activation, dolichol-induced altered glycoconjugate metabolism, and ubiquinone deficiency-related mitochondrial dysfunction can contribute to the pathogenesis of multiple myeloma. The biochemical patterns obtained in multiple myeloma are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. But all the patients with

  12. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Association of Objectively Measured Physical Activity and Metabolic Syndrome Among US Adults With Osteoarthritis.

    Science.gov (United States)

    Liu, Shao-Hsien; Waring, Molly E; Eaton, Charles B; Lapane, Kate L

    2015-10-01

    To investigate the association between objectively measured physical activity and metabolic syndrome among adults with osteoarthritis (OA). Using cross-sectional data from the 2003-2006 National Health and Nutrition Examination Survey, we identified 566 adults with OA with available accelerometer data assessed using Actigraph AM-7164 and measurements necessary to determine metabolic syndrome by the Adult Treatment Panel III. Analysis of variance was conducted to examine the association between continuous variables in each activity level and metabolic syndrome components. Logistic models estimated the relationship of quartile of daily minutes of different physical activity levels to odds of metabolic syndrome adjusted for socioeconomic and health factors. Among persons with OA, most were women average age of 62.1 years and average disease duration of 12.9 years. Half of adults with OA had metabolic syndrome (51.0%; 95% confidence interval [95% CI] 44.2%-57.8%), and only 9.6% engaged in the recommended 150 minutes per week of moderate/vigorous physical activity. Total sedentary time was associated with higher rates of metabolic syndrome and its components, while light and objectively measured moderate/vigorous physical activity was inversely associated with metabolic syndrome and its components. Higher levels of light activity were associated with lower prevalence of metabolic syndrome (quartile 4 versus quartile 1: adjusted odds ratio 0.45, 95% CI 0.24-0.84, P for linear trend physical activity, especially in light intensity, is more likely to be associated with decreasing prevalence of metabolic syndrome among persons with OA. © 2015, American College of Rheumatology.

  14. Metabolic activation of the bladder carcinogen 4-nitrobiphenyl (NBP)

    International Nuclear Information System (INIS)

    Swaminathan, S.

    1986-01-01

    The metabolism of NBP, a dog bladder carcinogen, was examined in vitro using rat liver tissues. NBP was metabolized by enzymes localized both in the microsomes and cytosol. The microsomal enzyme activity was inducible by Aroclor 1254 and phenobarbital. High pressure liquid chromatography analysis of the ethyl acetate extract of the reaction mixture, following incubation of [ 3 H]NBP with NADPH and microsomes, revealed four radioactive and UV absorbing peaks with retention times of 5, 8, 14 and 28 min. The peaks at 8, 14 and 28 min corresponded with 4-aminobiphenyl (ABP), NBP and azoxy biphenyl, respectively. The early eluting component with a retention time of 5 min has been tentatively identified as a ring hydroxylated derivative. In contrast to microsomal metabolism, cytosol-mediated metabolism yielded only one major metabolite identified as ABP. Cytosol-mediate reduction was inhibited by the xanthine oxidase inhibitor allopurinol. In vitro incubation of NBP with NADH and commercial preparations of xanthine oxidase also yielded ABP and the formation of the latter was blocked by allopurinol. Xanthine oxidase catalyzed also the binding of [ 3 H]NBP to DNA and proteins; the binding was inhibited by allopurinol. These data support the hypothesis that the nitro reduction step is involved in the activation of the bladder carcinogen NBP, and that the nitroreductases occur in both the microsomes and cytosol. The cytosolic activity is primarily due to xanthine oxidase

  15. Emerging opportunities for the treatment of metabolic diseases

    DEFF Research Database (Denmark)

    Finan, Brian; Clemmensen, Christoffer; Müller, Timo D

    2015-01-01

    with integrated activities derived from multiple hormones involved in the physiological control of metabolism have emerged as one of the more promising candidates for reversing obesity. The inclusion of glucagon-like peptide-1 (GLP-1) as one of the constituents is a unifying factor amongst the majority......Obesity is a pathogenic gateway to the metabolic syndrome and the complications thereof, thus interventions aimed at preventing or reversing the metabolic derangements underlying obesity hold great therapeutic promise. However, the complexity of energy balance regulation, combined...

  16. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  17. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    Salem, E.S.

    2013-01-01

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  18. Pedometer assessed physical activity of people with metabolic syndrome in Poland.

    Directory of Open Access Journals (Sweden)

    Anna Owlasiuk

    2014-06-01

    Full Text Available introduction. Metabolic syndrome is a contemporary disease of civilization, an effect of lack of healthy behaviour, a consequence of lifestyle devoid of physical activity, eating poor quality food rich in calories and excessive stress. Apart from a proper diet, physical activity remains an important part of metabolic syndrome management. objective. The main objective of the work was to evaluate the physical activity of an adult population of patients with metabolic syndrome. materials and method. Adults aged 35–70 fulfilling the criteria of metabolic syndrome according to International Diabetes Federation (IDF were included. New Lifestyles NL-2000 pedometers were used to assess locomotive physical activity during an entire week. results. In the group of 100 subjects, as many as 61 people (61% represented low or sedentary activity, while nearly one fourth of the respondents – 23 (32% represented the negligible activity type. Average weekly physical activity of those in the study was 6,743 steps/day (in 100 individuals and ranged from 1,781–15,169. A great diversity was found in the study group, since the highest number of steps per day was 23,347 and the lowest – 409. No significant differences in the number of steps on weekdays and at weekends were observed (mean: 6,676/day and 6,913/day, espectively. A statistically significant negative correlation (r = -0.29 was observed between age and physical activity, between the average daily number of steps in the week and Waist Hip Ratio (WHR (r = 0.201, as well as between the average daily number of steps in the week and Body Mass Index (BMI (r = 0.226. conclusions. The majority of people with metabolic syndrome represent a low or sedentary activity type and decrease of physical activity corresponds to increasing age, BMI and WHR. No significant differences in physical activity are observed between working days and free days (weekends.

  19. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    Science.gov (United States)

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  20. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  1. Effectiveness of physical activity intervention among government employees with metabolic syndrome.

    Science.gov (United States)

    Huei Phing, Chee; Abu Saad, Hazizi; Barakatun Nisak, M Y; Mohd Nasir, M T

    2017-12-01

    Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prompt group (n = 44), an aerobics group (n = 42) or a control group (n = 103) based on sample size calculation formula. Step counts were evaluated by Lifecorder e-STEP accelerometers for all participants. Metabolic syndrome was defined according to the 'harmonizing' definition, in which individuals who have at least three of the five metabolic risk factors (waist circumference, high-density lipoprotein cholesterol, triglycerides, fasting glucose levels, systolic and diastolic blood pressure) will be classified as having metabolic syndrome. A total of 80% of the enrolled government employees with metabolic syndrome completed the programme. Data were analyzed using SPSS for Windows (version 20, SPSS, Chicago, IL). There were significantly higher step counts on average in the aerobics group compared to the control group over assessments. Assessments at baseline, post-intervention and follow-up showed a significant difference in step counts between the intervention and control groups. The greatest reductions in the proportions of individuals with metabolic syndrome were observed in the aerobics group with a reduction of 79.4% in the post-intervention assessment compared to the assessment at baseline. The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  2. Nonlinear Dielectric Spectroscopy as an Indirect Probe of Metabolic Activity in Thylakoid Membrane

    Directory of Open Access Journals (Sweden)

    John H. Miller

    2011-01-01

    Full Text Available Nonlinear dielectric spectroscopy (NDS is a non-invasive probe of cellular metabolic activity with potential application in the development of whole-cell biosensors. However, the mechanism of NDS interaction with metabolic membrane proteins is poorly understood, partly due to the inherent complexity of single cell organisms. Here we use the light-activated electron transport chain of spinach thylakoid membrane as a model system to study how NDS interacts with metabolic activity. We find protein modification, as opposed to membrane pump activity, to be the dominant source of NDS signal change in this system. Potential mechanisms for such protein modifications include reactive oxygen species generation and light-activated phosphorylation.

  3. Effects of SO2 and sulfite on stromal metabolism

    International Nuclear Information System (INIS)

    Anderson, L.E.; Muschinek, G.; Marques, I.

    1986-01-01

    SO 2 appears to have multiple effects on chloroplast stromal metabolism. What is unique about metabolism in the chloroplast is reductive modulation of enzyme activity. The evidence summarized here implicates both the components of the modulation process and the light modulated enzymes and ribulosebisphosphate carboxylase in SO 2 -sensitivity. Interference with electron transport, acidification of the stroma, and depletion of phosphates will further complicate metabolism in the photosynthesizing chloroplast when sensitive plants are exposed to SO 2 . 35 refs., 6 figs

  4. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    International Nuclear Information System (INIS)

    Schwartz, W.J.

    1987-01-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the 14 C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia

  5. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    Energy Technology Data Exchange (ETDEWEB)

    Herrschaft, H.

    1986-09-29

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies.

  6. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1986-01-01

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies. (orig.) [de

  7. Correlation of Diffusion and Metabolic Alterations in Different Clinical Forms of Multiple Sclerosis

    Science.gov (United States)

    Hannoun, Salem; Bagory, Matthieu; Durand-Dubief, Francoise; Ibarrola, Danielle; Comte, Jean-Christophe; Confavreux, Christian; Cotton, Francois; Sappey-Marinier, Dominique

    2012-01-01

    Diffusion tensor imaging (DTI) and MR spectroscopic imaging (MRSI) provide greater sensitivity than conventional MRI to detect diffuse alterations in normal appearing white matter (NAWM) of Multiple Sclerosis (MS) patients with different clinical forms. Therefore, the goal of this study is to combine DTI and MRSI measurements to analyze the relation between diffusion and metabolic markers, T2-weighted lesion load (T2-LL) and the patients clinical status. The sensitivity and specificity of both methods were then compared in terms of MS clinical forms differentiation. MR examination was performed on 71 MS patients (27 relapsing remitting (RR), 26 secondary progressive (SP) and 18 primary progressive (PP)) and 24 control subjects. DTI and MRSI measurements were obtained from two identical regions of interest selected in left and right centrum semioval (CSO) WM. DTI metrics and metabolic contents were significantly altered in MS patients with the exception of N-acetyl-aspartate (NAA) and NAA/Choline (Cho) ratio in RR patients. Significant correlations were observed between diffusion and metabolic measures to various degrees in every MS patients group. Most DTI metrics were significantly correlated with the T2-LL while only NAA/Cr ratio was correlated in RR patients. A comparison analysis of MR methods efficiency demonstrated a better sensitivity/specificity of DTI over MRSI. Nevertheless, NAA/Cr ratio could distinguish all MS and SP patients groups from controls, while NAA/Cho ratio differentiated PP patients from controls. This study demonstrated that diffusivity changes related to microstructural alterations were correlated with metabolic changes and provided a better sensitivity to detect early changes, particularly in RR patients who are more subject to inflammatory processes. In contrast, the better specificity of metabolic ratios to detect axonal damage and demyelination may provide a better index for identification of PP patients. PMID:22479330

  8. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  9. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  10. Association between physical activity and metabolic syndrome among Malay adults in a developing country, Malaysia.

    Science.gov (United States)

    Chu, Anne H Y; Moy, F M

    2014-03-01

    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia. Cross-sectional. Body mass index, waist circumference, and systolic/diastolic blood pressure, fasting blood glucose, fasting triglyceride and high-density lipoprotein cholesterol levels were measured in 686 Malay participants (aged 35-74 years). Self-reported physical activity was obtained with the validated International Physical Activity Questionnaire (Malay version) and categorized into low, moderate or high activity levels. Individuals who were classified as overweight and obese predominated (65.6%). On the basis of the modified NCEP ATP III criteria, metabolic syndrome was diagnosed in 31.9% of all participants, of whom 46.1% were men and 53.9% were women. The prevalence of metabolic syndrome among participants with low, moderate or high activity levels was 13.3%, 11.7% and 7.0%, respectively (p<0.001). Statistically significant negative associations were found between a number of metabolic risk factors and activity categories (p<0.05). The odds ratios for metabolic syndrome in the moderate and high activity categories were 0.42 (95% CI: 0.27-0.65) and 0.52 (95% CI: 0.35-0.76), respectively, adjusted for gender. Moderate and high activity levels were each associated with reduced odds for metabolic syndrome independent of gender. Although a slightly lower prevalence of metabolic syndrome was associated with high activity than with moderate activity, potential health benefits were observed when moderate activity was performed. Copyright © 2013 Sports Medicine Australia. All rights reserved.

  11. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  12. Total physical activity volume, physical activity intensity, and metabolic syndrome: 1999-2004 National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Churilla, James R; Fitzhugh, Eugene C

    2012-02-01

    This study examined the association of total physical activity volume (TPAV) and physical activity (PA) from three domains [leisure-time physical activity (LTPA), domestic, transportation] with metabolic syndrome. We also investigated the relationship between LTPA intensity and metabolic syndrome risk. Sample included adults who participated in the 1999-2004 National Health and Nutrition Examination Survey. Physical activity measures were created for TPAV, LTPA, domestic PA, and transportational PA. For each, a six-level measure based upon no PA (level 1) and quintiles (levels 2-6) of metabolic equivalents (MET)·min·wk(-1) was created. A three-level variable associated with the current Department of Health and Human Services (DHHS) PA recommendation was also created. SAS and SUDAAN were used for the statistical analysis. Adults reporting the greatest volume of TPAV and LTPA were found to be 36% [odds ratio (OR) 0.64; 95% confidence interval (CI) 0.49-0.83] and 42% (OR 0.58; 95% CI 0.43-0.77), respectively, less likely to have metabolic syndrome. Domestic and transportational PA provided no specific level of protection from metabolic syndrome. Those reporting a TPAV that met the DHHS PA recommendation were found to be 33% (OR 0.67; 95%; CI 0.55-0.83) less likely to have metabolic syndrome compared to their sedentary counterparts. Adults reporting engaging in only vigorous-intensity LTPA were found to be 37% (OR 0.63; 95 CI 0.42-0.96) to 56% (OR 0.44; 95% CI 0.29-0.67) less likely to have metabolic syndrome. Volume, intensity, and domain of PA may all play important roles in reducing the prevalence and risk of metabolic syndrome.

  13. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  14. the prevalence of metabolic syndrome among active sportsmen

    African Journals Online (AJOL)

    User

    ABSTRACT. This study sought to establish the prevalence of the metabolic syndrome (MetS) among active .... Table 1: General characteristic of the studied population stratified by exercise. Parameters ..... Prolonged adaptation to fat- rich diet ...

  15. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    OpenAIRE

    Chee Huei Phing; Hazizi Abu Saad; M.Y. Barakatun Nisak; M.T. Mohd Nasir

    2017-01-01

    Background/Objective: Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. Methods: We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prom...

  16. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population.

    Science.gov (United States)

    Oguoma, Victor M; Nwose, Ezekiel U; Skinner, Timothy C; Richards, Ross S; Digban, Kester A; Onyia, Innocent C

    2016-01-01

    Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with metabolic syndrome in a Nigerian population. A cross-sectional study was carried out on apparently healthy persons who are ≥ 18 years old. The World Health Organisation (WHO) Global Physical Activity Questionnaire (GPAQ) was used to collect five domains of physical activity. Participants were classified as physically active or inactive based on meeting the cut-off value of 600 MET-min/week. Metabolic syndrome was diagnosed using the Joint Scientific Statement on Harmonizing the Metabolic Syndrome criteria. Overall prevalence of physically active individuals was 50.1% (CI: 45.6-54.7%). Physical inactivity is significantly more in females (p40 years old (pmetabolic syndrome appeared more likely to be physically active (OR=1.48, CI: 0.71-3.09); physical inactivity showed to exist more among participants who were living in urban area (OR=6.61, CI: 3.40-12.85, pmetabolic syndrome risk factors. The high prevalence of physical inactivity in this study population is a clear indication that concerted efforts to improve physical activity may be required. However, it seems that metabolic syndrome is not improved by being physically active. This suggests that interventions directed at physical activity alone may not produce optimal efficacy in this study population. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  18. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization

    NARCIS (Netherlands)

    van Aarle, IM; Cavagnaro, TR; Smith, SE; Dickson, S

    Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal

  19. Disturbed Glucose Metabolism in Rat Neurons Exposed to Cerebrospinal Fluid Obtained from Multiple Sclerosis Subjects

    Directory of Open Access Journals (Sweden)

    Deepali Mathur

    2017-12-01

    Full Text Available Axonal damage is widely accepted as a major cause of permanent functional disability in Multiple Sclerosis (MS. In relapsing-remitting MS, there is a possibility of remyelination by myelin producing cells and restoration of neurological function. The purpose of this study was to delineate the pathophysiological mechanisms underpinning axonal injury through hitherto unknown factors present in cerebrospinal fluid (CSF that may regulate axonal damage, remyelinate the axon and make functional recovery possible. We employed primary cultures of rat unmyelinated cerebellar granule neurons and treated them with CSF obtained from MS and Neuromyelitis optica (NMO patients. We performed microarray gene expression profiling to study changes in gene expression in treated neurons as compared to controls. Additionally, we determined the influence of gene-gene interaction upon the whole metabolic network in our experimental conditions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING program. Our findings revealed the downregulated expression of genes involved in glucose metabolism in MS-derived CSF-treated neurons and upregulated expression of genes in NMO-derived CSF-treated neurons. We conclude that factors in the CSF of these patients caused a perturbation in metabolic gene(s expression and suggest that MS appears to be linked with metabolic deformity.

  20. [The study on metabolic difference of human body affected by active stress and passive stress under special events].

    Science.gov (United States)

    Guo, Guang-hong; Gu, Feng; Dong, Zhen-nan; Yuan, Xin-hong; Wang, Ling; Tian, Ya-ping

    2010-05-01

    To study the metabolic difference of body influenced by active stress and passive stress under special events. To detect serum multiple biochemistry index of 57 earthquake rescue medical team and 13 victims of a natural calamity in Wenchuan earthquake by using Hitachi 7600 automatic analyzer. Stress affected biochemistry index deeply. To compared with rescue medical team, the serum ADA, ALP and TG of victims increased obviously and TP, ALB, MAO, Cr, UA, K, Na, Cl, Ca, ApoA1 and HDL decreased obviously. Many biochemistry index have been changed under stress and it relate with stress extent. The human body function status was better in active stress than in passive stress.

  1. Metabolic Reprogramming During Multidrug Resistance in Leukemias

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Vidal

    2018-04-01

    Full Text Available Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

  2. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  3. Adhesive ability and biofilm metabolic activity of Listeria ...

    African Journals Online (AJOL)

    SWEET

    2012-07-31

    Jul 31, 2012 ... monocytogenes strains were able to adhere to abiotic materials with different degrees. In fact, cold stressed strains ... packaging. Biofilms allow .... reduction of a tetrazolium salt by metabolically active cells to a colored water ...

  4. Physical activity and sedentary behavior in metabolically healthy obese young women

    Science.gov (United States)

    Studies of physical activity (PA) and sedentary behavior (SB) in metabolically healthy obese (MHO) have been limited to postmenopausal white women. We sought to determine whether PA and SB differ between MHO and metabolically abnormal obese (MAO), in young black and white women....

  5. Physical activity as a metabolic stressor.

    Science.gov (United States)

    Coyle, E F

    2000-08-01

    Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.

  6. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    DEFF Research Database (Denmark)

    Eliasson, Pernilla; Couppé, Christian; Lonsdale, Markus

    2016-01-01

    PURPOSE: Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12...... demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust...... negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome....

  7. Nucleons II: cryopreservation and metabolic activity.

    Science.gov (United States)

    Reyes, R; Flores-Alonso, J C; Rodríguez-Hernández, H M; Merchant-Larios, H M; Delgado, N M

    2001-01-01

    The establishment of intracytoplasmatic sperm injection (ICSI) as a routine procedure in assisted fertilization has been used in the treatment of male infertility. The major technical problem that has arisen with the use of immotile sperm for ICSI has been differentiating between live and dead cells. Nucleons from human, pig, hamster, mouse, rat, and bull have been able to induce their chromatin decondensation by the action of heparin/GSH. Cryopreservation is deleterious to sperm function, killing more than 50% of the spermatozoa during the process. Nucleon cryostorage was performed at 5 and -5 degrees C and analyzed for total area (mu2), perimeter (mu), width (mu), and length (mu), using Metamorph Imaging System software. On the other hand, fluorescein diacetate (FDA) is hydrolyzed by intracellular estereases to produce fluorescein, which exhibits green fluorescence when excited by blue light. This fact is a striking result since the presence of this metabolic activity opens the possibility to select the nucleons for ICSI. In the present study, the authors decided to search for a suitable metabolic test, which might reflect the metabolism and viability of these chromatin structures. This is a simple cryostorage technique that after months of cryopreservation, allow the use of nucleons for ICSI with suitable fertilization and pregnancies rates.

  8. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats.

    Science.gov (United States)

    Rezin, Gislaine T; Jeremias, Isabela C; Ferreira, Gabriela K; Cardoso, Mariane R; Morais, Meline O S; Gomes, Lara M; Martinello, Otaviana B; Valvassori, Samira S; Quevedo, João; Streck, Emilio L

    2011-12-01

    Obesity is a chronic disease of multiple etiologies, including genetic, metabolic, environmental, social, and other factors. Pharmaceutical strategies in the treatment of obesity include drugs that regulate food intake, thermo genesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine. Studies suggest that amphetamine induces neurotoxicity through generation of free radicals and mitochondrial apoptotic pathway by cytochrome c release, accompanied by a decrease of mitochondrial membrane potential. Mitochondria are intracellular organelles that play a crucial role in ATP production. Thus, in the present study we evaluated the activities of some enzymes of Krebs cycle, mitochondrial respiratory chain complexes and creatine kinase in the brain of young rats submitted to acute and chronic administration of fenproporex. In the acute administration, the animals received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or tween. In the chronic administration, the animals received a single injection daily for 14 days of fenproporex (6.25, 12.5 or 25 mg/Kg i.p.). Two hours after the last injection, the rats were sacrificed by decapitation and the brain was removed for evaluation of biochemical parameters. Our results showed that the activities of citrate synthase, malate dehydrogenase and succinate dehydrogenase were increased by acute and chronic administration of fenproporex. Complexes I, II, II-III and IV and creatine kinase activities were also increased after acute and chronic administration of the drug. Our results are consistent with others reports that showed that some psychostimulant drugs increased brain energy metabolism in young rats. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

    Directory of Open Access Journals (Sweden)

    Ina Häuslein

    2017-06-01

    Full Text Available The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network

  11. Diet composition and activity level of at risk and metabolically healthy obese American adults.

    Science.gov (United States)

    Hankinson, Arlene L; Daviglus, Martha L; Van Horn, Linda; Chan, Queenie; Brown, Ian; Holmes, Elaine; Elliott, Paul; Stamler, Jeremiah

    2013-03-01

    Obesity often clusters with other major cardiovascular disease risk factors, yet a subset of the obese appears to be protected from these risks. Two obesity phenotypes are described, (i) "metabolically healthy" obese, broadly defined as body mass index (BMI) ≥ 30 kg/m(2) and favorable levels of blood pressure, lipids, and glucose; and (ii) "at risk" obese, BMI ≥ 30 with unfavorable levels of these risk factors. More than 30% of obese American adults are metabolically healthy. Diet and activity determinants of obesity phenotypes are unclear. We hypothesized that metabolically healthy obese have more favorable behavioral factors, including less adverse diet composition and higher activity levels than at risk obese in the multi-ethnic group of 775 obese American adults ages 40-59 years from the International Population Study on Macro/Micronutrients and Blood Pressure (INTERMAP) cohort. In gender-stratified analyses, mean values for diet composition and activity behavior variables, adjusted for age, race, and education, were compared between metabolically healthy and at risk obese. Nearly one in five (149/775 or 19%) of obese American INTERMAP participants were classified as metabolically healthy obese. Diet composition and most activity behaviors were similar between obesity phenotypes, although metabolically healthy obese women reported higher sleep duration than at risk obese women. These results do not support hypotheses that diet composition and/or physical activity account for the absence of cardiometabolic abnormalities in metabolically healthy obese. Copyright © 2012 The Obesity Society.

  12. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Science.gov (United States)

    Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui

    2016-01-01

    Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce

  13. Clinical significance of reduced cerebral metabolism in multiple sclerosis. A combined PET and MRI study

    International Nuclear Information System (INIS)

    Sun, Xiayan; Tanaka, Makoto; Kondo, Susumu; Okamoto, Koichi; Hirai, Shunsaku

    1998-01-01

    Magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) has provided major insights into the disease's natural history, and many studies have focussed on possible correlations between MRI findings and the clinical manifestations of MS. In contrast, there are few reports on possible relationships between functional imaging data and cognitive function. The present study assessed the relationship between clinical presentation and combined anatomical and functional imaging data in MS. Twenty patients with definite MS underwent MRI and positron emission tomography (PET) to evaluate cerebral blood flow (rCBF) and oxygen metabolism (rCMRO 2 ). The relationships between these neuroimaging findings and clinical data, including the Expanded Disability Status Scale (EDSS), Mini-mental status scale, Hasegawa Dementia Scale and relapse time, were evaluated with Spearman's rank correlation coefficients. A general reduction in rCBF and rCMRO 2 in the gray and white matter were found in the MS patients. EDSS was correlated with the number and size of the lesions on MRI and was negatively correlated with rCMRO 2 . A correlation between the decrease in rCMRO 2 and the level of cognitive impairment was also found. The severity of cerebral hypometabolism was also related to the number of relapses. Morphological and functional findings obtained by MRI and PET are closely related to the clinical status in MS. Our results suggest that measurement of cerebral metabolism in MS has the potential to be an objective marker for monitoring disease activity and to provide prognostic information. (author)

  14. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  15. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  16. Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments

    International Nuclear Information System (INIS)

    Wang, Mengcen; Qian, Yuan; Liu, Xiaoyu; Wei, Peng; Deng, Man; Wang, Lei; Wu, Huiming; Zhu, Guonian

    2017-01-01

    Triafamone, a sulfamide herbicide, has been extensively utilized for weed control in rice paddies in Asia. However, its fate and transformation in the environment have not been established. Through a rice paddy microcosm-based simulation trial combined with multiple spectroscopic analyses, we isolated and identified three novel metabolites of triafamone, including hydroxyl triafamone (HTA), hydroxyl triafamone glycoside (HTAG), and oxazolidinedione triafamone (OTA). When triafamone was applied to rice paddies at a concentration of 34.2 g active ingredient/ha, this was predominantly distributed in the paddy soil and water, and then rapidly dissipated in accordance with the first-order rate model, with half-lives of 4.3–11.0 days. As the main transformation pathway, triafamone was assimilated by the rice plants and was detoxified into HTAG, whereas the rest was reduced into HTA with subsequent formation of OTA. At the senescence stage, brown rice had incurred triafamone at a concentration of 0.0016 mg/kg, but the hazard quotient was <1, suggesting that long-term consumption of the triafamone-containing brown rice is relatively safe. The findings of the present study indicate that triafamone is actively metabolized in the agricultural environment, and elucidation of the link between environmental exposure to these triazine or oxazolidinedione moieties that contain metabolites and their potential impacts is warranted. - Highlights: • Multiple spectroscopic analyses were applied to investigate agrochemicals transformation in environment. • Three novel compounds were isolated and identified as triafamone metabolites. • The fate and transformation pathway of triafamone in rice paddy were revealed. • Long-term consumption of the triafamone-containing brown rice is relatively safe. • Elucidation of environmental impacts by exposure to these triazine or oxazolidinedione metabolites is warranted. - Triafamone rapidly dissipates in agricultural environments

  17. Prevalence of metabolic syndrome and its relationship with physical activity in suburban Beijing, China.

    Science.gov (United States)

    Zhang, Wei-Hong; Xue, Peng; Yao, Meng-Ying; Chang, Hai-Min; Wu, Yan; Zhang, Lei

    2013-01-01

    The present study aimed to estimate the up-to-date prevalence of metabolic syndrome and its relationship with physical activity among suburban adults in Beijing, China. A cross-sectional survey in a representative sample of 19,003 suburban adults aged 18-76 years was carried out in 2007-2008. Data was collected via questionnaires and blood pressure, anthropometric, and laboratory measurements. Of the residents aged 18-76 years in suburban Beijing, 25.9% (27.3% in men and 25.1% in women), 21.3% (19.4% in men and 22.9% in women), and 25.3% (24.2% in men and 26.1% in women) had 1 component, 2 components, and 3 or more components of metabolic syndrome, respectively. The age-standardized prevalence of metabolic syndrome and its components, including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting plasma glucose, decreased across categories with increasing physical activity. After adjusting for age, sex, education level, smoking, and alcohol consumption, residents were more likely to have metabolic syndrome across categories with decreasing physical activity; a similar relationship also applied to components of metabolic syndrome. A high prevalence of metabolic syndrome and its components is commonly present in suburban Beijing. Increasing physical activity can reduce the relative risk of metabolic syndrome and it components.

  18. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring?

    DEFF Research Database (Denmark)

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte

    2013-01-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring.......It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring....

  19. Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners

    DEFF Research Database (Denmark)

    Laye, M J; Nielsen, M B; Hansen, L S

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consisten......High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run...... consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max......). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior...

  20. AMP-activated protein kinase: Role in metabolism and therapeutic implications.

    Science.gov (United States)

    Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas

    2006-11-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.

  1. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    Science.gov (United States)

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation.

  2. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  3. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    Full Text Available Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China.The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed.Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids.Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are

  4. Physical activity motivation and benefits in people with multiple sclerosis.

    Science.gov (United States)

    Fasczewski, Kimberly S; Gill, Diane L; Rothberger, Sara M

    2018-06-01

    Multiple sclerosis is a degenerative neurological disease that affects 2.1 million people worldwide. There is no cure, but an expanding body of research supports the positive impact of physical activity and suggests physical activity has benefits for the individual's psychological and physical well-being. Using Self-Determination Theory as a framework, mixed methods with a focus on qualitative interviews were used to explore physical activity motivation and benefits with a sample of highly active people with multiple sclerosis (n = 15). Disability level ranged from not disabled to wheelchair bound with the majority of participants reporting minimal impact from multiple sclerosis. Survey data were collected using a number of open-ended questions along with measures of self-efficacy, self-determined motivation, physical activity, and quality of life. Additionally, eight individuals participated in semistructured telephone interviews focused on (a) motivation and strategies used to maintain physical activity and (b) the benefits and impact of physical activity in their lives. The main findings were consistent with Self-Determination Theory; participants described feelings of accomplishment and competence in both their physical activity and daily life, as well as a sense of independence and autonomy. Similarly, all participants cited benefits, and the main themes were enhanced satisfaction with life and an overall positive outlook on life. Results provide insight into the role of physical activity in a highly active sample and have implications for professionals working in physical activity settings with the multiple sclerosis population. Interventions aimed at increasing long-term physical activity adherence should focus on increasing autonomy and competence for physical activity in the individual and promoting potential increased quality of life outcomes from physical activity participation. Implications for Rehabilitation Multiple sclerosis is a chronic

  5. Comparison of Cerebral Glucose Metabolism between Possible and Probable Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Kyum-Yil Kwon

    2009-05-01

    Full Text Available Background: To investigate the relationship between presenting clinical manifestations and imaging features of multisystem neuronal dysfunction in MSA patients, using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET. Methods: We studied 50 consecutive MSA patients with characteristic brain MRI findings of MSA, including 34 patients with early MSA-parkinsonian (MSA-P and 16 with early MSA-cerebellar (MSA-C. The cerebral glucose metabolism of all MSA patients was evaluated in comparison with 25 age-matched controls. 18F-FDG PET results were assessed by the Statistic Parametric Mapping (SPM analysis and the regions of interest (ROI method. Results: The mean time from disease onset to 18F-FDG PET was 25.9±13.0 months in 34 MSA-P patients and 20.1±11.1 months in 16 MSA-C patients. Glucose metabolism of the putamen showed a greater decrease in possible MSA-P than in probable MSA-P (p=0.031. Although the Unified Multiple System Atrophy Rating Scale (UMSARS score did not differ between possible MSA-P and probable MSA-P, the subscores of rigidity (p=0.04 and bradykinesia (p= 0.008 were significantly higher in possible MSA-P than in probable MSA-P. Possible MSA-C showed a greater decrease in glucose metabolism of the cerebellum than probable MSA-C (p=0.016. Conclusions: Our results may suggest that the early neuropathological pattern of possible MSA with a predilection for the striatonigral or olivopontocerebellar system differs from that of probable MSA, which has prominent involvement of the autonomic nervous system in addition to the striatonigral or olivopontocerebellar system.

  6. Relationships among personality traits, metabolic syndrome, and metabolic syndrome scores: The Kakegawa cohort study.

    Science.gov (United States)

    Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi

    2018-04-01

    Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: Molecular Evidence for Metabolic Interchange

    Directory of Open Access Journals (Sweden)

    Cara L Fiore

    2015-04-01

    Full Text Available Compared to our understanding of the taxonomic composition of the symbiotic microbes in marine sponges, the functional diversity of these symbionts is largely unknown. Furthermore, the application of genomic, transcriptomic, and proteomic techniques to functional questions on sponge host-symbiont interactions is in its infancy. In this study, we generated a transcriptome for the host and a metatranscriptome of its microbial symbionts for the giant barrel sponge, Xestospongia muta, from the Caribbean. In combination with a gene-specific approach, our goals were to 1 characterize genetic evidence for nitrogen cycling in X. muta, an important limiting nutrient on coral reefs 2 identify which prokaryotic symbiont lineages are metabolically active and, 3 characterize the metabolic potential of the prokaryotic community. Xestospongia muta expresses genes from multiple nitrogen transformation pathways that when combined with the abundance of this sponge, and previous data on dissolved inorganic nitrogen fluxes, shows that this sponge is an important contributor to nitrogen cycling on coral reefs. Additionally, we observed significant differences in gene expression of the archaeal amoA gene, which is involved in ammonia oxidation, between coral reef locations consistent with differences in the fluxes of dissolved inorganic nitrogen previously reported. In regards to symbiont metabolic potential, the genes in the biosynthetic pathways of several amino acids were present in the prokaryotic metatranscriptome dataset but in the host-derived transcripts only the catabolic reactions for these amino acids were present. A similar pattern was observed for the B vitamins (riboflavin, biotin, thiamin, cobalamin. These results expand our understanding of biogeochemical cycling in sponges, and the metabolic interchange highlighted here advances the field of symbiont physiology by elucidating specific metabolic pathways where there is high potential for host

  8. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  9. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  10. Influence of metabolism on endocrine activities of bisphenol S.

    Science.gov (United States)

    Skledar, Darja Gramec; Schmidt, Jan; Fic, Anja; Klopčič, Ivana; Trontelj, Jurij; Dolenc, Marija Sollner; Finel, Moshe; Mašič, Lucija Peterlin

    2016-08-01

    Bisphenol S (BPS; bis[4-hydroxyphenyl]sulfone) is commonly used as a replacement for bisphenol A in numerous consumer products. The main goal of this study was to examine the influence of different metabolic reactions that BPS undergoes on the endocrine activity. We demonstrate that hydroxylation of the aromatic ring of BPS, catalyzed mainly by the cytochrome P450 enzymes CYP3A4 and CYP2C9, is its major in-vitro phase I biotransformation. Nevertheless, coupled oxidative-conjugative reactions analyses revealed that glucuronidation and formation of BPS glucuronide is the predominant BPS metabolic pathway. BPS reactive metabolites that can be tracked as glutathione conjugates were not detected in the present study. Two in-vitro systems were used to evaluate the endocrine activity of BPS and its two main metabolites, BPS glucuronide and hydroxylated BPS 4-(4-hydroxy-benzenesulfonyl)-benzene-1,2-diol (BPSM1). In addition, we have tested two structural analogs of BPS, bis[4-(2-hydroxyetoxy)phenyl]sulfone (BHEPS) and 4,4-sulfonylbis(2-methylphenol) (dBPS). The test systems were yeast cells, for evaluating estrogenic and androgenic activities, and the GH3.TRE-Luc reporter cell line for measuring thyroid hormone activity. BPS and BPSM1 were weak agonists of the estrogen receptor, EC50 values of 8.4 × 10(-5) M and 6.7 × 10(-4) M, respectively. Additionally, BPSM1 exhibited weak antagonistic activity toward the thyroid hormone receptor, with an IC50 of 4.3 × 10(-5) M. In contrast to BPSM1, BPS glucuronide was inactive in these assays, inhibiting neither the estrogen nor the thyroid hormone receptors. Hence, glucuronidation appears to be the most important pathway for both BPS metabolism and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Metabolic effects of physiological levels of caffeine in myotubes.

    Science.gov (United States)

    Schnuck, Jamie K; Gould, Lacey M; Parry, Hailey A; Johnson, Michele A; Gannon, Nicholas P; Sunderland, Kyle L; Vaughan, Roger A

    2018-02-01

    Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine's effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARβ/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARβ/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARβ/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARβ/δ.

  12. Metabolic syndrome and cognitive decline: the role of physical activity

    Directory of Open Access Journals (Sweden)

    M. Rinaldi

    2013-01-01

    Full Text Available Metabolic Syndrome (MetS is a cluster of conditions, each of which represents a risk factor for cardiovascular disease: central obesity, hyperglycemia, dyslipidemia and hypertension. Any of these conditions and MetS itself have been associated to Alzheimer's Disease and Vascular Dementia. In recent years there is a growing evidence for the role of physical activity in preventing metabolic diseases and cognitive decline. In our research we assessed the prevalence of MetS in a sample of 154 elderly people. Furthermore, we evaluated cognition (with Mini Mental State Examination, MMSE  and the physical activity level in every patient. We found a significant association between MetS, borderline cognitive impairment and sedentary lifestyle.

  13. Metabolic activation of 2-methylfuran by rat microsomal systems

    International Nuclear Information System (INIS)

    Ravindranath, V.; Boyd, M.R.

    1985-01-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins

  14. Prediction of residual metabolic activity after treatment in NSCLC patients

    International Nuclear Information System (INIS)

    Rios Velazquez, Emmanuel; Aerts, Hugo J.W.L.; Oberije, Cary; Ruysscher, Dirk De; Lambin, Philippe

    2010-01-01

    Purpose. Metabolic response assessment is often used as a surrogate of local failure and survival. Early identification of patients with residual metabolic activity is essential as this enables selection of patients who could potentially benefit from additional therapy. We report on the development of a pre-treatment prediction model for metabolic response using patient, tumor and treatment factors. Methods. One hundred and one patients with inoperable NSCLC (stage I-IV), treated with 3D conformal radical (chemo)-radiotherapy were retrospectively included in this study. All patients received a pre and post-radiotherapy fluorodeoxyglucose positron emission tomography-computed tomography FDG-PET-CT scan. The electronic medical record system and the medical patient charts were reviewed to obtain demographic, clinical, tumor and treatment data. Primary outcome measure was examined using a metabolic response assessment on a post-radiotherapy FDG-PET-CT scan. Radiotherapy was delivered in fractions of 1.8 Gy, twice a day, with a median prescribed dose of 60 Gy. Results. Overall survival was worse in patients with residual metabolic active areas compared with the patients with a complete metabolic response (p=0.0001). In univariate analysis, three variables were significantly associated with residual disease: larger primary gross tumor volume (GTVprimary, p=0.002), higher pre-treatment maximum standardized uptake value (SUV max , p=0.0005) in the primary tumor and shorter overall treatment time (OTT, p=0.046). A multivariate model including GTVprimary, SUV max , equivalent radiation dose at 2 Gy corrected for time (EQD2, T) and OTT yielded an area under the curve assessed by the leave-one-out cross validation of 0.71 (95% CI, 0.65-0.76). Conclusion. Our results confirmed the validity of metabolic response assessment as a surrogate of survival. We developed a multivariate model that is able to identify patients at risk of residual disease. These patients may benefit from

  15. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  16. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Guangli Yan

    2013-01-01

    Full Text Available Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36 as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  17. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    Science.gov (United States)

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  18. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Science.gov (United States)

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay. Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  19. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  1. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  2. The Mediator Complex and Lipid Metabolism.

    Science.gov (United States)

    Zhang, Yi; Xiaoli; Zhao, Xiaoping; Yang, Fajun

    2013-03-01

    The precise control of gene expression is essential for all biological processes. In addition to DNA-binding transcription factors, numerous transcription cofactors contribute another layer of regulation of gene transcription in eukaryotic cells. One of such transcription cofactors is the highly conserved Mediator complex, which has multiple subunits and is involved in various biological processes through directly interacting with relevant transcription factors. Although the current understanding on the biological functions of Mediator remains incomplete, research in the past decade has revealed an important role of Mediator in regulating lipid metabolism. Such function of Mediator is dependent on specific transcription factors, including peroxisome proliferator-activated receptor-gamma (PPARγ) and sterol regulatory element-binding proteins (SREBPs), which represent the master regulators of lipid metabolism. The medical significance of these findings is apparent, as aberrant lipid metabolism is intimately linked to major human diseases, such as type 2 diabetes and cardiovascular disease. Here, we briefly review the functions and molecular mechanisms of Mediator in regulation of lipid metabolism.

  3. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    Science.gov (United States)

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  4. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  5. Active neutron multiplicity analysis and Monte Carlo calculations

    International Nuclear Information System (INIS)

    Krick, M.S.; Ensslin, N.; Langner, D.G.; Miller, M.C.; Siebelist, R.; Stewart, J.E.; Ceo, R.N.; May, P.K.; Collins, L.L. Jr

    1994-01-01

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined

  6. DOHaD at the intersection of maternal immune activation and maternal metabolic stress: a scoping review.

    Science.gov (United States)

    Goldstein, J A; Norris, S A; Aronoff, D M

    2017-06-01

    The prenatal environment is now recognized as a key driver of non-communicable disease risk later in life. Within the developmental origins of health and disease (DOHaD) paradigm, studies are increasingly identifying links between maternal morbidity during pregnancy and disease later in life for offspring. Nutrient restriction, metabolic disorders during gestation, such as diabetes or obesity, and maternal immune activation provoked by infection have been linked to adverse health outcomes for offspring later in life. These factors frequently co-occur, but the potential for compounding effects of multiple morbidities on DOHaD-related outcomes has not received adequate attention. This is of particular importance in low- or middle-income countries (LMICs), which have ongoing high rates of infectious diseases and are now experiencing transitions from undernutrition to excess adiposity. The purpose of this scoping review is to summarize studies examining the effect and interaction of co-occurring metabolic or nutritional stressors and infectious diseases during gestation on DOHaD-related health outcomes. We identified nine studies in humans - four performed in the United States and five in LMICs. The most common outcome, also in seven of nine studies, was premature birth or low birth weight. We identified nine animal studies, six in mice, two in rats and one in sheep. The interaction between metabolic/nutritional exposures and infectious exposures had varying effects including synergism, inhibition and independent actions. No human studies were specifically designed to assess the interaction of metabolic/nutritional exposures and infectious diseases. Future studies of neonatal outcomes should measure these exposures and explicitly examine their concerted effect.

  7. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    Science.gov (United States)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  8. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  9. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  10. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    Science.gov (United States)

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  11. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  12. Metabolic activation and carcinogenicity of polycyclic hydrocarbons: A new quantum mechanical theory

    International Nuclear Information System (INIS)

    Mohammad, S.N.

    1986-01-01

    This investigation aims to describe a quantum mechanical theory of cancer, which, on the basis of certain electronic indices calculated for the parent compound, would give prediction of its P-450 mediated metabolic activation and would provide better representation of its relative carcinogenic potency when activated to its PUM. The author's theory is based on the assumption that electronic charge distribution of activated species resembles at least qualitatively the charge distribution of the parent compound, and a careful analysis of electronic characteristics of the parent compound would suffice to give reasonable estimation of the carcinogenic activities of the metabolic products. The details of the theoretical method is given and the results for some alternant and non-alternant PAHs are presented

  13. Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Walker Mark

    2010-11-01

    Full Text Available Abstract Background Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity. Methods This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m2 recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained. Results Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32] and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86] than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]. A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]. Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance. Conclusion A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that

  14. The role of bile acids in metabolic regulation.

    Science.gov (United States)

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. © 2016 Society for Endocrinology.

  15. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  16. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    Science.gov (United States)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  17. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  18. Metabolic in Vivo Labeling Highlights Differences of Metabolically Active Microbes from the Mucosal Gastrointestinal Microbiome between High-Fat and Normal Chow Diet

    NARCIS (Netherlands)

    Oberbach, Andreas; Haange, Sven Bastiaan; Schlichting, Nadine; Heinrich, Marco; Lehmann, Stefanie; Till, Holger; Hugenholtz, Floor; Kullnick, Yvonne; Smidt, Hauke; Frank, Karin; Seifert, Jana; Jehmlich, Nico; Bergen, Von Martin

    2017-01-01

    The gastrointestinal microbiota in the gut interacts metabolically and immunologically with the host tissue in the contact zone of the mucus layer. For understanding the details of these interactions and especially their dynamics it is crucial to identify the metabolically active subset of the

  19. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  20. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Guolin Li

    2018-01-01

    Full Text Available Background: Peroxisome proliferator-activated receptor alpha (PPARA is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF has not been investigated. Methods: Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Results: Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. Conclusions: These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Keywords: PPARA, PPARalpha, Intermittent fasting, Every-other-day fasting, Steatosis, Adaptive fasting response

  1. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. : Fisetin disposition and metabolism in mice

    OpenAIRE

    Touil, Yasmine,; Auzeil, Nicolas; Boulinguez, François; Saighi, Hanane; Regazzetti, Anne; Scherman, Daniel; Chabot, Guy,

    2011-01-01

    International audience; Although the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice...

  2. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression.

    Directory of Open Access Journals (Sweden)

    Melissa Rotunno

    2009-05-01

    Full Text Available Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs tested in candidate genes. We analyzed 25 SNPs (some previously untested in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underlying dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS. Our findings emphasize the necessity of post

  3. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  4. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  5. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    Science.gov (United States)

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  6. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2015-02-01

    Full Text Available Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  7. Metabolic Syndrome and Physical Activity in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    derya atik

    2014-06-01

    Full Text Available Purpose: This descriptive study was carried out to reveal the level of physical activity in patients who receive hemodialysis due to chronic kidney failure and to identify its relationship with the prevalence of metabolic syndrome (MetS. Material and method: The study was conducted with 55 patients at the hemodialysis units of Alanya State Hospital and Private Alanya Anadolu Hospital between 10 and 30 June 2013. The study data were collected using the National Cholesterol Education Program, the Adult Treatment Panel III (NCEP-ATP III, a data collection form containing Metabolic Syndrome Diagnosis Criteria, and the International Physical Activity Questionnaire (IPAQ. The data were analyzed using arithmetic mean +/- standard deviation (SD, number and percentage distributions, independent sample t test, crosstabs, One Way Anova, and Pearson and #8217;s Correlation Analysis. Conclusion and suggestions: It was found that 41.8% of the patients were between 50 and 65 years of age, the majority of them were male (58.2%, hemodialysis had been administered to 69.1% of them for at least 36 months, and 50.9% of them met three and more of the MetS criteria. There was no statistically significant relationship between MetS and physical activity levels, but the length of physical activity was longer in those who did not meet the MetS diagnosis criteria (p>0.05. An increase in sedentary time raised the MetS criteria (p<0.05. Conclusion: Nearly 1/2 of the patients were at risk of MetS. Physical activity level being statistically ineffective on MetS can be associated with low physical activity level and longer sedentary time. It can be said that being completely sedentary increases BMI and therefore MetS. The study can be repeated on different samples and the results can be compared. [J Contemp Med 2014; 4(2.000: 69-75

  8. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    Science.gov (United States)

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-06-17

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. Copyright © 2014 John Wiley & Sons, Inc.

  9. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women.

    Directory of Open Access Journals (Sweden)

    Andreas Nilsson

    Full Text Available Whether amount of time spent in sedentary activities influences on clustered metabolic risk in elderly, and to what extent such an influence is independent of physical activity behavior, remain unclear. Therefore, the aim of the study was to examine cross-sectional associations of objectively assessed physical activity and sedentary behavior on metabolic risk outcomes in a sample of elderly community-dwelling women.Metabolic risk outcomes including waist circumference, systolic and diastolic blood pressures, fasting levels of plasma glucose, HDL-cholesterol and triglycerides were assessed in 120 community-dwelling older women (65-70 yrs. Accelerometers were used to retrieve daily sedentary time, breaks in sedentary time, daily time in light (LPA and moderate-to-vigorous physical activity (MVPA, and total amount of accelerometer counts. Multivariate regression models were used to examine influence of physical activity and sedentary behavior on metabolic risk outcomes including a clustered metabolic risk score.When based on isotemporal substitution modeling, replacement of a 10-min time block of MVPA with a corresponding time block of either LPA or sedentary activities was associated with an increase in clustered metabolic risk score (β = 0.06 to 0.08, p < 0.05, and an increase in waist circumference (β = 1.78 to 2.19 p < 0.01. All associations indicated between sedentary time and metabolic risk outcomes were lost once variation in total accelerometer counts was adjusted for.Detrimental influence of a sedentary lifestyle on metabolic health is likely explained by variations in amounts of physical activity rather than amount of sedentary time per se. Given our findings, increased amounts of physical activity with an emphasis on increased time in MVPA should be recommended in order to promote a favorable metabolic health profile in older women.

  10. Regulation of Ketone Body Metabolism and the Role of PPARα

    Directory of Open Access Journals (Sweden)

    Maja Grabacka

    2016-12-01

    Full Text Available Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK, PPARγ coactivator 1α (PGC-1α, and mammalian (mechanistic target of rapamycin (mTOR and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21. This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.

  11. Exploring metabolic dysfunction in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Slee Adrian D

    2012-04-01

    Full Text Available Abstract Impaired kidney function and chronic kidney disease (CKD leading to kidney failure and end-stage renal disease (ESRD is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS, with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid

  12. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    Science.gov (United States)

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  13. Effectiveness of physical activity intervention among government employees with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Chee Huei Phing

    2017-12-01

    Conclusion: The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  14. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    Science.gov (United States)

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  15. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  16. Physical activity, BMI and metabolic risk in Portuguese adolescents

    Directory of Open Access Journals (Sweden)

    Fernanda Karina dos Santos

    2016-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n1p103   It has been reported, in the last decades, a significant decrease in physical activity (PA levels, with a consequent increase in obesity and metabolic risk factors among youth. The aims of this study were to describe PA levels, the prevalence of overweight/obesity and metabolic risk factors, and to examine the association between PA and body mass index (BMI with metabolic risk among Portuguese youth. The sample comprises 212 Portuguese adolescents (12-16 years old. Height and weight were measured. PA was estimated with the Bouchard questionnaire (3 days recall, as well as with the use of a pedometer (used for 5 consecutive days. Metabolic risk factors comprised fasting glucose, triglycerides, HDL-cholesterol, systolic blood pressure and waist circumference. Subjects were classified as normal weight, overweight or obese according to BMI; the maturational status was indirectly estimated with the maturity offset procedure. A continuous metabolic risk score was computed (zMR and PA values were divided into tertiles. Qui-square test, t-test and ANOVA were used in statistical analyses. SPSS 18.0 and WinPepi softwares were used and p<0.05. A moderate to high prevalence of overweight/obesity and HDL-cholesterol was found, as well as a high prevalence of high blood pressure and low to moderate PA levels among Portuguese youth. The relationship between BMI and zMR showed that obese adolescents have higher zMR when compared to normal weight or overweight adolescents. This finding suggests that increased levels of PA and reduction in the prevalence of overweight/obesity may have a positive role against the development of metabolic risk factors.

  17. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men.

    Directory of Open Access Journals (Sweden)

    Kota Fukai

    Full Text Available Physical activity is known to be preventive against various non-communicable diseases. We investigated the relationship between daily physical activity level and plasma metabolites using a targeted metabolomics approach in a population-based study.A total of 1,193 participants (male, aged 35 to 74 years with fasting blood samples were selected from the baseline survey of a cohort study. Information on daily total physical activity, classified into four levels by quartile of metabolic equivalent scores, and sedentary behavior, defined as hours of sitting per day, was collected through a self-administered questionnaire. Plasma metabolite concentrations were quantified by capillary electrophoresis mass spectrometry method. We performed linear regression analysis models with multivariable adjustment and corrected p-values for multiple testing in the original population (n = 808. The robustness of the results was confirmed by replication analysis in a separate population (n = 385 created by random allocation.Higher levels of total physical activity were associated with various metabolite concentrations, including lower concentrations of amino acids and their derivatives, and higher concentrations of pipecolate (FDR p <0.05 in original population. The findings persisted after adjustment for age, body mass index, smoking, alcohol intake, and energy intake. Isoleucine, leucine, valine, 4-methyl-2-oxoisopentanoate, 2-oxoisopentanoate, alanine, and proline concentrations were lower with a shorter sitting time.Physical activity is related to various plasma metabolites, including known biomarkers for future insulin resistance or type 2 diabetes. These metabolites might potentially play a key role in the protective effects of higher physical activity and/or less sedentary behavior on non-communicable diseases.

  18. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  19. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    Science.gov (United States)

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The

  20. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  1. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a 18F-FDG PET/CT study

    International Nuclear Information System (INIS)

    Chiaravalloti, Agostino; Di Pietro, Barbara; Pagani, Marco; Micarelli, Alessandro; Alessandrini, Marco; Genovesi, Giuseppe; Schillaci, Orazio

    2015-01-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two 18 F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in 18 F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  2. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a (18)F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Pagani, Marco; Micarelli, Alessandro; Di Pietro, Barbara; Genovesi, Giuseppe; Alessandrini, Marco; Schillaci, Orazio

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two (18)F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in (18)F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation.

  3. Self-Care Activities among People with Multiple Sclerosis in Denmark

    DEFF Research Database (Denmark)

    Lynning, Marie; Hanehøj, Kirsten; Karnøe Knudsen, Astrid

    2017-01-01

    Background: People with multiple sclerosis (PwMS) are known to use a wide range of medical and non-medical treatments. This study aims at investigating the use of self-care activities within this patient group. Material and Methods: The study follows a descriptive cross-sectional design based...... on an online survey among members of the Danish Multiple Sclerosis Society's permanent respondent panel. Results: The results of the study indicate that the respondents carry out a wide variety of self-care activities. These activities comprise conventional activities as well as complementary and alternative...

  4. Association of physical activity with metabolic syndrome in a predominantly rural Nigerian population

    DEFF Research Database (Denmark)

    Oguoma, Victor M.; Nwose, Ezekiel U.; Nwose, Ezekiel U.

    2016-01-01

    Aims Physical activity is an essential determinant of health. However, there is dearth of evidence regarding prevalence of physical activity in developing countries, especially its association with metabolic syndrome risk factors. This study assessed the association of physical activity with meta...

  5. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Science.gov (United States)

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  6. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  7. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

    International Nuclear Information System (INIS)

    Eliasson, Pernilla; Couppe, Christian; Magnusson, S.P.; Lonsdale, Markus; Friberg, Lars; Svensson, Rene B.; Kjaer, Michael; Neergaard, Christian

    2016-01-01

    Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ( 18 F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. Relative glucose uptake ( 18 F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome. (orig.)

  8. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  9. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  10. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Science.gov (United States)

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  11. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Directory of Open Access Journals (Sweden)

    Anthony Papadopoulos

    Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  12. METABOLIC SYNDROME AND PHYSICAL ACTIVITY IN CHILEAN IMMIGRANTS LIVING IN RIO GALLEGOS, SANTA CRUZ, ARGENTINA.

    Directory of Open Access Journals (Sweden)

    Inger Sally Padilla

    2012-12-01

    Full Text Available To study the frequency of metabolic syndrome, its components and its relationship with physical activity in Chilean immigrants living in Río Gallegos, Santa Cruz, Argentina.314 Chilean immigrants (165 women and 149 men were interviewed in Rio Gallegos in 2010, with healthy status in medical records (2000. Anthropometry, blood pressure control, blood test to measure glucose, triglycerides and HDL cholesterol were determined. Metabolic syndrome was established by criteria of the NCEPATPIII.The metabolic syndrome had an overall prevalence of 28.9% (95%CI: 23.9 to 34. Metabolic syndrome prevalence was larger in women (32.1% than in men (25.5%. The prevalence of its components were: abdominal obesity 56%, low levels of HDL cholesterol 48.3%, high levels of triglycerides 68.1%, hypertension 46.1% and high levels of glucose 72.5%. Inadequate physical activity was 66.2% (95%CI: 60.1 to 71.5. Immigrants had more likelihood of metabolic syndrome living in Río Gallegos for 15 years or more(β: 5.74,95%CI:2,81-11,73, p=0.000 and with inadequate physical activity (β: 3.36, 95%CI: 1.57to7.21,p=0.002. The prevalence of metabolic syndrome in Chilean immigrants living in Río Gallegos is higher than that reported in Argentina and Chile

  13. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    Science.gov (United States)

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  15. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine.

    Science.gov (United States)

    Zhang, Juanhong; Chen, Yuyan; Sun, Yuemei; Wang, Rong; Zhang, Junmin; Jia, Zhengping

    2018-11-01

    Nifedipine is completely absorbed by the gastrointestinal tract and its pharmacokinetics and metabolism may be influenced by microorganisms. If gut microbes are involved in the metabolism of nifedipine, plateau hypoxia may regulate the bioavailability and the therapeutic effect of nifedipine by altering the metabolic activity of the gut microbiota. We herein demonstrated for the first time that gut flora is involved in the metabolism of nifedipine by in vitro experiments. In addition, based on the results of 16S rRNA analysis of feces in rats after acute plateau, we first confirmed that the plateau environment could cause changes in the number and composition of intestinal microbes. More importantly, these changes in flora could lead to a slower metabolic activity of nifedipine in the body after an acute plateau, resulting in increased bioavailability and therapeutic efficacy of nifedipine. Our research will provide basis and new ideas for changes in the fecal flora of human acutely entering the plateau, and contribute to rational drug use of nifedipine.

  16. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  17. A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica

    DEFF Research Database (Denmark)

    Gebregiworgis, Teklab; Nielsen, Helle H; Massilamany, Chandirasegaran

    2016-01-01

    a statistically distinct metabolic signature from healthy and NMO-SD controls. A total of 27 metabolites were differentially altered in the urine from MS and NMO-SD patients and were associated with synthesis and degradation of ketone bodies, amino acids, propionate and pyruvate metabolism, tricarboxylic acid...

  18. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab).

    Science.gov (United States)

    Healy, Genevieve N; Wijndaele, Katrien; Dunstan, David W; Shaw, Jonathan E; Salmon, Jo; Zimmet, Paul Z; Owen, Neville

    2008-02-01

    We examined the associations of objectively measured sedentary time and physical activity with continuous indexes of metabolic risk in Australian adults without known diabetes. An accelerometer was used to derive the percentage of monitoring time spent sedentary and in light-intensity and moderate-to-vigorous-intensity activity, as well as mean activity intensity, in 169 Australian Diabetes, Obesity and Lifestyle Study (AusDiab) participants (mean age 53.4 years). Associations with waist circumference, triglycerides, HDL cholesterol, resting blood pressure, fasting plasma glucose, and a clustered metabolic risk score were examined. Independent of time spent in moderate-to-vigorous-intensity activity, there were significant associations of sedentary time, light-intensity time, and mean activity intensity with waist circumference and clustered metabolic risk. Independent of waist circumference, moderate-to-vigorous-intensity activity time was significantly beneficially associated with triglycerides. These findings highlight the importance of decreasing sedentary time, as well as increasing time spent in physical activity, for metabolic health.

  19. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  20. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review

    International Nuclear Information System (INIS)

    Xue Weiling; Warshawsky, David

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic compounds (HACs) constitute a major class of chemical carcinogens present in the environment. These compounds require activation to electrophilic metabolites to exert their mutagenic or carcinogenic effects. There are three principal pathways currently proposed for metabolic activation of PAH and HAC: the pathway via bay region dihydrodiol epoxide by cytochrome P450 enzymes (CYPs), the pathway via radical cation by one-electron oxidation, and the ortho-quinone pathway by dihydrodiol dehydrogenase (DD). In addition to these major pathways, a brief description of a minor metabolic activation pathway, sulfonation, for PAHs that contain a primary benzylic alcoholic group or secondary hydroxyl group(s) is included in this review. The DNA damages caused through the reactive metabolites of PAH/HAC are described involving the DNA covalent binding to form stable or depurinating adducts, the formation of apurinic sites, and the oxidative damage. The review emphasizes the chemical/biochemical reactions involved in the metabolic processes and the chemical structures of metabolites and DNA adducts

  1. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  2. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  3. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  4. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes.

    Directory of Open Access Journals (Sweden)

    Yonchu Jenkins

    Full Text Available Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK. Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively. R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13C-palmitate and (13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.

  5. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  6. Episodic aphasia associated with tumor active multiple sclerosis: a correlative SPECT study utilising image fusion

    International Nuclear Information System (INIS)

    Roff, G.; Campbell, A.; Lawn, N.; Henderson, A.; McCarthy, M.; Lenzo, N.

    2003-01-01

    Full text: Cerebral perfusion imaging is a common technique to assess cerebral perfusion and metabolism. It can complement anatomical imaging in assessing a number of neurological conditions. At times it can better define the clinical manifestations of a disease process than anatomical imaging alone. We present a clinical case whereby cerebral SPECT imaging helped define the physiological reason for intermittent aphasia in a patient with tumor active multiple sclerotic white matter plaques. Cerebral SPECT studies were performed during a period of aphasia and when the patient had recovered. We utilised subtraction analyses and image fusion techniques to better define the changes seen on SPECT. We discuss the neuroanatomical relationship of aphasia and the automatic fusion technique that allows accurate co-registration of the MRI and SPECT data. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. The Stress-Metabolic Syndrome Relationship in Adolescents: An Examination of the Moderating Potential of Physical Activity.

    Science.gov (United States)

    Holmes, Megan E; Pivarnik, Jim; Pfeiffer, Karin; Maier, Kimberly S; Eisenmann, Joey C; Ewing, Martha

    2016-10-01

    The role of psychosocial stress in the development of obesity and metabolic syndrome is receiving increased attention and has led to examination of whether physical activity may moderate the stress-metabolic syndrome relationship. The current study examined relationships among physical activity, stress, and metabolic syndrome in adolescents. Participants (N = 126; 57 girls, 69 boys) were assessed for anthropometry, psychosocial stress, physical activity, and metabolic syndrome variables; t tests were used to examine sex differences, and regression analysis was used to assess relationships among variables controlling for sex and maturity status. Mean body mass index approached the 75th percentile for both sexes. Typical sex differences were observed for systolic blood pressure, time spent in moderate and vigorous physical activity, and perceived stress. Although stress was not associated with MetS (β = -.001, P = .82), a modest, positive relationship was observed with BMI (β = .20, P = .04). Strong relationships between physical activity and stress with MetS or BMI were not found in this sample. Results may be partially explained by overall good physical health status of the participants. Additional research in groups exhibiting varying degrees of health is needed.

  8. Physical activity, stress, and metabolic risk score in 8- to 18-year-old boys.

    Science.gov (United States)

    Holmes, Megan E; Eisenmann, Joey C; Ekkekakis, Panteleimon; Gentile, Douglas

    2008-03-01

    We examined whether physical activity modifies the relationship between stress and the metabolic risk score in 8- to 18-year-old males (n = 37). Physical activity (PA) and television (TV)/videogame (VG) use were assessed via accelerometer and questionnaire, respectively. Stress was determined from self-report measures. A metabolic risk score (MRS) was created by summing age-standardized residuals for waist circumference, mean arterial pressure, glycosylated hemoglobin, and high-density lipoprotein cholesterol. Correlations between PA and MRS were low (r adolescents.

  9. The molecular and metabolic influence of long term agmatine consumption.

    Science.gov (United States)

    Nissim, Itzhak; Horyn, Oksana; Daikhin, Yevgeny; Chen, Pan; Li, Changhong; Wehrli, Suzanne L; Nissim, Ilana; Yudkoff, Marc

    2014-04-04

    Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming.

  10. The Molecular and Metabolic Influence of Long Term Agmatine Consumption*

    Science.gov (United States)

    Nissim, Itzhak; Horyn, Oksana; Daikhin, Yevgeny; Chen, Pan; Li, Changhong; Wehrli, Suzanne L.; Nissim, Ilana; Yudkoff, Marc

    2014-01-01

    Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used 13C or 15N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming. PMID:24523404

  11. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women.

    Science.gov (United States)

    Sisson, Susan B; Camhi, Sarah M; Church, Timothy S; Martin, Corby K; Tudor-Locke, Catrine; Bouchard, Claude; Earnest, Conrad P; Smith, Steven R; Newton, Robert L; Rankinen, Tuomo; Katzmarzyk, Peter T

    2009-12-01

    This study examines leisure time sedentary behavior (LTSB) and usual occupational/domestic activity (UODA) and their relationship with metabolic syndrome and individual cardiovascular disease (CVD) risk factors, independent of physical activity level. National Health and Nutrition Examination Survey (NHANES) 2003-2006 data from men (n = 1868) and women (n = 1688) with fasting measures were classified as having metabolic syndrome by the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) definition. LTSB was determined from self-reported television viewing and computer usage. UODA was self-reported daily behavior (sitting, standing, walking, carrying loads). LTSB >or=4 hours/day was associated with odds of having metabolic syndrome of 1.94 (95% confidence interval [CI], 1.24, 3.03) in men compared to or=4 hour/day was also associated with higher odds of elevated waist circumference (1.88, CI, 1.03, 3.41), low high-density lipoprotein cholesterol (HDL-C) (1.84, CI, 1.35, 2.51), and high blood pressure (1.55, CI, 1.07, 2.24) in men. LTSB 2-3 hours/day was associated with higher odds of elevated glucose (1.32, CI, 1.00, 1.75) in men. In women, odds of metabolic syndrome were 1.54 (CI, 1.00, 2.37) with >or=4 hours/day LTSB, but LTSB was not associated with risk of the individual CVD risk factors. Higher LTSB was associated with metabolic syndrome in inactive men (1.50, CI, 1.07, 2.09), active men (1.74, CI, 1.11, 2.71), inactive women (1.69, CI, 1.24, 2.33), but not active women (1.62, CI, 0.87,3.01). UODA was not strongly associated with metabolic syndrome or CVD risk factors in either men or women. In men, high LTSB is associated with higher odds of metabolic syndrome and individual CVD risk factors regardless of meeting physical activity recommendations. In women, high LTSB is associated with higher odds of metabolic syndrome only in those not meeting the physical activity recommendations.

  12. Physical activity and exercise priorities in community dwelling people with multiple sclerosis: a Delphi study.

    Science.gov (United States)

    Stennett, Andrea; De Souza, Lorraine; Norris, Meriel

    2018-07-01

    Exercise and physical activity have been found to be beneficial in managing disabilities caused by multiple sclerosis. Despite the known benefits, many people with multiple sclerosis are inactive. This study aimed to identify the prioritised exercise and physical activity practices of people with multiple sclerosis living in the community and the reasons why they are engaged in these activities. A four Round Delphi questionnaire scoped and determined consensus of priorities for the top 10 exercise and physical activities and the reasons why people with multiple sclerosis (n = 101) are engaged in these activities. Data were analysed using content analysis, descriptive statistics, and non-parametric tests. The top 10 exercise and physical activity practices and the top 10 reasons why people with multiple sclerosis (n = 70) engaged in these activities were identified and prioritised. Consensus was achieved for the exercise and physical activities (W = 0.744, p multiple sclerosis engaged in exercise and physical activity were diverse. These self-selected activities and reasons highlighted that people with multiple sclerosis might conceptualise exercise and physical activity in ways that may not be fully appreciated or understood by health professionals. Considerations of the views of people with multiple sclerosis may be essential if the goal of increasing physical activity in this population is to be achieved. Implications for Rehabilitation Health professionals should work collaboratively with people with multiple sclerosis to understand how they prioritise activities, the underlying reasons for their prioritisations and embed these into rehabilitation programmes. Health professionals should utilise activities prioritised by people with multiple sclerosis in the community as a way to support, promote, and sustain exercise and physical activity in this population. Rehabilitation interventions should include both the activities people with multiple

  13. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  14. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  15. Adjuvant activity of peptidoglycan monomer and its metabolic products.

    Science.gov (United States)

    Halassy, Beata; Krstanović, Marina; Frkanec, Ruza; Tomasić, Jelka

    2003-02-14

    Peptidoglycan monomer (PGM) is a natural compound of bacterial origin. It is a non-toxic, non-pyrogenic, water-soluble immunostimulator potentiating humoral immune response to ovalbumin (OVA) in mice. It is fast degraded and its metabolic products-the pentapeptide (PP) and the disaccharide (DS)-are excreted from the mammalian organism upon parenteral administration. The present study investigates: (a). whether PGM could influence the long-living memory generation; (b). whether metabolic products retain adjuvant properties of the parent compound and contribute to its adjuvanticity. We report now that mice immunised twice with OVA+PGM had significantly higher anti-OVA IgG levels upon challenge with antigen alone 6 months later in comparison to control group immunised with OVA only. PP and DS were prepared enzymatically in vitro as apyrogenic and chemically pure compounds. When mice were immunised with OVA plus PP and DS, respectively, the level of anti-OVA IgGs in sera was not higher than in mice immunised with OVA alone, while PGM raised the level of specific antibodies. Results implicate that the adjuvant active molecule, capable of enhancing long-living memory generation, is PGM itself, and none of its metabolic products.

  16. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    Science.gov (United States)

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility

  17. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Modulation of multiple memory systems: from neurotransmitters to metabolic substrates.

    Science.gov (United States)

    Gold, Paul E; Newman, Lori A; Scavuzzo, Claire J; Korol, Donna L

    2013-11-01

    This article reviews evidence showing that neurochemical modulators can regulate the relative participation of the hippocampus and striatum in learning and memory tasks. For example, relative release of acetylcholine increases in the hippocampus and striatum reflects the relative engagement of these brain systems during learning of place and response tasks. Acetylcholine release is regulated in part by available brain glucose levels, which themselves are dynamically modified during learning. Recent findings suggest that glucose acts through astrocytes to deliver lactate to neurons. Brain glycogen is contained in astrocytes and provides a capacity to deliver energy substrates to neurons when needed, a need that can be generated by training on tasks that target hippocampal and striatal processing mechanisms. These results integrate an increase in blood glucose after epinephrine release from the adrenal medulla with provision of brain energy substrates, including lactate released from astrocytes. Together, the availability of peripheral and central energy substrates regulate the processing of learning and memory within and across multiple neural systems. Dysfunctions of the physiological steps that modulate memory--from hormones to neurotransmitters to metabolic substrates--may contribute importantly to some of the cognitive impairments seen during normal aging and during neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  20. Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester.

    Science.gov (United States)

    Hagen, Live H; Frank, Jeremy A; Zamanzadeh, Mirzaman; Eijsink, Vincent G H; Pope, Phillip B; Horn, Svein J; Arntzen, Magnus Ø

    2017-01-15

    In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH 3 -N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding

  1. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Kjølby, Mads Fuglsang; Aikawa, Elena

    2018-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality in the Western world. Studies of sortilin's influence on cardiovascular and metabolic diseases goes far beyond the genome-wide association studies that have revealed an association between cardiovascular diseases and the 1p13...... locus that encodes sortilin. Emerging evidence suggests a significant role of sortilin in the pathogenesis of vascular and metabolic diseases; this includes type II diabetes mellitus via regulation of insulin resistance, atherosclerosis through arterial wall inflammation and calcification...... of sortilin's contributions to cardiovascular and metabolic diseases but focuses particularly on atherosclerosis. We summarize recent clinical findings that suggest that sortilin may be a cardiovascular risk biomarker and also discuss sortilin as a potential drug target....

  2. Physical Activity Enhances Metabolic Fitness Independently of Cardiorespiratory Fitness in Marathon Runners

    Directory of Open Access Journals (Sweden)

    M. J. Laye

    2015-01-01

    Full Text Available High levels of cardiovascular fitness (CRF and physical activity (PA are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI. Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg (similar-VO2max. The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max. Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy, improved exercise metabolism (lactate threshold, and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases.

  3. Inferring metabolic states in uncharacterized environments using gene-expression measurements.

    Directory of Open Access Journals (Sweden)

    Sergio Rossell

    Full Text Available The large size of metabolic networks entails an overwhelming multiplicity in the possible steady-state flux distributions that are compatible with stoichiometric constraints. This space of possibilities is largest in the frequent situation where the nutrients available to the cells are unknown. These two factors: network size and lack of knowledge of nutrient availability, challenge the identification of the actual metabolic state of living cells among the myriad possibilities. Here we address this challenge by developing a method that integrates gene-expression measurements with genome-scale models of metabolism as a means of inferring metabolic states. Our method explores the space of alternative flux distributions that maximize the agreement between gene expression and metabolic fluxes, and thereby identifies reactions that are likely to be active in the culture from which the gene-expression measurements were taken. These active reactions are used to build environment-specific metabolic models and to predict actual metabolic states. We applied our method to model the metabolic states of Saccharomyces cerevisiae growing in rich media supplemented with either glucose or ethanol as the main energy source. The resulting models comprise about 50% of the reactions in the original model, and predict environment-specific essential genes with high sensitivity. By minimizing the sum of fluxes while forcing our predicted active reactions to carry flux, we predicted the metabolic states of these yeast cultures that are in large agreement with what is known about yeast physiology. Most notably, our method predicts the Crabtree effect in yeast cells growing in excess glucose, a long-known phenomenon that could not have been predicted by traditional constraint-based modeling approaches. Our method is of immediate practical relevance for medical and industrial applications, such as the identification of novel drug targets, and the development of

  4. Physical activity, body composition and metabolic syndrome in young adults.

    Directory of Open Access Journals (Sweden)

    Minna K Salonen

    Full Text Available Low physical activity (PA is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS, its components and body composition among young Finnish adults.The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET.The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours or intensity (MET were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS.MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS.

  5. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factors in Chinese subjects?

    Directory of Open Access Journals (Sweden)

    Lu Liping

    2011-01-01

    Full Text Available Abstract Background Obesity is associated with metabolic risk factors. Body mass index (BMI, waist circumference, waist-hip ratio (WHR and waist-height ratio (WHtR are used to predict the risk of obesity related diseases. However, it has not been examined whether these four indicators can detect the clustering of metabolic risk factors in Chinese subjects. Methods There are 772 Chinese subjects in the present study. Metabolic risk factors including high blood pressure, dyslipidemia, and glucose intolerance were identified according to the criteria from WHO. All statistical analyses were performed separately according to sex by using the SPSS 12.0. Results BMI, waist circumference and WHtR values were all significantly associated with blood pressure, glucose, triglyceride and also with the number of metabolic risk factors in both male and female subjects (all of P Conclusion The BMI, waist circumference and WHtR values can similarly predict the presence of multiple metabolic risk factors in Chinese subjects.

  6. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a {sup 18}F-FDG PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Chiaravalloti, Agostino; Di Pietro, Barbara [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Department of Nuclear Medicine Karolinska Hospital Stockholm, Stockholm (Sweden); Micarelli, Alessandro; Alessandrini, Marco [University Tor Vergata, Department of Medical Science and Translational Medicine, Rome (Italy); Genovesi, Giuseppe [University La Sapienza, Department of Experimental Medicine, Rome (Italy); University La Sapienza, Regional Center for Diagnosis, Treatment and Prevention of MCS, Rome (Italy); Schillaci, Orazio [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); IRCCS Neuromed, Pozzilli (Italy)

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two {sup 18}F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in {sup 18}F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  7. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults

    NARCIS (Netherlands)

    He, Y.; Li, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L.

    2013-01-01

    Aims: To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. Methods and results: CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome

  8. Benzo(a)pyrene metabolism, DNA-binding and UV-induced repair of DNA damage in cultured skin fibroblasts from a patient with unilateral multiple basal cell carcinoma

    International Nuclear Information System (INIS)

    Don, P.S.C.; Mukhtar, H.; Das, M.; Berger, N.A.; Bickers, D.R.

    1989-01-01

    The metabolism of benzo(a)pyrene (BP), and its subsequent binding to DNA, and the repair of UV-induced DNA damage were studied in fibroblasts cultured from the skin of a 61-year-old male who had multiple basal cell carcinoma (BCC) (>100) on his left upper trunk. Results suggest that BP metabolism and repair of DNA are altered in tumor-bearing site (TSB) cells and that patients with this type of metabolic profile may be at higher risk of the development of cutaneous neoplasms. It is also possible that fibroblasts from tumour bearing skin undergo some as yet unexplained alteration in carcinogen metabolism as a consequence of the induction of neoplasia. (author)

  9. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    Science.gov (United States)

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  10. A specific metabolic pattern related to the hallucinatory activity in schizophrenia

    International Nuclear Information System (INIS)

    Huret, J.D.; Martinot, J.L.; Lesur, A.; Mazoyer, B.; Pappata, S.; Syrota, A.; Baron, J.C.; Lemperiere, T.

    1988-01-01

    A clinical and PEI study using 18 F - fluorodesoxyglucose for measuring local cerebral glucose metabolism with the aim of showing a specific pattern related to the hallucinatory activity, is presented in schizophrenic patients all experiencing hallucinations or pseudo-halluccinations

  11. Multiple Electrolyte and Metabolic Emergencies in a Single Patient

    Directory of Open Access Journals (Sweden)

    Caprice Cadacio

    2017-01-01

    Full Text Available While some electrolyte disturbances are immediately life-threatening and must be emergently treated, others may be delayed without immediate adverse consequences. We discuss a patient with alcoholism and diabetes mellitus type 2 who presented with volume depletion and multiple life-threatening electrolyte and metabolic derangements including severe hyponatremia (serum sodium concentration [SNa] 107 mEq/L, hypophosphatemia (“undetectable,” <1.0 mg/dL, and hypokalemia (2.2 mEq/L, moderate diabetic ketoacidosis ([DKA], pH 7.21, serum anion gap [SAG] 37 and hypocalcemia (ionized calcium 4.0 mg/dL, mild hypomagnesemia (1.6 mg/dL, and electrocardiogram with prolonged QTc. Following two liters of normal saline and associated increase in SNa by 4 mEq/L and serum osmolality by 2.4 mosm/Kg, renal service was consulted. We were challenged with minimizing the correction of SNa (or effective serum osmolality to avoid the osmotic demyelinating syndrome while replacing volume, potassium, phosphorus, calcium, and magnesium and concurrently treating DKA. Our management plan was further complicated by an episode of significant aquaresis. A stepwise approach was strategized to prioritize and correct all disturbances with considerations that the treatment of one condition could affect or directly worsen another. The current case demonstrates that a thorough understanding of electrolyte physiology is required in managing complex electrolyte disturbances to avoid disastrous outcomes.

  12. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  13. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  14. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys.

    Science.gov (United States)

    Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence

    2005-02-01

    Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than

  15. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.

    Directory of Open Access Journals (Sweden)

    Barbara S Sixt

    Full Text Available The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB, has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS, ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS, and ultra-performance liquid chromatography mass spectrometry (UPLC-MS was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila

  16. Effects of prolonged exercise versus multiple short exercise sessions on risk for metabolic syndrome and the atherogenic index in middle-aged obese women: a randomised controlled trial.

    Science.gov (United States)

    Chung, JinWook; Kim, KwangJun; Hong, Jeeyoung; Kong, Hyoun-Joong

    2017-08-22

    Many people, although they may recognise the positive effects of exercise, do not exercise regularly owing to lack of time. This study aimed to investigate the effects of prolonged single-session exercise and multiple short sessions of exercise on the risk of metabolic syndrome and the atherogenic index in middle-aged obese women. Thirty-six participants were divided into the single-session group, multiple-session group, and control group. The single-session group engaged in one session of treadmill exercise for 30 min a day; the multiple-session group had three sessions of 10 min a day. Both groups exercised 3 days/week for 12 weeks. The control group did not perform any exercise. The single-session group showed decreases in weight (0.97 kg [95% C.I. = 0.09-1.83], p exercise is superior to multiple short sessions for improving the risk of metabolic syndrome and the atherogenic index in middle-aged obese women. However, multiple short sessions can be recommended as an alternative to prolonged exercise when the goal is to decrease blood glucose or waist circumference.

  17. The relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity.

    Science.gov (United States)

    Keleş, Erol; Kapusuz, Zeliha; Gürsu, Mehmet Ferit; Karlıdag, Turgut; Kaygusuz, Irfan; Bulmuş, Funda Gülcü; Yalcın, Sinasi

    2014-01-01

    To determine the presence of a relationship between metabolic presbycusis and serum paraoxonase/arylesterase activity. A total of 30 patients who had been admitted to the Ear, Nose, and Throat (ENT) Clinic of Fırat University Medical Faculty and diagnosed as metabolic presbycusis were included in the study. The control group was composed of 30 healthy volunteers. Pure tone audiometry and impedencemeter were performed on all subjects included in the study at the audiometry laboratory of the ENT clinic. The presence of a regular hearing curve, a symmetrical sensorineural hearing loss more than 25 dB with preserved speech discrimination were accepted as criteria for metabolic presbycusis. Blood samples were drawn from the patients prior to the hearing tests. The sera were separated for measurements of total cholesterol, triglyceride, high-density lipoprotein, very low-density lipoprotein, low-density lipoprotein, human serum paraoxonase and arylesterase levels, respectively. No statistically significant difference was found between the patient and the control groups in terms of age and gender. Paraoxonase, arylesterase and paraoxonase/arylesterase, high-density lipoprotein levels were found to decrease in the study group and the difference was found to be statistically significant compared to the control group (P presbycusis. Furthermore, the results of this study make us think that there could be a relationship between metabolic presbycusis and cardiovascular diseases. In this case, metabolic presbycusis may be a determining parameter in the early diagnosis of cardiovascular diseases. We consider that this study may be the pioneer for further studies conducted with larger patient numbers.

  18. Study of the brain glucose metabolism in different stage of mixed-type multiple system atrophy

    International Nuclear Information System (INIS)

    Wang Ying; Zhang Benshu; Cai Li; Zhang Meiyun; Gao Shuo

    2014-01-01

    Objective: To investigate the brain glucose metabolism in different stage of mixed-type multiple system atrophy (MSA). Methods: Forty-six MSA patients with cerebellar or Parkinsonian symptoms and 18 healthy controls with similar age as patients were included. According to the disease duration,the patients were divided into three groups: group 1 (≤ 12 months, n=14), group 2 (13-24 months, n=13), group 3 (≥ 25 months, n=19). All patients and controls underwent 18 F-FDG PET/CT brain imaging. To compare metabolic distributions between different groups, SPM 8 software and two-sample t test were used for image data analysis. When P<0.005, the result was considered statistically significant. Results: At the level of P<0.005, the hypometabolism in group 1 (all t>3.49) was identified in the frontal lobe, lateral temporal lobe, insula lobe, anterior cingulate cortex, caudate nucleus and anterior cerebellar hemisphere. The regions of hypometabolism extended to posterolateral putamen and part of posterior cerebellar hemisphere in group 2 (all t>3.21). In group 3, the whole parts of putamen and cerebellar hemisphere were involved as hypometabolism (all t>4.08). In addition to the hypometabolism regions, there were also stabled hypermetabolism regions mainly in the parietal lobe, medial temporal lobe and the thalamus in all patient groups (all t>3.27 in group 1, all t>3.02 in group 2,all t>3.30 in group 3). Conclusions: Disease duration is closely related to the FDG metabolism in the MSA patients. Frontal lobe, lateral temporal lobe, anterior cingulate cortex and caudate nucleus can be involved at early stage of the disease. Putaminal hypometabolism begins in its posterolateral part. Cerebellar hypometabolism occurs early at its anterior part. Besides, thalamus shows hypermetabolism in the whole duration. 18 F-FDG metabolic changes of brain can reflect the development of mixed-type MSA. (authors)

  19. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism

    DEFF Research Database (Denmark)

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M

    2011-01-01

    homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose...... and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated......Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues...

  20. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  1. Joint association of physical activity in leisure and total sitting time with metabolic syndrome amongst 15,235 Danish adults

    DEFF Research Database (Denmark)

    Petersen, Christina Bjørk; Nielsen, Asser Jon; Bauman, Adrian

    2014-01-01

    and total daily sitting time were assessed by self-report in 15,235 men and women in the Danish Health Examination Survey 2007-2008. Associations between leisure time physical activity, total sitting time and metabolic syndrome were investigated in logistic regression analysis. RESULTS: Adjusted odds ratios......BACKGROUND: Recent studies suggest that physical inactivity as well as sitting time are associated with metabolic syndrome. Our aim was to examine joint associations of leisure time physical activity and total daily sitting time with metabolic syndrome. METHODS: Leisure time physical activity...... (OR) for metabolic syndrome were 2.14 (95% CI: 1.88-2.43) amongst participants who were inactive in leisure time compared to the most active, and 1.42 (95% CI: 1.26-1.61) amongst those who sat for ≥10h/day compared to physical activity, sitting time...

  2. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  3. Regional cerebral metabolic changes after acupuncture by FDG PET: effects and methodology

    International Nuclear Information System (INIS)

    Guan Yihui; Li Ji; Zuo Chuantao; Dong Jincheng; Zhao Jun; Lin Xiangtong

    2002-01-01

    In order to investigate the therapeutic mechanisms of acupuncture pints in cerebrovascular ischemic patients and normal volunteers, FDG PET was adopted. Changes in cerebral glucose metabolism and cerebral functional activity before and after electro-acupuncture treatment were studied in 12 normal volunteers and 11 cerebrovascular ischemic patients. The PET imaging was read by visual interpretation and calculated by semi-quantitative analysis. After acupuncture, cerebral glucose metabolism of the normal group is higher in the frontal lobe, temporal lobe, thalamus bilaterally and cerebellum contralaterally. The cerebrovascular ischemic patients had manifested greater response in their lesions than in their normal regions of the two tested groups, as well as than in their normal regions of the whole brain, after acupuncture treatment. The study shows that the regulatory effects of acupuncture on the central nervous system influence the brain at multiple-sections, multiple-directions and multiple-levels of brain function. It conforms to the holistic and bi-directions regulatory laws of acupuncture

  4. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    Science.gov (United States)

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  5. Fat and Sugar Metabolism During Exercise in Patients With Metabolic Myopathy

    Science.gov (United States)

    2017-08-31

    Metabolism, Inborn Errors; Lipid Metabolism, Inborn Errors; Carbohydrate Metabolism, Inborn Errors; Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency; Glycogenin-1 Deficiency (Glycogen Storage Disease Type XV); Carnitine Palmitoyl Transferase 2 Deficiency; VLCAD Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Multiple Acyl-CoA Dehydrogenase Deficiency; Carnitine Transporter Deficiency; Neutral Lipid Storage Disease; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Muscle Phosphofructokinase Deficiency; Phosphoglucomutase 1 Deficiency; Phosphoglycerate Mutase Deficiency; Phosphoglycerate Kinase Deficiency; Phosphorylase Kinase Deficiency; Beta Enolase Deficiency; Lactate Dehydrogenase Deficiency; Glycogen Synthase Deficiency

  6. Gout and Metabolic Syndrome: a Tangled Web.

    Science.gov (United States)

    Thottam, Gabrielle E; Krasnokutsky, Svetlana; Pillinger, Michael H

    2017-08-26

    The complexity of gout continues to unravel with each new investigation. Gout sits at the intersection of multiple intrinsically complex processes, and its prevalence, impact on healthcare costs, and association with important co-morbidities make it increasingly relevant. The association between gout and type 2 diabetes, hypertension, hyperlipidemia, cardiovascular disease, renal disease, and obesity suggest that either gout, or its necessary precursor hyperuricemia, may play an important role in the manifestations of the metabolic syndrome. In this review, we analyze the complex interconnections between gout and metabolic syndrome, by reviewing gout's physiologic and epidemiologic relationships with its major co-morbidities. Increasing evidence supports gout's association with metabolic syndrome. More specifically, both human studies and animal models suggest that hyperuricemia may play a role in promoting inflammation, hypertension and cardiovascular disease, adipogenesis and lipogenesis, insulin and glucose dysregulation, and liver disease. Fructose ingestion is associated with increased rates of hypertension, weight gain, impaired glucose tolerance, and dyslipidemia and is a key driver of urate biosynthesis. AMP kinase (AMPK) is a central regulator of processes that tend to mitigate against the metabolic syndrome. Within hepatocytes, leukocytes, and other cells, a fructose/urate metabolic loop drives key inhibitors of AMPK, including AMP deaminase and fructokinase, that may tilt the balance toward metabolic syndrome progression. Preliminary evidence suggests that agents that block the intracellular synthesis of urate may restore AMPK activity and help maintain metabolic homeostasis. Gout is both an inflammatory and a metabolic disease. With further investigation of urate's role, the possibility of proper gout management additionally mitigating metabolic syndrome is an evolving and important question.

  7. Metabolic disruptions induced by reduced ambulatory activity in free-living humans

    DEFF Research Database (Denmark)

    Thyfault, John P; Krogh-Madsen, Rikke

    2011-01-01

    Physical inactivity likely plays a role in the development of insulin resistance and obesity; however, direct evidence is minimal and mechanisms of action remain unknown. Studying metabolic outcomes that occur after transitioning from higher to lower levels of physical activity is the best tool t...

  8. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior.

    Science.gov (United States)

    Mirrione, Martine M; Schulz, Daniela; Lapidus, Kyle A B; Zhang, Samuel; Goodman, Wayne; Henn, Fritz A

    2014-01-01

    Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  9. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior

    Directory of Open Access Journals (Sweden)

    Martine M Mirrione

    2014-02-01

    Full Text Available Uncontrollable stress can have a profound effect on an organism’s ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  10. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  11. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    Directory of Open Access Journals (Sweden)

    Tuomo T Tompuri

    2015-08-01

    Full Text Available Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  12. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  13. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  14. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  15. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  16. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  17. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  18. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  19. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  20. Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Mülleder

    2016-09-01

    Full Text Available Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical Saccharomyces cerevisiae laboratory strains. The 23 single-copy plasmids complement for deficiencies in HIS3, LEU2, URA3, MET17 or LYS2 genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.

  1. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  2. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    Science.gov (United States)

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2017-09-01

    Full Text Available Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA activation of a non-receptor tyrosine kinase (SRC-dependent cJun NH2-terminal kinase (JNK signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.

  4. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    International Nuclear Information System (INIS)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-01-01

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na + /K + -ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na + /K + -ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism

  5. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  6. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  7. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  8. Nutrition-based interventions to address metabolic syndrome in the Navajo: a systematic review.

    Science.gov (United States)

    Nava, Lorenzo T; Zambrano, Jenelle M; Arviso, Karen P; Brochetti, Denise; Becker, Kathleen L

    2015-11-01

    The objective of this systematic review is to identify nutrition-based interventions that may be effective for the prevention and treatment of metabolic syndrome in the Navajo. Metabolic syndrome, a major risk factor for cardiovascular disease, affects almost half of the Navajo population. The diet of the Navajo, heavy in fat and refined carbohydrates, has been identified as an important contributing factor to the high rates of metabolic syndrome in this population. A search was conducted on PubMed, EMBASE and CINAHL to identify studies published before October, 2013, involving nutrition-based interventions in adult populations similar to the Navajo targeting at least one measure of metabolic syndrome. Data on efficacy and participation were gathered and synthesised qualitatively. Out of 19 studies included in this systematic review, 11 interventions were identified to be effective at improving at least one measure of metabolic syndrome. Level of exposure to the intervention, frequency of intervention activities, family and social support, cultural adaptation and case management were identified as factors that may improve the efficacy of an intervention. Multiple nutrition-based interventions have been found to be effective in populations similar to the Navajo. Development of a strategy to address metabolic syndrome in the Navajo may involve aspects from multiple interventions to increase efficacy and maximise participation. © 2015 John Wiley & Sons Ltd.

  9. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  10. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  11. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  12. Adaptive Active Noise Suppression Using Multiple Model Switching Strategy

    Directory of Open Access Journals (Sweden)

    Quanzhen Huang

    2017-01-01

    Full Text Available Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.

  13. Imaging metabolic heterogeneity in cancer.

    Science.gov (United States)

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  14. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    Science.gov (United States)

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland

  15. Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?

    Directory of Open Access Journals (Sweden)

    Kristina Harris

    2012-01-01

    Full Text Available The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1 the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide resulting in inflammation and (2 bacterial metabolites of dietary compounds (e.g., SCFA from fiber, which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study.

  16. Multiple stable isotope tracer technique for studying the metabolic kinetics of amino acids in hepatic failure

    Energy Technology Data Exchange (ETDEWEB)

    Zongqin, Xia; Tengchang, Dai; Jianhua, Zhang; Yaer, Hu; Bingyao, Yu; Xingrong, Xu; Guanlu, Huang; Gengrong, Shen; Yaqiu, Zhou; Hong, Yu

    1987-08-01

    In order to study the mechanism of the imbalance of amino acid metabolism during hepatic failure, a stable isotope tracer method for observing simultaneously the metabolic kinetics of several amino acids has been established. /sup 15/N-L-Ala, (2,3-D/sub 3/)-Leu and (2,3-D/sub 3/)-Phe were chosen as nonessential, branched chain and aromatic amino acids. A single iv injection of 40 mg N-Ala, 20 mg deuterated Leu and 20 mg deuterated Phe was given to each human subject. Blood samples were taken just before and at different times (up to 60 min) after the injection. Total free amino acids were isolated from the plasma with a small dowex 50 x 8 column and converted to trifluoroacetyl derivatives. Their abundances were then analyzed with a GC-MS system and typical double exponential time course curves were found for all the three labelled amino acids. A two-pool model was designed and applied for compartmental analysis. Significant changes were found in the kinetic parameters of Phe and Leu in patients with fulminant hepatitis or heptic cirrhosis. The half-lives of both Phe pools were longer and the pool sizes were larger than normal subjects, while the half-lives and pool sizes of Leu changes in the opposite direction. No marked change was found in Ala. The significance of intracellular imbalance of Phe and Leu metabolism was discussed. It is evident that the combination of GCMS technique and multiple-tracers labelled with stable isotopes is of great potential for similar purposes.

  17. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    International Nuclear Information System (INIS)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  18. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  19. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  20. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    Science.gov (United States)

    Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.

    2014-09-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  1. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    International Nuclear Information System (INIS)

    Vladimirov, A P; Malygin, A S; Mikhailova, J A; Borodin, E M; Bakharev, A A; Poryvayeva, A P

    2014-01-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  2. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study.

    Science.gov (United States)

    Daubenmier, Jennifer; Lin, Jue; Blackburn, Elizabeth; Hecht, Frederick M; Kristeller, Jean; Maninger, Nicole; Kuwata, Margaret; Bacchetti, Peter; Havel, Peter J; Epel, Elissa

    2012-07-01

    Psychological distress and metabolic dysregulation are associated with markers of accelerated cellular aging, including reduced telomerase activity and shortened telomere length. We examined whether participation in a mindfulness-based intervention, and, secondarily, improvements in psychological distress, eating behavior, and metabolic factors are associated with increases in telomerase activity in peripheral blood mononuclear cells (PBMCs). We enrolled 47 overweight/obese women in a randomized waitlist-controlled pilot trial (n=47) of a mindfulness-based intervention for stress eating and examined changes in telomerase activity from pre- to post-intervention. In secondary analyses, changes in telomerase activity across the sample were examined in relation to pre- to post-intervention changes in psychological distress, eating behavior, and metabolic factors (weight, serum cortisol, fasting glucose and insulin, and insulin resistance). Both groups increased in mean telomerase activity over 4 months in intent-to-treat and treatment efficacy analyses (peating behavior, and metabolic health and increases in telomerase activity. These findings suggest that telomerase activity may be in part regulated by levels of both psychological and metabolic stress. Published by Elsevier Ltd.

  3. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae

    Science.gov (United States)

    Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias

    2013-01-01

    The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from 13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide

  5. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  6. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  7. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study

    DEFF Research Database (Denmark)

    Ekelund, U; Anderssen, S A; Froberg, K

    2007-01-01

    AIMS/HYPOTHESIS: High levels of cardiorespiratory fitness (CRF) and physical activity (PA) are associated with a favourable metabolic risk profile. However, there has been no thorough exploration of the independent contributions of cardiorespiratory fitness and subcomponents of activity (total PA...... the association between activity and clustered risk is independent of adiposity. Our results suggest that fitness and activity affect metabolic risk through different pathways....

  8. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  9. Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis.

    Science.gov (United States)

    Lazzarino, Giacomo; Amorini, Angela M; Petzold, Axel; Gasperini, Claudio; Ruggieri, Serena; Quartuccio, Maria Esmeralda; Lazzarino, Giuseppe; Di Stasio, Enrico; Tavazzi, Barbara

    2017-11-01

    Multiple sclerosis (MS) is characterized by primary inflammation, demyelination, and progressive neurodegeneration. A biochemical MS feature is neuronal mitochondrial dysfunction, compensated by anaerobic metabolism increase, likely aggravating progression of neurodegeneration. Here, we characterized a pragmatic serum profile of compounds related to mitochondrial energy metabolism of potential clinical use. Blood samples of 518 well characterized (disability, disease course) MS patients and 167 healthy controls were analyzed for serum purines, pyrimidines, creatinine, and lactate. Nine of the 15 compounds assayed, hypoxanthine, xanthine, uric acid, inosine, uracil, β-pseudouridine, uridine, creatinine, and lactate, differed significantly between MS patients and controls (p < 0.0001). Using these nine compounds, a unifying Biomarker Score was calculated. Controls and MS patients had mean Biomarker Scores of 0.4 ± 0.7 and 4.4 ± 1.9, respectively (p < 0.00001). The Biomarker Score was higher in patients with progressive (6.0 ± 1.8 than with relapsing remitting disease course (3.6 ± 1.5, p < 0.00001). High association between the Biomarker Score and increase in disability (EDSS) was also observed. Additionally, in 50 patients who underwent magnetic resonance imaging (MRI), increase in the Biomarker Score correlated to neuroanatomical alterations. These results, obtained in a large cohort of MS patients evaluated for serum metabolic compounds connected to energy metabolism, demonstrated that the Biomarker Score might represent a pragmatic, resource saving, easy to obtain, laboratory tool useful to monitor MS patients and predict at an early stage who will switch from an RR to a progressive disease course. For the first time, it was also clearly shown a link between mitochondrial dysfunction and MRI lesions characteristic of MS.

  10. Metabolism-Activated Multitargeting (MAMUT): An Innovative Multitargeting Approach to Drug Design and Development.

    Science.gov (United States)

    Mátyus, Péter; Chai, Christina L L

    2016-06-20

    Multitargeting is a valuable concept in drug design for the development of effective drugs for the treatment of multifactorial diseases. This concept has most frequently been realized by incorporating two or more pharmacophores into a single hybrid molecule. Many such hybrids, due to the increased molecular size, exhibit unfavorable physicochemical properties leading to adverse effects and/or an inappropriate ADME (absorption, distribution, metabolism, and excretion) profile. To avoid this limitation and achieve additional therapeutic benefits, here we describe a novel multitargeting strategy based on the synergistic effects of a parent drug and its active metabolite(s). The concept of metabolism-activated multitargeting (MAMUT) is illustrated using a number of examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins?

    Science.gov (United States)

    Schubert, Martin; Kluge, Stefan; Schmölz, Lisa; Wallert, Maria; Galli, Francesco; Birringer, Marc; Lorkowski, Stefan

    2018-01-12

    Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.

  12. The interpretation of physical activity, exercise, and sedentary behaviours by persons with multiple sclerosis.

    Science.gov (United States)

    Kinnett-Hopkins, Dominique; Learmonth, Yvonne; Hubbard, Elizabeth; Pilutti, Lara; Roberts, Sarah; Fanning, Jason; Wójcicki, Thomas; McAuley, Edward; Motl, Robert

    2017-11-07

    This study adopted a qualitative research design with directed content analysis and examined the interpretations of physical activity, exercise, and sedentary behaviour by persons with multiple sclerosis. Fifty three persons with multiple sclerosis who were enrolled in an exercise trial took part in semi-structured interviews regarding personal interpretations of physical activity, exercise, and sedentary behaviours. Forty three percent of participants indicated a consistent understanding of physical activity, 42% of participants indicated a consistent understanding of exercise, and 83% of participants indicated a consistent understanding of sedentary behaviour with the standard definitions. There was evidence of definitional ambiguity (i.e., 57, 58, and 11% of the sample for physical activity, exercise, and sedentary behaviour, respectively); 6% of the sample inconsistently defined sedentary behaviour with standard definitions. Some participants described physical activity in a manner that more closely aligned with exercise and confused sedentary behaviour with exercise or sleeping/napping. Results highlight the need to provide and utilise consistent definitions for accurate understanding, proper evaluation and communication of physical activity, exercise, and sedentary behaviours among persons with multiple sclerosis. The application of consistent definitions may minimise ambiguity, alleviate the equivocality of findings in the literature, and translate into improved communication about these behaviours in multiple sclerosis. Implications for Rehabilitation The symptoms of multiple sclerosis can be managed through participation in physical activity and exercise. Persons with multiple sclerosis are not engaging in sufficient levels of physical activity and exercise for health benefits. Rehabilitation professionals should use established definitions of physical activity, exercise, and sedentary behaviours when communicating about these behaviours among persons with

  13. Active control of multiple resistive wall modes

    International Nuclear Information System (INIS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Partin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, S.; Zanca, P.

    2005-01-01

    Active magnetic feedback suppression of resistive wall modes is of common interest for several fusion concepts relying on close conducting walls for stabilization of ideal magnetohydrodynamic (MHD) modes. In the advanced tokamak without plasma rotation the kink mode is not completely stabilized, but rather converted into an unstable resistive wall mode (RWM) with a growth time comparable to the wall magnetic flux penetration time. The reversed field pinch (RFP) is similar to the advanced tokamak in the sense that it uses a conducting wall for kink mode stabilization. Also both configurations are susceptible to resonant field error amplification of marginally stable modes. However, the RFP has a different RWM spectrum and, in general, a range of modes is unstable. Hence, the requirement for simultaneous feedback stabilization of multiple independent RWMs arises for the RFP configuration. Recent experiments on RWM feedback stabilization, performed in the RFP device EXTRAP T2R [1], are presented. The experimental results obtained are the first demonstration of simultaneous feedback control of multiple independent RWMs [2]. Using an array of active magnetic coils, a reproducible suppression of several RWMs is achieved for the duration of the discharge, 3-5 wall times, through feedback action. An array with 64 active saddle coils at 4 poloidal times 16 toroidal positions is used. The important issues of side band generation by the active coil array and the accompanying coupling of different unstable modes through the feedback action are addressed in this study. Open loop control experiments have been carried out to quantitatively study resonant field error amplification. (Author)

  14. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  15. Sequential interactions of silver-silica nanocomposite (Ag-SiO2 NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver–silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium. Bacterial sensitivity...

  16. Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium Bacterial sensitivity...

  17. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  18. Physical Activity Dimensions Associated with Impaired Glucose Metabolism

    DEFF Research Database (Denmark)

    Amadid, Hanan; Johansen, Nanna B.; Bjerregaard, Anne-Louise

    2017-01-01

    Purpose Physical activity (PA) is important in the prevention of Type 2 diabetes, yet little is known about the role of specific dimensions of PA, including sedentary time in subgroups at risk for impaired glucose metabolism (IGM). We applied a data-driven decision tool to identify dimensions of PA...... identified subgroups in which different activity dimensions were associated with IGM. Methodology and results from this study may suggest a preliminary step toward the goal of tailoring and targeting PA interventions aimed at Type 2 diabetes prevention....... associated with IGM across age, sex, and body mass index (BMI) groups. Methods This cross-sectional study included 1501 individuals (mean (SD) age, 65.6 (6.8) yr) at high risk for Type 2 diabetes from the ADDITION-PRO study. PA was measured by an individually calibrated combined accelerometer and heart rate...

  19. Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity.

    Science.gov (United States)

    Miles, Jennifer L; Huber, Korinna; Thompson, Nichola M; Davison, Michael; Breier, Bernhard H

    2009-01-01

    Obesity and its associated comorbidities are of major worldwide concern. It is now recognized that there are a number of metabolically distinct pathways of obesity development. The present paper investigates the effect of moderate daily exercise on the underlying mechanisms of one such pathway to obesity, through interrogation of metabolic flexibility. Pregnant Wistar rats were either fed chow ad libitum or undernourished throughout pregnancy, generating control or intrauterine growth restricted (IUGR) offspring, respectively. At 250 d of age, dual-emission x-ray absorptiometry scans and plasma analyses showed that moderate daily exercise, in the form of a measured amount of wheel running (56 m/d), prevented the development of obesity consistently observed in nonexercised IUGR offspring. Increased plasma C-peptide and hepatic atypical protein kinase Czeta levels explained increased glucose uptake and increased hepatic glycogen storage in IUGR offspring. Importantly, whereas circulating levels of retinol binding protein 4 were elevated in obese, nonexercised IUGR offspring, indicative of glucose sparing without exercise, retinol binding protein 4 levels were normalized in the exercised IUGR group. These data suggest that IUGR offspring have increased flexibility of energy storage and use and that moderate daily exercise prevents obesity development through activation of distinct pathways of energy use. Thus, despite a predisposition to develop obesity under sedentary conditions, obesity development was prevented in IUGR offspring when exercise was available. These results emphasize the importance of tailored lifestyle changes that activate distinct pathways of metabolic flexibility for obesity prevention.

  20. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study

    DEFF Research Database (Denmark)

    Blinkenberg, Morten; Mathiesen, Henrik K; Tscherning, Thomas

    2012-01-01

    and neurological disability. METHODS: We studied 20 recently diagnosed, clinically definite, relapsing-remitting MS patients. Global and cortical CMRglc was estimated using PET with 18-F-deoxyglucose and NAA/Cr ratio was measured using multislice echo-planar spectroscopic imaging. All subjects were neuro-psychologically......OBJECTIVES: Positron emission tomography (PET) studies have shown that cortical cerebral metabolic rate of glucose (CMRglc) is reduced in multiple sclerosis (MS). Quantitative magnetic resonance spectroscopy (MRS) measures of N-acetyl-aspartate (NAA) normalized to creatine (NAA/Cr) assess neuronal...... deterioration, and several studies have shown reductions in MS. Furthermore, both PET and MRS reductions correlate with cognitive dysfunction in MS. Our aim was to determine if changes in cortical CMRglc in early MS correlate with NAA/Cr measurements of neuronal deterioration, as well as cognitive dysfunction...

  1. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  2. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?

    Science.gov (United States)

    McConville, Malcolm J; Saunders, Eleanor C; Kloehn, Joachim; Dagley, Michael J

    2015-01-01

    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.

  3. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity.

    Science.gov (United States)

    Goody, Deborah; Pfeifer, Alexander

    2018-04-10

    In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

  4. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  5. G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Claire Laurens

    2016-07-01

    Full Text Available Objective: Recent data suggest that adipose triglyceride lipase (ATGL plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2, recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. Methods: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. Results: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05 while G0S2 knockdown strongly reduces (−68%, p < 0.001 triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4 expression (5.4 fold, p < 0.001. Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. Conclusion: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism. Keywords: Lipid metabolism, Skeletal muscle, Lipolysis, Adipose triglyceride lipase

  6. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    Science.gov (United States)

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  7. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth

    OpenAIRE

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J.; Wilson, Raymond; Beniston, Richard G.; Archer, David B.

    2016-01-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germ...

  8. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  9. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  10. Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone".

    Science.gov (United States)

    Thrash, J Cameron; Seitz, Kiley W; Baker, Brett J; Temperton, Ben; Gillies, Lauren E; Rabalais, Nancy N; Henrissat, Bernard; Mason, Olivia U

    2017-09-12

    Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota , SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments- Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity

  11. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.

    Science.gov (United States)

    Garrison, Allison M; Parrott, Jennifer M; Tuñon, Arnulfo; Delgado, Jennifer; Redus, Laney; O'Connor, Jason C

    2018-08-01

    Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO -/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity. Published by Elsevier Ltd.

  12. Frequency of metabolic abnormalities in urinary stones patients.

    Science.gov (United States)

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  13. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  15. Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input

    International Nuclear Information System (INIS)

    Thurlow, G.A.; Cooper, R.M.

    1988-01-01

    The extent of changes in glucose metabolism resulting from ipsilateral and contralateral eye activity in the posterior cortex of the hooded rat was demonstrated by means of the C-14 2-deoxyglucose autoradiographic technique. By stimulating one eye with square wave gratings and eliminating efferent activation from the other by means of enucleation or intraocular TTX injection, differences between ipsilaterally and contralaterally based visual activity in the two hemispheres were maximized. Carbon-14 levels in layer IV of autoradiographs of coronal sections were measured and combined across sections to form right and left matrices of posterior cortex metabolic activity. A difference matrix, formed by subtracting the metabolic activity matrix of cortex contralateral to the stimulated eye from the ipsilateral depressed matrix, emphasized those parts of the visual cortex that received monocular visual input. The demarcation of striate cortex by means of cholinesterase stain and the examination of autoradiographs from sections cut tangential to the cortical surface aided in the interpretation of the difference matrices. In striate cortex, differences were maximal in the medial monocular portion, and the lateral or binocular portion was shown to be divided metabolically into a far lateral contralaterally dominant strip along the cortical representation of the vertical meridian, and a more medial region of patches of more or less contralaterally dominant binocular input. Lateral peristriate differences were less than those of striate cortex, and regions of greater and lesser monocular input could be distinguished. We did not detect differences between the two hemispheres in either anterior or medial peristriate areas

  16. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-06-01

    Full Text Available The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.

  17. Metabolic Activity Interferometer: A Powerful Tool for Testing Antibiotics

    Directory of Open Access Journals (Sweden)

    Rachel R. P. Machado

    2012-01-01

    Full Text Available It is demonstrated that the efficiency of antibiotics can be tested using an interferometric method. Two antibiotics were used as models to show that an interferometric method to monitor the metabolic activity of slowly growing bacteria can be a safer method to judge antimicrobial properties of substances than conventional methods. The susceptibility of Mycobacterium bovis to hexane extract of Pterodon emarginatus and to the well-known antibiotic rifampicin was tested with the interferometric method and with the conventional microplate method. The microplate method revealed a potential activity of hexane extract against M. bovis. However, the interferometric method showed that the action of this substance is rather limited. Also in the case of rifampicin, the interferometric method was able to detect resistant bacteria.

  18. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  19. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5- and delta-6-desaturase activities and incident metabolic syndrome.

    Science.gov (United States)

    Yary, T; Voutilainen, S; Tuomainen, T-P; Ruusunen, A; Nurmi, T; Virtanen, J K

    2017-08-01

    The associations of n-6 polyunsaturated fatty acids (PUFA) with metabolic syndrome have been poorly explored. We investigated the associations of the serum n-6 PUFA and the activities of enzymes involved in the PUFA metabolism, delta-5-desaturase (D5D) and delta-6-desaturase (D6D) with risk of incident metabolic syndrome. We also investigated whether zinc, a cofactor for these enzymes, modifies these associations. A prospective follow-up study was conducted on 661 men who were aged 42-60 years old at baseline in 1984-1989 and who were re-examined in 1998-2001. Men in the highest versus the lowest serum total omega-6 PUFA tertile had a 70% lower multivariate-adjusted risk of incident metabolic syndrome [odds ratio (OR) = 0.30; 95% confidence interval (CI) = 0.18-0.51, P trend metabolic syndrome components at the re-examinations. Most associations were attenuated after adjustment for body mass index. Finally, the associations of D6D and LA were stronger among those with a higher serum zinc concentration. Higher serum total n-6 PUFA, linoleic acid and arachidonic acid concentrations and D5D activity were associated with a lower risk of developing metabolic syndrome and higher D6D activity was associated with a higher risk. The role of zinc also needs to be investigated in other populations. © 2016 The British Dietetic Association Ltd.

  20. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  1. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet

    DEFF Research Database (Denmark)

    Andersen, Thor Munch; Olsen, David B; Søndergaard, Hans

    2012-01-01

    To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index).......To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index)....

  2. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  3. Relationship between metabolism and ovarian activity in dairy cows with different dry period lengths

    NARCIS (Netherlands)

    Chen, J.C.; Soede, N.M.; Dorland, van H.A.; Remmelink, G.J.; Bruckmaier, R.M.; Kemp, B.; Knegsel, van A.T.M.

    2015-01-01

    The objectives of the present study were to evaluate the effects of dry period length on ovarian activity in cows fed a lipogenic or a glucogenic diet within 100 days in milk (DIM) and to determine relationships between ovarian activity and energy balance and metabolic status in early lactation.

  4. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro

    NARCIS (Netherlands)

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; Ravenzwaay, van Bennard

    2016-01-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To

  5. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  6. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-01-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  7. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-11-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  8. Alimentary habits, physical activity, and Framingham global risk score in metabolic syndrome.

    Science.gov (United States)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo

    2014-04-01

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases.

  9. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    Science.gov (United States)

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018. Published by Elsevier Inc.

  10. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Jin [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Myoung-Su; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Functional Control, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-07-22

    Highlights: {yields} Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. {yields} PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. {yields} PRPA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor {delta} (PPAR{delta}) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPAR{delta} protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also

  12. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Kim, Kyung Jin; Lee, Myoung-Su; Jo, Keunae; Hwang, Jae-Kwan

    2011-01-01

    Highlights: → Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. → PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. → PRPA reduces high-fat diet-induced triglyceride accumulation in liver. → PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of

  13. Industry as a metabolic activity.

    Science.gov (United States)

    Smart, B

    1992-02-01

    The concept of "industrial economic metabolism" can provide a bridge to better understanding between environmentalists and industry. In nature each individual or species reacts to natural stimuli, competing with others for resources, extending its domain until it loses comparative advantage and comes to equilibrium with an adjacent competitor. Those species that succeed over time flourish; those that do not, diminish or disappear. Nature's rule book has no moral or ethical ingredient beyond self-interest. Corporate metabolisms are remarkably similar to those of nature. They too react to stimuli, collect and use resources, and grow or perish based on how effectively they compete. Corporate management recognizes and responds naturally and efficiently to cost and price signals. Through them it selects resources and converts them into useful products. The efficiency with which this is done is measured by profit, the lifeblood of the corporation and its means of growth. Profit thus provides a discipline on corporate behavior, encouraging efficient performers, and, by its absence, weeding out others. Unfettered by influences other than economics, the path to corporate success is unlikely to be a compassionate one. The dilemma of the manager is that to do what is socially "right" often conflicts with what must be done to survive and prosper. Fortunately, corporations' behavior can be altered by society when their purely economic role comes into conflict with other human values. The environment and the economy are not separate systems but intertwined to form a complex natural and social setting. The human-designed economic system depends on natural resource inputs, and in turn its metabolic wastes can overload the ecological system, threatening the long-term survivability of both. Increasing concern for the environment now gives the farsighted manager new latitude. There are competitive benefits in some pollution prevention. But there are not sufficiently strong forces to

  14. Moderate Activity and Fitness, Not Sedentary Time, Are Independently Associated with Cardio-Metabolic Risk in U.S. Adults Aged 18–49

    Directory of Open Access Journals (Sweden)

    Jeroen H. P. M. van der Velde

    2015-02-01

    Full Text Available This cross-sectional study is one of the first to examine and compare the independent associations of objectively measured sedentary time, moderate to vigorous physical activity (MVPA and fitness with cardio-metabolic risk factors. We studied 543 men and women (aged 18–49 years from the NHANES 2003–2004 survey. Sedentary time and MVPA were measured by accelerometry. Fitness was assessed with a submaximal treadmill test. Cardio-metabolic risk factors included: waist circumference (WC, BMI, blood pressure, fasting glucose, HDL- and non HDL cholesterol, triglycerides (TG, and C-reactive protein (CRP. Sedentary time, MVPA and fitness were used as predictors for the cardio-metabolic outcomes in a multiple regression analysis. Standardized regression coefficients were computed. Results show that sedentary time was associated with HDL-cholesterol (β = −0.080, p = 0.05 and TG (β = 0.080, p = 0.03. These results became non-significant after adjustment for MVPA and fitness. MVPA was associated with WC (β = −0.226, BMI (β = −0.239, TG (β = −0.108 and HDL-cholesterol (β = 0.144 (all p < 0.05. These results remained significant after adjustment for sedentary time and fitness. Fitness was associated with WC (β = −0.287, BMI (β = −0.266, systolic blood pressure (β = −0.159, TG (β = −0.092, and CRP (β = −0.130 (all p < 0.05. After adjustment for sedentary time and MVPA these results remained significant. These differences in relative importance of sedentary time, MVPA and fitness on cardio-metabolic-risk are important in the design of prevention programs. In this population, the strength of the associations between MVPA and fitness with cardio-metabolic markers appeared to be similar; both MVPA and fitness showed independent associations with cardio-metabolic risk factors. In contrast, sedentary time showed no independent associations with cardio-metabolic risk after correction for fitness and MVPA.

  15. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    Science.gov (United States)

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  16. CD4 T cell activation and disease activity at onset of multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Langkilde, Annika Reynberg; Fenst, C

    2004-01-01

    We studied CD4 T cell activation in patients with clinically isolated syndromes (CIS) suggesting an initial attack of multiple sclerosis. The percentage of blood CD26+ CD4 T cells was increased in these patients, and correlated with magnetic resonance imaging disease activity and clinical disease...... severity. In contrast, the percentage of CD25+ CD4 T cells in cerebrospinal fluid correlated negatively with the cerebrospinal fluid concentration of myelin basic protein and the presence of IgG oligoclonal bands. These results suggest that distinct systemic and intrathecal T cell activation states...

  17. Semi-active control of a cable-stayed bridge under multiple-support excitations.

    Science.gov (United States)

    Dai, Ze-Bing; Huang, Jin-Zhi; Wang, Hong-Xia

    2004-03-01

    This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.

  18. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    Science.gov (United States)

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact

  19. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  20. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    Science.gov (United States)

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the

  1. Activation of Necroptosis in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Dimitry Ofengeim

    2015-03-01

    Full Text Available Multiple sclerosis (MS, a common neurodegenerative disease of the CNS, is characterized by the loss of oligodendrocytes and demyelination. Tumor necrosis factor α (TNF-α, a proinflammatory cytokine implicated in MS, can activate necroptosis, a necrotic cell death pathway regulated by RIPK1 and RIPK3 under caspase-8-deficient conditions. Here, we demonstrate defective caspase-8 activation, as well as activation of RIPK1, RIPK3, and MLKL, the hallmark mediators of necroptosis, in the cortical lesions of human MS pathological samples. Furthermore, we show that MS pathological samples are characterized by an increased insoluble proteome in common with other neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and Huntington’s disease (HD. Finally, we show that necroptosis mediates oligodendrocyte degeneration induced by TNF-α and that inhibition of RIPK1 protects against oligodendrocyte cell death in two animal models of MS and in culture. Our findings demonstrate that necroptosis is involved in MS and suggest that targeting RIPK1 may represent a therapeutic strategy for MS.

  2. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Bakke, Marit Jorgensen; Horsberg, Tor Einar

    2007-01-01

    Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 μg STX/kg bw), BTX (68 μg BTX/kg bw) or DA (6 mg DA/kg bw). In addition, 14 C-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish

  3. Relationship of serum resistin level to traits of metabolic syndrome and serum paraoxonase 1 activity in a population with a broad range of body mass index.

    Science.gov (United States)

    Bajnok, L; Seres, I; Varga, Z; Jeges, S; Peti, A; Karanyi, Z; Juhasz, A; Csongradi, E; Mezosi, E; Nagy, E V; Paragh, G

    2008-11-01

    The relationship between resistin, one of the adipokines, and metabolic syndrome is not fully elucidated. Altered activity of the HDL-associated antioxidant enzyme paraoxonase 1 (PON1) that participates in the antioxidant defense mechanisms of HDL may have an important role in the obesity-related accelerated atherosclerosis. Inverse associations of PON1 with obesity and serum levels of leptin have been demonstrated. Our aim was to investigate the association of serum levels of resistin with (i) PON1 activity, and (ii) parameters of metabolic syndrome, including some that are additional for research. A total of 74 Caucasian subjects were recruited into the study and divided into 3 age and sex-matched groups. Group 1, 25 non-diabetic overweight/obese subjects with BMI of 28-39.9 kg/m (2); group 2, 25 non-diabetic obese patients with BMI >or=40 kg/m (2); and the control group 3, 24 healthy, normal-weight control subjects. Serum levels of resistin were correlated negatively with BMI (r=-0.27, Pcorrelated positively with PON1 (r=0.24, PHDL-C. During multiple regression analyses BMI and TBARS were independent predictors of PON1, while age, gender, blood pressure, HOMA-IR, LDL-C, HDL-C, and resistin were not. Among the study subjects, serum levels of resistin showed a positive, although not independent correlation with serum PON1, and a negative correlation with numerous parameters of the metabolic syndrome (i.e. adiposity, blood pressure, levels of leptin, free fatty acid, glycosylated hemoglobin, and lipid peroxidation). BMI and TBARS are independent predictors of PON1 activity.

  4. Effects of ozone on adult and aged lung oxygen consumption, glucose metabolism and G6PDH activity

    International Nuclear Information System (INIS)

    Raska-Emery, P.; Balis, J.U.; Montgomery, M.R.

    1991-01-01

    Fischer-344 male adult (4-6 mo) and aged (24-26 mo) rats were exposed to 0-3.0 ppm O 3 for 8h, sacrificed immediately, and O 2 consumption, 1 C 14 -glucose metabolism and G6PDH activity were determined. For O 2 consumption, the exp to 0.5 ppm O 3 produced a stimulation in both age groups. Decrements in O 2 consumption were only evident in aged rats after 1.5 and 3.0 ppm. Glucose metabolism showed a marked difference rats were 40% adult rats. Control values in aged rats were 40% of adults. Exp to 0.5 ppm was stimulatory in adults and aged, while 1.5 and 3.0 pp, decreased glucose metabolism in both groups. No age-related difference in G6PDH activity between control and exposed was seen. However, in both age groups, 0.5 ppm O 3 resulted in a significant increase in activity (33-41%)l 1.5 and 3.0 ppm were without effect. The combined results show a biphasic response of adult and aged lung to severe, acute O 3 exp. One-half ppm O 3 for 8h is stimulatory for all three parameters examined in both age groups. Three ppm O 3 inhibits O 2 consumption and glucose metabolism in both age groups but is ineffective on G6PDH activity

  5. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    Science.gov (United States)

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001

  6. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-01-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ( 18 F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm 3 ) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ((micro)mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 (micro)mol/100 g per minute; mean difference, 2.4 (95% confidence interval, 0.67-4.2); P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone

  7. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  8. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  9. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    Science.gov (United States)

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  10. Preliminary Evidence that Self-Efficacy Predicts Physical Activity in Multiple Sclerosis

    Science.gov (United States)

    Motl, Robert W.; McAuley, Edward; Doerksen, Shawna; Hu, Liang; Morris, Katherine S.

    2009-01-01

    Individuals with multiple sclerosis (MS) are less physically active than nondiseased people. One method for increasing physical activity levels involves the identification of factors that correlate with physical activity and that are modifiable by a well designed intervention. This study examined two types of self-efficacy as cross-sectional and…

  11. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  12. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    Science.gov (United States)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  13. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  14. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  15. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    Directory of Open Access Journals (Sweden)

    Yang M

    2014-08-01

    Full Text Available Ming Yang,1 Huizhong Su,1 Tomoyoshi Soga,2 Kamil R Kranc,3 Patrick J Pollard1 1Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 2Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan; 3MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Abstract: The hypoxia-inducible factor (HIF prolyl hydroxylase domain enzymes (PHDs regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2 availability enables its association with the von Hippel-Lindau (VHL tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. Keywords: prolyl hydroxylase domain (PHD

  16. Epstein-Barr virus and disease activity in multiple sclerosis

    NARCIS (Netherlands)

    D. Buljevac (Dragan); H.Z. Flach (Zwenneke); J. Groen (Jan); P.A. van Doorn (Pieter); F.G.A. van der Meché (Frans); R.Q. Hintzen (Rogier); W.C.J. Hop (Wim); A.D.M.E. Osterhaus (Albert); G.J.J. van Doornum (Gerard)

    2005-01-01

    textabstractOBJECTIVES: To study in relapsing-remitting (RR) multiple sclerosis (MS) whether exacerbations and brain activity as measured by magnetic resonance imaging (MRI) are associated with plasma levels of anti-Epstein Barr (EBV) antibodies and EBV DNA. METHODS: This was a prospective study

  17. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1

    International Nuclear Information System (INIS)

    Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J.

    1986-01-01

    Hyperplasia of the parathyroid glands is a central feature of familial multiple endocrine neoplasia type 1. We used cultured bovine parathyroid cells to test for mitogenic activity in plasma from patients with this disorder. Normal plasma stimulated [ 3 H]thymidine incorporation, on the average, to the same extent as it was stimulated in a plasma-free control culture. This contrasted with the results of the tests with plasma from patients with familial multiple endocrine neoplasia type 1, in which parathyroid mitogenic activity increased 2400 percent over the control value (P less than 0.001). Plasma from these patients also stimulated the proliferation of bovine parathyroid cells in culture, whereas plasma from normal subjects inhibited it. Parathyroid mitogenic activity in plasma from the patients with familial multiple endocrine neoplasia type 1 was greater than that in plasma from patients with various other disorders, including sporadic primary hyperparathyroidism (with adenoma, hyperplasia, or cancer of the parathyroid), sporadic primary hypergastrinemia, sporadic pituitary tumor, familial hypocalciuric hypercalcemia, and multiple endocrine neoplasia type 2 (P less than 0.05). Parathyroid mitogenic activity in the plasma of patients with familial multiple endocrine neoplasia type 1 persisted for up to four years after total parathyroidectomy. The plasma also had far more mitogenic activity in cultures of parathyroid cells than did optimal concentrations of known growth factors or of any parathyroid secretagogue. This mitogenic activity had an apparent molecular weight of 50,000 to 55,000. We conclude that primary hyperparathyroidism in familial multiple endocrine neoplasia type 1 may have a humoral cause

  18. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  19. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  20. [Metabolic functions and sport].

    Science.gov (United States)

    Riviere, Daniel

    2004-01-01

    Current epidemiological studies emphasize the increased of metabolic diseases of the adults, such as obesity, type-2 diabetes and metabolic syndromes. Even more worrying is the rising prevalence of obesity in children. It is due more to sedentariness, caused more by inactivity (television, video, games, etc.) than by overeating. Many studies have shown that regular physical activities benefit various bodily functions including metabolism. After dealing with the major benefits of physical exercise on some adult metabolic disorders, we focus on the prime role played by physical activity in combating the public health problem of childhood obesity.

  1. Generalized framework for context-specific metabolic model extraction methods

    Directory of Open Access Journals (Sweden)

    Semidán eRobaina Estévez

    2014-09-01

    Full Text Available Genome-scale metabolic models are increasingly applied to investigate the physiology not only of simple prokaryotes, but also eukaryotes, such as plants, characterized with compartmentalized cells of multiple types. While genome-scale models aim at including the entirety of known metabolic reactions, mounting evidence has indicated that only a subset of these reactions is active in a given context, including: developmental stage, cell type, or environment. As a result, several methods have been proposed to reconstruct context-specific models from existing genome-scale models by integrating various types of high-throughput data. Here we present a mathematical framework that puts all existing methods under one umbrella and provides the means to better understand their functioning, highlight similarities and differences, and to help users in selecting a most suitable method for an application.

  2. Proteolytic receptor cleavage in the pathogenesis of blood rheology and co-morbidities in metabolic syndrome. Early forms of autodigestion.

    Science.gov (United States)

    Mazor, Rafi; Schmid-Schönbein, Geert W

    2015-01-01

    Abnormal blood rheological properties seldom occur in isolation and instead are accompanied by other complications, often designated as co-morbidities. In the metabolic syndrome with complications like hypertension, diabetes and lack of normal microvascular blood flow, the underlying molecular mechanisms that simultaneously lead to elevated blood pressure and diabetes as well as abnormal microvascular rheology and other cell dysfunctions have remained largely unknown. In this review, we propose a new hypothesis for the origin of abnormal cell functions as well as multiple co-morbidities. Utilizing experimental models for the metabolic disease with diverse co-morbidities we summarize evidence for the presence of an uncontrolled extracellular proteolytic activity that causes ectodomain receptor cleavage and loss of their associated cell function. We summarize evidence for unchecked degrading proteinase activity, e.g. due to matrix metalloproteases, in patients with hypertension, Type II diabetes and obesity, in addition to evidence for receptor cleavage in the form of receptor fragments and decreased extracellular membrane expression levels. The evidence suggest that a shift in blood rheological properties and other co-morbidities may in fact be derived from a common mechanism that is due to uncontrolled proteolytic activity, i.e. an early form of autodigestion. Identification of the particular proteases involved and the mechanisms of their activation may open the door to treatment that simultaneously targets multiple co-morbidities in the metabolic syndrome.

  3. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  4. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  5. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  6. Production of L-carnitine by secondary metabolism of bacteria

    Directory of Open Access Journals (Sweden)

    Iborra José L

    2007-10-01

    Full Text Available Abstract The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  7. Saccharomyces cerevisiae metabolism in ecological context

    OpenAIRE

    Jouhten, Paula; Ponomarova, Olga; González García, Ramón; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype?metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype?phenotype relations may originate in the evolutionarily shaped cellular operating principles ...

  8. Developmental Trampoline Activities for Individuals with Multiple Handicapping Conditions.

    Science.gov (United States)

    Thomas, Bill

    1979-01-01

    The use of trampoline activities with multiple handicapped students is discussed. Management considerations in safety are noted, and developmental trampoline skills are listed beginning with bouncing for stimulation. Progression to limited independence and finally independent jumping is described. The position statement of the American Alliance…

  9. Low leucocyte myeloperoxidase activity in patients with multiple sclerosis

    NARCIS (Netherlands)

    Ramsaransing, G; Teelken, A; Prokopenko, VM; Arutjunyan, AV; De Keyser, J

    The gene for myeloperoxidase (MPO) has been implicated in multiple sclerosis (MS). By measuring H2O2 dependent oxidation of 3,3'5,5'-tetramethylbenzidine with spectrophotometry the authors investigated MPO activity in peripheral blood leucocytes from 42 patients with MS (12 with secondary

  10. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Jinbao Huang

    Full Text Available Our previous results showed that green tea polyphenols (GTPs significantly altered the expression of lipid-metabolizing genes in the liver of chickens. However, the underlying mechanism was not elucidated. In this study, we further characterized how GTPs influence AMP-activated protein kinase (AMPK in the regulation of hepatic fat metabolism. Thirty-six male chickens were fed GTPs at a daily dose of 0, 80 or 160 mg/kg of body weight for 4 weeks. The results demonstrated that oral administration of GTPs significantly reduced hepatic lipid content and abdominal fat mass, enhanced the phosphorylation levels of AMPKα and ACACA, and altered the mRNA levels and enzymatic activities of lipid-metabolizing enzymes in the liver. These results suggested that the activation of AMPK is a potential mechanism by which GTPs regulate hepatic lipid metabolism in such a way that lipid synthesis is reduced and fat oxidation is stimulated.

  11. Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo

    2005-01-01

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPARα-specific activator. Phytol induced the increase in PPARα-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPARα. Moreover, the addition of phytol upregulated the expression of PPARα-target genes at both mRNA and protein levels in PPARα-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPARα ligand and that it stimulates the expression of PPARα-target genes in intact cells. Because PPARα activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism

  12. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  14. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

    Science.gov (United States)

    Totah, Rheem A; Allen, Kyle E; Sheffels, Pamela; Whittington, Dale; Kharasch, Evan D

    2007-04-01

    Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic

  15. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation

    International Nuclear Information System (INIS)

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-01-01

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.

  16. All in the family: Clueing into the link between metabolic syndrome and hematologic malignancies.

    Science.gov (United States)

    Karmali, Reem; Dalovisio, Andrew; Borgia, Jeffrey A; Venugopal, Parameswaran; Kim, Brian W; Grant-Szymanski, Kelly; Hari, Parameswaran; Lazarus, Hillard

    2015-03-01

    Metabolic syndrome constitutes a constellation of findings including central obesity, insulin resistance/type 2 diabetes mellitus (DM), dyslipidemia and hypertension. Metabolic syndrome affects 1 in 4 adults in the United States and is rapidly rising in prevalence, largely driven by the dramatic rise in obesity and insulin resistance/DM. Being central to the development of metabolic syndrome and its other related diseases, much focus has been placed on identifying the mitogenic effects of obesity and insulin resistance/DM as mechanistic clues of the link between metabolic syndrome and cancer. Pertinent mechanisms identified include altered lipid signaling, adipokine and inflammatory cytokine effects, and activation of PI3K/Akt/mTOR and RAS/RAF/MAPK/ERK pathways via dysregulated insulin/insulin-like growth factor-1 (IGF-1) signaling. Through variable activation of these multiple pathways, obesity and insulin resistance/DM pre-dispose to hematologic malignancies, imposing the aggressive and chemo-resistant phenotypes typically seen in cancer patients with underlying metabolic syndrome. Growing understanding of these pathways has identified druggable cancer targets, rationalizing the development and testing of agents like PI3K inhibitor idelalisib, mTOR inhibitors everolimus and temsirolimus, and IGF-1 receptor inhibitor linsitinib. It has also led to exploration of obesity and diabetes-directed therapies including statins and oral hypoglycemic for the management of metabolic syndrome-related hematologic neoplasms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio).

    Science.gov (United States)

    Otte, Jens C; Schultz, Bernadette; Fruth, Daniela; Fabian, Eric; van Ravenzwaay, Bennard; Hidding, Björn; Salinas, Edward R

    2017-09-01

    Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    Science.gov (United States)

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    Science.gov (United States)

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  20. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  1. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice.

    Science.gov (United States)

    Huang, S-L; Yu, R-T; Gong, J; Feng, Y; Dai, Y-L; Hu, F; Hu, Y-H; Tao, Y-D; Leng, Y

    2012-05-01

    Arctigenin is a natural compound that had never been previously demonstrated to have a glucose-lowering effect. Here it was found to activate AMP-activated protein kinase (AMPK), and the mechanism by which this occurred, as well as the effects on glucose and lipid metabolism were investigated. 2-Deoxyglucose uptake and AMPK phosphorylation were examined in L6 myotubes and isolated skeletal muscle. Gluconeogenesis and lipid synthesis were evaluated in rat primary hepatocytes. The acute and chronic effects of arctigenin on metabolic abnormalities were observed in C57BL/6J and ob/ob mice. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye, JC-1. Analysis of respiration of L6 myotubes or isolated mitochondria was conducted in a channel oxygen system. Arctigenin increased AMPK phosphorylation and stimulated glucose uptake in L6 myotubes and isolated skeletal muscles. In primary hepatocytes, it decreased gluconeogenesis and lipid synthesis. The enhancement of glucose uptake and suppression of hepatic gluconeogenesis and lipid synthesis by arctigenin were prevented by blockade of AMPK activation. The respiration of L6 myotubes or isolated mitochondria was inhibited by arctigenin with a specific effect on respiratory complex I. A single oral dose of arctigenin reduced gluconeogenesis in C57BL/6J mice. Chronic oral administration of arctigenin lowered blood glucose and improved lipid metabolism in ob/ob mice. This study demonstrates a new role for arctigenin as a potent indirect activator of AMPK via inhibition of respiratory complex I, with beneficial effects on metabolic disorders in ob/ob mice. This highlights the potential value of arctigenin as a possible treatment of type 2 diabetes.

  2. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats

    OpenAIRE

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-01-01

    Background The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50?mg/kg, dio50) was intervened daily concurrent HF diet (HF diet?+?dio50) for five w...

  3. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways.

    Directory of Open Access Journals (Sweden)

    Ai-Luen Wu

    Full Text Available Fibroblast growth factor 19 (FGF19 is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4, although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB. In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.

  4. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming

    OpenAIRE

    Riz, Irene; Hawley, Teresa S.; Marsal, Jeffrey W.; Hawley, Robert G.

    2016-01-01

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its posit...

  5. Hepatobiliary fascioliasis with multiple aneurysms and active bleeding: A case report

    International Nuclear Information System (INIS)

    Choi, Soo Young; Kim Jae Woon; Jang, Jae Cheon

    2015-01-01

    A 52-year-old woman visited our institution with upper abdominal pain which had lasted for the past two days. Laboratory tests revealed mild leukocytosis, decreased serum hemoglobin, and peripheral blood eosinophilia. CT scans showed multiple ill-defined, hypodense lesions in the peripheral areas of both hepatic lobes and active bleeding with a subcapsular hematoma in the right hepatic lobe. Angiography also showed active bleeding in the right hepatic lobe with multiple aneurysms, so a transarterial coil embolization was performed to stop the bleeding. The endoscopic retrograde cholangiopancreatography revealed several moving flat flukes in the common bile duct, which were pathologically confirmed as Fasciola hepatica.

  6. Hepatobiliary fascioliasis with multiple aneurysms and active bleeding: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Young; Kim Jae Woon; Jang, Jae Cheon [Dept. of Radiology, College of Medicine, Yeungnam University, Daegu (Korea, Republic of)

    2015-04-15

    A 52-year-old woman visited our institution with upper abdominal pain which had lasted for the past two days. Laboratory tests revealed mild leukocytosis, decreased serum hemoglobin, and peripheral blood eosinophilia. CT scans showed multiple ill-defined, hypodense lesions in the peripheral areas of both hepatic lobes and active bleeding with a subcapsular hematoma in the right hepatic lobe. Angiography also showed active bleeding in the right hepatic lobe with multiple aneurysms, so a transarterial coil embolization was performed to stop the bleeding. The endoscopic retrograde cholangiopancreatography revealed several moving flat flukes in the common bile duct, which were pathologically confirmed as Fasciola hepatica.

  7. Metabolic interactions between cysteamine and epigallocatechin gallate.

    Science.gov (United States)

    Izzo, Valentina; Pietrocola, Federico; Sica, Valentina; Durand, Sylvère; Lachkar, Sylvie; Enot, David; Bravo-San Pedro, José Manuel; Chery, Alexis; Esposito, Speranza; Raia, Valeria; Maiuri, Luigi; Maiuri, Maria Chiara; Kroemer, Guido

    2017-02-01

    Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone. In a cell-free system, protein cross-linking activity of EGCG was suppressed by cysteamine. Finally, EGCG was able to enhance the conversion of cysteamine into taurine in metabolic flux experiments. Altogether, these results indicate that multiple pharmacological interactions occur between cysteamine and EGCG, suggesting that they contribute to the unique synergy of both agents in restoring the function of mutated CFTRΔF508.

  8. Physical activity, metabolic syndrome, and coronary risk: the EPIC-Norfolk prospective population study

    NARCIS (Netherlands)

    Broekhuizen, Lysette N.; Boekholdt, S. Matthijs; Arsenault, Benoit J.; Despres, Jean-Pierre; Stroes, Erik S. G.; Kastelein, John J. P.; Khaw, Kay-Tee; Wareham, Nicholas J.

    2011-01-01

    Objective: We investigated the association between physical activity, metabolic syndrome (MS), and the risk of future coronary heart disease (CHD) and mortality due to CHD in middle-aged men and women. Design: Prospective cohort study. Subjects: A total of 10,134 men and women aged 45-79 years at

  9. 11β-Hydroxysteroid Dehydrogenases and Hypertension in the Metabolic Syndrome.

    Science.gov (United States)

    Bailey, Matthew A

    2017-11-14

    The metabolic syndrome describes a clustering of risk factors-visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension-that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25-30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.

  10. NPAS2 and PER2 are linked to risk factors of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Aromaa Arpo

    2009-05-01

    Full Text Available Abstract Background Mammalian circadian clocks control multiple physiological events. The principal circadian clock generates seasonal variations in behavior as well. Seasonality elevates the risk for metabolic syndrome, and evidence suggests that disruption of the clockwork can lead to alterations in metabolism. Our aim was to analyze whether circadian clock polymorphisms contribute to seasonal variations in behavior and to the metabolic syndrome. Methods We genotyped 39 single-nucleotide polymorphisms (SNP from 19 genes which were either canonical circadian clock genes or genes related to the circadian clockwork from 517 individuals drawn from a nationwide population-based sample. Associations between these SNPs and seasonality, metabolic syndrome and its risk factors were analyzed using regression analysis. The p-values were corrected for multiple testing. Results Our findings link circadian gene variants to the risk factors of the metabolic syndrome, since Npas2 was associated with hypertension (P-value corrected for multiple testing = 0.0024 and Per2 was associated with high fasting blood glucose (P-value corrected for multiple testing = 0.049. Conclusion Our findings support the view that relevant relationships between circadian clocks and the metabolic syndrome in humans exist.

  11. Adherence to a pedometer-based physical activity intervention following kidney transplant and impact on metabolic parameters.

    Science.gov (United States)

    Lorenz, Elizabeth C; Amer, Hatem; Dean, Patrick G; Stegall, Mark D; Cosio, Fernando G; Cheville, Andrea L

    2015-06-01

    The majority of kidney transplant recipients die from cardiovascular events. Physical activity may be a modifiable risk factor for cardiovascular disease following transplant. The goal of our study was to examine adherence to a physical activity intervention following kidney transplant and its impact on metabolic parameters. All patients who received a kidney transplant at our center between 12/2010 and 12/2011 received usual care (n = 162), while patients transplanted between 12/2011 and 1/2013 received a 90-day pedometer-based physical activity intervention (n = 145). Metabolic parameters were assessed at four and 12 months post-transplant. Baseline demographics and clinical management were similar between cohorts. Adherence to the prescription was 36.5%. Patients in the physical activity cohort had lower systolic and diastolic blood pressure four months post-transplant compared to the usual care cohort (122 ± 18 vs. 126 ± 16 mmHg, p = 0.049 and 73 ± 10 vs. 77 ± 9, p = 0.004) and less impaired fasting glucose (20.7% vs. 30.9%, p = 0.04). Twelve-month outcomes were not different between cohorts. Over one-third of our cohort adhered to a pedometer-based physical activity intervention following kidney transplant, and the intervention was associated with improved metabolic parameters. Further study of post-transplant exercise interventions and methods to optimize long-term adherence are needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.

    Science.gov (United States)

    Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M

    2013-02-01

    Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.

  13. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Directory of Open Access Journals (Sweden)

    Blake Robert

    2008-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining. It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2 and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation, stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.

  15. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  16. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  17. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Directory of Open Access Journals (Sweden)

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  18. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  19. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  20. The Central Metabolism Regulator EIIAGlc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion

    Directory of Open Access Journals (Sweden)

    Alain Mazé

    2014-06-01

    Full Text Available The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2 involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.

  1. Metabolic routes along digestive system of licorice: multicomponent sequential metabolism method in rat.

    Science.gov (United States)

    Zhang, Lei; Zhao, Haiyu; Liu, Yang; Dong, Honghuan; Lv, Beiran; Fang, Min; Zhao, Huihui

    2016-06-01

    This study was conducted to establish the multicomponent sequential metabolism (MSM) method based on comparative analysis along the digestive system following oral administration of licorice (Glycyrrhiza uralensis Fisch., leguminosae), a traditional Chinese medicine widely used for harmonizing other ingredients in a formulae. The licorice water extract (LWE) dissolved in Krebs-Ringer buffer solution (1 g/mL) was used to carry out the experiments and the comparative analysis was performed using HPLC and LC-MS/MS methods. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to measure the LWE metabolic profile along the digestive system. The incubation experiment showed that the LWE was basically stable in digestive juice. A comparative analysis presented the metabolic profile of each prototype and its corresponding metabolites then. Liver was the major metabolic organ for LWE, and the metabolism by the intestinal flora and gut wall was also an important part of the process. The MSM method was practical and could be a potential method to describe the metabolic routes of multiple components before absorption into the systemic blood stream. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-05-31

    The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.

  3. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    International Nuclear Information System (INIS)

    Prasad, H.K.; Hastings, R.C.

    1985-01-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of 14 C-amino acid mixture, [ 14 C]leucine, [ 14 C]uridine, and carrier-free 32 P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli

  4. Survey of the Relationship Between Activity Energy Expenditure Metabolic Equivalents and Barrier Factors of Physical Activity in the Elderly in Kashan

    OpenAIRE

    Sadrollahi, Ali; Khalili, Zahra; Pour Nazari, Robab; Mohammadi, Majid; Ahmadi Khatir, Maryam; Mossadegh, Najima

    2016-01-01

    Background Physical activity in the elderly is influenced by aspects of aging that cause personal, mental, environmental, and social changes. Increases in factors that are barriers to activity cause physical energy expenditure to decrease. Objectives The aim of the present study was to survey the relationship between energy expenditure in metabolic equivalent units (MET) and factors that are barriers to physical activity in elderly people in Kashan, Iran Methods This is a descriptive analysis...

  5. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  6. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    Science.gov (United States)

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  7. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    Science.gov (United States)

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless

  8. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    ABSTRACT

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in

  9. Physical Activity and Sedentary Time Associations with Metabolic Health Across Weight Statuses in Children and Adolescents

    DEFF Research Database (Denmark)

    Kuzik, Nicholas; Carson, Valerie; Andersen, Lars Bo

    2017-01-01

    classification compared with metabolically healthy (MH) classification for the NW group. More MVPA was associated with lower odds of MU classification than MH classification for NW and overweight groups. For multinomial logistic regressions, more MVPA was associated with lower odds of MH-obesity classification......, as well as MU-NW, -overweight, and -obesity classifications, compared with the MH-NW group. Furthermore, more sedentary time was associated with higher odds of MU-NW classification compared with the MH-NW group. CONCLUSIONS: More MVPA was beneficial for metabolic health and weight status, whereas lower......OBJECTIVE: The aim of this study was to examine the prevalence of metabolic health across weight statuses and the associations of physical activity and sedentary time within and across metabolic health-weight status groups. METHODS: Six studies (n = 4,581) from the International Children...

  10. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  11. Management issues in the metabolic syndrome.

    Science.gov (United States)

    Deedwania, P C; Gupta, R

    2006-10-01

    The metabolic syndrome or cardiovascular dysmetabolic syndrome is characterized by obesity, central obesity, insulin resistance, atherogenic dyslipidemia, and hypertension. The major risk factors leading to this syndrome are physical inactivity and an atherogenic diet and cornerstone clinical feature is abdominal obesity or adiposity. In addition, patients usually have elevated triglycerides, low HDL cholesterol, elevated LDL cholesterol, other abnormal lipid parameters, hypertension, and elevated fasting blood glucose. Impaired fibrinolysis, increased susceptibility to thrombotic events, and raised inflammatory markers are also observed. Given that India has the largest number of subjects with type-2 diabetes in the world it can be extrapolated that this country also has the largest number of patients with the metabolic syndrome. Epidemiological studies confirm a high prevalence. Therapeutic approach involves intervention at a macro-level and control of multiple risk factors using therapeutic lifestyle approaches (diet control and increased physical activity, pharmacotherapy - anti-obesity agents) for control of obesity and visceral obesity, and targeted approach for control of individual risk factors. Pharmacological therapy is a critical step in the management of patients with metabolic syndrome when lifestyle modifications fail to achieve the therapeutic goals. Anti-obesity drugs such as sibutramine and orlistat can be tried to reduce weight and central obesity and jointly control the metabolic syndrome components. Other than weight loss, there is no single best therapy and treatment should consist of treatment of individual components of the metabolic syndrome. Newer drugs such as the endocannabinoid receptor blocker,rimonabant, appear promising in this regard. Atherogenic dyslipidemia should be controlled initially with statins if there is an increase in LDL cholesterol. If there are other lipid abnormalities then combination therapy of statin with fibrates

  12. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  13. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study.

    Science.gov (United States)

    Jung, Boris; Rimmele, Thomas; Le Goff, Charlotte; Chanques, Gérald; Corne, Philippe; Jonquet, Olivier; Muller, Laurent; Lefrant, Jean-Yves; Guervilly, Christophe; Papazian, Laurent; Allaouchiche, Bernard; Jaber, Samir

    2011-01-01

    In this study, we sought describe the incidence and outcomes of severe metabolic or mixed acidemia in critically ill patients as well as the use of sodium bicarbonate therapy to treat these illnesses. We conducted a prospective, observational, multiple-center study. Consecutive patients who presented with severe acidemia, defined herein as plasma pH below 7.20, were screened. The incidence, sodium bicarbonate prescription and outcomes of either metabolic or mixed severe acidemia were analyzed. Among 2, 550 critically ill patients, 200 (8%) presented with severe acidemia, and 155 (6% of the total admissions) met the inclusion criteria. Almost all patients needed mechanical ventilation and vasopressors during their ICU stay, and 20% of them required renal replacement therapy within the first 24 hours of their ICU stay. Severe metabolic or mixed acidemia was associated with a mortality rate of 57% in the ICU. Delay of acidemia recovery as opposed to initial pH value was associated with increased mortality in the ICU. The type of acidemia did not influence the decision to administer sodium bicarbonate. The incidence of severe metabolic or mixed acidemia in critically ill patients was 6% in the present study, and it was associated with a 57% mortality rate in the ICU. In contradistinction with the initial acid-base parameters, the rapidity of acidemia recovery was an independent risk factor for mortality. Sodium bicarbonate prescription was very heterogeneous between ICUs. Further studies assessing specific treatments may be of interest in this population.

  14. Metabolism features in the active rheumatoid disease

    Energy Technology Data Exchange (ETDEWEB)

    Cossermelli, W; Carvalho, N; Papaleo Netto, M [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-02-01

    The /sup 131/I-labelled albumin metabolism was studied in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations.

  15. Metabolism features in the active rheumatoid disease

    International Nuclear Information System (INIS)

    Cossermelli, W.; Carvalho, N.; Papaleo Netto, M.

    1974-01-01

    It was studied the 131 I-labelled albumin metabolism in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations [pt

  16. Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism

    Science.gov (United States)

    Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin

    2012-01-01

    Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285

  17. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  18. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound

  19. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    Science.gov (United States)

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  20. A review of Ramadan fasting and regular physical activity on metabolic syndrome indices

    Directory of Open Access Journals (Sweden)

    Seyyed Reza Attarzadeh Hosseini

    2016-03-01

    Full Text Available Introduction: Metabolic syndrome constitutes a cluster of risk factors such as obesity, hyperglycemia,  hypertension, and dyslipidemia, which increase the risk of cardiovascular diseases and type II diabetes mellitus. In this review article, we aimed to discuss the possible effects of fasting and regular physical activity on risk factors for cardiovascular diseases.  Methods: Online databases including Google Scholar, SID, PubMed, and MagIran were searched, using the following keywords:  “training”, “exercise”, “physical activity”, “fasting”, “Ramadan”, “metabolic syndrome”, “fat percentage”, “blood pressure”, “blood sugar”, “cholesterol”, “triglyceride”, and “lowdensity lipoprotein-cholesterol”. All articles including research studies, review articles, descriptive and analytical studies, and ross-sectional research, published during 2006-2015, were reviewed. In case of any errors in the methodologyof articles, they were removed from our analysis. Results:Based on our literature review, inconsistent findings have been reported on risk factors formetabolic syndrome. However, the majority of conducted studies have suggested the positive effects offasting on reducing the risk factors for metabolic syndrome. Conclusion: Although fasting in different seasons of the year has no significant impacts on mental health or physical fitness, it can reduce the risk of various diseases such as cardiovascular diseases. Also, based on the conducted studies, if individuals adhere to a proper diet, avoid excessive eating, drink sufficient amounts of fluids, and keep a healthy level of physical activity, fasting can improve their physical health.

  1. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2005-04-01

    Full Text Available Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the

  2. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

    Science.gov (United States)

    Wang, Yu-Ping; Fu, Peter P.; Chou, Ming W.

    2005-01-01

    Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i) similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii) the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by

  3. Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation

    Directory of Open Access Journals (Sweden)

    Nicholas Jones

    2017-11-01

    Full Text Available Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR and peptides presented by human leukocyte antigens (pHLA. The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.

  4. Metabolic topography of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism.

  5. Metabolic topography of Parkinsonism

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2007-01-01

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism

  6. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.

    Science.gov (United States)

    Wang, Xin; Li, Bing-Zhi; Ding, Ming-Zhu; Zhang, Wei-Wen; Yuan, Ying-Jin

    2013-03-01

    During hydrolysis of lignocellulosic biomass, a broad range of inhibitors are generated, which interfere with yeast growth and bioethanol production. In order to improve the strain tolerance to multiple inhibitors--acetic acid, furfural, and phenol (three representative lignocellulose-derived inhibitors) and uncover the underlying tolerant mechanism, an adaptation experiment was performed in which the industrial Saccharomyces cerevisiae was cultivated repeatedly in a medium containing multiple inhibitors. The adaptation occurred quickly, accompanied with distinct increase in growth rate, glucose utilization rate, furfural metabolism rate, and ethanol yield, only after the first transfer. A similar rapid adaptation was also observed for the lab strains of BY4742 and BY4743. The metabolomic analysis was employed to investigate the responses of the industrial S. cereviaise to three inhibitors during the adaptation. The results showed that higher levels of 2-furoic acid, 2, 3-butanediol, intermediates in glycolytic pathway, and amino acids derived from glycolysis, were discovered in the adapted strains, suggesting that enhanced metabolic activity in these pathways may relate to resistance against inhibitors. Additionally, through single-gene knockouts, several genes related to alanine metabolism, GABA shunt, and glycerol metabolism were verified to be crucial for the resistance to multiple inhibitors. This study provides new insights into the tolerance mechanism against multiple inhibitors, and guides for the improvement of tolerant ethanologenic yeast strains for lignocellulose-bioethanol fermentation.

  7. Multiple co morbid conditions in patient with Mast Cell Activation Syndrome

    Science.gov (United States)

    2017-10-26

    conditions in patient \\\\·ith Mast Cell Activation Syndron1e Sb. GRANT NUMBER Sc. PROGRAM.ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Maj Sofia...13. SUPPLEMENTARY NOTES 14. ABSTRACT Multiple co-n1orhid conditions in patient \\Vith Mast Cell Activation Syndrotne Sofia M. Szari.MD. and James...Defense. !NTR()D{JCT!ON: Mast cell activation disorders {MCAD) have been associated \\Vilh Connective Tissue Disorders (CTD) and orthostatic

  8. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    OpenAIRE

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2012-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxy...

  9. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation

    NARCIS (Netherlands)

    Feige, Jérôme N.; Lagouge, Marie; Canto, Carles; Strehle, Axelle; Houten, Sander M.; Milne, Jill C.; Lambert, Philip D.; Mataki, Chikage; Elliott, Peter J.; Auwerx, Johan

    2008-01-01

    The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly

  10. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    Science.gov (United States)

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Suitability of public use secondary data sets to study multiple activities.

    Science.gov (United States)

    Putnam, Michelle; Morrow-Howell, Nancy; Inoue, Megumi; Greenfield, Jennifer C; Chen, Huajuan; Lee, YungSoo

    2014-10-01

    The aims of this study were to inventory activity items within and across U.S. public use data sets, to identify gaps in represented activity domains and challenges in interpreting domains, and to assess the potential for studying multiple activity engagement among older adults using existing data. We engaged in content analysis of activity measures of 5U.S. public use data sets with nationally representative samples of older adults. Data sets included the Health & Retirement Survey (HRS), Americans' Changing Lives Survey (ACL), Midlife in the United States Survey (MIDUS), the National Health Interview Survey (NHIS), and the Panel Study of Income Dynamics survey (PSID). Two waves of each data set were analyzed. We identified 13 distinct activity domains across the 5 data sets, with substantial differences in representation of those domains among the data sets, and variance in the number and type of activity measures included in each. Our findings indicate that although it is possible to study multiple activity engagement within existing data sets, fuller sets of activity measures need to be developed in order to evaluate the portfolio of activities older adults engage in and the relationship of these portfolios to health and wellness outcomes. Importantly, clearer conceptual models of activity broadly conceived are required to guide this work. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Metabolism and biological activity of 24,25-dihydroxyvitamin D3 in the chick

    International Nuclear Information System (INIS)

    Holick, M.F.; Baxter, L.A.; Schraufrogel, P.K.; Tavela, T.E.; DeLuca, H.F.

    1976-01-01

    The vitamin, 24R,24,25-dihydroxyvitamin D 3 , is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D 3 . 1,24,25-Trihydroxyvitamin D 3 is also less active than 1,25-dihydroxyvitamin D 3 , and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D 3 . A comparison of the metabolism of 25-hydroxy[26,27- 3 H]vitamin D 3 and 24,25-dihydroxy[26,27- 3 H]vitamin D 3 in the rat and chick shows that 24,25-dihydroxyvitamin D 3 and 1,24,25-trihydroxyvitamin D 3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27- 3 H]vitamin D 3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D 3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion

  13. Effects of total solar eclipse on the behavioural and metabolic activities of tropical intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Ansari, Z.A.; Verlecar, X.N.; Harkantra, S.N.

    To study the effects of total solar eclipse of 16th Feb. 1980, on the behaviour and metabolic activities of intertidal invertebrates - nematodes, gastropods and bivalves - having different habitat preference a set of relevant observations, covering...

  14. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    OpenAIRE

    Dziekońska Anna; Kinder Marek; Fraser Leyland; Strzeżek Jerzy; Kordan Władysław

    2017-01-01

    Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo) on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  15. Sirtuins: Novel targets for metabolic disease in drug development

    International Nuclear Information System (INIS)

    Jiang Weijian

    2008-01-01

    Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD + -dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes

  16. Changes in Cholinesterase Activity in Blood of Adolescent with Metabolic Syndrome after Supplementation with Extract from Aronia melanocarpa

    Directory of Open Access Journals (Sweden)

    Piotr Duchnowicz

    2018-01-01

    Full Text Available Obesity and metabolic syndrome (MetS are growing problems among children and adolescents. There are no reports of changes in the activity of butyrylcholinesterase (BChE in children and adolescents with metabolic syndrome especially after supplementation with extract from Aronia melanocarpa. Materials studied included plasma and erythrocytes isolated from peripheral blood of patients with MetS and healthy subjects. We have estimated the following parameters: acetylcholinesterase (AChE and butyrylcholinesterase (BChE activity, lipid peroxidation and lipids levels in plasma, and erythrocytes membrane. In patients with MetS, a significant increase in AChE and BChE activity, higher LDL-cholesterol and triacylglycerol levels, and lower HDL-cholesterol level were observed. Supplementation with A. melanocarpa extract resulted in mild but statistically significant reduction of total cholesterol, LDL-cholesterol, and triacylglycerol levels and caused an increase in HDL-cholesterol level and a decrease in lipid peroxidation in plasma patients with MetS. Additionally, a decrease in lipid peroxidation and cholesterol level and a decrease in AChE activity in the erythrocyte membranes after supplementation with A. melanocarpa were noted. Summarizing, an increase in AChE and BChE activity and disruption of lipid metabolism in patients with MetS were observed. After supplementation of MetS patients with A. melanocarpa extract, a decrease in AChE activity and oxidative stress was noted.

  17. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Science.gov (United States)

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  18. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  19. Metabolic pathways for the whole community.

    Science.gov (United States)

    Hanson, Niels W; Konwar, Kishori M; Hawley, Alyse K; Altman, Tomer; Karp, Peter D; Hallam, Steven J

    2014-07-22

    A convergence of high-throughput sequencing and computational power is transforming biology into information science. Despite these technological advances, converting bits and bytes of sequence information into meaningful insights remains a challenging enterprise. Biological systems operate on multiple hierarchical levels from genomes to biomes. Holistic understanding of biological systems requires agile software tools that permit comparative analyses across multiple information levels (DNA, RNA, protein, and metabolites) to identify emergent properties, diagnose system states, or predict responses to environmental change. Here we adopt the MetaPathways annotation and analysis pipeline and Pathway Tools to construct environmental pathway/genome databases (ePGDBs) that describe microbial community metabolism using MetaCyc, a highly curated database of metabolic pathways and components covering all domains of life. We evaluate Pathway Tools' performance on three datasets with different complexity and coding potential, including simulated metagenomes, a symbiotic system, and the Hawaii Ocean Time-series. We define accuracy and sensitivity relationships between read length, coverage and pathway recovery and evaluate the impact of taxonomic pruning on ePGDB construction and interpretation. Resulting ePGDBs provide interactive metabolic maps, predict emergent metabolic pathways associated with biosynthesis and energy production and differentiate between genomic potential and phenotypic expression across defined environmental gradients. This multi-tiered analysis provides the user community with specific operating guidelines, performance metrics and prediction hazards for more reliable ePGDB construction and interpretation. Moreover, it demonstrates the power of Pathway Tools in predicting metabolic interactions in natural and engineered ecosystems.

  20. Association between physical activity and metabolic syndrome in older adults in Korea: analysis of data from the Korean National Health and Nutrition Examination Survey IV.

    Science.gov (United States)

    Choi, Mona; Yeom, Hye-A; Jung, Dukyoo

    2013-09-01

    The prevalence of metabolic syndrome is consistently increasing among Korean adults and is reported to be particularly high among older adults in Korea. This paper reports the prevalence of metabolic syndrome and identifies the association between metabolic syndrome and physical activity in Korean older adults. Subjects of this study were 3653 older adults who participated in the fourth Korean National Health and Nutrition Examination Survey during the years 2007-2009. The prevalence of metabolic syndrome in the study population was 46.84%. The prevalences of abdominal obesity, elevated fasting glucose, elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated blood pressure were 39.51, 45.53, 39.55, 48.24, and 69.14%, respectively, in the study population. Compared to subjects who reported low levels of physical activity, the odds ratios of metabolic syndrome for those who were moderately active and highly active were 0.93 and 0.63, respectively. Nurses should develop metabolic syndrome management programs that are tailored to the needs of the targeted group and that include individually adapted physical activity programs to promote health. © 2013 Wiley Publishing Asia Pty Ltd.

  1. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  2. Nuclear receptors and metabolism: from feast to famine.

    Science.gov (United States)

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.

  3. Prevalence of the metabolic syndrome among patients with type 2 ...

    African Journals Online (AJOL)

    DM), there is a multiple set of risk factors that commonly appear together forming what is now known as the 'Metabolic Syndrome' (MS). This 'clustering' of metabolic abnormalities that occur in the same individual appear to confer substantial ...

  4. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on Highly Active Anti-Retroviral treatment in Jimma, South West Ethiopia.

    Science.gov (United States)

    Berhane, Tsegay; Yami, Alemishet; Alemseged, Fessahaye; Yemane, Tilahun; Hamza, Leja; Kassim, Mehedi; Deribe, Kebede

    2012-01-01

    Use of highly active antiretroviral therapy has led to significant reductions in morbidity and mortality rates. However, these agents had also given rise to the metabolic and morphologic abnormalities which are modifiable risk factors for cardiovascular diseases. Evidences elsewhere indicate growing in prevalence of these problems but studies are lacking in Ethiopia. This study was conducted to determine the prevalence of HIV-associated lipodystrophy and metabolic syndrome in patients taking highly active antiretroviral therapy. A cross-sectional study was conducted in 2010 on a sample of 313 patients taking highly active antiretroviral therapy in Jimma University specialized hospital. Structured questionnaire was used to assess patients' sociodemographic characteristics and clinical manifestations of metabolic abnormalities. Checklists were used for reviewing charts about clinical manifestations of metabolic abnormalities and immunologic profile of patients. Data was cleaned, entered in and analyzed using SPSS for windows version 16.0. Metabolic syndrome was detected in 21.1% and HIV-lipodystrophy was detected 12.1% of patients. The factors found to be independently associated with metabolic syndrome were taking the antiretroviral therapy for more than 12 months (AOR=4.2; 95% CI=1.24-14.23) and female sex (AOR=2.30; 95% CI=1.0-5.27) and the factor found to be independently associated with HIV-lipodystrophy was taking the antiretroviral therapy (AOR=3.59; 95% CI=1.03-12.54) for more than 12 months. Metabolic abnormalities were relatively common in the study population. The problems were higher among those who took anti-retroviral treatment for longer duration. Therefore, regular screening for and taking action against the metabolic abnormalities is mandatory.

  5. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro.

    Science.gov (United States)

    Zhu, Yongsheng; Sun, Hanju; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun

    2018-01-01

    Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus.

  6. Association between Lifestyle Factors and Metabolic Syndrome among African Americans in the United States

    Directory of Open Access Journals (Sweden)

    Chintan J. Bhanushali

    2013-01-01

    Full Text Available Background. Although there is a reported association between lifestyle factors and metabolic syndrome, very few studies have used national level data restricted to the African Americans (AAs in the United States (US. Methods. A cross-sectional evaluation was conducted using the National Health and Nutrition Examination Survey from 1999 to 2006 including men and nonpregnant women of 20 years or older. Multiple logistic regression models were constructed to evaluate the association between lifestyle factors and metabolic syndrome. Results. AA women had a higher prevalence of metabolic syndrome (39.43% than AA men (26.77%. After adjusting for sociodemographic factors, no significant association was found between metabolic syndrome and lifestyle factors including alcohol drinking, cigarette smoking, and physical activity. Age and marital status were significant predictors for metabolic syndrome. With increase in age, both AA men and AA women were more likely to have metabolic syndrome (AA men: ORadj=1.05, 95% CI 1.04–1.06, AA women: ORadj=1.06, 95% CI 1.04–1.07. Single AA women were less likely to have metabolic syndrome than married women (ORadj=0.66, 95% CI 0.43–0.99. Conclusion. Lifestyle factors had no significant association with metabolic syndrome but age and marital status were strong predictors for metabolic syndrome in AAs in the US.

  7. Metabolic changes after prior treatment with ethanol. Evidence against in involvement of the Na+ + K+-activated ATPase in the increase in ethanol metabolism.

    Science.gov (United States)

    Yuki, T; Thurman, R G; Schwabe, U; Scholz, R

    1980-01-01

    In perfused rat liver, the inhibition of ethanol uptake by ouabain does not follow the rapid inhibition of the Na+ K+- activated ATPase as assessed by changes in perfusate [K+] (half-time, t 1/2 = 2--3 min), but correlated rather with the slow inhibition of oxygen uptake (maximal inhibition = 40% in 20 min). The data indicate that ouabain exerts its effect on ethanol metabolism via the following sequence of events; inhibition of the sodium pump is followed gradually by a perturbation of the intracellular cation milieu; this leads to an inhibition of the mitochondrial respiratory chain, resulting in diminished rate of NADH oxidation, which in turn causes in inhibition of ethanol metabolism. PMID:6249265

  8. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.

    Science.gov (United States)

    Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K; Simmons, Alvin M; Wintermantel, William M; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E

    2015-09-15

    Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. The Role of Peroxisome Proliferator-Activated Receptor β/δ on the Inflammatory Basis of Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Teresa Coll

    2010-01-01

    Full Text Available The pathophysiology underlying several metabolic diseases, such as obesity, type 2 diabetes mellitus, and atherosclerosis, involves a state of chronic low-level inflammation. Evidence is now emerging that the nuclear receptor Peroxisome Proliferator-Activated Receptor (PPARβ/δ ameliorates these pathologies partly through its anti-inflammatory effects. PPARβ/δ activation prevents the production of inflammatory cytokines by adipocytes, and it is involved in the acquisition of the anti-inflammatory phenotype of macrophages infiltrated in adipose tissue. Furthermore, PPARβ/δ ligands prevent fatty acid-induced inflammation in skeletal muscle cells, avoid the development of cardiac hypertrophy, and suppress macrophage-derived inflammation in atherosclerosis. These data are promising and suggest that PPARβ/δ ligands may become a therapeutic option for preventing the inflammatory basis of metabolic diseases.

  10. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    Science.gov (United States)

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  11. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  12. Coronary Heart Disease Risk between Active and Inactive Women with Multiple Sclerosis.

    Science.gov (United States)

    Slawta, Jennifer N.; McCubbin, Jeffrey A.; Wilcox, Anthony R.; Fox, Susan D.; Nalle, Darek J.; Anderson, Gail

    2002-01-01

    Investigated whether abdominal fat accumulation and levels of triglyceride, high-density lipoprotein cholesterol, and glucose differed between 123 active and inactive women with multiple sclerosis (MS). Results indicated that low-to-moderate leisure time physical activity significantly related to less abdominal fat accumulation, lower triglyceride…

  13. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism.

    Science.gov (United States)

    Khomutov, M A; Weisell, J; Hyvönen, M; Keinänen, T A; Vepsäläinen, J; Alhonen, L; Khomutov, A R; Kochetkov, S N

    2013-12-01

    The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.

  14. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins

    Directory of Open Access Journals (Sweden)

    Dziekońska Anna

    2017-03-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of lipoprotein fraction isolated from ostrich egg yolk (LPFo on the metabolic activity of boar spermatozoa following liquid semen storage in different extenders and temperatures.

  15. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    Directory of Open Access Journals (Sweden)

    Robert F. Standaert

    2018-06-01

    Full Text Available Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB, a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA, the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity. Keywords: Lignin, Protocatechuate, Experimental evolution

  16. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    Science.gov (United States)

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  17. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  18. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. a prospective, multiple-center study

    Science.gov (United States)

    2011-01-01

    Introduction In this study, we sought describe the incidence and outcomes of severe metabolic or mixed acidemia in critically ill patients as well as the use of sodium bicarbonate therapy to treat these illnesses. Methods We conducted a prospective, observational, multiple-center study. Consecutive patients who presented with severe acidemia, defined herein as plasma pH below 7.20, were screened. The incidence, sodium bicarbonate prescription and outcomes of either metabolic or mixed severe acidemia were analyzed. Results Among 2, 550 critically ill patients, 200 (8%) presented with severe acidemia, and 155 (6% of the total admissions) met the inclusion criteria. Almost all patients needed mechanical ventilation and vasopressors during their ICU stay, and 20% of them required renal replacement therapy within the first 24 hours of their ICU stay. Severe metabolic or mixed acidemia was associated with a mortality rate of 57% in the ICU. Delay of acidemia recovery as opposed to initial pH value was associated with increased mortality in the ICU. The type of acidemia did not influence the decision to administer sodium bicarbonate. Conclusions The incidence of severe metabolic or mixed acidemia in critically ill patients was 6% in the present study, and it was associated with a 57% mortality rate in the ICU. In contradistinction with the initial acid-base parameters, the rapidity of acidemia recovery was an independent risk factor for mortality. Sodium bicarbonate prescription was very heterogeneous between ICUs. Further studies assessing specific treatments may be of interest in this population. PMID:21995879

  19. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  20. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  1. Social Cognitive Correlates of Physical Activity in Inactive Adults with Multiple Sclerosis

    Science.gov (United States)

    Dlugonski, Deirdre; Wojcicki, Thomas R.; McAuley, Edward; Motl, Robert W.

    2011-01-01

    Persons with multiple sclerosis (MS) are often physically inactive. This observation has prompted the search for modifiable constructs derived from established theories that act as correlates of physical activity. This study investigated self efficacy, outcome expectations, impediments, and goal setting as correlates of physical activity in…

  2. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy—Implications for Therapies

    Directory of Open Access Journals (Sweden)

    Ahlke Heydemann

    2018-06-01

    Full Text Available The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP levels, and increased Ca2+ and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK, increased slow fiber numbers, and increased utrophin. Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.

  4. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies.

    Science.gov (United States)

    Heydemann, Ahlke

    2018-06-20

    The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca 2+ ) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.

  5. Social Cognitive Correlates of Physical Activity in Black Individuals With Multiple Sclerosis.

    Science.gov (United States)

    Kinnett-Hopkins, Dominique; Motl, Robert W

    2016-04-01

    To examine variables from social cognitive theory as correlates of physical activity in black and white individuals with multiple sclerosis (MS). Cross-sectional. National survey. Black (n=151) and white (n=185) individuals with MS were recruited through the North American Research Committee on Multiple Sclerosis Registry. Not applicable. The battery of questionnaires included information on demographic and clinical characteristics, physical activity, exercise self-efficacy, function, social support, exercise outcome expectations, and exercise goal setting and planning. Black individuals with MS reported significantly lower levels of physical activity compared with white individuals with MS. Physical activity levels were significantly correlated with self-efficacy, outcome expectations, functional limitations as impediments, and goal setting in black participants with MS. The pattern and magnitude of correlations were comparable with those observed in white participants based on Fisher z tests. Researchers should consider applying behavioral interventions that target social cognitive theory variables for increasing physical activity levels among black individuals with MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. 18F-FDG PET/CT in solitary plasmacytoma: metabolic behavior and progression to multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Domenico; Bosio, Giovanni [Spedali Civili di Brescia, Nuclear Medicine, Brescia (Italy); Treglia, Giorgio [Oncology Institute of Southern Switzerland, Department of Nuclear Medicine and PET/CT Center, Bellinzona (Switzerland); Giubbini, Raffaele; Bertagna, Francesco [University of Brescia and Spedali Civili Brescia, Nuclear Medicine, Brescia (Italy)

    2018-01-15

    Solitary plasmacytoma (SP) is a rare plasma-cell neoplasm, which can develop both in skeletal and/or soft tissue and frequently progresses to multiple myeloma (MM). Our aim was to study the metabolic behavior of SP and the role of 18F-FDG-PET/CT in predicting progression to MM. Sixty-two patients with SP who underwent 18F-FDG-PET/CT before any treatment were included. PET images were qualitatively and semiquantitatively analyzed by measuring the maximum standardized uptake value body weight (SUVbw), lean body mass (SUVlbm), body surface area (SUVbsa), metabolic tumor volume (MTV), total lesion glycolysis (TLG) and compared with age, sex, site of primary disease, and tumor size. Fifty-one patients had positive 18F-FDG-PET/CT (average SUVbw was 8.3 ± 4.7; SUVlbm 5.8 ± 2.6; SUVbsa 2 ± 1; MTV 45.4 ± 37; TLG 227 ± 114); the remaining 11 were not 18F-FDG-avid. Tumor size was significantly higher in patients avid lesions compared to FDG not avid; no other features are associated with FDG-avidity. Progression to MM occurred in 29 patients with an average of 18.3 months; MM was more likely to develop in patients with bone plasmacytoma and in patients with 18F-FDG avid lesion. Time to transformation in MM (TTMM) was significantly shorter in patients with osseous SP, in 18F-FDG avid lesion, for SUVlbm > 5.2 and SUVbsa > 1.7. 18F-FDG pathological uptake in SP occurred in most cases, being independently associated with tumor size. PET/CT seemed to be correlated to a higher risk of transformation in MM, in particular for 18F-FDG avid plasmacytoma and SBP. Among semiquantitative features, SUVlbm > 5.2 and SUVbsa > 1.7 were significantly correlated with TTMM. (orig.)

  7. Uses of Activation Analysis in Studies of Mineral Element Metabolism in Man. Papers Given at a Panel Meeting

    International Nuclear Information System (INIS)

    1970-01-01

    In June, 1968, the International Atomic Energy Agency held a panel meeting in Teheran, Iran, to discuss some of the uses of activation analysis in studies of mineral element metabolism in man. The aims of the meeting were to identify and draw attention to specific medical problems to which activation analysis could be fruitfully applied, to review the capabilities of the technique itself, and to recommend specific action which the Agency might take to support further work in this field. The scientific papers presented at the meeting have been gathered together in this report, and it is hoped that their publication will be of interest to all concerned with mineral element metabolism in man, whether studied by activation analysis or by other methods

  8. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  9. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    Science.gov (United States)

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  10. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health

    Science.gov (United States)

    Varela-Mato, Veronica; O’Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart JH; Nimmo, Myra A; Clemes, Stacy A

    2017-01-01

    Objectives Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers’ sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. Setting A transport company from the East Midlands, UK. Participants A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m2) provided objective information on sedentary and non-sedentary time. Outcomes Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Results Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m2; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Conclusion

  11. Influences of transplantation on metabolic bone diseases in dialysis patients. Measurement of bone density with multiple X-ray photodensitometry

    International Nuclear Information System (INIS)

    Hida, Miho

    1994-01-01

    Renal osteodystrophy is a grave complication in dialysis patients. In this study, we evaluated the effect of renal transplantation (Txp) on metabolic bone diseases in renal transplant recipients (RTR), by multiple scanning X-ray photodensitometry (MD/MS). In only about 10% of RTR, bone metabolism recovered following improvement of renal function 1-2 years after Txp. Most cases showed decreased ΣGS and μ' scores on the MD/MS 1-2 years after Txp. Then ΣGS and μ' gradually increased over a long period. In seven of ten RTR with long-term graft survival (10 years<), ΣGS and μ' scores were within normal limits and densitometry bone patterns were normal. In four of five cases that received ciclosporin and had undergone Txp more than five years before, densitometry bone patterns were normal. Treatment with high doses of steroids due to acute rejection caused a sharp decline of ΣGS and μ' scores. In FK506-medicated RTR, ΣGS and μ' scores 1-2 years after Txp were decreased. In a 21-year-old female patient who had undergone Txp as the age of 13-year-old, there was little bone growth and ΣGS and μ' scores were significantly decreased. (author)

  12. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  13. Metabolic syndrome and hypertension: regular exercise as part of lifestyle management.

    Science.gov (United States)

    Lackland, Daniel T; Voeks, Jenifer H

    2014-11-01

    The incorporation of physical activity and exercise represents a clinically important aspect in the management of metabolic syndrome, hypertension, and diabetes. While the benefit of exercise and active lifestyles is well documented for prevention and risk reduction of cardiovascular and stroke outcomes, the detailed regiment and recommendations are less clear. The components of a prescribed physical activity include consideration of activity type, frequency of an activity, activity duration, and intensity of a specific physical movement. The exercise parameters prescribed as part of the management of metabolic syndrome, diabetes, and elevated blood pressure are most often proposed as separate documents while the general recommendations are similar. The evidence is strong such that physical activity and exercise recommendations in disease management guidelines are considered high quality. The general recommendations for both blood pressure and glycemic management include a regiment of physical activity with moderate- to high-intensity exercise of 30-min bouts on multiple days with a desired goal of a total of 150 min of exercise per week. While additional research is needed to identify the specific exercise/activity mode, frequencies for exercise training, intensity levels, and duration of exercise that achieve maximal blood pressure and glycemic lowering, this general recommendation showed a consistent and significant benefit in risk reduction. Similarly, the current available evidence also indicates that aerobic exercise, dynamic resistance exercise, and isometric exercises can lower blood pressure and improve glycemic control.

  14. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  15. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group housed, growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  16. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group-housed growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  17. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    Science.gov (United States)

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  19. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  20. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Inhibition of Prenylation Promotes Caspase 3 Activation, Lamin B Degradation and Loss in Metabolic Cell Viability in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Khadija G. Syeda

    2017-10-01

    Full Text Available Background/Aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B undergo posttranslational modifications (e.g., isoprenylation at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. Methods: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. Results: We report that exposure of pancreatic β-cells to Simvastatin, an inhibitor of mevalonic acid (MVA biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase and inhibited ERK1/2 (regulator of cell proliferation. Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. Conclusion: Based on these findings we conclude that protein prenylation plays key roles in islet β-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic β-cells under the duress of metabolic stress (e.g., glucotoxicity.

  2. Metabolic Syndrome and Outcomes after Renal Intervention

    Directory of Open Access Journals (Sweden)

    Daynene Vykoukal

    2011-01-01

    Full Text Available Metabolic syndrome significantly increases the risk for cardiovascular disease and chronic kidney disease. The increased risk for cardiovascular diseases can partly be caused by a prothrombotic state that exists because of abdominal obesity. Multiple observational studies have consistently shown that increased body mass index as well as insulin resistance and increased fasting insulin levels is associated with chronic kidney disease, even after adjustment for related disorders. Metabolic syndrome appears to be a risk factor for chronic kidney disease, likely due to the combination of dysglycemia and high blood pressure. Metabolic syndrome is associated with markedly reduced renal clinical benefit and increased progression to hemodialysis following endovascular intervention for atherosclerotic renal artery stenosis. Metabolic syndrome is associated with inferior early outcomes for dialysis access procedures.

  3. Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models.

    Science.gov (United States)

    Baktoft, Henrik; Jacobsen, Lene; Skov, Christian; Koed, Anders; Jepsen, Niels; Berg, Søren; Boel, Mikkel; Aarestrup, Kim; Svendsen, Jon C

    2016-01-01

    Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is

  4. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  5. Influence of carbofuran on certain metabolic and symbiotic activities of a cowpea Rhizobium

    International Nuclear Information System (INIS)

    Palaniappan, S.; Balasubramanian, A.

    1983-01-01

    Using carbon 14 radioisotope an in-vitro study of the effect of insecticides, carbofuran, on the metabolic and symbiotic activities of Rhizobium sp. cowpea group, was carried out. The study indicated that at 10 ppm carbofuran inhibited the in-vitro growth of the bacterium, suppressed the oxidation of all the Trichloroacetic acid (TCA) cycle intermediates, significantly reduced glucose oxidation and translocation and affected the growth and symbiotic activities of the cowpea as reflected by a reduction in the dry matter production and total nitrogen content. The insecticide was itself degraded by the Rhizobium sp. within 30 days of incubation

  6. Metabolic and Endocrine Side Effects of Atypical Antipsychotic Drugs in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Aysegul Tahiroglu

    2011-03-01

    Full Text Available omorbid psychiatric disorders, frequent hospitalization, multiple outpatient treatment, prior history of hypertension, obesity and lipid dysregulation are associated with higher risk of metabolic syndrome in children. Side effects of antipsychotic drugs and their management have recently become a major subject of research due to enhanced antipsychotic drug usage in child and adolescents. Prevention strategies are usually preferred to secondary or tertiary strategies in the management of metabolic syndrome associated with antipsychotic drugs. Clinicians should present multidisciplinary approach to endocrine and metabolic side effects due to antipsychotic use in pediatric patient groups and avoid multiple drug use in such patients. In this paper, we briefly reviewed metabolic side effects of second generation antipsychotic drugs in child and adolescent population, possible mechanisms of susceptibility to metabolic syndrome and pharmacological and non pharmacological treatment approach to prevention of weight gain.

  7. Dynamic activity of NF-κB in multiple trauma patients and protective effects of ulinastain

    Directory of Open Access Journals (Sweden)

    LI Jun

    2012-02-01

    Full Text Available 【Abstract】Objective: To investigate the dynamic activity of NF-κB at the early stage of injury in multiple trauma patients and the protective effects of ulinastain. Methods: From January 2008 to May 2010, patients with multiple traumas admitted to our emergency department were enrolled in this study. Their age varied from 20-55 years. All enrolled patients were assigned randomly into control group (26 cases of multiple injury without ulinastain treatment, ulinastain group (25 cases of multiple injury with ulinastain treatment, and mild injury group (20 cases for basic control. The inclusion criteria for mild injury group were AIS-2005≤3, single wound, previously healthy inhospital patients without the history of surgical intervention. In addition to routine treatment, patients in ulinastain group were intravenously injected 200 000 IU of ulinastain dissolved in 100 ml of normal saline within 12 hours after injury and subsequently injected at the interval of every 8 hours for 7 days. NF-κB activity in monocytes and the level of TNF? IL-1, IL? in serum on admission (day 0, day 1, 2, 3, 4, and 7 were measured. Data were compared and analyzed between different groups. Results: NF-κB activity in monocytes and TNF? IL-1 and IL? of these patients reached peak levels at 24 hour after trauma, with gradual decrease to normal at 72 hour after trauma. NF-κB activity and levels of TNF? IL-1 and IL? were lower in ulinastain group than control one, without any significant difference between the two groups. The mean duration for systemic inflammatory response syndrome and multiple organ dysfunction syndrome was 7 d?.1 d and 10 d?.5 d in ulinastain group and control group respectively, and showed a significant difference. Conclusions: NF-κB activity in monocytes and the levels of inflammatory cytokines in multiply injured patients increased transiently at the early stage of trauma. Ulinastain may shorten the duration of systemic inflammatory

  8. Reconstructing phylogeny by aligning multiple metabolic pathways using functional module mapping

    NARCIS (Netherlands)

    Huang, Yiran; Zhong, Cheng; Lin, H.X.; Wang, Jianyi; Peng, Yuzhong

    2018-01-01

    Comparison of metabolic pathways provides a systematic way for understanding the evolutionary and phylogenetic relationships in systems biology. Although a number of phylogenetic methods have been developed, few efforts have been made to provide a unified phylogenetic framework that sufficiently

  9. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  10. Dietary modulators of peroxisome proliferator-activated receptors: implications for the prevention and treatment of metabolic syndrome.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2008-01-01

    In its simplest form, obesity is a state characterized by nutrient overabundance leading to hypertrophy of storage cells in white adipose tissue and the deposition of excess lipids into key metabolic regions, such as skeletal muscle and liver. Ever so steadily, this condition begins to manifest itself as progressive insulin resistance and thus ensues a myriad of other chronic diseases, such as type 2 diabetes, cardiovascular disease, and hypertension, which all fall into the realm of the metabolic syndrome. To offset imbalances in nutrient availability, however, it appears that nature has developed the peroxisome proliferator-activated receptors (PPARs), a family of endogenous lipid sensors that adeptly modulate our rates of macronutrient oxidation and regulate the systemic inflammatory response, which itself is tightly linked to the development of obesity-induced chronic disease. By understanding how PPARs alpha, delta and gamma act jointly to maintain metabolic homeostasis and reduce the chronic inflammation associated with obesity, we may one day discover that the machinery needed to defeat obesity and control the devastating consequences of the metabolic syndrome have been with us the entire time.

  11. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  12. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  13. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

    Science.gov (United States)

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-10-20

    It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    Science.gov (United States)

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  15. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  16. Alimentary Habits, Physical Activity, and Framingham Global Risk Score in Metabolic Syndrome

    International Nuclear Information System (INIS)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo

    2014-01-01

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases

  17. Alimentary Habits, Physical Activity, and Framingham Global Risk Score in Metabolic Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo, E-mail: anamariafeoli@hotmail.com [Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2014-04-15

    Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases.

  18. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    Science.gov (United States)

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon

  19. Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland.

    Science.gov (United States)

    Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M

    2006-08-01

    In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination

  20. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  1. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.

    Science.gov (United States)

    McDonald, Tanya S; Borges, Karin

    2017-07-01

    To determine changes in glucose metabolism and the enzymes involved in the hippocampus ictally and postictally in the acute mouse flurothyl seizure model. [U- 13 C]-Glucose was injected (i.p.) prior to, or following a 5 min flurothyl-induced seizure. Fifteen minutes later, mice were killed and the total metabolite levels and % 13 C enrichment were analyzed in the hippocampal formation using gas chromatography-mass spectrometry. Activities of key metabolic and antioxidant enzymes and the phosphorylation status of pyruvate dehydrogenase were measured, along with lipid peroxidation. During seizures, total lactate levels increased 1.7-fold; however, [M + 3] enrichment of both lactate and alanine were reduced by 30% and 43%, respectively, along with a 28% decrease in phosphofructokinase activity. Postictally the % 13 C enrichments of all measured tricarboxylic acid (TCA) cycle intermediates and the amino acids were reduced by 46-93%. At this time, pyruvate dehydrogenase (PDH) activity was 56% of that measured in controls, and there was a 1.9-fold increase in the phosphorylation of PDH at ser232. Phosphorylation of PDH is known to decrease its activity. Here, we show that the increase of lactate levels during flurothyl seizures is from a source other than [U- 13 C]-glucose, such as glycogen. Surprisingly, although we saw a reduction in phosphofructokinase activity during the seizure, metabolism of [U- 13 C]-glucose into the TCA cycle seemed unaffected. Similar to our recent findings in the chronic phase of the pilocarpine model, postictally the metabolism of glucose by glycolysis and the TCA cycle was impaired along with reduced PDH activity. Although this decrease in activity may be a protective mechanism to reduce oxidative stress, which is observed in the flurothyl model, ATP is critical to the recovery of ion and neurotransmitter balance and return to normal brain function. Thus we identified promising novel strategies to enhance energy metabolism and recovery from

  2. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  3. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Natasha eKhatri

    2013-12-01

    Full Text Available Powered by glucose metabolism, the brain is the most energy-demanding organ in our body, accounting for a quarter of total oxygen consumption. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport and mitochondria translocation. Energy insufficiency will be sensed by the AMP-activated dependent protein kinase (AMPK, a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.

  4. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  5. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    Directory of Open Access Journals (Sweden)

    Yongli Li

    2017-05-01

    Full Text Available The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2 of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air. No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent.

  6. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2008-05-01

    Full Text Available Abstract Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14 derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.

  7. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E.

    1990-01-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism

  8. Peroxisome Proliferator-Activated Receptor-alpha Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice

    NARCIS (Netherlands)

    Lalloyer, Fanny; Wouters, Kristiaan; Baron, Morgane; Caron, Sandrine; Vallez, Emmanuelle; Vanhoutte, Jonathan; Bauge, Eric; Shiri-Sverdlov, Ronit; Hofker, Marten; Staels, Bart; Tailleux, Anne

    Objective-Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a ligand-activated transcription factor that controls lipid metabolism and inflammation. PPAR alpha is activated by fibrates, hypolipidemic drugs used in the treatment of dyslipidemia. Previous studies assessing the influence

  9. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  10. Variation in the peroxisome proliferator-activated receptor δ gene in relation to common metabolic traits in 7,495 middle-aged white people

    DEFF Research Database (Denmark)

    Grarup, Niels; Albrechtsen, A.; Ek, J.

    2007-01-01

    Studies in animals reveal that peroxisome proliferator-activated receptor delta (PPARdelta) regulates glucose metabolism and insulin sensitivity in both the liver and skeletal muscles. Moreover, PPARdelta augments physical endurance and increases oxidative metabolism, thereby averting obesity. Th...

  11. JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo.

    Science.gov (United States)

    Kiziltepe, Tanyel; Anderson, Kenneth C; Kutok, Jeffery L; Jia, Lee; Boucher, Kenneth M; Saavedra, Joseph E; Keefer, Larry K; Shami, Paul J

    2010-01-01

    Glutathione S-transferases (GSTs) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases nitric oxide on metabolism by GST. O(2)-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antineoplastic activity. We studied the effect of JS-K on angiogenesis in human umbilical vein endothelial cells (HUVECs), OPM1 multiple myeloma cells, chick aortic rings and in mice. JS-K inhibited the proliferation of HUVECs with a 50% inhibitory concentration (IC50) of 0.432, 0.466 and 0.505 microm at 24, 48 and 72 h, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 microm, respectively. JS-K inhibited cell migration at 5 h using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 microm. In the chick aortic ring assay using VEGF or FGF-2 for vessel growth stimulation, 0.5 microm JS-K completely inhibited vessel growth. JS-K inhibited tumour angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumour vessel growth in vivo. As such, it establishes a new class of antineoplastic agent that targets the malignant cells directly as well as their microenvironment.

  12. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver.

  13. The association of serum leptin levels with metabolic diseases

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    2017-01-01

    Full Text Available Leptin is a 167-amino-acid protein released by white adipose tissue and encoded by the obese gene. It has a role as a negative regulator of appetite control through sending a satiety signal to act on receptors within the hypothalamus. At normal levels, leptin can exert its effects on weight regulation according to white fat mass, induce sodium excretion, maintain vascular tone, and repair the myocardium. Beyond these effects, elevated serum leptin levels have been implicated in the pathogenesis of metabolic syndrome, diabetes mellitus, hypertension, and multiple cardiovascular diseases. In addition, hyperleptinemia had been reported to contribute to renal diseases through multiple mechanisms resulting in glomerulopathy presenting with a decreased glomerular filtration rate, increased albuminuria, and related clinical symptoms, which are pathophysiological features of chronic kidney disease. Because these cardiovascular and metabolic disorders are great challenges for physicians, understanding the related pathophysiological association with leptin might become a valuable aid in handling patients in daily clinical practice. This review will discuss the roles of leptin in the regulation of biological functions of multiple organs beyond the maintenance of feeding and metabolism.

  14. Preclinical renal cancer chemopreventive efficacy of geraniol by modulation of multiple molecular pathways

    International Nuclear Information System (INIS)

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Seth, Amlesh; Nafees, Sana; Rashid, Summya; Ali, Nemat; Sultana, Sarwat

    2011-01-01

    Graphical abstract: Diagrammatic presentation of the hypothesis of the article in a concise manner. It reveals the chemopreventive efficacy of GOH possibly through the modulation of multiple molecular targets. GOH inhibits ROS generation, NFκB and PCNA expression thereby abrogating inflammation and proliferation of tubular cells of kidney. Whereas, GOH induces effector caspase-3 expression both through mitochondrial signalling pathway and death receptor signalling pathway. Highlights: → Geraniol modulates renal carcinogenesis in Wistar rats. → It abrogates Fe-NTA induced oxidative stress, inflammation and hyperproliferation. → Promotes apoptosis via induction of both mitochondrial and death receptor pathway. → Thus, inhibits renal carcinogenesis by modulating multiple molecular targets. -- Abstract: In the present study, we have evaluated the chemopreventive potential of geraniol (GOH), an acyclic monoterpene alcohol against ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and carcinogenesis in Wistar rats. Chronic treatment of Fe-NTA induced oxidative stress, inflammation and cellular proliferation in Wistar rats. The chemopreventive efficacy of GOH was studied in terms of xenobiotic metabolizing enzyme activities, LPO, redox status, serum toxicity markers and the expression of putative nephrotoxicity biomarker Kim-1, tumor suppressor gene P53, inflammation, cell proliferation and apoptosis related genes in the kidney tissue. Oral administration of GOH at doses of 100 and 200 mg/kg b wt effectively suppressed renal oxidative stress and tumor incidence. Chemopreventive effects of GOH were associated with upregulation of xenobiotic metabolizing enzyme activities and down regulation of serum toxicity markers. GOH was able to down regulate expression of Kim-1, NFκB, PCNA, P53 along with induction of apoptosis. However, higher dose of GOH was more effective in modulating these multiple molecular targets both at transcriptional and protein

  15. Immune activation in multiple sclerosis and interferon-beta therapy

    DEFF Research Database (Denmark)

    Krakauer, Martin

    2007-01-01

    The PhD dissertation emanated from the Danish MS Research Centre, Rigshosptalet, Copenhagen. Multiple sclerosis (MS) is an inflammatory disease of the CNS. Inflammatory responses by T helper (Th)-lymphocytes are characterised by distinct cytokine expression profiles. In MS, activated Th1...... of inflammation or secondary lymphatic organs. Chemokine receptors are differentially expressed in T cells in blood and cerebrospinal fluid, indicating their role for in T-cell-recruitment to the CNS. Interferon (IFN)-beta is a first-line treatment for MS. The mechanism of action is unclear, but probably includes...... changes in lymphocyte activation, cytokine secretion, and trafficking. The aim of the studies was to shed more light on T-cell immunology in MS and IFN-beta treatment, as well as identifying putative biomarkers of treatment response and/or disease activity. In one study we identified a Th-cell subset...

  16. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  17. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology.

    Science.gov (United States)

    Zhou, Jin; Zhu, Xiao-shan; Cai, Zhong-hua

    2010-11-15

    A toxicity test was performed to investigate the possible harmful effects of tributyltin (TBT) on abalone (Haliotis diversicolor supertexta). Animals were exposed to TBT in a range of environmentally relevant concentrations (2, 10 and 50 ng/L) for 30 days under laboratory conditions. TBT-free conditions were used as control treatments. The activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA), along with levels of haemolymph metabolites, and hepatopancreas histopathology were analyzed. The results showed that TBT decreased SOD activity, and increased POD level and MDA production in a dose-dependent way, indicating that oxidative injury was induced by TBT. Haemolymph metabolite measurements showed that TBT increased alanine and glutamate levels, and decreased glucose content, which suggested perturbation of energy metabolism. Elevated levels of acetate and pyruvate in the haemolymph indicated partial alteration of lipid metabolism. A decrease in lactate and an increase in succinate, an intermediate of the tricarboxylic acid (TCA) cycle, indicated disturbance of amino acid metabolism. Hepatopancreas tissues also exhibited inflammatory responses characterized by histopathological changes such as cell swelling, granular degeneration, and inflammation. Taken together, these results demonstrated that TBT was a potential toxin with a variety of deleterious effects on abalone. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  19. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis. (MDR-TB) treated with second ...

  20. Cross-sectional surveillance study to phenotype lorry drivers' sedentary behaviours, physical activity and cardio-metabolic health.

    Science.gov (United States)

    Varela-Mato, Veronica; O'Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart Jh; Nimmo, Myra A; Clemes, Stacy A

    2017-06-21

    Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers' sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. A transport company from the East Midlands, UK. A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m 2 ) provided objective information on sedentary and non-sedentary time. Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m 2 ; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (pdrivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Lorry drivers demonstrate a high-risk cardio-metabolic