WorldWideScience

Sample records for activated t-cells nfat

  1. Imaging TCR-Dependent NFAT-Mediated T-Cell Activation with Positron Emission Tomography In Vivo

    Directory of Open Access Journals (Sweden)

    Vladimir Ponomarev

    2001-01-01

    Full Text Available A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR -dependent nuclear factor of activated T cells (NFAT -mediated activation of T cells by optical fluorescence imaging (OFI and positron emission tomography (PET. The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP ] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OR and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [124]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69 and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.

  2. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  3. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway

    International Nuclear Information System (INIS)

    Managlia, Elizabeth Z.; Landay, Alan; Al-Harthi, Lena

    2006-01-01

    Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NFκB. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated induction of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFNγ, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator

  4. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    International Nuclear Information System (INIS)

    Cicala, Claudia; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-01-01

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs

  5. Exposure to 4-tert-octylphenol, an environmentally persistent alkylphenol, enhances interleukin-4 production in T cells via NF-AT activation

    International Nuclear Information System (INIS)

    Lee, Mi H.; Kim, Eugene; Kim, Tae S.

    2004-01-01

    4-tert-Octylphenol (OP) is a representative endocrine disruptor that may have adverse effects on human health. The influence of this compound on allergic immune responses remains unclear. In this study, we have examined the effects of OP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. OP significantly enhanced IL-4 production in antigen-primed T cells in a dose-dependent manner. Treatment with OP in vivo resulted in significant increase of IL-4 production in T cells and of IgE levels in sera of antigen-primed mice. Furthermore, OP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor of activated T cell (NF-AT). Activation of T cells by phorbol-12-myristate-13-acetate (PMA) resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of OP, indicating that the transcription factor NF-AT was involved in the enhancing effect of OP on IL-4 production. The enhancement of IL-4 production by OP was blocked by FK506, a calcineurin inhibitor, but not by the estrogen receptor (ER) antagonist ICI 182 780. FK506 inhibited the NF-AT-DNA binding activity and IL-4 gene promoter activity enhanced by OP in a dose-dependent manner. These findings demonstrate that OP enhances IL-4 production in T cells via the stimulation of calcineurin-dependent NF-AT activation

  6. Inhibition of FOXP3/NFAT interaction enhances T cell function after TCR stimulation

    NARCIS (Netherlands)

    Lozano, Teresa; Villanueva, Lorea; Durántez, Maika; Gorraiz, Marta; Ruiz, Marta; Belsúe, Virginia; Riezu-Boj, José I.; Hervás-Stubbs, Sandra; Oyarzábal, Julen; Bandukwala, Hozefa; Lourenço, Ana R.; Coffer, Paul J.; Sarobe, Pablo; Prieto, Jesús; Casares, Noelia; Lasarte, Juan J.

    2015-01-01

    Regulatory T cell (Treg) activity is modulated by a cooperative complex between the transcription factor NFAT and FOXP3, a lineage specification factor for Tregs. FOXP3/NFAT interaction is required to repress expression of IL-2, upregulate expression of the Treg markers CTLA4 and CD25, and confer

  7. Calcineurin Aβ regulates NADPH oxidase (Nox) expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose.

    Science.gov (United States)

    Williams, Clintoria R; Gooch, Jennifer L

    2014-02-21

    Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.

  8. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation

    International Nuclear Information System (INIS)

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel

    2005-01-01

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca 2+ movements are essential to ensure SMC functions; one of the roles of Ca 2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT 2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT 2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT 2 is critical in the acquisition and maintenance of SMC differentiation

  9. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Cécilia Brun

    Full Text Available Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte

  10. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  11. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    Science.gov (United States)

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  12. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    Science.gov (United States)

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  13. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells

    International Nuclear Information System (INIS)

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-01-01

    We have previously reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4 + T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ 9 -THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ 9 -THC attenuated CD40L expression in human CD4 + T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ 9 -THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ 9 -THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ 9 -THC suppresses human T cell function. - Highlights: • Δ 9 -THC attenuated CD40L expression in activated human CD4+ T cells. • Δ 9 -THC suppressed DNA-binding activity of NFAT and NFκB. • Δ 9 -THC impaired elevation of intracellular Ca2+. • Δ 9 -THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β

  14. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  15. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    Energy Technology Data Exchange (ETDEWEB)

    Ngaotepprutaram, Thitirat [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Kaplan, Barbara L.F. [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Neuroscience Program, Michigan State University (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States)

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  16. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  17. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  18. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  19. NFAT5 participates in seawater inhalation-induced acute lung injury via modulation of NF-κB activity

    Science.gov (United States)

    Li, Congcong; Liu, Manling; Bo, Liyan; Liu, Wei; Liu, Qingqing; Chen, Xiangjun; Xu, Dunquan; Li, Zhichao; Jin, Faguang

    2016-01-01

    Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor that can be activated by extracellular tonicity. It has been reported that NFAT5 may increase the transcription of certain osmoprotective genes in the renal system, and the aim of the current study was to explore the role of NFAT5 in seawater inhalation-induced acute lung injury. Though establishing the model of seawater inhalation-induced acute lung injury, it was demonstrated that seawater inhalation enhanced the transcription and protein expression of NFAT5 (evaluated by reverse transcription-polymerase chain reaction, immunohistochemistry stain and western blotting) and activation of nuclear factor (NF)-κB (evaluated by western blotting and mRNA expression levels of three NF-κB-dependent genes) both in lung tissue and rat alveolar macrophage cells (NR8383 cells). When expression of NFAT5 was reduced in NR8383 cells using an siRNA targeted to NFAT5, the phosphorylation of NF-κB and transcription of NF-κB-dependent genes were significantly reduced. In addition, the elevated content of certain inflammatory cytokines [tumor necrosis factor α, interleukin (IL)-1 and IL-8] were markedly reduced. In conclusion, NFAT5 serves an important pathophysiological role in seawater inhalation-induced acute lung injury by modulating NF-κB activity, and these data suggest that NFAT5 may be a promising therapeutic target. PMID:27779669

  20. The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Science.gov (United States)

    Ranger, Ann M.; Gerstenfeld, Louis C.; Wang, Jinxi; Kon, Tamiyo; Bae, Hyunsu; Gravallese, Ellen M.; Glimcher, Melvin J.; Glimcher, Laurie H.

    2000-01-01

    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor. PMID:10620601

  1. NFAT5 is activated by hypoxia: role in ischemia and reperfusion in the rat kidney.

    Directory of Open Access Journals (Sweden)

    Sandra Villanueva

    Full Text Available The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10-18 mmHg; however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO(2 on NFAT5 activity. We found that 1 Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2 Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3 The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O(2. 4 At 2.5% of O(2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5 siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6 siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7 NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla from rats subjected to an experimental model of ischemia and reperfusion (I/R. 7 Experimental I/R increased the NFAT5-target gene aldose reductase (AR. 8 NFAT5 activators (ATM and PI3K were induced in vitro (HEK293 cells and in vivo (I/R kidneys with the same timing of NFAT5. 8 Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage.

  2. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  3. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes.

    Science.gov (United States)

    Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina

    2018-01-01

    Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Regulation of T cell activation by HIV-1 accessory proteins: Vpr acts via distinct mechanisms to cooperate with Nef in NFAT-directed gene expression and to promote transactivation by CREB

    International Nuclear Information System (INIS)

    Lahti, Anna L.; Manninen, Aki; Saksela, Kalle

    2003-01-01

    Nef and Vpr are lentiviral accessory proteins that have been implicated in regulation of cellular gene expression. We noticed that Vpr can potentiate Nef-induced activation of nuclear factor of activated T cells (NFAT)-dependent transcription. Unlike Nef, which stimulated calcium signaling to activate NFAT, Vpr functioned farther downstream. Similar to the positive effects of Vpr on most of the transcriptional test systems that we used, potentiation of NFAT-directed gene expression was relatively modest in magnitude (two- to threefold) and depended on the cell cycle-arresting capacity of Vpr. By contrast, we found that Vpr could cause more than fivefold upregulation of cyclic AMP response element (CRE)-directed transcription via a mechanism that did not require Vpr-induced G2/M arrest. This effect, however, was only evident under suboptimal conditions known to lead to serine phosphorylation of the CRE binding factor (CREB) but not to CREB-dependent gene expression. This suggested that Vpr may act by stabilizing interactions with CREB and its transcriptional cofactor CREB binding protein (CBP). Indeed, this effect could be blocked by cotransfection of the adenoviral CBP inhibitor E1A. These results provide additional evidence for cell cycle-independent regulation of gene expression by Vpr and implicate CREB as a potentially important target for Vpr action in HIV-infected host cells

  5. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    International Nuclear Information System (INIS)

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-01-01

    Highlights: ► NFAT5 protein expression is downregulated during cardiomyogenesis. ► Inhibition of NFAT5 function suppresses canonical Wnt signaling. ► Inhibition of NFAT5 function attenuates mesodermal induction. ► NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2′Z, 3′E]-6-bromoindirubin-3′-oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  6. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  7. Mechanism of nuclear factor of activated T-cells mediated FasL expression in corticosterone -treated mouse Leydig tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2008-06-01

    Full Text Available Abstract Background Fas and FasL is important mediators of apoptosis. We have previously reported that the stress levels of corticosterone (CORT, glucocorticoid in rat increase expression of Fas/FasL and activate Fas/FasL signal pathway in rat Leydig cells, which consequently leads to apoptosis. Moreover, our another study showed that nuclear factor of activated T-cells (NFAT may play a potential role in up-regulation of FasL during CORT-treated rat Leydig cell. It is not clear yet how NFAT is involved in CORT-induced up-regulation of FasL. The aim of the present study is to investigate the molecular mechanisms of NFAT-mediated FasL expression in CORT-treated Leydig cells. Results Western blot analysis showed that NFAT2 expression is present in mouse Leydig tumor cell (mLTC-1. CORT-induced increase in FasL expression in mLTC-1 was ascertained by Western Blot analysis and CORT-induced increase in apoptotic frequency of mLTC-1 cells was detected by FACS with annexin-V labeling. Confocal imaging of NFAT2-GFP in mLTC-1 showed that high level of CORT stimulated NFAT translocation from the cytoplasm to the nucleus. RNA interference-mediated knockdown of NFAT2 significantly attenuated CORT-induced up-regulation of FasL expression in mLTC. These results corroborated our previous finding that NFAT2 is involved in CORT-induced FasL expression in rat Leydig cells and showed that mLTC-1 is a suitable model for investigating the mechanism of CORT-induced FasL expression. The analysis of reporter constructs revealed that the sequence between -201 and +71 of mouse FasL gene is essential for CORT-induced FasL expression. The mutation analysis demonstrated that CORT-induced FasL expression is mediated via an NFAT binding element located in the -201 to +71 region. Co-transfection studies with an NFAT2 expression vector and reporter construct containing -201 to +71 region of FasL gene showed that NFAT2 confer a strong inducible activity to the FasL promoter at its

  8. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    Science.gov (United States)

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  9. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    International Nuclear Information System (INIS)

    Holowachuk, Eugene W.

    2007-01-01

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3β inhibitors (Li + or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNFα-induced rates of lipolysis by 50%. Adipocytes preincubated with Li + or TZDZ-8 prior to CsA and/or TNFα, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPARγ, ACS and Adn), compared with control or TNFα-treatment, whereas Li + pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPARγ, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li + treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis

  10. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Heni [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Okamura, Hirohiko [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Hirota, Katsuhiko, E-mail: hirota@dent.tokushima-u.ac.jp [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Shono, Masayuki [Support Center for Advanced Medical Sciences, The University of Tokushima, Tokushima 770-8504 (Japan); Yoshida, Kaya [Department of Fundamental Oral Health Science, School of Oral Health and Welfare, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Murakami, Keiji [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Tabata, Atsushi; Nagamune, Hideaki [Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Haneji, Tatsuji [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Miyake, Yoichiro [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan)

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  11. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    International Nuclear Information System (INIS)

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-01

    Research highlights: → ILY leads to the accumulation of [Ca 2+ ]i in the nucleus in HuCCT1 cells. → ILY induced activation of NFAT1 through a calcineurin-dependent pathway. → Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca 2+ ]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca 2+ ]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  12. MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5

    Directory of Open Access Journals (Sweden)

    Wanbao YANG,Qinqun LI,Bo SU,Mei YU

    2016-03-01

    Full Text Available MicroRNAs (miRNAs, small non-coding RNAs, are involved in many aspects of biological processes. Previous studies have indicated that miRNAs are important for hair follicle development and growth. In our study, we found by qRT-PCR that miR-148b was significantly upregulated in sheep wool follicle bulbs in anagen phase compared with the telogen phase of the hair follicle cycle. Overexpression of miR-148b promoted proliferation of both HHDPC and HHGMC. By using the TOPFlash system we demonstrated that miR-148b could activate Wnt/β-catenin pathway and b-catenin, cycD, c-jun and PPARD were consistently upregulated accordingly. Furthermore, transcript factor nuclear factor of activated T cells type 5 (NFAT5 and Wnt10b were predicted to be the target of miR-148b and this was substantiated using a Dual-Luciferase reporter system. Subsequently NFAT5 was further identified as the target of miR-148b using western blotting. These results were considered to indicate that miR-148b could activate the Wnt/β-catenin signal pathway by targeting NFAT5 to promote the proliferation of human hair follicle cells.

  13. Interleukin-13-induced MUC5AC expression is regulated by a PI3K–NFAT3 pathway in mouse tracheal epithelial cells

    International Nuclear Information System (INIS)

    Yan, Fugui; Li, Wen; Zhou, Hongbin; Wu, Yinfang; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2014-01-01

    Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion

  14. Interleukin-13-induced MUC5AC expression is regulated by a PI3K–NFAT3 pathway in mouse tracheal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fugui; Li, Wen; Zhou, Hongbin; Wu, Yinfang; Ying, Songmin; Chen, Zhihua [Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang (China); Shen, Huahao, E-mail: huahaoshen@163.com [Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang (China); State Key Lab. of Respiratory Disease (SKLRS) (China)

    2014-03-28

    Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.

  15. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling.

    Science.gov (United States)

    Wu, Shu-Fen; Chang, Chia-Bin; Hsu, Jui-Mei; Lu, Ming-Chi; Lai, Ning-Sheng; Li, Chin; Tung, Chien-Hsueh

    2017-08-09

    Overexpression of membranous CD154 in T lymphocytes has been found previously in systemic lupus erythematosus (SLE). Because hydroxychloroquine (HCQ) has been used frequently in the treatment of lupus, we sought to identify the effects of HCQ on CD154 and a possibly regulatory mechanism. CD4 + T cells were isolated from the blood of lupus patients. After stimulation with ionomycin or IL-15 and various concentrations of HCQ, expression of membranous CD154 and NFAT and STAT5 signaling were assessed. HCQ treatment had significant dose-dependent suppressive effects on membranous CD154 expression in ionomycin-activated T cells from lupus patients. Furthermore, HCQ inhibited intracellular sustained calcium storage release, and attenuated the nuclear translocation of NFATc2 and the expression of NFATc1. However, CD154 expressed through IL-15-mediated STAT5 signaling was not inhibited by HCQ treatment. HCQ inhibited NFAT signaling in activated T cells and blocked the expression of membranous CD154, but not STAT5 signaling. These findings provide a mechanistic insight into SLE in HCQ treatment.

  16. Prognostic significance of nuclear factor of activated T-cells 5 expression in non-small cell lung cancer patients who underwent surgical resection.

    Science.gov (United States)

    Cho, Hyun Jin; Yun, Hwan-Jung; Yang, Hee Chul; Kim, Soo Jin; Kang, Shin Kwang; Che, Chengri; Lee, Sang Do; Kang, Min-Woong

    2018-06-01

    Nuclear factor of activated T-cells 5 (NFAT5) is known to be correlated with migration or invasion of tumor cells based on previous in vitro studies. The aim of this study was to analyze the relationship between NFAT5 expression and clinical prognosis in non-small cell lung cancer (NSCLC) patients who underwent surgical resection. A total of 92 NSCLC patients who underwent surgical resection were enrolled. The tissue microarray core was obtained from surgically resected tumor specimens. NFAT5 expression was evaluated by immunohistochemistry. Relationships of NFAT5 expression with disease recurrence, overall survival, and disease-free survival (DFS) were analyzed. The mean age of 92 patients was 63.7 y. The median follow-up duration was 63.3 mo. Fifty-one (55%) patients exhibited positive expression of NFAT5. Disease recurrence in the NFAT5-positive group was significantly (P = 0.022) higher than that in the NFAT5-negative group. NFAT5-positive expression (odds ratio: 2.632, 95% confidence interval: 1.071-6.465, P = 0.035) and pathologic N stage (N1-2 versus N0; odds ratio: 3.174, 95% confidence interval: 1.241-8.123, P = 0.016) were independent and significant risk factors for disease recurrence. DFS of the NFAT5-positive group was significantly worse than that of the NFAT5-negative group (89.7 versus 48.7 mo, P = 0.011). A multivariate analysis identified NFAT5 expression (P < 0.029) as a significant independent risk factor for DFS of patients with postoperative pathologic T and N stages (P < 0.001 and P = 0.017, respectively). NFAT5 expression is a useful prognostic biomarker for NSCLC patients who underwent surgical resection. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Brian Tomkowicz

    Full Text Available TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3 is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion. Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK, the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i NF-kB/NFAT activation, ii CD69 expression, and iii suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation.

  18. Scaffold protein JLP mediates TCR-initiated CD4+T cell activation and CD154 expression.

    Science.gov (United States)

    Yan, Qi; Yang, Cheng; Fu, Qiang; Chen, Zhaowei; Liu, Shan; Fu, Dou; Rahman, Rahmat N; Nakazato, Ryota; Yoshioka, Katsuji; Kung, Sam K P; Ding, Guohua; Wang, Huiming

    2017-07-01

    CD4 + T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4 + T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4 + T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4 + T cells were associated with defective NF-AT activation and Ca 2 + influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4 + T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca 2+ /NF-AT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  20. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  1. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  2. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis

    International Nuclear Information System (INIS)

    Katika, Madhumohan R.; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-01-01

    Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5 μM TBTO for 3, 6, 12 and 24 h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO. - Research Highlights: → The human T lymphocyte cell line Jurkat was exposed to TBTO. → Whole-genome microarray experiments were performed. → Data analysis revealed the induction of ER stress and activation of NFAT and NFKB. → Exposure to TBTO also led to T cell activation, oxidative stress and apoptosis.

  3. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  4. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2002-11-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.

  5. PKCθ/β and CYLD are antagonistic partners in the NFκB and NFAT transactivation pathways in primary mouse CD3+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Nikolaus Thuille

    Full Text Available In T cells PKCθ mediates the activation of critical signals downstream of TCR/CD28 stimulation. We investigated the molecular mechanisms by which PKCθ regulates NFκB transactivation by examining PKCθ/β single and double knockout mice and observed a redundant involvement of PKCθ and PKCβ in this signaling pathway. Mechanistically, we define a PKCθ-CYLD protein complex and an interaction between the positive PKCθ/β and the negative CYLD signaling pathways that both converge at the level of TAK1/IKK/I-κBα/NFκB and NFAT transactivation. In Jurkat leukemic T cells, CYLD is endoproteolytically processed in the initial minutes of stimulation by the paracaspase MALT1 in a PKC-dependent fashion, which is required for robust IL-2 transcription. However, in primary T cells, CYLD processing occurs with different kinetics and an altered dependence on PKC. The formation of a direct PKCθ/CYLD complex appears to regulate the short-term spatial distribution of CYLD, subsequently affecting NFκB and NFAT repressional activity of CYLD prior to its MALT1-dependent inactivation. Taken together, our study establishes CYLD as a new and critical PKCθ interactor in T cells and reveals that antagonistic PKCθ/β-CYLD crosstalk is crucial for the adjustment of immune thresholds in primary mouse CD3(+ T cells.

  6. Suppression of NFAT5-mediated Inflammation and Chronic Arthritis by Novel κB-binding Inhibitors

    Directory of Open Access Journals (Sweden)

    Eun-Jin Han

    2017-04-01

    Full Text Available Nuclear factor of activated T cells 5 (NFAT5 has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of >40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis.

  7. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway.

    Science.gov (United States)

    Qin, Xian; Li, Changsheng; Guo, Tao; Chen, Jing; Wang, Hai-Tao; Wang, Yi-Tao; Xiao, Yu-Sha; Li, Jun; Liu, Pengpeng; Liu, Zhi-Su; Liu, Quan-Yan

    2017-10-19

    Infection with the hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma (HCC). The osmoregulatory transcription factor nuclear factor of activated T-cells 5 (NFAT5) has been shown to play an important role in the development of many types of human cancers. The role of NFAT5 in HBV-associated HCC has never previously been investigated. We compared expression profiles of NFAT5, DARS2 and miR-30e-5p in HCC samples, adjacent nontumor tissues and different hepatoma cell lines by quantitative real-time polymerase chain reaction and /or Western blot. Clinical data of HCC patients for up to 80 months were analyzed. The regulatory mechanisms upstream and convergent downstream pathways of NFAT5 in HBV-associated HCC were investigated by ChIP-seq, MSP, luciferase report assay and bioinformation anaylsis. We first found that higher levels of NFAT5 expression predict a good prognosis, suggesting that NFAT5 is a potential tumor-suppressing gene, and verified that NFAT5 promotes hepatoma cell apoptosis and inhibits cell growth in vitro. Second, our results showed that HBV could suppress NFAT5 expression by inducing hypermethylation of the AP1-binding site in the NFAT5 promoter in hepatoma cells. In addition, HBV also inhibited NFAT5 through miR-30e-5p targeted MAP4K4, and miR-30e-5p in turn inhibited HBV replication. Finally, we demonstrated that NFAT5 suppressed DARS2 by directly binding to its promoter. DARS2 was identified as an HCC oncogene that promotes HCC cell cycle progression and inhibits HCC cell apoptosis. HBV suppresses NFAT5 through the miR-30e-5p/mitogen-activated protein kinase (MAPK) signaling pathway upstream of NFAT5 and inhibits the NFAT5 to enhance HCC tumorigenesis via the downstream target genes of DARS2.

  8. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site.

    Directory of Open Access Journals (Sweden)

    Shahin Ranjbar

    2006-12-01

    Full Text Available To replicate, HIV-1 capitalizes on endogenous cellular activation pathways resulting in recruitment of key host transcription factors to its viral enhancer. RNA interference has been a powerful tool for blocking key checkpoints in HIV-1 entry into cells. Here we apply RNA interference to HIV-1 transcription in primary macrophages, a major reservoir of the virus, and specifically target the transcription factor NFAT5 (nuclear factor of activated T cells 5, which is the most evolutionarily divergent NFAT protein. By molecularly cloning and sequencing isolates from multiple viral subtypes, and performing DNase I footprinting, electrophoretic mobility shift, and promoter mutagenesis transfection assays, we demonstrate that NFAT5 functionally interacts with a specific enhancer binding site conserved in HIV-1, HIV-2, and multiple simian immunodeficiency viruses. Using small interfering RNA to ablate expression of endogenous NFAT5 protein, we show that the replication of three major HIV-1 viral subtypes (B, C, and E is dependent upon NFAT5 in human primary differentiated macrophages. Our results define a novel host factor-viral enhancer interaction that reveals a new regulatory role for NFAT5 and defines a functional DNA motif conserved across HIV-1 subtypes and representative simian immunodeficiency viruses. Inhibition of the NFAT5-LTR interaction may thus present a novel therapeutic target to suppress HIV-1 replication and progression of AIDS.

  9. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.

    2017-09-25

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.

  10. Glutathione Primes T Cell Metabolism for Inflammation

    DEFF Research Database (Denmark)

    Mak, Tak W.; Grusdat, Melanie; Duncan, Gordon S.

    2017-01-01

    the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activatedcells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc...

  11. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells*

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.

    2016-01-01

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518

  12. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. NFAT regulation of cystathionine γ-lyase expression in endothelial cells is impaired in rats exposed to intermittent hypoxia.

    Science.gov (United States)

    Gonzalez Bosc, Laura V; Osmond, Jessica M; Giermakowska, Wieslawa K; Pace, Carolyn E; Riggs, Jennifer L; Jackson-Weaver, Olan; Kanagy, Nancy L

    2017-04-01

    Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O 2 -5% CO 2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H 2 S)-induced vasodilation in rats. The enzyme that produces H 2 S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca 2+ concentration ([Ca 2+ ]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca 2+ ] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca 2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation. Copyright © 2017 the American Physiological Society.

  14. Up-regulation of interleukin-4 production via NF-AT/AP-1 activation in T cells by biochanin A, a phytoestrogen and its metabolites

    International Nuclear Information System (INIS)

    Park, Jin; Chung, Su Wol; Kim, Seung Hyun; Kim, Tae Sung

    2006-01-01

    Phytoestrogens are naturally occurring compounds derived from plants. Although phytoestrogens exhibit many biological functions including estrogen agonist/antagonist properties, the effect on allergic responses remains unclear. In this study, we investigated whether biochanin A, a phytoestrogen and its metabolites, genistein, p-ethylphenol and phenolic acid, affect production of IL-4, a pro-inflammatory cytokine closely associated with allergic immune responses, in primary CD4 + T cells and EL4 T lymphoma cells. Biochanin A, genistein and p-ethylphenol significantly enhanced IL-4 production from both CD4 + T cells and EL4 cells in a dose-dependent manner, while phenolic acid did not. Biochanin A, genistein and p-ethylphenol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of a P4 site carrying NF-AT and AP-1 binding sites. In addition, biochanin A, genistein and p-ethylphenol increased both NF-AT and AP-1 DNA binding activities, indicating that they might enhance IL-4 production via NF-AT/AP-1 activation. Furthermore, biochanin A, genistein and p-ethylphenol increased p38 MAPK phosphorylation and PKC activity, while they did not affect ERK phosphorylation. The enhanced NF-AT DNA binding activities were suppressed by inhibitors for PI3-K and PKC, but not by p38 MAPK inhibitors. In contrast, the enhanced AP-1 DNA binding activities and p38 MAPK phosphorylation were significantly suppressed by specific inhibitors for PKC and p38 MAPK, but not by PI3-K inhibitors. These results demonstrate, for the first time, that biochanin A, genistein and p-ethylphenol enhance IL-4 production in activated T cells by two independent pathways, PI3-K/PKC/NF-AT and PKC/p38 MAPK/AP-1

  15. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    International Nuclear Information System (INIS)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Kuri-Harcuch, Walid

    2013-01-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology

  16. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia [Department of Cell Biology, Center for Research and Advanced Studies-IPN, Apdo. Postal 14-740, México City 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Center for Research and Advanced Studies-IPN, Apdo. Postal 14-740, México City 07000 (Mexico)

    2013-03-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.

  17. Role of the Ca2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Xu

    2018-01-01

    Conclusions: Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.

  18. Glycogen synthase kinase 3β regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    International Nuclear Information System (INIS)

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-01-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 β (GSK3β) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3β has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3β (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3β delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3β is required for the activation of NFAT during wound repair

  19. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    Science.gov (United States)

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  20. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase.

    Directory of Open Access Journals (Sweden)

    Anaïs Estrada-Gelonch

    Full Text Available BACKGROUND: The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5. METHODOLOGY/PRINCIPAL FINDINGS: Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD. NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin. CONCLUSIONS/SIGNIFICANCE: Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export

  1. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  2. Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation.

    Science.gov (United States)

    Diehl, Sean; Chow, Chi-Wing; Weiss, Linda; Palmetshofer, Alois; Twardzik, Thomas; Rounds, Laura; Serfling, Edgar; Davis, Roger J; Anguita, Juan; Rincón, Mercedes

    2002-07-01

    Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6-mediated Th2 differentiation. During the activation of CD4+ T cells, IL-6 induces the production of IL-4, which promotes the differentiation of these cells into effector Th2 cells. Regulation of IL-4 gene expression by IL-6 is mediated by nuclear factor of activated T cells (NFAT), as inhibition of NFAT prevents IL-6-driven IL-4 production and Th2 differentiation. IL-6 upregulates NFAT transcriptional activity by increasing the levels of NFATc2. The ability of IL-6 to promote Th2 differentiation is impaired in CD4+ T cells that lack NFATc2, demonstrating that NFATc2 is required for regulation of IL-4 gene expression by IL-6. Regulation of NFATc2 expression and NFAT transcriptional activity represents a novel pathway by which IL-6 can modulate gene expression.

  3. Deregulation of calcium fluxes in HTLV-I infected CD4-positive T-cells plays a major role in malignant transformation.

    Science.gov (United States)

    Akl, Haidar; Badran, Bassam; El Zein, Nabil; Dobirta, Gratiela; Burny, Arsene; Martiat, Philippe

    2009-01-01

    The CD4+ T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-I) infection and termed; Adult T-cell Leukemia lymphoma (ATLL), is caused by defects in the mechanisms underlying cell proliferation and cell death. In the CD4+ T-cells, calcium ions are central for both phenomena. ATLL is associated with a marked hypercalcemia in many patients. The consequence of a defect in the Ca2+ signaling pathway for lymphocyte activation is characterized by an impaired NFAT activation and transcription of cytokines, chemokines and many other NFAT target genes whose transcription is essential for productive immune defense. Fresh ATLL cells lack the TCR/CD3 and CD7 molecules on their surface. Whereas CD7 is a calcium transporter, reduction in calcium influx in response to T-cell activation was reported as a functional consequence of TCR/CD3 expression deficiency. Understanding these changes and identifying the molecular players involved might provide further insights on how to improve ATLL treatment.

  4. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Science.gov (United States)

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  5. Calcineurin B in CD4+ T Cells Prevents Autoimmune Colitis by Negatively Regulating the JAK/STAT Pathway.

    Science.gov (United States)

    Mencarelli, Andrea; Vacca, Maurizio; Khameneh, Hanif Javanmard; Acerbi, Enzo; Tay, Alicia; Zolezzi, Francesca; Poidinger, Michael; Mortellaro, Alessandra

    2018-01-01

    Calcineurin (Cn) is a protein phosphatase that regulates the activation of the nuclear factor of activated T-cells (NFAT) family of transcription factors, which are key regulators of T-cell development and function. Here, we generated a conditional Cnb1 mouse model in which Cnb1 was specifically deleted in CD4 + T cells (Cnb1 CD4 mice) to delineate the role of the Cn-NFAT pathway in immune homeostasis of the intestine. The Cnb1 CD4 mice developed severe, spontaneous colitis characterized at the molecular level by an increased T helper-1-cell response but an unaltered regulatory T-cell compartment. Antibiotic treatment ameliorated the intestinal inflammation observed in Cnb1 CD4 mice, suggesting that the microbiota contributes to the onset of colitis. CD4 + T cells isolated from Cnb1 CD4 mice produced high levels of IFNγ due to increased activation of the JAK2/STAT4 pathway induced by IL-12. Our data highlight that Cn signaling in CD4 + T cells is critical for intestinal immune homeostasis in part by inhibiting IL-12 responsiveness of CD4 + T cells.

  6. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    Full Text Available OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  7. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  8. Dynamics of Fos-Jun-NFAT1 complexes.

    Science.gov (United States)

    Ramirez-Carrozzi, V R; Kerppola, T K

    2001-04-24

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.

  9. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion

    OpenAIRE

    Sundrud, Mark S.; Torres, Victor J.; Unutmaz, Derya; Cover, Timothy L.

    2004-01-01

    Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4+ T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly ...

  10. Suppression of Pax2 attenuates allodynia and hyperalgesia through ET-1-ETAR-NFAT5 signaling in a rat model of neuropathic pain.

    Science.gov (United States)

    Tai, Lydia Wai; Pan, Zhiqiang; Sun, Liting; Li, Haobo; Gu, Pan; Wong, Stanley Sau Ching; Chung, Sookja K; Cheung, Chi Wai

    2018-05-27

    Endothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zawawi, M.S.F. [Universiti Sains Malaysia (USM) (Malaysia); Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Dharmapatni, A.A.S.S.K.; Cantley, M.D. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); McHugh, K.P. [University of Florida, College of Dentistry, Fl (United States); Haynes, D.R. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Crotti, T.N., E-mail: tania.crotti@adelaide.edu.au [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  12. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    Energy Technology Data Exchange (ETDEWEB)

    Katika, Madhumohan R. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Hendriksen, Peter J.M. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Shao, Jia [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Loveren, Henk van [Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Peijnenburg, Ad, E-mail: ad.peijnenburg@wur.nl [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands)

    2012-10-01

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examined gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human

  13. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  14. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  15. Ca2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation.

    Science.gov (United States)

    Kumar, Raju; Raman, Ratheesh; Kotapalli, Viswakalyan; Gowrishankar, Swarnalata; Pyne, Saumyadipta; Pollack, Jonathan R; Bashyam, Murali D

    2018-02-01

    Our previous extensive analysis revealed a significant proportion of early-onset colorectal tumors from India to be localized to the rectum in younger individuals and devoid of deregulated Wnt/β-catenin signaling. In the current study, we performed a comprehensive genome-wide analysis of clinically well-annotated microsatellite stable early-onset sporadic rectal cancer (EOSRC) samples. Results revealed extensive DNA copy number alterations in rectal tumors in the absence of deregulated Wnt/β-catenin signaling. More importantly, transcriptome profiling revealed a (non-Wnt/β-catenin, non-MSI) genetic signature that could efficiently and specifically identify Wnt- rectal cancer. The genetic signature included a significant representation of genes belonging to Ca 2+ /NFAT signaling pathways that were validated in additional samples. The validated NFAT target genes exhibited significantly higher expression levels than canonical Wnt/β-catenin targets in Wnt- samples, an observation confirmed in other CRC expression data sets as well. We confirmed the validated genes to be transcriptionally regulated by NFATc1 by (a) evaluating their respective transcript levels and (b) performing promoter-luciferase and chromatin immunoprecipitation assays following ectopic expression as well as knockdown of NFATc1 in CRC cells. NFATc1 and its targets RUNX2 and GSN could drive increased migration in CRC cells. Finally, the validated genes were associated with poor survival in the cancer genome atlas CRC expression data set. This study is the first comprehensive molecular characterization of EOSRC that appears to be driven by noncanonical tumorigenesis pathways. Early-onset sporadic rectal cancer exhibits DNA gain and loss without Wnt activation. Ca 2+ /NFAT signaling appears to be activated in the absence of Wnt activation. An eight-gene genetic signature distinguishes Wnt+ and Wnt- rectal tumors. NFAT and its target genes regulate tumorigenic properties in CRC cells.

  16. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  17. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  18. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells.

    Directory of Open Access Journals (Sweden)

    Udaya S Rangaswamy

    2014-01-01

    Full Text Available Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV, Kaposi's sarcoma-associated herpesvirus (KSHV and murine gammaherpesvirus 68 (MHV68 from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner--leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4. Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- -mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4--a key player in plasma cell differentiation--which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation.

  19. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  20. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  1. The role of receptor-mediated T-cells activation disorders in pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Irina E. Esimova

    2017-01-01

    Full Text Available Aim. To analyze the peculiarities and mechanisms of receptor-mediated T-lymphocytes disorders in different clinical forms of pulmonary tuberculosis.Materials and мethods. The study involved 116 patients with first diagnosed infiltrative and disseminated drug-sensitive and drug-resistant pulmonary tuberculosis. The key stages in receptor-mediated activation of T-lymphocytes, isolated from blood, after their CD3/CD28-induction in vitro with addition of intracellular transport blocker were analyzed. Their immunotyping was carried out with the method of two- and threecolor flow cytofluorometry. The obtained results were statistically analyzed.Results. The breach of extracellular and intracellular stages of T-lymphocytes activation, shown by reduction in total number of CD3- and CD28-positive cells, and CD3+CD28+IL2+, CD3+CD28+IL2–, CD3+NF-kB+, CD3+NFAT2+ lymphocytes, and increase in number of CD3+CTLA4+ cells, was identified with most of their manifestations in disseminated drug-resistant pulmonary tuberculosis. It was shown that the content of CD3+AP-1+ lymphocytes is variable in drug-resistant pulmonary tuberculosis: it increases in the infiltrative form and decreases in the disseminated form.Conclusion. The results showed different mechanisms leading to a deficiency of IL-2-positive lymphocytes and T-lymphocytopenia: from “functional reserve” exhaustion of T-cells in drug-sensitive pulmonary tuberculosis to immunosuppression under the influence of suppressive cytokines (in case of the infiltrative form and inhibitory protein CTLA4 (in case of the disseminated form in drug-resistant pulmonary tuberculosis. 

  2. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  3. Plasticity of regulatory T cells under cytokine pressure.

    Science.gov (United States)

    Diaconu, Carmen C; Neagu, Ana I; Lungu, Răzvan; Tardei, Graţiela; Alexiu, Irina; Bleotu, Coralia; Economescu, Mihaela Chivu; Bumbăcea, Roxana S; Pele, Irina; Bumbăcea, Dragoş

    2010-01-01

    CD4+ T helper (Th) cells have been divided into different subsets as defined by their cytokine products and functions after their activation. CD4+ T cell subsets are continuously discovered and until now Th1, Th2, Th9, Th17, and regulatory T (Treg) cells have been almost unanimously recognized but yet not completely characterized. The selective production of cytokines by each of the subsets is probably the master key of the mechanisms of immune regulation. The cytokine milieu is extremely important on deciding the fate of T cells. Generally, more than one cytokine is needed for differentiating to a particular lineage and just recently it was shown that this status quo of commitment could be challenged. It is well known that cytokines bind to Type I/II cytokine receptors signaling via Janus kinases (JAKs) followed by activation of Signal Transducer and Activator of Transcription (STAT). STAT molecules work together with other transcription factors (Foxp3, RORgammat and RORalpha, T-bet, GATA3, Runx 1, NFAT, etc.) also controlled by cytokines, in modulating the Th phenotype and functions. In this review, we analyze the plasticity of Treg population focusing on the most recent discoveries on how microenvironmental cytokines refine/modify Treg phenotype and function, thus changing their fate.

  4. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  5. Isoproterenol Increases RANKL Expression in a ATF4/NFATc1-Dependent Manner in Mouse Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Kyunghwa Baek

    2017-10-01

    Full Text Available Sympathetic nervous system stimulation-induced β-adrenergic signal transduction is known to induce bone loss and increase of osteoclast activity. Although isoproterenol, a nonspecific β-adrenergic receptor agonist, has been shown to increase receptor activator of NF-κB ligand (RANKL, the details of the regulatory mechanisms remain unclear. In the present study, we investigated the role of the nuclear factor of activated T-cells (NFAT in isoproterenol-induced RANKL expression in C2C12 and in primary cultured mouse calvarial cells. Isoproterenol increased nuclear factor of activated T-cells cytoplasmic 1 (NFATc1 and RANKL expressions at both mRNA and protein levels and increased NFAT reporter activity. NFATc1 knockdown blocked isoproterenol-mediated RANKL expression. Isoproterenol also promoted cAMP response element-binding protein 1 (CREB1 and activating transcription factor 4 (ATF4 phosphorylation. Isoproterenol-mediated transcriptional activation of NFAT was blocked by protein kinase A (PKA inhibitor H89. Isoproterenol-induced CREB1, ATF4, NFATc1, and RANKL expressions were suppressed by H89. Mutations in cAMP response element-like or NFAT-binding element suppressed isoproterenol-induced RANKL promoter activity. Chromatin immunoprecipitation analysis demonstrated that isoproterenol increased NFAT-binding and ATF4-binding activities on the mouse RANKL promoter, but did not increase CREB1-binding activity. Association of NFATc1 and ATF4 was not observed in a co-immunoprecipitation study. ATF4 knockdown suppressed isoproterenol-induced NFAT binding to the RANKL promoter, whereas NFATc1 knockdown did not suppress isoproterenol-induced ATF4 binding to the RANKL promoter. ATF4 knockdown suppressed isoproterenol-induced expressions of NFATc1 and RANKL. These results suggest that isoproterenol increases RANKL expression in an ATF4/NFATc1-dependent manner.

  6. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  7. The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Rafael Estrada-Avilés

    Full Text Available Calsequestrin-2 (CASQ2 is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2 promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.

  8. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  9. Analysis of mechanism for human γδ T cell recognition of nonpeptide antigens

    International Nuclear Information System (INIS)

    Yamashita, Seiji; Tanaka, Yoshimasa; Tsutsumi, Shuichi; Aburatani, Hiroyuki; Minato, Nagahiro; Ihara, Sigeo

    2005-01-01

    Whereas human γδ T cells respond to nonpeptide antigens like pyrophosphomonoesters and alkyl amines in the primary reactions, only pyrophosphomonoesters provoke proliferative responses in the secondary responses. To elucidate the differences in stimulatory activity between the two groups of nonpeptide antigens, we systematically analyzed time courses of gene expressions by microarray analyses. While 253 genes were induced by stimulation with 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP), only 35 genes were detected after stimulation with isobutyl amine. Then, γδ T cells expressed various cytokines like XCL1-2, CCL3-4, TNF-α, and IFN-γ in response to 2M3B1PP in a time-dependent manner, while transient expressions were observed in IBA during the time period. The differences in such responsiveness are likely to originate from the activation state of NFAT, which is involved in the expression of transcription factors, EGR1-3 and NR4A1-2, and might play a crucial role in effector functions of γδ T cells

  10. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  11. A robust and scalable TCR-based reporter cell assay to measure HIV-1 Nef-mediated T cell immune evasion.

    Science.gov (United States)

    Anmole, Gursev; Kuang, Xiaomei T; Toyoda, Mako; Martin, Eric; Shahid, Aniqa; Le, Anh Q; Markle, Tristan; Baraki, Bemuluyigza; Jones, R Brad; Ostrowski, Mario A; Ueno, Takamasa; Brumme, Zabrina L; Brockman, Mark A

    2015-11-01

    HIV-1 evades cytotoxic T cell responses through Nef-mediated downregulation of HLA class I molecules from the infected cell surface. Methods to quantify the impact of Nef on T cell recognition typically employ patient-derived T cell clones; however, these assays are limited by the cost and effort required to isolate and maintain primary cell lines. The variable activity of different T cell clones and the limited number of cells generated by re-stimulation can also hinder assay reproducibility and scalability. Here, we describe a heterologous T cell receptor reporter assay and use it to study immune evasion by Nef. Induction of NFAT-driven luciferase following co-culture with peptide-pulsed or virus-infected target cells serves as a rapid, quantitative and antigen-specific measure of T cell recognition of its cognate peptide/HLA complex. We demonstrate that Nef-mediated downregulation of HLA on target cells correlates inversely with T cell receptor-dependent luminescent signal generated by effector cells. This method provides a robust, flexible and scalable platform that is suitable for studies to measure Nef function in the context of different viral peptide/HLA antigens, to assess the function of patient-derived Nef alleles, or to screen small molecule libraries to identify novel Nef inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Bilal [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Banke, Elin, E-mail: elin.banke@med.lu.se [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Guirguis, Emilia [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Aakesson, Lina [Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Clinical Research Centre, Lund University, Malmoe (Sweden); Manganiello, Vincent [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Lyssenko, Valeriya; Groop, Leif [Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmoe (Sweden); Gomez, Maria F. [Department of Clinical Sciences, Vascular ET Coupling, Clinical Research Centre, Lund University, Malmoe (Sweden); Degerman, Eva [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  13. PKCθ is required for the activation of human T lymphocytes induced by CD43 engagement

    International Nuclear Information System (INIS)

    Rio, Roxana del; Rincon, Mercedes; Layseca-Espinosa, Esther; Fierro, Nora A.; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2004-01-01

    The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (α/β), nPKC (ε and θ), aPKC (ζ) and PKCμ. We also show that activation of PKCθ resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-κB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCθ plays a critical role in the co-stimulatory functions of CD43 in human T cells

  14. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    Science.gov (United States)

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  16. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF-β1 levels in serum of patients with atrial fibrillation.

    Science.gov (United States)

    Zhao, Fei; Zhang, ShiJiang; Chen, YiJiang; Gu, WeiDong; Ni, BuQing; Shao, YongFeng; Wu, YanHu; Qin, JianWei

    2014-11-25

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Unfortunately, the precise mechanisms and sensitive serum biomarkers of atrial remodeling in AF remain unclear. The aim of this study was to determine whether the expression of the transcription factors NF-AT3 and NF-AT4 correlate with atrial structural remodeling of atrial fibrillation and serum markers for collagen I and III synthesis. Right and left atrial specimens were obtained from 90 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (n = 30), paroxysmal atrial fibrillation (n = 30), and persistent atrial fibrillation (n = 30) groups. NF-AT3, NF-AT4, and collagen I and III mRNA and protein expression in atria were measured. We also tested the levels of the carboxyl-terminal peptide from pro-collagen I, the N-terminal type I procollagen propeptides, the N-terminal type III procollagen propeptides, and TGF-β1 in serum using an enzyme immunosorbent assay. NF-AT3 and NF-AT4 mRNA and protein expression were increased in the AF groups, especially in the left atrium. NF-AT3 and NF-AT4 expression in the right atrium was increased in the persistent atrial fibrillation group compared the sinus rhythm group with similar valvular disease. In patients with AF, the expression levels of nuclear NF-AT3 and NF-AT4 correlated with those of collagens I and III in the atria and with PICP and TGF-β1 in blood. These data support the hypothesis that nuclear NF-AT3 and NF-AT4 participates in atrial structural remodeling, and that PICP and TGF-β1 levels may be sensitive serum biomarkers to estimate atrial structural remodeling with atrial fibrillation.

  17. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes – A role for the transcription factor NFAT and phosphodiesterase 3B

    International Nuclear Information System (INIS)

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-01-01

    Highlights: ► GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. ► GIP-induced osteopontin expression is NFAT-dependent. ► Osteopontin expression is PDE3-dependent. ► Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin – glucose-dependent insulinotropic polypeptide (GIP) – and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the β3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  18. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  19. Gap junctions at the dendritic cell-T cell interface are key elements for antigen-dependent T cell activation.

    Science.gov (United States)

    Elgueta, Raul; Tobar, Jaime A; Shoji, Kenji F; De Calisto, Jaime; Kalergis, Alexis M; Bono, Maria R; Rosemblatt, Mario; Sáez, Juan C

    2009-07-01

    The acquired immune response begins with Ag presentation by dendritic cells (DCs) to naive T cells in a heterocellular cell-cell contact-dependent process. Although both DCs and T cells are known to express connexin43, a gap junction protein subunit, the role of connexin43 on the initiation of T cell responses remains to be elucidated. In the present work, we report the formation of gap junctions between DCs and T cells and their role on T cell activation during Ag presentation by DCs. In cocultures of DCs and T cells, Lucifer yellow microinjected into DCs is transferred to adjacent transgenic CD4(+) T cells, only if the specific antigenic peptide was present at least during the first 24 h of cocultures. This dye transfer was sensitive to gap junction blockers, such as oleamide, and small peptides containing the extracellular loop sequences of conexin. Furthermore, in this system, gap junction blockers drastically reduced T cell activation as reflected by lower proliferation, CD69 expression, and IL-2 secretion. This lower T cell activation produced by gap junction blockers was not due to a lower expression of CD80, CD86, CD40, and MHC-II on DCs. Furthermore, gap junction blocker did not affect polyclonal activation of T cell induced with anti-CD3 plus anti-CD28 Abs in the absence of DCs. These results strongly suggest that functional gap junctions assemble at the interface between DCs and T cells during Ag presentation and that they play an essential role in T cell activation.

  20. Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation

    Science.gov (United States)

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  1. Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator

    International Nuclear Information System (INIS)

    Favale, Nicolas O.; Sterin Speziale, Norma B.; Fernandez Tome, Maria C.

    2007-01-01

    Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity

  2. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    Science.gov (United States)

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  3. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...

  4. T-cell activation triggers death receptor-6 expression in a NF-kappa B and NF-AT dependent manner

    Czech Academy of Sciences Publication Activity Database

    Klíma, Martin; Broučková, Adéla; Koc, Michal; Anděra, Ladislav

    2011-01-01

    Roč. 48, 12-13 (2011), s. 1439-1447 ISSN 0161-5890 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : TNFRSF21 * T cells * Jurkat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.897, year: 2011

  5. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  6. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  7. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  8. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    Science.gov (United States)

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  9. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation

    International Nuclear Information System (INIS)

    Moretta, A.; Poggi, A.; Olive, D.; Bottino, C.; Fortis, C.; Pantaleo, G.; Moretta, L.

    1987-01-01

    A clone of the interleukin 2-producing Jurkat leukemia cell line termed JA3 (surface phenotype, T3 + , Ti + , T44 + , T11 + , T40 + ) has been used to induce and select cell variants lacking surface molecules involved in T-cell activation. Following 200 rad of γ-radiation (1 rad = 0.01 Gy), cells were treated with monoclonal antibodies (mAbs) directed to T3, Ti, T44, or T11 antigen and complement. After growth of the residual cells in culture, negative cells were cloned under limiting conditions. Depending on the specificity of the mAb used for the immunoselection, three groups of variants were obtained. (i) The use of mAbs directed to T3 or Ti resulted in cell variants that expressed the T3 - Ti - T44 + Leu1 + T11 + T40 + 4F2 + HLA class I + surface phenotype. (ii) Immunoselection with anti-T44 mAb resulted in 2 variants that shared the T3 - Ti - T44 - Leu1 - T11 - T40 - 4F2 - HLA class I + phenotype. (iii) Cell treatment with anti-T11 mAb resulted in 15 variants characterized by the lack of T11 antigen expression and of all the other T-cell-specific surface antigens. Therefore, it appears that the different sets of JA3 cell variants, like T cells at discrete stages of intrathymic differentiation, may follow a coordinated expression of surface differentiation antigens. Analysis of the functional responsiveness of the three distinct groups of JA3 cell variants to different stimuli showed that all produced interleukin 2 in response to A23187 calcium ionophore plus phorbol 12-myristate 13-acetate

  10. Galectin-9 activates and expands human T-helper 1 cells.

    Directory of Open Access Journals (Sweden)

    Marloes J M Gooden

    Full Text Available Galectin-9 (Gal-9 is known for induction of apoptosis in IFN-γ and IL-17 producing T-cells and amelioration of autoimmunity in murine models. On the other hand, Gal-9 induced IFN-γ positive T-cells in a sarcoma mouse model and in food allergy, suggesting that Gal-9 can have diametric effects on T-cell immunity. Here, we aimed to delineate the immunomodulatory effect of Gal-9 on human resting and ex vivo activated peripheral blood lymphocytes. Treatment of resting lymphocytes with low concentrations of Gal-9 (5-30 nM induced apoptosis in ∼60% of T-cells after 1 day, but activated the surviving T-cells. These viable T-cells started to expand after 4 days with up to 6 cell divisions by day 7 and an associated shift from naïve towards central memory and IFN-γ producing phenotype. In the presence of T-cell activation signals (anti-CD3/IL-2 Gal-9 did not induce T-cell expansion, but shifted the CD4/CD8 balance towards a CD4-dominated T-cell response. Thus, Gal-9 activates resting T-cells in the absence of typical T-cell activating signals and promotes their transition to a TH1/C1 phenotype. In the presence of T-cell activating signals T-cell immunity is directed towards a CD4-driven response by Gal-9. Thus, Gal-9 may specifically enhance reactive immunological memory.

  11. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  13. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo.

    Directory of Open Access Journals (Sweden)

    Yorifumi Satou

    2011-02-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL, and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (T(reg. Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for T(reg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ, which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ T(reg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased T(reg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ T(reg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of T(reg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases.

  14. TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells.

    Science.gov (United States)

    Johnson, Zariel I; Doolittle, Alexandra C; Snuggs, Joseph W; Shapiro, Irving M; Le Maitre, Christine L; Risbud, Makarand V

    2017-10-20

    Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1β or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1 , CXCL2 , and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1 -proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6 , SMIT/SLC5A3 , and AR/AKR1B1 , supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Functional implications of plasma membrane condensation for T cell activation.

    Directory of Open Access Journals (Sweden)

    Carles Rentero

    2008-05-01

    Full Text Available The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC, which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.

  16. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  17. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    Science.gov (United States)

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  18. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  19. CD 4 + CD 25 + T cells maintain homeostasis by promoting TER - 119 cell development and inhibiting T cell activation

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2014-05-01

    Full Text Available CD4+ CD25+ regulatory T cells involved in the regulation of self- tolerance and normality of homeostasis. CD122 deficient mice are model animals that have an abnormal immune system characteristically have a high number of activated T cells and TER-119 cell decreased. Here we showed evidence that the transfer of CD4+ CD25+ regulatory T cells derived from normal mice to CD122- defficient neonates prevent the development of activated memory T cells and elicit TER-119 differentiation. Bone marrow reconstitution derived from CD122-/- mice to normal mice resulting tolerance to individual that genetically different. Importantly, CD4+ CD25+ regulatory T cells derived from normal mice can replace CD4+ CD25+ cells derived from CD122-/- mice. The results of this experiment suggest that regulatory T cells from normal mice exert a critical role in maintaining peripheral tolerance and controlling hematopoietic disorder.

  20. Cortisol patterns are associated with T cell activation in HIV.

    Directory of Open Access Journals (Sweden)

    Sarah Patterson

    Full Text Available The level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.We studied 128 HIV-infected adults who were not on treatment and had a CD4(+ T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.Lower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+ T cells (r = -0.26, p = 0.006. Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+ T cells (r = -0.17, p = 0.08. A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+ (r = 0.24, p = 0.018 and CD8(+ (r = 0.24, p = 0.017 activation.These data suggest that the hypothalamic-pituitary-adrenal (HPA axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV.

  1. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation

    Science.gov (United States)

    Yang, Hung-Chih; Xing, Sifei; Shan, Liang; O’Connell, Karen; Dinoso, Jason; Shen, Anding; Zhou, Yan; Shrum, Cynthia K.; Han, Yefei; Liu, Jun O.; Zhang, Hao; Margolick, Joseph B.; Siliciano, Robert F.

    2009-01-01

    The development of highly active antiretroviral therapy (HAART) to treat individuals infected with HIV-1 has dramatically improved patient outcomes, but HAART still fails to cure the infection. The latent viral reservoir in resting CD4+ T cells is a major barrier to virus eradication. Elimination of this reservoir requires reactivation of the latent virus. However, strategies for reactivating HIV-1 through nonspecific T cell activation have clinically unacceptable toxicities. We describe here the development of what we believe to be a novel in vitro model of HIV-1 latency that we used to search for compounds that can reverse latency. Human primary CD4+ T cells were transduced with the prosurvival molecule Bcl-2, and the resulting cells were shown to recapitulate the quiescent state of resting CD4+ T cells in vivo. Using this model system, we screened small-molecule libraries and identified a compound that reactivated latent HIV-1 without inducing global T cell activation, 5-hydroxynaphthalene-1,4-dione (5HN). Unlike previously described latency-reversing agents, 5HN activated latent HIV-1 through ROS and NF-κB without affecting nuclear factor of activated T cells (NFAT) and PKC, demonstrating that TCR pathways can be dissected and utilized to purge latent virus. Our study expands the number of classes of latency-reversing therapeutics and demonstrates the utility of this in vitro model for finding strategies to eradicate HIV-1 infection. PMID:19805909

  2. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  3. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  4. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  5. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  6. Image-Based Phenotypic Screening with Human Primary T Cells Using One-Dimensional Imaging Cytometry with Self-Tuning Statistical-Gating Algorithms.

    Science.gov (United States)

    Wang, Steve S; Ehrlich, Daniel J

    2017-09-01

    The parallel microfluidic cytometer (PMC) is an imaging flow cytometer that operates on statistical analysis of low-pixel-count, one-dimensional (1D) line scans. It is highly efficient in data collection and operates on suspension cells. In this article, we present a supervised automated pipeline for the PMC that minimizes operator intervention by incorporating multivariate logistic regression for data scoring. We test the self-tuning statistical algorithms in a human primary T-cell activation assay in flow using nuclear factor of activated T cells (NFAT) translocation as a readout and readily achieve an average Z' of 0.55 and strictly standardized mean difference of 13 with standard phorbol myristate acetate/ionomycin induction. To implement the tests, we routinely load 4 µL samples and can readout 3000 to 9000 independent conditions from 15 mL of primary human blood (buffy coat fraction). We conclude that the new technology will support primary-cell protein-localization assays and "on-the-fly" data scoring at a sample throughput of more than 100,000 wells per day and that it is, in principle, consistent with a primary pharmaceutical screen.

  7. Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Hardy, Kristine; Smith, Corey; Tu, Wen Juan; McCuaig, Robert; Panikkar, Archana; Dasari, Vijayendra; Wu, Fan; Tey, Siok-Keen; Hill, Geoffrey R; Khanna, Rajiv; Rao, Sudha

    2018-03-27

    Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8 + T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG , STAT5B , NFAT , RBPJ , and lower HDAC6 , increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients. © 2018 by The American Society of Hematology.

  8. Hili Inhibits HIV Replication in Activated T Cells.

    Science.gov (United States)

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  9. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Blandine C Mercier

    Full Text Available Pattern recognition receptors (PRR, like Toll-like receptors (TLR and NOD-like receptors (NLR, are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR. This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.

  10. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    OpenAIRE

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier

    2015-01-01

    T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting fola...

  11. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  12. The interaction of dendritic cells and γδ T cells promotes the activation of γδ T cells in experimental autoimmune uveitis

    Directory of Open Access Journals (Sweden)

    Beibei Wang

    2017-03-01

    Full Text Available Uveitis is a severe inflammatory disease that can cause visual impairment. Recently, activated γδ T cells were proved to play a central role in the development of experimental autoimmune uveitis (EAU. However, the mechanism underlying γδ T-cell activation in EAU is incompletely known. In this study, we determined the percentage changes in and the phenotypes of γδ T cells and dendritic cells (DCs obtained from the spleens of immunized C57BL/6 (B6 mice, an animal model of EAU. We found that the number of γδ T cells and DCs obviously increased during the inflammation phase of EAU (days 16–20 of our experiment, and that during this time, γδ T cells expressed high levels of CD69 and the integrin lymphocyte function–associated antigen-1 (LFA-1 and secreted high levels of interleukin (IL-17A. Moreover, DCs obtained during this phase expressed high levels of CD80, CD83, CD86, and intracellular cell adhesion molecule-1 (ICAM-1. Furthermore, we studied the interaction between DCs and γδ T cells by using flow cytometry and confocal microscopy in order to determine whether DCs affected γδ T-cell activation in vitro. Co-cultures of the two types of cells showed that DCs induced high levels of CD69, LFA-1, and IL-17A in γδ T cells. Imaging studies revealed contact between the DCs and γδ T cells. This interaction was mediated by the accumulation of ICAM-1 and LFA-1 at the interface of DCs-γδ T cells. Thus, the activation of γδ T cells in EAU was promoted by DCs interacting with γδ T cells.

  13. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    Science.gov (United States)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  14. Effects of PVA-coated nanoparticles on human T helper cell activity.

    Science.gov (United States)

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.

  16. CD4 T cell activation and disease activity at onset of multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Langkilde, Annika Reynberg; Fenst, C

    2004-01-01

    We studied CD4 T cell activation in patients with clinically isolated syndromes (CIS) suggesting an initial attack of multiple sclerosis. The percentage of blood CD26+ CD4 T cells was increased in these patients, and correlated with magnetic resonance imaging disease activity and clinical disease...... severity. In contrast, the percentage of CD25+ CD4 T cells in cerebrospinal fluid correlated negatively with the cerebrospinal fluid concentration of myelin basic protein and the presence of IgG oligoclonal bands. These results suggest that distinct systemic and intrathecal T cell activation states...

  17. Dual role of miR-21 in CD4+ T-cells: activation-induced miR-21 supports survival of memory T-cells and regulates CCR7 expression in naive T-cells.

    Directory of Open Access Journals (Sweden)

    Katarzyna Smigielska-Czepiel

    Full Text Available Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a memory phenotype, and is robustly upregulated upon αCD3/CD28 activation of both naive and memory T-cells. By inhibiting the endogenous miR-21 function in activated naive and memory T-cells, we showed that miR-21 regulates fundamentally different aspects of T-cell biology, depending on the differentiation status of the T-cell. Stable inhibition of miR-21 function in activated memory T-cells led to growth disadvantage and apoptosis, indicating that the survival of memory T-cells depends on miR-21 function. In contrast, stable inhibition of miR-21 function in activated naive T-cells did not result in growth disadvantage, but led to a significant induction of CCR7 protein expression. Direct interaction between CCR7 and miR-21 was confirmed in a dual luciferase reporter assay. Our data provide evidence for a dual role of miR-21 in CD4+ T cells; Regulation of T-cell survival is confined to activated memory T-cells, while modulation of potential homing properties, through downregulation of CCR7 protein expression, is observed in activated naive T-cells.

  18. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available thatrespond to T cell activation signals. Arai N, Naito Y, Watanabe M, Masuda ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsud... in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. Authors Arai N, Naito Y, Watanabe M, Masud...a ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsuda I, Yokota

  19. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment

    Directory of Open Access Journals (Sweden)

    Pek Siew Lim

    2016-03-01

    Full Text Available T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA and calcium ionomycin (I as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278. Keywords: EL4 T cell, Microarray, T cell activation, Inducible genes

  20. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    Science.gov (United States)

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  1. T-cell activation promotes tumorigenesis in inflammation-associated cancer

    Directory of Open Access Journals (Sweden)

    Lairmore Michael

    2009-12-01

    Full Text Available Abstract Chronic inflammation has long been associated with a wide range of malignancies, is now widely accepted as a risk factor for development of cancer, and has been implicated as a promoter of a variety of cancers including hematopoietic malignancies. We have described a mouse model uniquely suited to examine the link between inflammation and lymphoma in which the Tax oncogene, expressed in activated T and NK cells, perpetuates chronic inflammation that begins as microscopic intraepithelial lesions and develops into inflammatory nodules, subcutaneous tumors, and large granular lymphocytic leukemia. The use of bioluminescent imaging in these mice has expanded our ability to interrogate aspects of inflammation and tumorigenesis non-invasively. Here we demonstrate that bioluminescence induction in these mice correlated with inflammation resulting from wounding, T cell activation, and exposure to chemical agents. In experiments in which long-term effects of inflammation on disease outcome were monitored, the development of lymphoma was promoted by an inflammatory stimulus. Finally we demonstrated that activation of T-cells in T-cell receptor (TCR transgenic TAX-LUC animals dramatically exacerbated the development of subcutaneous TCR- CD16+ LGL tumors. The role of activated T-cells and acquired immunity in inflammation-associated cancers is broadly applicable to hematopoietic malignancies, and we propose these mice will be of use in dissecting mechanisms by which activated T-cells promote lymphomagenesis in vivo.

  2. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    Full Text Available We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP. In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME. Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+ cells within CD8(+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.

  3. Role of signaling lymphocytic activation molecule in T helper cell responses

    Directory of Open Access Journals (Sweden)

    Jan E. de Vries

    1998-01-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM; CDw150 is a 70 kDa glycoprotein. Signaling lymphocytic activation molecule is constitutively expressed on memory T cells, CD56+ T cells, a subset of T cell receptor γδ+ cells, immature thymocytes and, at low levels, on a proportion of peripheral blood B cells. Signaling lymphocytic activation molecule is rapidly upregulated on all T and B cells after activation. Engagement of SLAM by F(ab’2 fragments of an anti-SLAM monoclonal antibody (mAb A12 enhances antigen-specific T cell proliferation. In addition, mAb A12 was directly mitogenic for T cell clones and activated T cells. T cell proliferation induced by mAb A12 is independent of interleukin (IL-2, IL-4, IL-12 and IL-15, but is cyclosporin A sensitive. Ligation of SLAM during antigen-specific T cell proliferation resulted in upregulation of interferon (IFN-γ production, even by allergen-specific T helper cell (Th 2 clones, whereas the levels of IL-4 and IL-5 production were only marginally affected. The mAb A12 was unable to induce IL-4 and IL-5 production by Th1 clones. Co-stimulation of skin-derived Der P1-specific Th2 cells from patients with atopic dermatitis via SLAM resulted in the generation of a population of IFN-γ-producing cells, thereby reverting their phenotype to a Th0 pattern. Signaling lymphocytic activation molecule is a high-affinity self ligand mediating homophilic cell interaction. In addition, soluble SLAM enhances both T and B cell proliferation. Collectively, these data indicate that SLAM molecules act both as receptors and ligands that are not only involved in T cell expansion but also drive the expanding T cells during immune responses into the Th0/Th1 pathway. This suggests that signaling through SLAM plays a role in directing Th0/Th1 development.

  4. Expression of activating natural killer-cell receptors is a hallmark of the innate-like T-cell neoplasm in peripheral T-cell lymphomas.

    Science.gov (United States)

    Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo

    2018-04-01

    Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on

  5. Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway.

    Science.gov (United States)

    Abdoel, Nursamaa; Brun, Susana; Bracho, Carmen; Rodríguez, Martín A; Blasini, Ana M

    2012-03-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  7. Immunosuppressive effect of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through the inhibition of T-lymphocyte proliferation and IL-2 production

    International Nuclear Information System (INIS)

    Yun, Cheol-Heui; Son, Chang Gue; Jung, Uhee; Han, Seung Hyun

    2006-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the predominant heterocyclic amine formed in cooked meat and fish and causes cancers in the colon, the mammary glands, and the lymphoid organs. In the present study, we investigated the immunological impact of PhIP using thymocytes isolated from Balb/c mice and a murine thymocyte-derived cell line, EL4. Treatment of the thymocytes with PhIP moderately inhibited T-cell mitogen-induced cell proliferation and interleukin (IL)-2 secretion. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that PhIP attenuated IL-2 mRNA expression in the thymocytes and EL4 cells stimulated with phytohemagglutinin (PHA) plus phorbol 12-myristate 13-acetate (PMA). In vitro transient transfection assay using a reporter gene construct containing IL-2 promoter showed that the decrease in the steady-state IL-2 mRNA level by PhIP is partially due to the attenuation of IL-2 mRNA synthesis at the transcriptional level. Furthermore, an electrophoretic mobility shift assay showed that PhIP inhibited DNA binding activity of nuclear factor for immunoglobulin κ chain in B cells (NF-κB), activator protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT), which are known to be responsible for IL-2 transcriptional activation. Concomitantly, PhIP inhibited the PMA/PHA-induced generation of reactive oxygen species (ROS) involved in activation of the transcription factors. These results suggest that PhIP has potential immunosuppressive effects by inhibiting T-cell proliferation and IL-2 expression through down regulation of ROS generation and thereby inhibiting NF-κB, AP-1 and NF-AT activation

  8. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  9. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Anthony M Szema

    Full Text Available Idiopathic pulmonary fibrosis (IPF and chronic obstructive pulmonary disease (COPD are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH. Nuclear Factor of Activated T-cells (NFAT is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1 VIP inhibits NFAT isoform c3 (NFATc3 activity in pulmonary vascular smooth muscle cells; 2 lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3 VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients

  10. Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells.

    Science.gov (United States)

    Lecendreux, Michel; Churlaud, Guillaume; Pitoiset, Fabien; Regnault, Armelle; Tran, Tu Anh; Liblau, Roland; Klatzmann, David; Rosenzwajg, Michelle

    2017-01-01

    Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1) has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination) to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA-) associated to an activated phenotype (increase in CD69 and CD25 expression) in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs) in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression), and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing), in NT1.

  11. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    Science.gov (United States)

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.

  12. Activated human CD4 T cells express transporters for both cysteine and cystine

    DEFF Research Database (Denmark)

    Levring, Trine Bøegh; Hansen, Ann Kathrine; Nielsen, Bodil Lisbeth

    2012-01-01

    Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous...... cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both...... cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell...

  13. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... Sudan. In addition, we measured the T cell surface expression of the interleukin-2 receptor (CD25) and the lymphocyte function-associated antigen (LFA-1; CD11a/CD18). We found that the plasma levels of all inflammation and activation markers were significantly increased in the malaria patients compared...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  14. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment

    OpenAIRE

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M.

    2015-01-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin...

  15. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    Science.gov (United States)

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells.

    Directory of Open Access Journals (Sweden)

    Michel Lecendreux

    Full Text Available Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1 has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (<110 pg/ml. This specific loss of hypocretin and the strong association with the HLA-DQB1*06:02 allele led to the hypothesis that NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA- associated to an activated phenotype (increase in CD69 and CD25 expression in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression, and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing, in NT1.

  17. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  18. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  19. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  20. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  1. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Hesse, D; Limborg, S

    2012-01-01

    , monocytes and dendritic cells (DC) in relation to disease activity in MS patients treated with GA. Methods: Flow cytometry was used to study the activation of CD4+ T cells and T cell subsets (CD25high and CD26high cells), monocytes and DCs in a cross-sectional study of 39 untreated and 29 GA-treated MS......Background: Treatment with glatiramer acetate (GA) modestly decreases disease activity in multiple sclerosis (MS). The mechanism of action is incompletely understood and differences in the response to treatment between individuals may exist. Objective: To study the activation of CD4+ T cells...... (Bonferroni-corrected p=0.0005). The hazard ratio of relapse was 1.32 (95% confidence interval 1.05–1.64) per 1% increase in CD40+ DCs. Patients treated with GA had fewer CD4+ T cells expressing surface markers associated with T helper type 1 effector responses and more CD4+ T cells expressing surface markers...

  2. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Science.gov (United States)

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.

    Science.gov (United States)

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-11-07

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young's modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. © 2017 Sawicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    Science.gov (United States)

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  5. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    Science.gov (United States)

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease.

    Science.gov (United States)

    Rojanathammanee, Lalida; Puig, Kendra L; Combs, Colin K

    2013-05-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P pomegranate extract-supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P pomegranate produces brain antiinflammatory effects that may attenuate AD progression.

  7. The Ratio of Blood T Follicular Regulatory Cells to T Follicular Helper Cells Marks Ectopic Lymphoid Structure Formation While Activated Follicular Helper T Cells Indicate Disease Activity in Primary Sjögren's Syndrome.

    Science.gov (United States)

    Fonseca, Valter R; Romão, Vasco C; Agua-Doce, Ana; Santos, Mara; López-Presa, Dolores; Ferreira, Ana Cristina; Fonseca, João Eurico; Graca, Luis

    2018-05-01

    To investigate whether the balance of blood follicular helper T (Tfh) cells and T follicular regulatory (Tfr) cells can provide information about ectopic lymphoid neogenesis and disease activity in primary Sjögren's syndrome (SS). We prospectively recruited 56 patients clinically suspected of having SS. Sixteen of these patients subsequently fulfilled the American-European Consensus Group criteria for SS and were compared to 16 patients with non-SS sicca syndrome. Paired blood and minor salivary gland (MSG) biopsy samples were analyzed to study Tfr cells and subsets of Tfh cells in both compartments. Patients with primary SS had normal Tfh cell counts in peripheral blood; however, activated programmed death 1-positive (PD-1+) inducible costimulator-positive (ICOS+) Tfh cells in peripheral blood were strongly associated with disease activity assessed by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (r = 0.8547, P = 0.0008). Conversely, the blood Tfr cell:Tfh cell ratio indicated ectopic lymphoid structure formation in MSGs, being strongly associated with B cell, CD4+ T cell, and PD-1+ICOS+ T cell infiltration in MSGs, and was especially increased in patients with focal sialadenitis. Further analysis showed that the blood Tfr cell:Tfh cell ratio allowed discrimination between SS patients and healthy donors with excellent accuracy and was a strong predictor of SS diagnosis (odds ratio [OR] 12.96, P = 0.028) and the presence of focal sialadenitis (OR 10, P = 0.022) in patients investigated for sicca symptoms, thus highlighting the potential clinical value of this marker. The blood Tfr cell:Tfh cell ratio and PD-1+ICOS+ Tfh cells constitute potential novel biomarkers for different features of primary SS. While the blood Tfr cell:Tfh cell ratio is associated with ectopic lymphoid neogenesis, activated Tfh cells indicate disease activity. © 2018, American College of Rheumatology.

  8. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK cells

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    2016-07-01

    Full Text Available Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulato-ry in vitro. In contrast, Staphylococcus aureus (S. aureus is known to induce excessive T cell activation. In this study we aimed to investigate S. aureus-induced activation of human muco-sal associated invariant T cells (MAIT cells, γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation.PBMC were cultured with S. aureus 161:2 cell free supernatant (CFS, staphylococcal en-terotoxin A or CD3/CD28-beads alone or in combination with Lactobacillus rhamnosus (L. rhamnosus GG-CFS or Lactobacillus reuteri (L. reuteri DSM 17938-CFS, and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Co-stimulation with lactobacilli-CFS dampened lymphocyte activation in all cell types analysed. Pre-incubation with lactobacilli-CFS was enough to reduce subsequent activation and the ab-sence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Final-ly, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in modulation of induced T and NK cell activation.

  9. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Yuki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Katayama, Akiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Nakano, Toshiaki [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Yamanaka, Yasushi; Takahashi, Miki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Shimada, Yayoi; Chiang, Kuei-Chen [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Ohmori, Naoya [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Aki, Tsunehiro [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Goto, Takeshi; Sato, Shuji [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Goto, Shigeru [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Iwao Hospital, Yufuin (Japan); Chen, Chao-Long [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Ono, Kazuhisa [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan)

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  10. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    International Nuclear Information System (INIS)

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-01-01

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4 + Foxp3 + Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings

  11. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    -Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58......) in addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-beta and -gamma chain expression within 24 hr after removal from the coculture. It is concluded that the cultured human adult and foetal RPE cells inhibit the proliferation of activated T cells by a process that does not involve apoptosis. It depends on cell contact but the involved surface molecules were...

  12. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals

    International Nuclear Information System (INIS)

    Tong-Starksen, S.E.; Luciw, P.A.; Peterlin, B.M.

    1987-01-01

    Human immunodeficiency virus (HIV), the causative agent of AIDS, infects and kills lymphoid cells bearing the CD4 antigen. In an infected cell, a number of cellular as well as HIV-encoded gene products determine the levels of viral gene expression and HIV replication. Efficient HIV replication occurs in activated T cells. Utilizing transient expression assays, the authors show that gene expression directed by the HIV long terminal repeat (LTR) increases in response to T-cell activation signals. The effects of T-cell activation and of the HIV-encoded trans-activator (TAT) are multiplicative. Analysis of mutations and deletions in the HIV LTR reveals that the region responding to T-cell activation signals is located at positions -105 to -80. These sequences are composed of two direct repeats, which are homologous to the core transcriptional enhancer elements in the simian virus 40 genome. The studies reveal that these elements function as the HIV enhancer. By acting directly on the HIV LTR, T-cell activation may play an important role in HIV gene expression and in the activation of latent HIV

  13. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  14. Vav1 GEF activity is required for T cell mediated allograft rejection.

    Science.gov (United States)

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L J; Weckbecker, Gisbert

    2012-06-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A ROLE FOR INTERLEUKIN 8 IN DIRECT REGULATION OF T CELL FUNCTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. E. Meniailo

    2017-01-01

    Full Text Available CD3+T lymphocytes were isolated from normal donors by positive magnetic separation. Activation of the T cells with particles conjugated with antibodies to CD3, СD28 and СD2 molecules led to substantial increase in T cell production of interleukin-8 (IL-8. An interleukin-8 receptor (CXCR1, CD181 was initially expressed in 13.3% of T lymphocytes. Activation of T lymphocytes resulted into a detectable increase of CD181+ cell number among CD4+ naïve cells and CD4+ terminally-differentiated effector cells, and, conversely, into decrease of their number among CD4+ effector memory cells. Activation of T lymphocytes was assessed by membrane expression of CD25 molecule (receptor for IL-2. IL-8 (0.01-10.0 ng/ml was shown to markedly reduce activation of both CD4- and CD4+ effector memory T cells, as well as terminallydifferentiated T effectors, without significantly affecting activation of naive T lymphocytes and central memory T cells. IL-8 noticeably increased IL-2 production by activated Т cells, caused a reduced IL-10 production, and did not significantly affect the secretion of IFNγ and IL-4. The data obtained suggest a significance of IL-8 for direct regulation of adaptive T cell responses.

  16. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise [Department of Biological Sciences, Boise State University, Boise, ID 83725 (United States); Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew [Department of Physics, Boise State University, Boise, ID 83725 (United States)], E-mail: denisewingett@boisestate.edu

    2008-07-23

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells ({approx}28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity.

  17. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    International Nuclear Information System (INIS)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise; Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew

    2008-01-01

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (∼28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity

  18. Function of the Nucleotide Exchange Activity of Vav1 in T cell Development and Activation*

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J.; Rittinger, Katrin; Tybulewicz, Victor L. J.

    2012-01-01

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal–regulated kinase (ERK) and protein kinase D1 (PKD1), and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions. PMID:20009105

  19. Function of the nucleotide exchange activity of vav1 in T cell development and activation.

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J; Rittinger, Katrin; Tybulewicz, Victor L J

    2009-12-15

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.

  20. Diclofenac protects cultured human corneal epithelial cells against hyperosmolarity and ameliorates corneal surface damage in a rat model of dry eye.

    Science.gov (United States)

    Sawazaki, Ryoichi; Ishihara, Tomoaki; Usui, Shinya; Hayashi, Erika; Tahara, Kayoko; Hoshino, Tatsuya; Higuchi, Akihiro; Nakamura, Shigeru; Tsubota, Kazuo; Mizushima, Tohru

    2014-04-21

    Dry eye syndrome (DES) is characterized by an increase in tear osmolarity and induction of the expression and nuclear localization of an osmoprotective transcription factor (nuclear factor of activated T-cells 5 [NFAT5]) that plays an important role in providing protection against hyperosmotic tears. In this study, we screened medicines already in clinical use with a view of finding compounds that protect cultured human corneal epithelial cells against hyperosmolarity-induced cell damage. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and cellular NFAT5 level was measured by immunoblotting. The rat model for DES was developed by removal of the lacrimal glands, with an assessment of corneal surface damage based on levels of fluorescein staining and epithelial apoptosis. Some nonsteroidal anti-inflammatory drugs (NSAIDs), including diclofenac sodium (diclofenac), were identified during the screening procedure. These NSAIDs were able to suppress hyperosmolarity-induced apoptosis and cell growth arrest. In contrast, other NSAIDs, including bromfenac sodium (bromfenac), did not exert such a protective action. Treatment of cells with diclofenac, but not bromfenac, stimulated both the nuclear localization and expression of NFAT5 under hyperosmotic conditions. In the rat model for DES, topical administration of diclofenac (but not bromfenac) to eyes reduced corneal surface damage without affecting the volume of tear fluid. Diclofenac appears to protect cells against hyperosmolarity-induced cell damage and NFAT5 would play an important role in this protective action. The findings reported here may also indicate that the topical administration of diclofenac to eyes may be therapeutically beneficial for DES patients.

  1. Pomegranate Polyphenols and Extract Inhibit Nuclear Factor of Activated T-Cell Activity and Microglial Activation In Vitro and in a Transgenic Mouse Model of Alzheimer Disease123

    Science.gov (United States)

    Rojanathammanee, Lalida; Puig, Kendra L.; Combs, Colin K.

    2013-01-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P pomegranate extract–supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P pomegranate produces brain antiinflammatory effects that may attenuate AD progression. PMID:23468550

  2. Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B.

    Directory of Open Access Journals (Sweden)

    Pierre Mouchacca

    Full Text Available To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI mice expressing Granzyme B (GZMB as a fusion protein with red fluorescent tdTomato (GZMB-Tom. As for GZMB in wild type (WT lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells' plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC, as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo.

  3. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    Science.gov (United States)

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  4. Transcriptional activation of prostate specific homeobox gene NKX3-1 in subsets of T-cell lymphoblastic leukemia (T-ALL.

    Directory of Open Access Journals (Sweden)

    Stefan Nagel

    Full Text Available Homeobox genes encode transcription factors impacting key developmental processes including embryogenesis, organogenesis, and cell differentiation. Reflecting their tight transcriptional control, homeobox genes are often embedded in large non-coding, cis-regulatory regions, containing tissue specific elements. In T-cell acute lymphoblastic leukemia (T-ALL homeobox genes are frequently deregulated by chromosomal aberrations, notably translocations adding T-cell specific activatory elements. NKX3-1 is a prostate specific homeobox gene activated in T-ALL patients expressing oncogenic TAL1 or displaying immature T-cell characteristics. After investigating regulation of NKX3-1 in primary cells and cell lines, we report its ectopic expression in T-ALL cells independent of chromosomal rearrangements. Using siRNAs and expression profiling, we exploited NKX3-1 positive T-ALL cell lines as tools to investigate aberrant activatory mechanisms. Our data confirmed NKX3-1 activation by TAL1/GATA3/LMO and identified LYL1 as an alternative activator in immature T-ALL cells devoid of GATA3. Moreover, we showed that NKX3-1 is directly activated by early T-cell homeodomain factor MSX2. These activators were regulated by MLL and/or by IL7-, BMP4- and IGF2-signalling. Finally, we demonstrated homeobox gene SIX6 as a direct leukemic target of NKX3-1 in T-ALL. In conclusion, we identified three major mechanisms of NKX3-1 regulation in T-ALL cell lines which are represented by activators TAL1, LYL1 and MSX2, corresponding to particular T-ALL subtypes described in patients. These results may contribute to the understanding of leukemic transcriptional networks underlying disturbed T-cell differentiation in T-ALL.

  5. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells.

    Directory of Open Access Journals (Sweden)

    Ryunosuke Muro

    Full Text Available The Ras-mitogen-activated protein kinase (MAPK pathway is crucial for T cell receptor (TCR signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3 is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.

  6. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  7. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  8. Virus-induced polyclonal T cell activation is followed by apoptosis: partitioning of CD8+ T cells based on alpha 4 integrin expression

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Röpke, C; Thomsen, Allan Randrup

    1996-01-01

    that LCMV-induced activation of T cells is followed by apoptosis of many of the activated cells. Those CD8+VLA-4hi cells which do persist in LCMV immune mice are more sensitive to treatment with the cell-cycle-specific drug hydroxyurea than are phenotypically naive T cells. Our results therefore indicate...

  9. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity

    Directory of Open Access Journals (Sweden)

    Verhoef Adrienne

    2005-01-01

    Full Text Available Background Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils. Methods and Findings In this study we address the mechanism of action of peptide immunotherapy (PIT in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs. Conclusion This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.

  10. Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.

    Science.gov (United States)

    Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender

    2016-12-01

    Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Interferon-alpha administration enhances CD8+ T cell activation in HIV infection.

    Directory of Open Access Journals (Sweden)

    Maura Manion

    Full Text Available Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation.To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment.The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006. These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy. As plasma HIV levels fell with interferon therapy, this was correlated with a "paradoxical" increase in CD8+ T cell activation (p<0.001.Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection.

  12. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  13. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  14. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. ©2015 American Association for Cancer Research.

  15. Peripheral blood T cell activation after radioiodine treatment for graves' disease

    International Nuclear Information System (INIS)

    Teng Weiping; Weetman, A.P.

    1992-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cells subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dual-colour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR (Ia) and CDW 26/Ta 1 (P<0.025 in both case). CD45RO-positive T cells, which are the prime population containing memory cells, also increased (P<0.025), but there was no change in CD45R-positive, resting cells or in the CD4/CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contra-suppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (P<0.025). The change did not appear to be related to antithyroid drugs treatment, since they were seen irrespective of whether patients convinced such therapy. These results suggest that T cell activation and enhanced contra-suppressor activity may in part be responsible for the rise in autoantibodies after radioiodine therapy

  16. Ligand mobility modulates immunological synapse formation and T cell activation.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Hsu

    Full Text Available T cell receptor (TCR engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70 and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76. This molecular rearrangement results in formation of the immunological synapse (IS, a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca(2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses.

  17. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    Science.gov (United States)

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  18. βig-h3 Represses T-Cell Activation in Type 1 Diabetes.

    Science.gov (United States)

    Patry, Maeva; Teinturier, Romain; Goehrig, Delphine; Zetu, Cornelia; Ripoche, Doriane; Kim, In-San; Bertolino, Philippe; Hennino, Ana

    2015-12-01

    βig-h3/TGF-βi is a secreted protein capable of binding to both extracellular matrix and cells. Human genetic studies recently revealed that in the tgfbi gene encoding for βig-h3, three single nucleotide polymorphisms were significantly associated with type 1 diabetes (T1D) risk. Pancreatic islets express βig-h3 in physiological conditions, but this expression is reduced in β-cell insult in T1D. Since the integrity of islets is destroyed by autoimmune T lymphocytes, we thought to investigate the impact of βig-h3 on T-cell activation. We show here that βig-h3 inhibits T-cell activation markers as well as cytotoxic molecule production as granzyme B and IFN-γ. Furthermore, βig-h3 inhibits early T-cell receptor signaling by repressing the activation of the early kinase protein Lck. Moreover, βig-h3-treated T cells are unable to induce T1D upon transfer in Rag2 knockout mice. Our study demonstrates for the first time that T-cell activation is modulated by βig-h3, an islet extracellular protein, in order to efficiently avoid autoimmune response. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  20. Opposing roles for RhoH GTPase during T-cell migration and activation

    Science.gov (United States)

    Baker, Christina M.; Comrie, William A.; Hyun, Young-Min; Chung, Hung-Li; Fedorchuk, Christine A.; Lim, Kihong; Brakebusch, Cord; McGrath, James L.; Waugh, Richard E.; Meier-Schellersheim, Martin; Kim, Minsoo

    2012-01-01

    T cells spend the majority of their time perusing lymphoid organs in search of cognate antigen presented by antigen presenting cells (APCs) and then quickly recirculate through the bloodstream to another lymph node. Therefore, regulation of a T-cell response is dependent upon the ability of cells to arrive in the correct location following chemokine gradients (“go” signal) as well as to receive appropriate T-cell receptor (TCR) activation signals upon cognate antigen recognition (“stop” signal). However, the mechanisms by which T cells regulate these go and stop signals remain unclear. We found that overexpression of the hematopoietic-specific RhoH protein in the presence of chemokine signals resulted in decreased Rap1–GTP and LFA-1 adhesiveness to ICAM-1, thus impairing T-cell chemotaxis; while in the presence of TCR signals, there were enhanced and sustained Rap1–GTP and LFA-1 activation as well as prolonged T:APC conjugates. RT-PCR analyses of activated CD4+ T cells and live images of T-cell migration and immunological synapse (IS) formation revealed that functions of RhoH took place primarily at the levels of transcription and intracellular distribution. Thus, we conclude that RhoH expression provides a key molecular determinant that allows T cells to switch between sensing chemokine-mediated go signals and TCR-dependent stop signals. PMID:22689994

  1. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  2. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation.

    Science.gov (United States)

    Graessel, Anke; Hauck, Stefanie M; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B; Suttner, Kathrin

    2015-08-01

    Naive CD4(+) T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4(+) T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4(+) T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4(+) T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4(+) T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Allopurinol reduces antigen-specific and polyclonal activation of human T cells

    Directory of Open Access Journals (Sweden)

    Damián ePérez-Mazliah

    2012-09-01

    Full Text Available Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases.

  4. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    NARCIS (Netherlands)

    Hammink, R.; Mandal, S.; Eggermont, L.J.; Nooteboom, M.; Willems, P.H.G.M.; Tel, J.; Rowan, A.E.; Figdor, C.G.; Blank, K.G.

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we

  5. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  6. Versatile strategy for controlling the specificity and activity of engineered T cells

    Science.gov (United States)

    Ma, Jennifer S. Y.; Kim, Ji Young; Kazane, Stephanie A.; Choi, Sei-hyun; Yun, Hwa Young; Kim, Min Soo; Rodgers, David T.; Pugh, Holly M.; Singer, Oded; Sun, Sophie B.; Fonslow, Bryan R.; Kochenderfer, James N.; Wright, Timothy M.; Schultz, Peter G.; Young, Travis S.; Kim, Chan Hyuk; Cao, Yu

    2016-01-01

    The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR–T-cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as “switch” molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a “universal” anti-FITC–directed CAR-T cell. Optimization of this CAR–switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR–T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy. PMID:26759368

  7. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  8. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  9. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  10. Peripheral blood T cell activation after radioiodine treatment for Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Teng; Stark, R.; Borysiewicz, L.K.; Weetman, A.P. (Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke' s Hospital, Cambridge (UK)); Munro, A.J. (Department of Clinical Oncology, Hammersmith Hospital, London (UK)); McHardy Young, S. (Department of Medicine, Central Middlesex Hospital, London (UK))

    1990-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cell subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dualcolour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR(la) and CDw26/Tal (p<0.025 in both cases). CD45RO-positive T cells, which are the primed population containing memory cells, also increased (p<0.025), but there was no change in CD45R-positive, resting T cells or in the CD4 to CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contrasuppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (p<0.025). The changes did not appear to be related to antithyroid drug treatment, since they were seen irrespective of whether patients continued such therapy. These results suggest that T cell activation and enhanced contrasuppressor activity may in part be responsible for the rise in autoantibodies after radioiodine. The T cell changes could also contribute to the worsening of ophthalmopathy seen in some radioiodine-treated patients. (author).

  11. Immunometabolic Activation of Invariant Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Francesca A. Ververs

    2018-05-01

    Full Text Available Invariant natural killer T (iNKT cells are lipid-reactive T cells with profound immunomodulatory potential. They are unique in their restriction to lipid antigens presented in CD1d molecules, which underlies their role in lipid-driven disorders such as obesity and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation to immunometabolic disease, metabolic programming of lipid antigen presentation, and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in immunometabolic disease. Second, we discuss the effects of cellular metabolism on lipid antigen processing and presentation to iNKT cells. The synthesis and processing of glycolipids and other potential endogenous lipid antigens depends on metabolic demand and may steer iNKT cells toward adopting a Th1 or Th2 signature. Third, external signals such as toll-like receptor ligands, adipokines, and cytokines modulate antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the relevance of metabolic programming of iNKT cells in human disease, focusing on their role in disorders such as obesity and atherosclerosis. The critical response to metabolic changes places iNKT cells at the helm of immunometabolic disease.

  12. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    Science.gov (United States)

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-03-31

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  13. Micro–adhesion rings surrounding TCR microclusters are essential for T cell activation

    Science.gov (United States)

    Sakuma, Machie; Yokosuka, Tadashi

    2016-01-01

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  14. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  15. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    International Nuclear Information System (INIS)

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-01-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy

  16. Regulatory role of neuron-restrictive silencing factor in expression of TRPC1

    International Nuclear Information System (INIS)

    Ohba, Takayoshi; Watanabe, Hiroyuki; Takahashi, Yoichiro; Suzuki, Takashi; Miyoshi, Ichiro; Nakayama, Shinnsuke; Satoh, Eisaku; Iino, Kenji; Sasano, Hironobu; Mori, Yasuo; Kuromitsu, Sadao; Imagawa, Keiichi; Saito, Yoshihiko; Iijima, Toshihiko; Ito, Hiroshi; Murakami, Manabu

    2006-01-01

    Neuron-restrictive silencer factor (NRSF) binds its consensus element to repress the transcription of various genes. The dominant-negative form (dnNRSF) has a hypertrophic effect on cardiogenesis through an unidentified mechanism. We examined the involvement of transient receptor potential (TRP) channel proteins, using transgenic mice overexpressing dnNRSF (dnNRSF mice). Electrophoretic mobility-shift assays revealed an interaction between NRSF and a neuron-restrictive silencer element-like sequence in intron 4 of TRPC1 genomic DNA. According to RT-PCR and Western analyses, TRPC1 was up-regulated in dnNRSF mouse heart. Transient overexpression of TRPC1 in HEK 293T cells increased the activity of the nuclear factor in activated T cells (NFAT) promoter and stimulated store-operated Ca 2+ channel (SOCC)-mediated Ca 2+ entry. Transfection of TRPC1 into primary cardiomyocytes increased NFAT activity, indicating a major role for TRPC1 in NFAT activation. Our findings strongly suggest that NRSF regulates TRP1 gene expression and causes changes in the levels of calcium entry through SOCCs

  17. Myeloid-Derived Suppressor Cells Specifically Suppress IFN-γ Production and Antitumor Cytotoxic Activity of Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    2018-06-01

    Full Text Available γδ T cells represent less than 5% of circulating T cells; they exert a potent cytotoxic function against tumor or infected cells and secrete cytokines like conventional αβ T cells. As αβ T cells γδ T cells reside in the typical T cell compartments (the lymph nodes and spleen, but are more widely distributed in tissues throughout the body. For these reasons, some investigators are exploring the possibility of immunotherapies aimed to expand and activate Vδ2 T cells, or using them as Chimeric Antigen Receptor carriers. However, the role of immunosuppressive microenvironment on Vδ2 T cells during infections and cancers has not been completely elucidated. In particular, the effects of myeloid-derived suppressor cells (MDSC, largely expanded in such pathologies, were not explored. In the present work, we demonstrated that MDSC may inhibit IFN-γ production and degranulation of phosphoantigen-activated Vδ2 T cells. Moreover, the Vδ2 T cells cytotoxic activity against the Burkitt lymphoma cell line Daudi and Jurkat cell line were impaired by MDSC. The Arginase I seems to be involved in the impairment of Vδ2 T cell function induced by both tumor cells and MDSC. These data open a key issue in the context of Vδ2-targeted immunoteraphy, suggesting the need of combined strategies aimed to boost Vδ2 T cells circumventing tumor- and MDSC-induced Vδ2 T cells suppression.

  18. Maraviroc is associated with latent HIV-1 reactivation through NF-κB activation in resting CD4+ T cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy.

    Science.gov (United States)

    Madrid-Elena, Nadia; García-Bermejo, María Laura; Serrano-Villar, Sergio; Díaz-de Santiago, Alberto; Sastre, Beatriz; Gutiérrez, Carolina; Dronda, Fernando; Coronel Díaz, María; Domínguez, Ester; López-Huertas, María Rosa; Hernández-Novoa, Beatriz; Moreno, Santiago

    2018-02-14

    Maraviroc is a CCR5 antagonist used in the treatment of HIV-1 infection. We and others have suggested that maraviroc could reactivate latent HIV-1. To test the latency reversing potential of maraviroc and the mechanisms involved, we performed a phase-II, single-center, open-label study in which maraviroc was administered for 10 days to 20 HIV-1-infected individuals on suppressive antiretroviral therapy (Eudra CT: 2012-003215-66). All patients completed full maraviroc dosing and follow up. The primary endpoint was to study whether maraviroc may reactivate HIV-1 latency, eliciting signalling pathways involved in the viral reactivation. An increase in HIV-1 transcription in resting CD4 + T-cells, estimated by HIV-1 unspliced RNA, was observed. Moreover, activation of the NF-κB transcription factor was observed in these cells. In contrast, AP-1 and NFAT activity was not detected. To elucidate the mechanism of NF-κB activation by maraviroc, we have evaluated in HeLa P4 C5 cells, which stably express CCR5, if maraviroc could be acting as a partial CCR5-agonist, with no other mechanisms or pathways involved. Our results show that maraviroc can induce NF-κB activity and NF-κB target genes expression by CCR5 binding, since the use of TAK779, a CCR5 inhibitor, blocked NF-κB activation and functionality. Taken together, we show that maraviroc may have a role in the activation of latent virus transcription through the activation of NF-κB as a result of binding CCR5. Our results strongly support a novel use of maraviroc as a potential latency reversal agent in HIV-1-infected patients. IMPORTANCE HIV-1 persistence in a small pool of long-lived latently infected resting CD4 + T-cells is a major barrier to viral eradication in HIV-1-infected patients on antiretroviral therapy. A potential strategy to cure HIV-1-infection is the use of latency reversing agents to eliminate the reservoirs established in resting CD4 + T-cells. As no drug has been shown to be completely

  19. Cutting edge: CD95 maintains effector T cell homeostasis in chronic immune activation

    NARCIS (Netherlands)

    Arens, Ramon; Baars, Paul A.; Jak, Margot; Tesselaar, Kiki; van der Valk, Martin; van Oers, Marinus H. J.; van Lier, René A. W.

    2005-01-01

    The elimination of activated T cells is important to maintain homeostasis and avoid immunopathology. CD95 (Fas/APO-1) has been identified as a death mediator for activated T cells in vitro but the function of CD95 in death of mature T cells in vivo is still controversial. Here we show that

  20. Roles of calpain-calpastatin system (CCS) in human T cell activation.

    Science.gov (United States)

    Mikosik, Anna; Jasiulewicz, Aleksandra; Daca, Agnieszka; Henc, Izabella; Frąckowiak, Joanna E; Ruckemann-Dziurdzińska, Katarzyna; Foerster, Jerzy; Le Page, Aurelie; Bryl, Ewa; Fulop, Tamas; Witkowski, Jacek M

    2016-11-22

    The immune response is determined by the speed of the T cell reaction to antigens assured by a state of readiness for proliferation and cytokine secretion. Proliferation, apoptosis and motion of many cell types are controlled by cytoplasmic proteases - µ- and m-calpain - and their inhibitor calpastatin, together forming the "calpain-calpastatin system" (CCS), assumed to modify their targets only upon activation-dependent cytoplasmic Ca2+ increase. Contrastingly to this notion, using quantitative real time PCR and semiquantitative flow cytometry respectively, we show here that the CCS genes are constitutively expressed, and that both calpains are constitutively active in resting, circulating human CD4+ and CD8+ lymphocytes. Furthermore, we demonstrate that calpain inhibition in the resting T cells prevents them from proliferation in vitro and greatly reduces secretion of multiple cytokines. The mechanistic reason for these effects of calpain inhibition on T cell functions might be the demonstrated significant reduction of the expression of active (phosphorylated) upstream signalling molecules, including the phospholipase C gamma, p56Lck and NFκB, in the inhibitor-treated cells. Thus, we propose that the constitutive, self-regulatory calpain-calpastatin system activity in resting human T cells is a necessary, controlling element of their readiness for complex and effective response to antigenic challenge.

  1. Activated T cells can induce high levels of CTLA-4 expression on B cells

    NARCIS (Netherlands)

    Kuiper, H. M.; Brouwer, M.; Linsley, P. S.; van Lier, R. A.

    1995-01-01

    Engagement of the TCR/CD3 complex together with ligation of CD28 by its counterstructures B7-1 (CD80) and B7-2 (CD86) on APC are required for mitogenic T cell activation. After activation, T cells not only express B7-1 and B7-2 molecules, but a second receptor for the B7 ligands, CTLA-4, can be

  2. Innate Effector-Memory T-Cell Activation Regulates Post-Thrombotic Vein Wall Inflammation and Thrombus Resolution.

    Science.gov (United States)

    Luther, Natascha; Shahneh, Fatemeh; Brähler, Melanie; Krebs, Franziska; Jäckel, Sven; Subramaniam, Saravanan; Stanger, Christian; Schönfelder, Tanja; Kleis-Fischer, Bettina; Reinhardt, Christoph; Probst, Hans Christian; Wenzel, Philip; Schäfer, Katrin; Becker, Christian

    2016-12-09

    Immune cells play an important role during the generation and resolution of thrombosis. T cells are powerful regulators of immune and nonimmune cell function, however, their role in sterile inflammation in venous thrombosis has not been systematically examined. This study investigated the recruitment, activation, and inflammatory activity of T cells in deep vein thrombosis and its consequences for venous thrombus resolution. CD4 + and CD8 + T cells infiltrate the thrombus and vein wall rapidly on deep vein thrombosis induction and remain in the tissue throughout the thrombus resolution. In the vein wall, recruited T cells largely consist of effector-memory T (T EM ) cells. Using T-cell receptor transgenic reporter mice, we demonstrate that deep vein thrombosis-recruited T EM receive an immediate antigen-independent activation and produce IFN-γ (interferon) in situ. Mapping inflammatory conditions in the thrombotic vein, we identify a set of deep vein thrombosis upregulated cytokines and chemokines that synergize to induce antigen-independent IFN-γ production in CD4 + and CD8 + T EM cells. Reducing the number of T EM cells through a depletion recovery procedure, we show that intravenous T EM activation determines neutrophil and monocyte recruitment and delays thrombus neovascularization and resolution. Examining T-cell recruitment in human venous stasis, we show that superficial varicose veins preferentially contain activated memory T cells. T EM orchestrate the inflammatory response in venous thrombosis affecting thrombus resolution. © 2016 American Heart Association, Inc.

  3. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    Science.gov (United States)

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  4. Altered Intracellular ATP Production by Activated CD4+ T-Cells in Very Preterm Infants

    Directory of Open Access Journals (Sweden)

    Giulia Aquilano

    2016-01-01

    Full Text Available Background. The neonatal immune system is not fully developed at birth; newborns have adequate lymphocytes counts but these cells lack function. Objective. To assess the activity of T-cells and the influence of the main perinatal factors in very preterm infants (birth weight < 1500 g. Design. Blood samples from 59 preterm infants (21/59 were dizygotic twins were collected at birth and at 30 days of life to measure CD4+ T-cell activity using the ImmuKnow™ assay. Fifteen healthy adults were included as a control group. Results. CD4+ T-cell activity was lower in VLBW infants compared with adults (p<0.001. Twins showed lower immune activity compared to singletons (p=0.005. Infants born vaginally showed higher CD4+ T-cell activity compared to those born by C-section (p=0.031; infants born after prolonged Premature Rupture of Membranes (pPROM showed higher CD4+ T-cell activity at birth (p=0.002 compared to infants born without pPROM. Low CD4+ T-cell activity at birth is associated with necrotizing enterocolitis (NEC in the first week of life (p=0.049. Conclusions. Preterm infants show a lack in CD4+ T-cell activity at birth. Perinatal factors such as intrauterine inflammation, mode of delivery, and zygosity can influence the adaptive immune activation capacity at birth and can contribute to exposing these infants to serious complications such as NEC.

  5. T cell activity in successful treatment of chronic urticaria with omalizumab

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruperto

    2011-07-01

    Full Text Available Abstract Omalizumab, a humanized monoclonal anti-IgE antibody has the potential to alter allergen processing. Recently, it has been postulated the assessment of PHA-stimulated adenosine triphosphate (ATP activity as maker of CD4+ T cells activity in peripheral blood cells. We present the case report of a 35-year-old woman with a history of chronic idiopathic urticaria and angioedema of 8 years of development with poor response to treatment. The patient was partially controlled with cyclosporine at doses of 100 mg/12 h. However, she was still developing hives daily. Finally treatment with omalizumab was started at dose of 300 mg every 2 weeks. The patient experienced a decrease in urticarial lesions 2 days after starting therapy. We also evaluated the effects of omalizumab therapy on the activity of peripheral blood CD4+ T cells from the patient, in order to determine the potential modification of anti-IgE therapy on the process of antigen presentation-recognition. Activity of CD4+ cells by ATP release was clearly increased demonstrating an enlarged CD4 activity. Omalizumab may be useful in the treatment of severe chronic urticaria. ATP activity of peripheral blood CD4+ T cells might be a non-subjective method to assess Omalizumab activity.

  6. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression of chemo......Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression...

  7. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  8. Dermal γδ T-Cells Can Be Activated by Mitochondrial Damage-Associated Molecular Patterns.

    Directory of Open Access Journals (Sweden)

    Martin G Schwacha

    Full Text Available Gamma delta T-cells have been shown to be important to the early immunoinflammatory response to injury, independent of infection. This unique T-cell population acts to regulate cell trafficking and the release of cytokines and growth factors. We propose this sterile inflammatory response is in part associated with damage associated molecular patterns (DAMPs generated by major injury, such as burn, and mediated via toll-like receptors (TLRs. It is unknown whether DAMPs can activate resident γδ T-cells that reside in skin.Gamma delta T-cells were isolated from the skin of male C57BL/6 mice by enzymatic digestion. Mitochondrial DAMPs (MTDs were generated from mitochondria isolated from mouse livers by sonication and centrifugation. Dermal γδ T-cells were incubated with MTDs (0-500 μg/ml for 24 hr and cells and supernatants were collected for analysis.MTDs activated dermal γδ T-cells, as evidenced by increased TLR2 and TLR4 expression following in vitro exposure. MTDs also induced the production of inflammatory cytokines (IL-1β, IL-6, and growth factors (PDGF and VEGF by γδ T-cells.These findings herein support the concept that MTDs released after tissue/cellular injury are capable of activating dermal γδ T-cells. We propose that the activation of this unique T-cell population is central in the initiation of sterile inflammation and also contributes to the subsequent healing processes.

  9. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling.

    Directory of Open Access Journals (Sweden)

    Jessica Wahlgren

    Full Text Available It has previously been shown that nano-meter sized vesicles (30-100 nm, exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3⁺ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3⁺ T cells have on resting CD3⁺ T cells by studying T cell proliferation, cytokine production and by performing T cell and exosome phenotype characterization. Human exosomes were generated in vitro following CD3⁺ T cell stimulation with anti-CD28, anti-CD3 and IL-2. Our results show that exosomes purified from stimulated CD3⁺ T cells together with IL-2 were able to generate proliferation in autologous resting CD3⁺ T cells. The CD3⁺ T cells stimulated with exosomes together with IL-2 had a higher proportion of CD8⁺ T cells and had a different cytokine profile compared to controls. These results indicate that activated CD3⁺ T cells communicate with resting autologous T cells via exosomes.

  10. Nocardia rubra cell-wall skeleton promotes CD4+ T cell activation and drives Th1 immune response.

    Science.gov (United States)

    Wang, Guangchuan; Wu, Jie; Miao, Miao; Dou, Heng; Nan, Ning; Shi, Mingsheng; Yu, Guang; Shan, Fengping

    2017-08-01

    Several lines of evidences have shown that Nocardia rubra cell wall skeleton (Nr-CWS) has immunoregulatory and anti-tumor activities. However, there is no information about the effect of Nr-CWS on CD4 + T cells. The aim of this study was to explore the effect of Nr-CWS on the phenotype and function of CD4 + T cells. Our results of in vitro experiments showed that Nr-CWS could significantly up-regulate the expression of CD69 and CD25 on CD4 + T cells, promote the proliferation of CD4 + T cells, increase the production of IFN-γ, TNF-α and IL-2 in the supernatants, but has no significant effect on the apoptosis and death of CD4 + T cells. Results of in vivo experiments showed that Nr-CWS could promote the proliferation of CD4 + T cells, and increase the production of IL-2, IFN-γ and TNF-α (Th1 type cytokines). These data suggest that Nr-CWS can enhance the activation of CD4 + T cells, promote the proliferation of CD4 + T cells and the differentiation of CD4 + T cells to Th1 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    Science.gov (United States)

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  12. Co-stimulation by anti-immunoglobulin is required for B cell activation by CD40Llow T cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    cell Ag specificity by using anti-CD3/T cell receptor (TcR) monoclonal antibodies (mAb) to activate T cells. To study the role of sIg engagement in the responsiveness of B cells to T help, we pre-treated small resting B cells with soluble anti-kappa mAb prior to contact with an activated Th1 clone...... strongly. Low buoyant density B cells also responded to CD40Llow Th cells. There was no B cell response to resting Th cells. mAb against CD54/intercellular adhesion molecule-1 or major histocompatibility complex (MHC) class II completely inhibited B cell responses to CD40Llow Th1 cells, equivalent...

  13. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  14. Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody.

    Science.gov (United States)

    Fox, D A; Hussey, R E; Fitzgerald, K A; Acuto, O; Poole, C; Palley, L; Daley, J F; Schlossman, S F; Reinherz, E L

    1984-09-01

    By using a murine monoclonal antibody produced against an IL 2-dependent human T cell line, we defined a T lineage-specific molecule, termed Ta1, that is expressed strongly on activated T lymphocytes of both the T4 and T8 subsets, as well as on T cell lines and clones, but only weakly on a fraction of resting T cells. SDS-PAGE analysis of immunoprecipitates from 125I-labeled, activated T cells demonstrates a single major band of apparent m.w. 105 KD under both reducing and nonreducing conditions. Unlike anti-IL 2 receptor antibodies, anti-Ta1 does not inhibit T cell proliferative responses to mitogen, antigen, or IL 2-containing medium. Moreover, anti-Ta1 has no effect on T cell-mediated cytotoxicity. Ta1 appears to be a novel human T cell-specific activation antigen that may serve as a useful marker of T cell activation in human disease.

  15. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    International Nuclear Information System (INIS)

    Sackmann, Erich

    2011-01-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  16. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  17. Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wu

    Full Text Available Greater than 75% of all hematologic malignancies derive from germinal center (GC or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID, GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR. Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.

  18. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  19. Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death.

    Science.gov (United States)

    Klemke, Claus-Detlev; Brenner, Dirk; Weiss, Eva-Maria; Schmidt, Marc; Leverkus, Martin; Gülow, Karsten; Krammer, Peter H

    2009-05-15

    Restimulation of previously activated T cells via the T-cell receptor (TCR) leads to activation-induced cell death (AICD), which is, at least in part, dependent on the death receptor CD95 (APO-1, FAS) and its natural ligand (CD95L). Here, we characterize cutaneous T-cell lymphoma (CTCL) cells (CTCL tumor cell lines and primary CTCL tumor cells from CTCL patients) as AICD resistant. We show that CTCL cells have elevated levels of the CD95-inhibitory protein cFLIP. However, cFLIP is not responsible for CTCL AICD resistance. Instead, our data suggest that reduced TCR-proximal signaling in CTCL cells is responsible for the observed AICD resistance. CTCL cells exhibit no PLC-gamma1 activity, resulting in an impaired Ca(2+)release and reduced generation of reactive oxygen species upon TCR stimulation. Ca(2+) and ROS production are crucial for up-regulation of CD95L and reconstitution of both signals resulted in AICD sensitivity of CTCL cells. In accordance with these data, CTCL tumor cells from patients with Sézary syndrome do not up-regulate CD95L upon TCR-stimulation and are therefore resistant to AICD. These results show a novel mechanism of AICD resistance in CTCL that could have future therapeutic implications to overcome apoptosis resistance in CTCL patients.

  20. Requirement for noncognate interaction with T cells for the activation of B cell immunoglobulin secretion by IL-2

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    23.1+ TH1 clone E9.D4 in F23.1 (anti-T cell receptor V-beta 8)-coated microwells. This induced polyclonal B cell activation to enter cell cycle (thymidine incorporation) at 2 days and to secrete immunoglobulin at 5 days. An anti-IL-2 mAb (S4B6) inhibited antibody production completely. Anti-IL-2 did......The mechanism whereby noncognate contact with activated IL-2-producing Type 1 helper T cells (TH1) induces B cell activation was examined. Small resting B cells from C57B1/6 mice were cultured, in the absence of any ligand for surface Ig, with irradiated cells of the hapten-specific, CBA-derived, F...... not inhibit either LPS-induced B cell responses, or T cell activation (measured as IL-3 secretion). Anti-IL-2 receptor (anti-Tac) mAbs also inhibited T-dependent B cell responses, without affecting LPS responses. An anti-IFN-gamma mAb partially inhibited Ig secretion, without affecting entry into cycle. LPS...

  1. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  2. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    Science.gov (United States)

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  3. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    Energy Technology Data Exchange (ETDEWEB)

    Warford, Jordan, E-mail: jordan.warford@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Doucette, Carolyn D., E-mail: carolyn.doucette@dal.ca [Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Hoskin, David W., E-mail: d.w.hoskin@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Easton, Alexander S., E-mail: alexander.easton@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Surgery (Neurosurgery), Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell

  4. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas' disease.

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Matta Guedes

    Full Text Available BACKGROUND: Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease. METHODOLOGY/PRINCIPAL FINDINGS: First, we observed CD4(+IL-17(+ T cells in culture of peripheral blood mononuclear cells (PBMC from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-α, IFN-γ and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4(+IL-17(+ cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulatory T cells in all patients. All groups of Chagas' disease patients presented the same frequency of CD4(+CD25(+ regulatory T cells. However, CD4(+CD25(+ T cells from patients with mild cardiomyopathy or cardiomyopathy-free showed higher suppressive activity than those with moderate and severe cardiomyopathy. IFN-γ levels during chronic Chagas' disease are inversely correlated to the LVEF (P = 0.007, r = -0.614, while regulatory T cell activity is directly correlated with LVEF (P = 0.022, r = 0.500. CONCLUSION/SIGNIFICANCE: These results indicate that reduced production of the cytokines IL-10 and IL-17 in association with high levels of IFN-γ and TNF

  5. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19...

  6. Dynamic transcription of long non-coding RNA genes during CD4+ T cell development and activation.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available BACKGROUND: Recent evidence shows that long non-coding RNA (LncRNA play important regulatory roles in many biology process, including cell development, activation and oncogenesis. However, the roles of these LncRNAs in the development and activation of CD4+ T cells, which is an important component of immune response, remain unknown. RESULTS: To predict the function of LncRNA in the development and activation of CD4+ T cells, first, we examined the expression profiles of LncRNAs and mRNAs in CD4-CD8- (DN, CD4+CD8+ (DP, CD4+CD8-, and activated CD4+CD8- T cells in a microarray analysis and verified these results by real time PCRs (qPCR. We found that the expression of hundreds of LncRNAs significantly changed in each process of developmental transition, including DN into DP, DP into CD4+CD8-, and CD4+CD8- into activated CD4+ T cells. A Kendall distance analysis suggested that the expression of LncRNAs in DN, DP, CD4+CD8- T cells and activated CD4+ T cells were correlated with the expression of mRNAs in these T cells. The Blat algorithm and GO analysis suggested that LncRNAs may exert important roles in the development and activation of CD4+ T cells. These roles included proliferation, homeostasis, maturation, activation, migration, apoptosis and calcium ion transportation. CONCLUSION: The present study found that the expression profiles of LncRNAs in different stages of CD4+ T cells are distinguishable. LncRNAs are involved in the key biological process in CD4+ T cell development and activation.

  7. Characterization of membrane determinant in old T-cells with suppressor activity

    International Nuclear Information System (INIS)

    Hendricks, L.C.; Heidrick, M.L.

    1986-01-01

    T-cell function declines with age. Many T-cell functions are initiated at the cell membrane; therefore, age-related membrane alterations may contribute to loss of function. They have previously reported developing a monoclonal antibody, HH-AGE-T(1), which recognizes a cell with suppressor activity and binds to 15-20% of the T-cells from old BC3F 1 mice, but only to 0-4% of young T-cells. To further characterize the determinant recognized by HH-AGE-T(1), they analyzed immunoprecipitates (IP) of young and old T-cell membranes by 2D-SDS PAGE, followed by Western blotting. Immunodetection of the blots showed that HH-AGE-T(1) bound a heterodimer (66 kD, pI 8.44 and 36 kD, pI 5.82-7.12 subunits) in IP from old mice; but not young mice. Monoclonal anti-Lyt 2 antibody did not bind the determinant. When IP of iodinated T-cells were run on SDS-PAGE gels followed by blotting and autoradiography of the blots, very prominent bands were detected in the old sample and faint bands were detected in the young sample. These results suggest that HH-AGE-T(1) recognizes a membrane protein which is present in small amounts on young T-cells but which increases markedly with age. Further studies are needed to determine the significance of this age-related membrane change

  8. Increased prevalence of late stage T cell activation antigen (VLA-1) in active juvenile chronic arthritis

    DEFF Research Database (Denmark)

    Ødum, Niels; Morling, Niels; Platz, P

    1987-01-01

    The presence of activated T cells as judged from the reaction with monoclonal antibodies (MoAb) against (a) a late stage T cell activation antigen (VLA-1), (b) the interleukin 2 (IL2) receptor (CD25), and (c) four different HLA class II molecules (HLA-DR, DRw52, DQ, and DP) was studied in 15 pati...

  9. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  10. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    Science.gov (United States)

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  11. Universal cytotoxic activity of a HTLV-1 Tax-specific T cell clone from an HLA-A*24:02⁺ patient with adult T-cell leukemia against a variety of HTLV-I-infected T-cells.

    Science.gov (United States)

    Tanaka, Yukie; Yamazaki, Rie; Terasako-Saito, Kiriko; Nakasone, Hideki; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Kimura, Shun-ichi; Kikuchi, Misato; Kako, Shinichi; Kanda, Junya; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu

    2014-01-01

    Adult T cell leukemia/lymphoma (ATL) is an aggressive mature T cell malignancy that is causally associated with human T cell lymphotropic virus type 1 (HTLV-1) infection. The HTLV-1 regulatory protein Tax aggressively accelerates the proliferation of host cells and is also an important target antigen for CD8(+) cytotoxic T cells (CTLs). We previously reported that several predominant HLA-A*24:02-restricted HTLV-1 Tax301-309-specific CTL clones commonly expressed a particular amino acid sequence motif (P-D-R) in complementarity-determining region 3 of T-cell receptor (TCR)-β chain among unrelated ATL patients who underwent allogeneic stem cell transplantation (allo-HSCT). Furthermore, a PDR-motif(+) CTL clone persistently existed in a long-term survivor as a central CTL clone with strong CTL activities after HSCT. Although a larger analysis of the relationship between PDR-motif(+) CTLs and the clinical course is required, the expression of PDR-motif(+) TCR on CD8(+) T cells may play a critical role in the management of anti-HTLV-1 activities for HLA-A24:02(+) ATL patients. Therefore, in this study, we prepared an HTLV-1 Tax301-309 peptide-specific CTL clone (HT-9) expressing PDR-motif(+) TCR isolated from a long-term survivor after HSCT, and evaluated its CTL activity against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients. Before the assay of CTL function, we confirmed that HT-9 expressed less-differentiated effector-memory phenotypes (CD45RA(-)CCR7(-)CD27(+)CD28(+/-)CD57(+/-)) and T-cell exhaustion marker PD-1(+). In assays of CTL function, HT-9 recognized HTLV-1 Tax in an HLA-restricted fashion and demonstrated strong CTL activities against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients regardless of whether the sources were autologous or allogeneic, but not normal cells. These data indicate that PDR-motif(+) TCR could be an important TCR candidate for TCR-gene immunotherapy for HLA-A24:02(+) ATL patients, provided

  12. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  13. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth.

    Directory of Open Access Journals (Sweden)

    Matthias Hardtke-Wolenski

    Full Text Available BACKGROUND: T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS: Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS: The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.

  14. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation.

    Science.gov (United States)

    Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C

    2017-11-01

    Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.

  15. Functional properties of T cells in patients with chronic T gamma lymphocytosis and chronic T cell neoplasia

    NARCIS (Netherlands)

    Rümke, H. C.; Miedema, F.; ten Berge, I. J.; Terpstra, F.; van der Reijden, H. J.; van de Griend, R. J.; de Bruin, H. G.; von dem Borne, A. E.; Smit, J. W.; Zeijlemaker, W. P.; Melief, C. J.

    1982-01-01

    The expanded T cell populations of 10 patients with either T gamma lymphocytosis (five patients) or proven chronic T cell malignancy (five patients) were analyzed with respect to functional activity in vitro, including proliferative responses to mitogens, cytotoxic activity (killer [K] and natural

  16. Mucosal-Associated Invariant T Cells: New Insights into Antigen Recognition and Activation

    Directory of Open Access Journals (Sweden)

    Xingxing Xiao

    2017-11-01

    Full Text Available Mucosal-associated invariant T (MAIT cells, a novel subpopulation of innate-like T cells that express an invariant T cell receptor (TCRα chain and a diverse TCRβ chain, can recognize a distinct set of small molecules, vitamin B metabolites, derived from some bacteria, fungi but not viruses, in the context of an evolutionarily conserved major histocompatibility complex-related molecule 1 (MR1. This implies that MAIT cells may play unique and important roles in host immunity. Although viral antigens are not recognized by this limited TCR repertoire, MAIT cells are known to be activated in a TCR-independent mechanism during some viral infections, such as hepatitis C virus and influenza virus. In this article, we will review recent works in MAIT cell antigen recognition, activation and the role MAIT cells may play in the process of bacterial and viral infections and pathogenesis of non-infectious diseases.

  17. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    Science.gov (United States)

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  18. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  19. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  20. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  1. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegner, Jesper; Schmidt, Angelika

    2017-01-01

    (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg

  2. T helper-independent activation of human CD8+ cells: the role of CD28 costimulation.

    Science.gov (United States)

    Van Gool, S W; Zhang, Y; Kasran, A; de Boer, M; Ceuppens, J L

    1996-07-01

    The concept that activation of MHC class I-restricted CD8+ cells entirely depends on help from MHC class II-restricted CD4+ T cells has recently been supplemented with an alternative model in which CD8+ cells can directly be activated by MHC class I-expressing professional antigen-presenting cells (APC), which are able to deliver an accessory signal. The authors analysed the role of CD28-mediated costimulation for T helper cell-independent activation of purified human CD8+ T cells in two different in vitro models. Freshly isolated CD8+ cells could be activated (proliferation, IL-2 production and cytotoxic activity) by anti-CD3-presenting Fc gamma R+ mouse cells transfected with the human CD28 ligand, CD80, as the only accessory signal. On the other hand, activation of CD8+ cells by allogeneic MHC class I on EBV-transformed B cells, which express two different CD28 ligands, CD80 and CD86, also proceeded very efficiently (proliferation, cytotoxic activity and CD25 expression), but was either not, or only partially, blocked by anti-CD80 and anti-CD86 MoAb or CTLA-4Ig. This indicates that other costimulatory signals are also effective, and that CD28 triggering is not absolutely required for initial T-cell activation. CsA and CD80/CD86-blocking agents were synergistic in completely inhibiting activation of CD8+ cells in the MLR with allogeneic B-cell lines. This combination also induced non-responsiveness of CD8+ cells upon restimulation in the absence of blocking agents. Therefore, although professional APC can apparently provide multiple costimulatory signals for direct activation of CD8+ T cells, the signal derived from CD80/CD86 is unique in providing CsA-resistance.

  3. CD4+ T helper cells and regulatory T cells in active lupus nephritis: an imbalance towards a predominant Th1 response?

    Science.gov (United States)

    Mesquita, D; Kirsztajn, G Mastroianni; Franco, M F; Reis, L A; Perazzio, S F; Mesquita, F V; Ferreira, V da Silva; Andrade, L E Coelho; de Souza, A W Silva

    2018-01-01

    The objective of this study was to evaluate the frequency of CD4 + T cell subsets in peripheral blood mononuclear cells (PBMC), urine and renal tissue from patients with lupus nephritis (LN). PBMC and urinary cells were collected from 17 patients with active LN, 20 disease controls (DC) with primary glomerulonephritis and 10 healthy controls (HC) and were analysed by flow cytometry with markers for T helper type 1 (Th1), Th2, Th17 and regulatory T cells (T reg ) cells. T cell subsets were assessed by immunohistochemistry from LN biopsy specimens from 12 LN patients. T cell subtypes in PBMC were re-evaluated at 6 months of therapy. CD4 + T cells were decreased in PBMC in LN compared with DC and HC (P = 0·0001). No differences were observed in urinary CD4 + T cell subsets between LN and DC. The frequency of urinary Th17 cells was higher in patients with non-proliferative than in proliferative LN (P = 0·041). CD3 + and T-box 21 ( Tbet+) cells were found in glomeruli and interstitium of LN patients, while forkhead box protein 3 (FoxP3), retinoid-related orphan receptor gamma (ROR-γ) and GATA binding protein 3 (GATA-3) were present only in glomeruli. Th1 cells in PBMC were correlated negatively with urinary Th1 cells (Rho = -0·531; P = 0·028) and with T bet in renal interstitium (Rho = -0·782; P = 0·004). At 6 months, LN patients showed an increase in Th17 cells in PBMC. In conclusion, the inverse association between Th1 cells from PBMC and urinary/renal tissue indicate a role for Th1 in LN pathophysiology. Urinary Th17 cells were associated with less severe LN, and Th17 increased in PBMC during therapy. Urinary CD4 + T cells were not different between LN and DC. © 2017 British Society for Immunology.

  4. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells.

    Science.gov (United States)

    Nasorri, Francesca; Sebastiani, Silvia; Mariani, Valentina; De Pità, Ornella; Puddu, Pietro; Girolomoni, Giampiero; Cavani, Andrea

    2002-01-01

    Allergic contact dermatitis ensues from exaggerated T cell responses to haptens. Dendritic cells are required for the initiation of hapten sensitization, but they may not be necessary for disease expression. Here we investigated the antigen-presenting cell requirement of nickel-specific CD4+ lymphocytes isolated from the blood of six allergic individuals. A significant proportion (42 out of 121; 35%) of the T cell clones proliferated in vitro to nickel also in the absence of professional antigen-presenting cells, suggesting a direct T-T hapten presentation. Antigen-presenting-cell-independent T cells showed a predominant T helper 1 phenotype. Nickel recognition by these T cells was major histocompatibility complex class II restricted, not influenced by CD28 triggering, independent from their state of activation, and did not require processing. The capacity of this T cell subset to be directly stimulated by nickel was not due to unique antigen-presenting properties, as both antigen-presenting-cell-dependent and antigen-presenting-cell-independent clones displayed comparable levels of HLA-DR, CD80, and CD86, and were equally capable of presenting nickel to antigen-presenting-cell-independent clones. In contrast, neither T cell types activated antigen-presenting-cell-dependent T lymphocytes. T-T presentation induced T cell receptor downregulation, CD25, CD80, CD86, and HLA-DR upregulation, and interferon-gamma release, although to a lesser extent compared to those induced by dendritic cell-T presentation. Following T-T presentation, the clones did not undergo unresponsiveness and maintained the capacity to respond to dendritic cells pulsed with antigen. In aggregate, our data suggest that antigen-presenting-cell-independent T cell activation can effectively amplify hapten- specific immune responses.

  5. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    Science.gov (United States)

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  6. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity.

    Science.gov (United States)

    Wells, James W; Cowled, Chris J; Darling, David; Guinn, Barbara-Ann; Farzaneh, Farzin; Noble, Alistair; Galea-Lauri, Joanna

    2007-12-01

    Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses. To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC. Semi-allogeneic DC were generated from the F(1) progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8(+) and CD4(+) T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo. In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8(+) OT-I transgenic T-cells, primed naïve CD4(+) OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4(+) response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival. Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.

  7. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces Fas-dependent activation-induced cell death in superantigen-primed T cells

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Iris A; Nagarkatti, Mitzi [Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298 (United States); Nagarkatti, Prakash S [Department of Pharmacology and Toxicology, PO Box 980613, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2002-10-01

    Immune response against a foreign antigen is characterized by a growth phase, in which antigen-specific T cells clonally expand, followed by a decline phase in which the activated T cells undergo apoptosis, a process termed activation-induced cell death (AICD). In the current study, we have investigated the phase at which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) acts to downregulate the antigen-specific T cell response. To this end, C57BL/6 +/+ mice were injected with staphylococcal enterotoxin A (SEA) into the footpads (10 {mu}g/footpad), and simultaneously treated with TCDD (10 or 50 {mu}g/kg intraperitoneally). At various time points, the draining lymph node (LN) cells were analyzed for SEA-activated T cells. The data demonstrated that in C57BL/6 +/+ mice, TCDD treatment did not alter the growth phase but facilitated the decline phase of SEA-reactive T cells. TCDD caused a significant decrease in the percentage and absolute numbers of CD4{sup +} and CD8{sup +} SEA-responsive T cells expressing V{beta}3{sup +} and V{beta}11{sup +} but did not affect SEA-nonresponsive V{beta}8{sup +} T cells. Upon in vitro culture, TCDD-exposed SEA-immunized LN cells exhibited increased levels of apoptosis when compared with the vehicle controls. When Fas-deficient (C57BL/6 lpr/lpr) or Fas ligand defective (C57BL/6 gld/gld) mice were treated with TCDD, they failed to exhibit a decrease in percentage and cellularity of SEA-reactive T cells, thereby suggesting a role of Fas-Fas ligand interactions in the TCDD-induced downregulation of SEA-reactive T cell response. The resistance to TCDD-induced decrease in T cell responsiveness to SEA seen in Fas- and FasL-mutant mice was neither due to decreased aryl hydrocabon receptor (AhR) expression nor to altered T cell responsiveness to SEA. The current study demonstrates that TCDD does not prevent T cell activation, but prematurely induces Fas-based AICD, which may contribute to the deletion of antigen-primed T cells. (orig.)

  8. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  9. Alloantigen-specific suppressor T cells are not inhibited by cyclosporin A, but do require IL 2 for activation

    International Nuclear Information System (INIS)

    Bucy, R.P.

    1986-01-01

    Alloantigen-specific suppressor T cells are activated from normal murine spleen cells in mixed lymphocyte reactions (MLR). These T cells are radioresistant and suppress the activation of cytotoxic T lymphocytes (CTL) in second primary MLR cultures. This report demonstrates that cyclosporin A (CsA) blocks the activation of these suppressor cells at a dose of 1 microgram/ml. However, reconstitution of CsA blocked cultures with IL 2 restores the activation of the suppressor T cells, but fails to significantly restore the activation of CTL in these same cultures. This differential activation requirement was used to establish T cell lines that demonstrate enriched suppressor cell activity but depletion of CTL activity. These findings are discussed in terms of the mechanism of action of CsA in these distinct T cell subsets and the relevance to models of allograft unresponsiveness

  10. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence.

    Directory of Open Access Journals (Sweden)

    Mitra Azadniv

    2011-01-01

    Full Text Available T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.

  11. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  12. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  13. Reactivity of inducer cell subsets and T8-cell activation during the human autologous mixed lymphocyte reaction.

    Science.gov (United States)

    Romain, P L; Morimoto, C; Daley, J F; Palley, L S; Reinherz, E L; Schlossman, S F

    1984-01-01

    To characterize the responding T cells in the autologous mixed lymphocyte reaction (AMLR), T cells were fractionated into purified subpopulations employing monoclonal antibodies and a variety of separation techniques including fluorescence-activated cell sorting. It was found that isolated T4 cells, but not T8 cells, proliferated in response to autologous non-T cells. More importantly, within the T4 subset, the autoreactive population was greatly enriched in a fraction reactive with an autoantibody from patients with juvenile chronic arthritis (JRA) or the monoclonal antibody anti-TQ1. Although T8 cells themselves were unable to proliferate in the AMLR, they could be induced to respond in the presence of either T4 cells or exogenous IL-2 containing medium. This was demonstrated by direct measurement of tritiated thymidine uptake by T8 cells during the course of the AMLR as well as by analysis of their relative DNA content. Taken together, these data indicate that the AMLR represents a complex pattern of immune responsiveness distinct from that observed in response to soluble antigen or alloantigen. The precise function of this T-cell circuit remains to be determined.

  14. The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the δT-cell receptor with TCL3, a conserved and activated locus at 10q24

    International Nuclear Information System (INIS)

    Zutter, M.; Hockett, R.D.; Roberts, C.W.M.; McGuire, E.A.; Bloomstone, J.; Korsmeyer, S.J.; Morton, C.C.; Deaven, L.L.; Crist, W.M.; Carroll, A.J.

    1990-01-01

    The authors cloned the t(10;14) recurrent translocation from CD3-negative T-cell acute lymphoblastic leukemia cells. The breakpoint at 14q11 involved an intermediate rearrangement of the δ T-cell receptor locus, suggesting that the translocation arose at the time of antigen receptor assemblage. Translocation introduced chromosome segment 10q24 as proven by hybridization of a breakpoint-derived probe to flow-sorted chromosomes and metaphase chromosomes. Two t(10;14) breakpoints were clustered within a 600-base-pair region of 10q24 but no heptamer-spacer-nonamer motifs resembling T-cell receptor/immunoglobulin rearrangement signals were noted at the breakpoint. A locus distinct from terminal deoxynucleotidyltransferase was found at 10q24. Evolutionarily conserved regions surrounding the 10q24 breakpoint were examined for transcriptional activity. A region telomeric to the 10q24 breakpoint, expected to translocate to the der(14) chromosome, recognized an abundant 2.9-kilobase RNA in a t(10;14) T-cell leukemia. This locus was not active in a variety of other normal and neoplastic T cells, arguing that it was deregulated by he introduction of the T-cell receptor. This locus is a candidate for a putative protooncogene, TCL3, involved in T-cell neoplasia

  15. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.

    Directory of Open Access Journals (Sweden)

    Kristen N Pollizzi

    Full Text Available mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.

  16. IFN-beta inhibits T cell activation capacity of central nervous system APCs

    DEFF Research Database (Denmark)

    Teige, Ingrid; Liu, Yawei; Issazadeh-Navikas, Shohreh

    2006-01-01

    We have previously investigated the physiological effects of IFN-beta on chronic CNS inflammation and shown that IFN-beta(-/-) mice develop a more severe experimental autoimmune encephalomyelitis than their IFN-beta(+/-) littermates. This result was shown to be associated with a higher activation...... state of the glial cells and a higher T cell cytokine production in the CNS. Because this state suggested a down-regulatory effect of IFN-beta on CNS-specific APCs, these results were investigated further. We report that IFN-beta pretreatment of astrocytes and microglia (glial cells) indeed down......-modulate their capacity to activate autoreactive Th1 cells. First, we investigated the intrinsic ability of glial cells as APCs and report that glial cells prevent autoreactive Th1 cells expansion while maintaining Ag-specific T cell effector functions. However, when the glial cells are treated with IFN-beta before...

  17. Mangifera indica L. extract protects T cells from activation-induced cell death.

    Science.gov (United States)

    Hernández, Patricia; Delgado, Rene; Walczak, Henning

    2006-09-01

    The aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antioxidant properties. AIDS is characterized by up-regulation of CD95 ligand (CD95L) expression and enhancement of activation-induced cell death (AICD). Recent studies demonstrate oxidative signals combined with simultaneous calcium (Ca(2+)) influx into the cytosol are required for induction of CD95L expression. In this study we show that M. indica extract attenuated anti-CD3-induced accumulation of reactive oxygen species (ROS) and intracellular free Ca(2+) and consequently, downregulates CD95L mRNA expression and CD95-mediated AICD. In addition, TCR triggering caused an elevation in the antioxidant enzyme manganous superoxide dismutase (Mn-SOD) and the increase in c-Jun N-terminal kinase (JNK) phosphorylation, both effects being prevented by M. indica extract. We provide a number of evidences regarding how M. indica extract enhance T-cell survival by inhibiting AICD, a finding associated with a decrease in oxidative stress generated through the TCR signaling pathway in activated T cells.

  18. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration

    Directory of Open Access Journals (Sweden)

    Lena Collenburg

    2017-08-01

    Full Text Available Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

  19. Antigen presentation by resting B cells. Radiosensitivity of the antigen-presentation function and two distinct pathways of T cell activation

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1984-01-01

    In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s)

  20. Patterns of Expression of Vaginal T-Cell Activation Markers during Estrogen-Maintained Vaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Al-Sadeq Ameera

    2008-12-01

    Full Text Available The immunosuppressive activity of estrogen was further investigated by assessing the pattern of expression of CD25, CD28, CD69, and CD152 on vaginal T cells during estrogen-maintained vaginal candidiasis. A precipitous and significant decrease in vaginal fungal burden toward the end of week 3 postinfection was concurrent with a significant increase in vaginal lymphocyte numbers. During this period, the percentage of CD3+, CD3+CD4+, CD152+, and CD28+ vaginal T cells gradually and significantly increased. The percentage of CD3+ and CD3+CD4+ cells increased from 43% and 15% at day 0 to 77% and 40% at day 28 postinfection. Compared with 29% CD152+ vaginal T cells in naive mice, > 70% of vaginal T cells were CD152+ at day 28 postinfection. In conclusion, estrogen-maintained vaginal candidiasis results in postinfection time-dependent changes in the pattern of expression of CD152, CD28, and other T-cell markers, suggesting that T cells are subject to mixed suppression and activation signals.

  1. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  2. Activated CD4+T cells enter the splenic T-cell zone and induce autoantibody-producing germinal centers through bystander activation

    NARCIS (Netherlands)

    Banczyk, David; Kalies, Kathrin; Nachbar, Lars; Bergmann, Lars; Schmidt, Philipp; Bode, Ulrike; Teegen, Bianca; Steven, Philipp; Lange, Tanja; Textor, Johannes; Ludwig, Ralf J.; Stöcker, Winfried; König, Peter; Bell, Eric; Westermann, Jürgen

    2014-01-01

    CD4+T (helper) cells migrate in huge numbers through lymphoid organs. However, little is known about traffic routes and kinetics of CD4+T-cell subsets within different organ compartments. Such information is important because there are indications that CD4+T cells may influence the function of

  3. Improved Pulse Wave Velocity and Renal Function in Individualized Calcineurin Inhibitor Treatment by Immunomonitoring: The Randomized Controlled Calcineurin Inhibitor-Sparing Trial.

    Science.gov (United States)

    Sommerer, Claudia; Brocke, Janina; Bruckner, Thomas; Schaier, Matthias; Morath, Christian; Meuer, Stefan; Zeier, Martin; Giese, Thomas

    2018-03-01

    A new immune monitoring tool which assesses the expression of nuclear factor of activated T cells (NFAT)-regulated genes measures the functional effects of cyclosporine A. This is the first prospective randomized controlled study to compare standard pharmacokinetic monitoring by cyclosporine trough levels to NFAT-regulated gene expression (NFAT-RE). Expression of the NFAT-regulated genes was determined by qRT-PCR at cyclosporine trough and peak level. Cardiovascular risk was assessed by change of pulse wave velocity from baseline to month 6. Clinical follow-up was 12 months. In total, 55 stable kidney allograft recipients were enrolled. Mean baseline residual NFAT-RE was 13.1 ± 9.1%. Patients in the NFAT-RE group showed a significant decline in pulse wave velocity from baseline to month 6 versus the standard group (-1.7 ± 2.0 m/s vs 0.4 ± 1.4 m/s, P function was significantly better with NFAT-RE versus standard monitoring (Nankivell glomerular filtration rate: 68.5 ± 17.4 mL/min vs 57.2 ± 19.0 mL/min; P = 0.009). NFAT-RE as translational immune monitoring tool proved efficacious and safe in individualizing cyclosporine therapy, with the opportunity to reduce the cardiovascular risk and improve long-term renal allograft function.

  4. CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Leslie R Cockerham

    Full Text Available The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1 in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.

  5. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Science.gov (United States)

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  6. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Chang Shwu-Fen

    2011-03-01

    Full Text Available Abstract Background Arctium lappa (Niubang, a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC, isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2 and interferon-γ (IFN-γ production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  7. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Science.gov (United States)

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  8. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  9. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  10. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells.

    Science.gov (United States)

    Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith; Spivak, Adam M; Nell, Racheal A; Tomescu, Costin; Vadrevu, Surya Kumari; Giron, Leila B; Serra-Peinado, Carla; Genescà, Meritxell; Castellví, Josep; Wu, Guoxin; Del Rio Estrada, Perla M; González-Navarro, Mauricio; Lynn, Kenneth; King, Colin T; Vemula, Sai; Cox, Kara; Wan, Yanmin; Li, Qingsheng; Mounzer, Karam; Kostman, Jay; Frank, Ian; Paiardini, Mirko; Hazuda, Daria; Reyes-Terán, Gustavo; Richman, Douglas; Howell, Bonnie; Tebas, Pablo; Martinez-Picado, Javier; Planelles, Vicente; Buzon, Maria J; Betts, Michael R; Montaner, Luis J

    2018-04-18

    The persistence of HIV reservoirs, including latently infected, resting CD4 + T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4 + T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4 + T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV + or SIV + subjects, we found that most of the circulating memory CD32 + CD4 + T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a T H 2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4 + T cells in peripheral blood or lymphoid tissue; isolated CD32 + resting CD4 + T cells accounted for less than 3% of the total HIV DNA in CD4 + T cells. Cell-associated HIV DNA and RNA loads in CD4 + T cells positively correlated with the frequency of CD32 + CD69 + CD4 + T cells but not with CD32 expression on resting CD4 + T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4 + T cells or of enriched HIV DNA-positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4 + T cells enriched for transcriptionally active HIV after long-term ART. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. T cell activation and differentiation is modulated by a CD6 domain 1 antibody Itolizumab.

    Directory of Open Access Journals (Sweden)

    Usha Bughani

    Full Text Available CD6 is associated with T-cell modulation and is implicated in several autoimmune diseases. We previously demonstrated that Itolizumab, a CD6 domain 1 (CD6D1 specific humanized monoclonal antibody, inhibited the proliferation and cytokine production by T lymphocytes stimulated with anti-CD3 antibody or when co-stimulated with ALCAM. Aberrant IL-17 producing CD4+ helper T-cells (Th17 have been identified as pivotal for the pathogenesis of certain inflammatory autoimmune disorders, including psoriasis. Itolizumab has demonstrated efficacy in human diseases known to have an IL-17 driven pathogenesis. Here, in in vitro experiments we show that by day 3 of human PBMC activation using anti-CD3 and anti-CD28 co-stimulation in a Th17 polarizing milieu, 15-35% of CD4+ T-cells overexpress CD6 and there is an establishment of differentiated Th17 cells. Addition of Itolizumab reduces the activation and differentiation of T cells to Th17 cells and decreases production of IL-17. These effects are associated with the reduction of key transcription factors pSTAT3 and RORγT. Further, transcription analysis studies in these conditions indicate that Itolizumab suppressed T cell activation by primarily reducing cell cycle, DNA transcription and translation associated genes. To understand the mechanism of this inhibition, we evaluated the effect of this anti-human CD6D1 mAb on ALCAM-CD6 as well as TCR-mediated T cell activation. We show that Itolizumab but not its F(ab'2 fragment directly inhibits CD6 receptor hyper-phosphorylation and leads to subsequent decrease in associated ZAP70 kinase and docking protein SLP76. Since Itolizumab binds to CD6 expressed only on human and chimpanzee, we developed an antibody binding specifically to mouse CD6D1. This antibody successfully ameliorated the incidence of experimental autoimmune encephalitis in the mice model. These results position CD6 as a key molecule in sustaining the activation and differentiation of T cells and an

  12. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes

    Science.gov (United States)

    Glennie, Nelson D.; Volk, Susan W.

    2017-01-01

    Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151

  13. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  14. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    Science.gov (United States)

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  15. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy.

    Science.gov (United States)

    Kim, Y S; Kim, M N; Lee, K E; Hong, J Y; Oh, M S; Kim, S Y; Kim, K W; Sohn, M H

    2018-05-01

    Food allergy is a major public health problem. Studies have shown that long-term interactions between activated leucocyte cell adhesion molecule (ALCAM/CD166) on the surface of antigen-presenting cells, and CD6, a co-stimulatory molecule, influence immune responses. However, there are currently no studies on the functions of ALCAM in food allergy. Therefore, we aimed to identify the functions of ALCAM in ovalbumin (OVA)-induced food allergy using ALCAM-deficient mice. Wild-type (WT) and ALCAM-deficient (ALCAM -/- ) mice were sensitized intraperitoneally and with orally fed OVA. The mice were killed, and parameters related to food allergy and T helper type 2 (Th2) immune responses were analysed. ALCAM serum levels increased and mRNA expression decreased in OVA-challenged WT mice. Serum immunoglobulin (Ig)E levels, Th2 cytokine mRNA and histological injuries were higher in OVA-challenged WT mice than in control mice, and these were attenuated in ALCAM -/- mice. T cell proliferation of total cells, CD3 + CD4 + T cells and activated T cells in immune tissues were diminished in OVA-challenged ALCAM -/- mice. Proliferation of co-cultured T cells and dendritic cells (DCs) was decreased by the anti-CD6 antibody. In addition, WT mice sensitized by adoptive transfer of OVA-pulsed ALCAM -/- BM-derived DCs showed reduced immune responses. Lastly, serum ALCAM levels were higher in children with food allergy than in control subjects. In this study, serum levels of ALCAM were elevated in food allergy-induced WT mice and children with food allergy. Moreover, immune responses and T cell activation were attenuated in OVA-challenged ALCAM -/- mice. These results indicate that ALCAM regulates food allergy by affecting T cell activation. © 2018 British Society for Immunology.

  16. Combining Vγ9Vδ2 T Cells with a Lipophilic Bisphosphonate Efficiently Kills Activated Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2017-10-01

    Full Text Available Activated hepatic stellate cells (aHSCs are now established as a central driver of fibrosis in human liver injury. In the presence of chronic or repeated injury, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC can occur, so there is interest in down-regulating aHSCs activity in order to treat these diseases. Here, we report that Vγ9Vδ2 T cells are reduced in patients with liver cirrhosis, stimulating us to investigate possible interactions between Vγ9Vδ2 T cells and aHSCs. We find that Vγ9Vδ2 T cells kill aHSCs and killing is enhanced when aHSCs are pretreated with BPH-1236, a lipophilic analog of the bone resorption drug zoledronate. Cytotoxicity is mediated by direct cell-to-cell contact as shown by Transwell experiments and atomic force microscopy, with BPH-1236 increasing the adhesion between aHSCs and Vγ9Vδ2 T cells. Mechanistically, BPH-1236 functions by inhibiting farnesyl diphosphate synthase, leading to accumulation of the phosphoantigen isopentenyl diphosphate and recognition by Vγ9Vδ2 T cells. The cytolytic process is largely dependent on the perforin/granzyme B pathway. In a Rag2−/−γc−/− immune-deficient mouse model, we find that Vγ9Vδ2 T cells home-in to the liver, and when accompanied by BPH-1236, kill not only orthotopic aHSCs but also orthotopic HCC tumors. Collectively, our results provide the first proof-of-concept of a novel immunotherapeutic strategy for the treatment of fibrosis–cirrhosis–HCC diseases using adoptively transferred Vγ9Vδ2 T cells, combined with a lipophilic bisphosphonate.

  17. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  18. Increased expression of T-helper cell activation markers in ...

    African Journals Online (AJOL)

    Ehab

    expression of these activation markers would be of value in monitoring asthma severity and the response to ... Key words: Children, atopic asthma, T-helper cell subsets, glucocorticoid inhalation, lower respiratory infections, CD45RO ...... budesonide, and placebo on mucosal inflammation and clinical indices in mild asthma.

  19. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Science.gov (United States)

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  20. CD4+ T cell-derived novel peptide Thp5 induces interleukin-4 production in CD4+ T cells to direct T helper 2 cell differentiation.

    Science.gov (United States)

    Khan, Mohd Moin; Chatterjee, Samit; Dwivedi, Ved Prakash; Pandey, Nishant Kumar; Singh, Yogesh; Tousif, Sultan; Bhavesh, Neel Sarovar; Van Kaer, Luc; Das, Jyoti; Das, Gobardhan

    2012-01-20

    The differentiation of naïve CD4(+) T cells into T helper 2 (Th2) cells requires production of the cytokine IL-4 in the local microenvironment. It is evident that naïve/quiescently activated CD4(+) T cells produce the IL-4 that drives Th2 cell differentiation. Because early production of IL-4 in naïve T cells leads to preferential Th2 cell differentiation, this process needs to be tightly regulated so as to avoid catastrophic and misdirected Th2 cell differentiation. Here, we show that Thp5, a novel peptide with structural similarity to vasoactive intestinal peptide, regulates production of early IL-4 in newly activated CD4(+) T cells. Induction of IL-4 in CD4(+) T cells by Thp5 is independent of the transcription factor STAT6 but dependent on ERK1/2 signaling. Furthermore, cytokines (IL-12 and TGF-β) that promote the differentiation of Th1 or Th17 cells inhibit Thp5 induction, thus suppressing Th2 cell differentiation. We further showed that Thp5 enhances Th2 responses and exacerbates allergic airway inflammation in mice. Taken together, our findings reveal that early activated CD4(+) T cells produce Thp5, which plays a critical role as a molecular switch in the differentiation of Th cells, biasing the response toward the Th2 cell phenotype.

  1. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  2. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Alba Manresa-Arraut

    2018-05-01

    Full Text Available T-cells are known to be intimately involved in the pathogenesis of multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE. T-cell activation is controlled by a range of intracellular signaling pathways regulating cellular responses such as proliferation, cytokine production, integrin expression, and migration. These processes are crucial for the T-cells’ ability to mediate inflammatory processes in autoimmune diseases such as MS. RhoA is a ubiquitously expressed small GTPase well described as a regulator of the actin cytoskeleton. It is essential for embryonic development and together with other Rho GTPases controls various cellular processes such as cell development, shaping, proliferation, and locomotion. However, the specific contribution of RhoA to these processes in T-cells in general, and in autoreactive T-cells in particular, has not been fully characterized. Using mice with a T-cell specific deletion of the RhoA gene (RhoAfl/flLckCre+, we investigated the role of RhoA in T-cell development, functionality, and encephalitogenic potential in EAE. We show that lack of RhoA specifically in T-cells results in reduced numbers of mature T-cells in thymus and spleen but normal counts in peripheral blood. EAE induction in RhoAfl/flLckCre+ mice results in significantly reduced disease incidence and severity, which coincides with a reduced CNS T-cell infiltration. Besides presenting reduced migratory capacity, both naïve and autoreactive effector T-cells from RhoAfl/flLckCre+ mice show decreased viability, proliferative capacity, and an activation profile associated with reduced production of Th1 pro-inflammatory cytokines. Our study demonstrates that RhoA is a central regulator of several archetypical T-cell responses, and furthermore points toward RhoA as a new potential therapeutic target in diseases such as MS, where T-cell activity plays a central role.

  3. Production of two hemopoietic growth factors is differentially regulated in single T lymphocytes activated with an anti-T cell receptor antibody

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    A method has been developed to measure the production by single activated T lymphocytes of two hemopoietic growth factors, granulocyte-macrophage CSF (GM-CSF) and multipotential CSF (multi-CSF or IL-3). When individual cells of the L3T4 (CD4)+ F23.1+ T cell clone E9.D4 were transferred by microma......A method has been developed to measure the production by single activated T lymphocytes of two hemopoietic growth factors, granulocyte-macrophage CSF (GM-CSF) and multipotential CSF (multi-CSF or IL-3). When individual cells of the L3T4 (CD4)+ F23.1+ T cell clone E9.D4 were transferred...... by micromanipulation into wells coated with the monoclonal anti-T cell receptor antibody F23.1, up to 90% of cells produced CSF as detected by CSF-dependent hemopoietic cell lines. Production occurred in the absence of proliferation and did not require the addition of accessory cells or IL-2. Both the frequency of CSF......-producing cells and the average production per positive cell depended on the density of the immobilized stimulating ligand, indicating that the response of each cell is not an all-or-none phenomenon but varies with the strength of stimulation. Individual cells of the clone varied over a 100-fold range...

  4. Effects of sublethal gamma radiation on T and B cell activity in the antibody response of mice

    International Nuclear Information System (INIS)

    Carlson, D.E.; Lubet, R.A.

    1976-01-01

    The relative radiosensitivity of T and B cells was followed in sublethally irradiated mice reconstituted with bone marrow cells, thymus cells, or both, and simultaneously challenged with sheep erythrocytes. Numbers of antibody-forming cells in recipient spleens were determined on days 4 to 8. In this assay the response of mice given bone marrow cells was limited by the amount of residual T cell activity, while the response of mice given thymus cells was limited by the residual B cell activity. Although residual activity of both T and B cells was suppressed in mice given 300 to 700 rad at 80 rad/min, residual B cell activity was consistently lower in these animals. When antibody responses were initiated at intervals after irradiation, B cell activity was clearly limiting by 48 hr after 500 or 600 rad. The activity of both T and B cells was sensitive to differences in dose rate between 8 and 80 rad/min. The 4 to 7 fold dose-rate sensitivity of T cells paralleled that of differentially irradiated nonreconstituted mice. In contrast, dose-rate dependence of B cell activity varied from 10- to 20-fold between 8 and 80 rad/min. These results suggest that radiation suppression of antibody responses in mice is highly dependent upon B cell sensitivity, and that dose-rate dependence of the antibody response may be explained in large part by differential sensitivity of B cells

  5. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  6. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  7. Prolonged activation of virus-specific CD8+T cells after acute B19 infection.

    Directory of Open Access Journals (Sweden)

    Adiba Isa

    2005-12-01

    Full Text Available Human parvovirus B19 (B19 is a ubiquitous and clinically significant pathogen, causing erythema infectiosum, arthropathy, transient aplastic crisis, and intrauterine fetal death. The phenotype of CD8+ T cells in acute B19 infection has not been studied previously.The number and phenotype of B19-specific CD8+ T cell responses during and after acute adult infection was studied using HLA-peptide multimeric complexes. Surprisingly, these responses increased in magnitude over the first year post-infection despite resolution of clinical symptoms and control of viraemia, with T cell populations specific for individual epitopes comprising up to 4% of CD8+ T cells. B19-specific T cells developed and maintained an activated CD38+ phenotype, with strong expression of perforin and CD57 and downregulation of CD28 and CD27. These cells possessed strong effector function and intact proliferative capacity. Individuals tested many years after infection exhibited lower frequencies of B19-specific cytotoxic T lymphocytes, typically 0.05%-0.5% of CD8+ T cells, which were perforin, CD38, and CCR7 low.This is the first example to our knowledge of an "acute" human viral infection inducing a persistent activated CD8+ T cell response. The likely explanation--analogous to that for cytomegalovirus infection--is that this persistent response is due to low-level antigen exposure. CD8+ T cells may contribute to the long-term control of this significant pathogen and should be considered during vaccine development.

  8. Prolonged activation of virus-specific CD8+T cells after acute B19 infection.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Human parvovirus B19 (B19 is a ubiquitous and clinically significant pathogen, causing erythema infectiosum, arthropathy, transient aplastic crisis, and intrauterine fetal death. The phenotype of CD8+ T cells in acute B19 infection has not been studied previously. METHODS AND FINDINGS: The number and phenotype of B19-specific CD8+ T cell responses during and after acute adult infection was studied using HLA-peptide multimeric complexes. Surprisingly, these responses increased in magnitude over the first year post-infection despite resolution of clinical symptoms and control of viraemia, with T cell populations specific for individual epitopes comprising up to 4% of CD8+ T cells. B19-specific T cells developed and maintained an activated CD38+ phenotype, with strong expression of perforin and CD57 and downregulation of CD28 and CD27. These cells possessed strong effector function and intact proliferative capacity. Individuals tested many years after infection exhibited lower frequencies of B19-specific cytotoxic T lymphocytes, typically 0.05%-0.5% of CD8+ T cells, which were perforin, CD38, and CCR7 low. CONCLUSION: This is the first example to our knowledge of an "acute" human viral infection inducing a persistent activated CD8+ T cell response. The likely explanation--analogous to that for cytomegalovirus infection--is that this persistent response is due to low-level antigen exposure. CD8+ T cells may contribute to the long-term control of this significant pathogen and should be considered during vaccine development.

  9. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    Science.gov (United States)

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion.

  10. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  11. Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells.

    Directory of Open Access Journals (Sweden)

    Guomin Jiang

    Full Text Available On entering the tissues, infiltrating autoreactive T cells must be reactivated locally to gain pathogenic activity. We have previously reported that, when activated by Toll-like receptor 3 (TLR3 and TLR4 ligands, retinal astrocytes (RACs are able to function as antigen-presenting cells to re-activate uveitogenic T cells and allow responder T cells to induce uveitis in mice. In the present study, we found that, although the triggering of TLR2 or nucleotide-binding oligomerization domain receptor 2 (NOD2 alone did not activate RACs, their combined triggering induced RACs with the phenotypes required to efficiently re-activate interphotoreceptor retinoid-binding protein (IRBP-specific T cells. The synergistic effect of TLR2 and NOD2 ligands on RAC activation might be explained by the observations that bacterial lipoprotein (BLP, a TLR2 ligand was able to upregulate NOD2 expression and the combination of BLP and muramyldipeptide (MDP, a NOD2 ligand enhanced the expression of RICK (Rip2, the signaling molecule of NOD2. Moreover, the synergistic effect of MDP and BLP on RACs was lost when the RACs were derived from NOD2 knockout mice or were pre-treated with Rip2 antagonist. Thus, our data suggest that exogenous or endogenous molecules acting on both TLR2 and NOD2 on RACs might have an enhancing effect on susceptibility to autoimmune uveitis.

  12. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    Science.gov (United States)

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Transgenic overexpression of active calcineurin in beta-cells results in decreased beta-cell mass and hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ernesto Bernal-Mizrachi

    2010-08-01

    Full Text Available Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+ influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+ signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes.To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP. To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis.Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes.

  14. CD1 and mycobacterial lipids activate human T cells.

    Science.gov (United States)

    Van Rhijn, Ildiko; Moody, D Branch

    2015-03-01

    For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  16. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    Science.gov (United States)

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  18. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity.

    Science.gov (United States)

    Almeida, Jorge R; Sauce, Delphine; Price, David A; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C; Autran, Brigitte; Sáez-Cirión, Asier; Appay, Victor

    2009-06-18

    CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.

  19. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  20. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts.

    Science.gov (United States)

    Aflaki, Mona; Qi, Xiao-Yan; Xiao, Ling; Ordog, Balazs; Tadevosyan, Artavazd; Luo, Xiaobin; Maguy, Ange; Shi, Yanfen; Tardif, Jean-Claude; Nattel, Stanley

    2014-03-14

    β-Adrenoceptor activation contributes to sudden death risk in heart failure. Chronic β-adrenergic stimulation, as occurs in patients with heart failure, causes potentially arrhythmogenic reductions in slow delayed-rectifier K(+) current (IKs). To assess the molecular mechanisms of IKs downregulation caused by chronic β-adrenergic activation, particularly the role of exchange protein directly activated by cAMP (Epac). Isolated guinea pig left ventricular cardiomyocytes were incubated in primary culture and exposed to isoproterenol (1 μmol/L) or vehicle for 30 hours. Sustained isoproterenol exposure decreased IKs density (whole cell patch clamp) by 58% (P<0.0001), with corresponding decreases in potassium voltage-gated channel subfamily E member 1 (KCNE1) mRNA and membrane protein expression (by 45% and 51%, respectively). Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) mRNA expression was unchanged. The β1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol dihydrochloride (CGP-20712A) prevented isoproterenol-induced IKs downregulation, whereas the β2-antagonist ICI-118551 had no effect. The selective Epac activator 8-pCPT-2'-O-Me-cAMP decreased IKs density to an extent similar to isoproterenol exposure, and adenoviral-mediated knockdown of Epac1 prevented isoproterenol-induced IKs/KCNE1 downregulation. In contrast, protein kinase A inhibition with a cell-permeable highly selective peptide blocker did not affect IKs downregulation. 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate-AM acetoxymethyl ester (BAPTA-AM), cyclosporine, and inhibitor of nuclear factor of activated T cell (NFAT)-calcineurin association-6 (INCA6) prevented IKs reduction by isoproterenol and INCA6 suppressed isoproterenol-induced KCNE1 downregulation, consistent with signal-transduction via the Ca(2+)/calcineurin/NFAT pathway. Isoproterenol induced nuclear NFATc3/c4

  1. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  2. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    Directory of Open Access Journals (Sweden)

    Honami Takada

    Full Text Available Epstein-Barr virus (EBV has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV. However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  3. Potential Role of Vδ2+ γδ T Cells in Regulation of Immune Activation in Primary HIV Infection

    Directory of Open Access Journals (Sweden)

    Nupur Bhatnagar

    2017-09-01

    Full Text Available Although conventional regulatory T cells (Tregs are sufficient in controlling low residual T-cell activation in ART-treated patients, they are not efficient in controlling exaggerated immune activation associated with high levels of HIV replication in primary HIV infection (PHI. Our previous data suggested that double negative (DN T cells including mainly γδ DN T cells play a role in the control of immune activation in PHI. Since γδ T cells are capable of exerting regulatory functions, we investigated their implication as Tregs in PHI as well as chronic HIV infection (CHI. In a cross-sectional study of 58 HIV-infected patients, in the primary and the chronic phase either ART-treated or untreated (UT, we analyzed phenotype and cytokine production of γδ T cells using flow cytometry. Cytokine production was assessed following in vitro stimulation with isopentenyl pyrophosphate or plate-bound anti-CD3/anti-CD28 monoclonal antibodies. We found that the proportion of γδ T cells negatively correlated with CD8 T-cell activation in PHI patients. Furthermore, we found that in these patients, the Vδ2 receptor bearing (Vδ2+ γδ T cells were strongly activated, exhibited low terminal differentiation, and produced the anti-inflammatory cytokine, TGF-β. In contrast, in UT-CHI, we observed a remarkable expansion of γδ T cells, where the Vδ2+ γδ T cells comprised of an elevated proportion of terminally differentiated cells producing high levels of IFN-γ but very low levels of TGF-β. We also found that this loss of regulatory feature of γδ T cells in CHI was a lasting impairment as we did not find recovery of TGF-β production even in ART-CHI patients successfully treated for more than 5 years. Our data therefore suggest that during the primary HIV infection, Vδ2+ γδ T cells may act as Tregs controlling immune activation through production of TGF-β. However, in CHI, γδ T cells transform from an anti-inflammatory into pro

  4. The immune privilege of the eye: human retinal pigment epithelial cells selectively modulate T-cell activation in vitro

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Lovato, Paola; Ødum, Niels

    2005-01-01

    PURPOSE: To examine the effect of human retinal pigment epithelial (RPE) cells on phytohemagglutinin (PHA) activation of T cells. METHODS: Resting peripheral blood lymphocytes (PBLs) were stimulated with PHA with or without the presence of gamma-irradiated RPE cells. Proliferation and the cell...... in cell culture supernatant was measured by ELISA. RESULTS: Human RPE cells were found to suppress PHA-induced proliferation, cyclin A, IL-2R-alpha and -gamma, and CD71 expression and decrease the production of IL-2; but RPE cells do not inhibit the PHA-induced expression of early activation markers CD69......, MHC class I and II, and of cyclin D of the PBLs. CONCLUSIONS: These results are the first to indicate that RPE cells impede generation of activated T cells by interfering with the induction of high-affinity IL-2R-alphabetagamma, IL-2 production, and the expression of CD71 and cyclin A....

  5. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    Science.gov (United States)

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  6. Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes.

    Science.gov (United States)

    Piantoni, S; Regola, F; Zanola, A; Andreoli, L; Dall'Ara, F; Tincani, A; Airo', P

    2018-01-01

    Background and objectives T-cell activation may be one of the pathogenic mechanisms of systemic lupus erythematosus (SLE). After repeated antigenic stimulation, T-cells undergo different modifications, leading to the differentiation into effector memory T-cells (CCR7-CD45RA-) and terminally differentiated effector memory (TDEM) T-cells (CCR7-CD45RA+). Similarly, down-modulation of CD28 may lead to the expansion of the CD28- T-cells, a subpopulation with peculiar effector activities. The aim of this study was the characterization of T-cell phenotype in a cohort of patients with SLE according to disease activity and damage index. Materials and methods Phenotypic analysis of peripheral blood T lymphocytes of 51 SLE patients and 21 healthy controls was done by flow-cytometry. SLE disease activity was evaluated by SLE Disease Activity Index-2000 (SLEDAI-2K) and damage by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). The variations between different groups were evaluated by Mann-Whitney test. Bonferroni correction was applied to adjust for multiple comparisons ( p adj ). Spearman rank test was used to evaluate the correlations between quantitative variables. Results CD4+ lymphopenia was found among SLE patients. Patients showed a trend for a higher percentage of TDEM among the CD4+ T-cell subpopulation in comparison with healthy controls ( p = .04). SLE patients were divided into two groups according to disease activity: patients with SLEDAI-2K ≥ 6 ( n = 13) had a higher percentage of circulating CD4+ T-cells with CD28- phenotype ( p adj  = .005) as well as those with an effector memory ( p adj  = .004) and TDEM ( p adj  = .002) phenotype and a trend of decrease of regulatory T-cells (TREGs) ( p = .02), in comparison with patients with low disease activity ( n = 38). Patients with damage (SDI ≥ 1) tended to show an expansion of TDEM among CD4+ T-cells as compared with

  7. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mathias Streitz

    Full Text Available BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10 based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naïve/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%. Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help

  8. Suppression of feline coronavirus replication in vitro by cyclosporin A

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshikazu

    2012-04-01

    Full Text Available Abstract The feline infectious peritonitis virus (FIPV is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA, an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT to bind cellular cyclophilins (CyP, dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP but not CyP did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  9. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    Science.gov (United States)

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  10. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  11. Over-expression of CD8+ T-cell activation is associated with decreased CD4+ cells in patients seeking treatment of Alcohol Use Disorder.

    Science.gov (United States)

    Zuluaga, Paola; Sanvisens, Arantza; Martínez-Cáceres, Eva; Teniente, Aina; Tor, Jordi; Muga, Robert

    2017-11-01

    Harmful alcohol consumption may have an impact on the adaptive immune system through an imbalance in T cell subpopulations and changes in cell activation. We aimed to analyze profiles of CD4 and CD8T cell activation in patients with alcohol use disorder (AUD). We used a cross-sectional study with patients seeking treatment of the disorder. Blood samples for immunophenotyping were obtained at admission. Profiles of T cell activation were defined: (I) CD38 + /HLA-DR + , (II) CD38 + /HLA-DR - , (III) CD38 - /HLA-DR + , (IV) CD38 - /HLA-DR - and compared with healthy controls. We calculated a CD8 + T cell activation indicator (AI) that was defined as the quotient of non-activated cells (CD38 - /HLA-DR - ) and activated cells (CD38 + /HLA-DR + ). 60 patients were eligible (83%M); median age was 49 years [IQR: 44-54] and alcohol consumption was 145g/day [IQR: 90-205]. Mean±SD of CD38 + /HLA-DR - was 50.3±50.6 cells/μL in patients and 33.5±24.5 cells/μL in controls (p=0.03), for the CD38 - /HLA-DR + it was 61±62.2 cells/μL in patients and 21.2±17.3 cells/μL in controls (pcells/μL in patients and 10.8±10.3 cells/μL in controls (pcells, and the percentage of CD38 + /HLA-DR + CD8 + T cells (r=0.37, p=0.003; r=0.2, p=0.086, respectively). Patients with AUD have an increased expression of immune activation with respect to healthy individuals. This excess of activated CD8 + T cells correlates with the absolute CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CMV driven CD8(+) T-cell activation is associated with acute rejection in lung transplantation.

    Science.gov (United States)

    Roux, Antoine; Mourin, Gisèle; Fastenackels, Solène; Almeida, Jorge R; Iglesias, Maria Candela; Boyd, Anders; Gostick, Emma; Larsen, Martin; Price, David A; Sacre, Karim; Douek, Daniel C; Autran, Brigitte; Picard, Clément; Miranda, Sandra de; Sauce, Delphine; Stern, Marc; Appay, Victor

    2013-07-01

    Lung transplantation is the definitive treatment for terminal respiratory disease, but the associated mortality rate is high. Acute rejection of the transplanted lung is a key determinant of adverse prognosis. Furthermore, an epidemiological relationship has been established between the occurrence of acute lung rejection and cytomegalovirus infection. However, the reasons for this association remain unclear. Here, we performed a longitudinal characterization of CMV-specific T-cell responses and immune activation status in the peripheral blood and bronchoalveolar lavage fluid of forty-four lung transplant patients. Acute rejection was associated with high levels of cellular activation in the periphery, reflecting strong CMV-specific CD8(+) T-cell activity post-transplant. Peripheral and lung CMV-specific CD8(+) T-cell responses were very similar, and related to the presence of CMV in the transplanted organ. These findings support that activated CMV-specific CD8(+) T-cells in the lung may play a role in promoting acute rejection. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.; MacDermott, R.P.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml) and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement

  14. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  15. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  16. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Directory of Open Access Journals (Sweden)

    Lindsay M Margoles

    Full Text Available Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43 and effector molecules (IFN-γ, TNF as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  17. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  18. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    International Nuclear Information System (INIS)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong; Kim, Kwang Soo; Hwang, Eun Sook

    2016-01-01

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  20. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Kwang Soo [Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 (United States); Hwang, Eun Sook, E-mail: eshwang@ewha.ac.kr [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  1. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2016-01-01

    Full Text Available Calpain, calcineurin (CaN, and nuclear factor of activated T cell (NFAT play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD are prone to develop atrial fibrillation (AF. Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR. Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes.

  2. Altered expression of signalling lymphocyte activation molecule receptors in T-cells from lupus nephritis patients-a potential biomarker of disease activity.

    Science.gov (United States)

    Stratigou, Victoria; Doyle, Anne F; Carlucci, Francesco; Stephens, Lauren; Foschi, Valentina; Castelli, Marco; McKenna, Nicola; Cook, H Terence; Lightstone, Liz; Cairns, Thomas D; Pickering, Matthew C; Botto, Marina

    2017-07-01

    The aim was to investigate whether the signalling lymphocyte activation molecule (SLAM) signalling pathways contribute to LN and whether SLAM receptors could be valuable biomarkers of disease activity. Peripheral blood mononuclear cells from 30National Research Ethics Service SLE patients with biopsy-proven LN were analysed by flow cytometry. Clinical measures of disease activity were assessed. The expression of the SLAM family receptors on T-cell subpopulations [CD4, CD8 and double negative (DN) T cells] was measured and compared between lupus patients with active renal disease and those in remission. The frequency of CD8 T cells expressing SLAMF3, SLAMF5 and SLAMF7 was significantly lower in LN patients who were in remission. In contrast, these subsets were similar in patients with active renal disease and in healthy individuals. Patients with active nephritis had an increased percentage of circulating monocytes, consistent with a potential role played by these cells in glomerular inflammation. Changes in the frequency of DN T cells positive for SLAMF2, SLAMF4 and SLAMF7 were observed in lupus patients irrespective of the disease activity. We detected alterations in the cellular expression of the SLAM family receptors, but these changes were less obvious and did not reveal any specific pattern. The percentage of DN T cells expressing SLAMF6 could predict the clinical response to B-cell depletion in patients with LN. Our study demonstrates altered expression of the SLAM family receptors in SLE T lymphocytes. This is consistent with the importance of the SLAM-associated pathways in lupus pathogenesis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  3. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.

    1991-01-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  4. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2010-11-01

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  5. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Science.gov (United States)

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  6. Computational properties of mitochondria in T cell activation and fate.

    Science.gov (United States)

    Uzhachenko, Roman; Shanker, Anil; Dupont, Geneviève

    2016-11-01

    In this article, we review how mitochondrial Ca 2+ transport (mitochondrial Ca 2+ uptake and Na + /Ca 2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca 2+ signals. Based on recent observations, we propose that the Ca 2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional-integral-derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca 2+ transport in this process. © 2016 The Authors.

  7. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection.

    Science.gov (United States)

    Yoon, Heesik; Legge, Kevin L; Sung, Sun-sang J; Braciale, Thomas J

    2007-07-01

    We have used a TCR-transgenic CD8+ T cell adoptive transfer model to examine the tempo of T cell activation and proliferation in the draining lymph nodes (DLN) in response to respiratory virus infection. The T cell response in the DLN differed for mice infected with different type A influenza strains with the onset of T cell activation/proliferation to the A/JAPAN virus infection preceding the A/PR8 response by 12-24 h. This difference in T cell activation/proliferation correlated with the tempo of accelerated respiratory DC (RDC) migration from the infected lungs to the DLN in response to influenza virus infection, with the migrant RDC responding to the A/JAPAN infection exhibiting a more rapid accumulation in the lymph nodes (i.e., peak migration for A/JAPAN at 18 h, A/PR8 at 24-36 h). Furthermore, in vivo administration of blocking anti-CD62L Ab at various time points before/after infection revealed that the virus-specific CD8+ T cells entered the DLN and activated in a sequential "conveyor belt"-like fashion. These results indicate that the tempo of CD8+ T cell activation/proliferation after viral infection is dependent on the tempo of RDC migration to the DLN and that T cell activation occurs in an ordered sequential fashion.

  8. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  9. Mitochondrial Control and Guidance of Cellular Activities of T Cells

    Directory of Open Access Journals (Sweden)

    Ping-Chih Ho

    2017-04-01

    Full Text Available Immune cells protect us against infection and cancer cells, as well as functioning during healing processes to support tissue repairing and regeneration. These behaviors require that upon stimulation from immune activation the appropriate subsets of immune cells are generated. In addition to activation-induced signaling cascades, metabolic reprogramming (profound changes in metabolic pathways also provides a novel form of regulation to control the formation of desirable immune responses. Immune cells encounter various nutrient compositions by circulating in bloodstream and infiltrating into peripheral tissues; therefore, proper engagement of metabolic pathways is critical to fulfill the metabolic demands of immune cells. Metabolic pathways are tightly regulated mainly via mitochondrial dynamics and the activities of the tricarboxylic acid cycle and the electron transport chain. In this review, we will discuss how metabolic reprogramming influences activation, effector functions, and lineage polarization in T cells, with a particular focus on mitochondria-regulated metabolic checkpoints. Additionally, we will further explore how in various diseases deregulation and manipulation of mitochondrial regulation can occur and be exploited. Furthermore, we will discuss how this knowledge can facilitate the design of immunotherapies.

  10. Human xenospecific T suppressor cells inhibit T helper cell proliferation to porcine aortic endothelial cells, and NF-kappaB activity in porcine APC.

    Science.gov (United States)

    Ciubotariu, R; Li, J; Colovai, A I; Platt, J L; Cortesini, R; Suciu Foca Cortesini, N

    2001-05-01

    Human T suppressor cells (Ts), capable of preventing autologous T helper cells (Th) from reacting against xenogeneic pig endothelial cells and pig APC can be generated in vitro. Ts derive from a population of CD3(+)CD8(+)CD28(-) T lymphocytes and specifically recognize the MHC class I antigens of the APC used for in vitro immunization. To study the mechanism that underlies suppression, we investigated whether Ts inhibit the expression of costimulatory molecules in xenogeneic professional and semiprofessional APC. We found that Ts down-regulate Th-induced expression of CD86 in pig APC, and that this effect occurs at the level of transcription, as indicated by nuclear run-on and Northern blot assays. EMSA results revealed that inhibition of CD86 expression is mediated by inactivation of transcription factor NF-kappaB. Furthermore, transfection of pig APC with a vector expressing NF-kappaB p65 partially rescued Th-induced expression of the CD86 molecule. These results strongly support the concept that xenospecific Ts inhibit the APC function of xenogeneic cells by preventing activation of NF-kappaB.

  11. Nonlinear microscopy as diagnostic tool for the discrimination of activated T cells

    Science.gov (United States)

    Gavgiotaki, E.; Filippidis, G.; Zerva, I.; Agelaki, S.; Georgoulias, V.; Athanassakis, I.

    2017-07-01

    Third Harmonic Generation (THG) imaging was applied to mouse resting and activated T-cells. Quantification of THG signal, which corresponded to lipid droplets, could distinguish activated Tcells, allowing follow-up of immune response development.

  12. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    International Nuclear Information System (INIS)

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei; Qu, Xiying; Wang, Xiaohui; Zeng, Hanxian; Chen, Huabiao; Zhu, Huanzhang

    2014-01-01

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alone or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies

  13. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei; Qu, Xiying; Wang, Xiaohui; Zeng, Hanxian [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Chen, Huabiao [Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139 (United States); Zhu, Huanzhang, E-mail: hzzhu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2014-07-18

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alone or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.

  14. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    Science.gov (United States)

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  15. Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation

    Directory of Open Access Journals (Sweden)

    Nicholas Jones

    2017-11-01

    Full Text Available Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR and peptides presented by human leukocyte antigens (pHLA. The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.

  16. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  17. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients.

    Science.gov (United States)

    Vajpayee, M; Kaushik, S; Sreenivas, V; Mojumdar, K; Mendiratta, S; Chauhan, N K

    2009-01-01

    The correlation of immune activation with CD4(+) depletion and HIV-1 disease progression has been evidenced by several studies involving mainly clade B virus. However, this needs to be investigated in developing countries such as India predominately infected with clade C virus. In a cross-sectional study of 68 antiretroviral treatment naïve, HIV-1 infected Indian patients, we studied the association between CD4(+) T cells, plasma HIV-1 RNA levels, and immune activation markers using unadjusted and adjusted correlative analyses. Significant negative correlations of higher magnitude were observed between the CD4(+) T cell percentages and plasma HIV-1 RNA levels in the study population when adjusted for the effects of immune activation markers. However, the negative association of CD4(+) T cells with immune activation markers remained unaffected when controlled for the effects of plasma HIV-1 RNA levels. Our results support the important role of immune activation in CD4(+) T cell depletion and disease progression during untreated HIV-1 infection.

  18. Accessory signals in T-T cell interactions between antigen- and alloantigen-specific, human memory T cells generated in vitro

    DEFF Research Database (Denmark)

    Odum, N; Ryder, L P; Georgsen, J

    1990-01-01

    The potential of activated HLA class II-positive T cells as antigen-/alloantigen-presenting cells remains controversial. In our model system we use in vitro-primed, HLA class II-specific T cells of the memory T-cell phenotype, CD4+, CD29+ (4B4+), and CD45RO+ (UCHL-1). We have previously shown......), or a calcium ionophore (A23187) enabled Ta to elicit alloantigen-specific memory T-cell responses and to present purified protein derivative (PPD) to PPD-specific T-cell lines. The addition of irradiated, Epstein-Barr virus-transformed B-cell lines (EBV-LCL) (but not their supernatants) had a similar but less...

  19. Glucosidase trimming inhibitors preferentially perturb T cell activation induced by CD2 mAb

    NARCIS (Netherlands)

    van Kemenade, F. J.; Rotteveel, F. T.; van den Broek, L. A.; Baars, P. A.; van Lier, R. A.; Miedema, F.

    1994-01-01

    Glycosidase trimming inhibitors may be used to study contribution of N-linked glycan moieties in T cell function. We have studied the effects of castanospermine (Cas), swainsonine (Swain), 1-deoxynojirimycin (dNM), and 1-deoxymannojirimycin (dMM) on T cell activation and differentiation. Our

  20. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K

    1999-01-01

    cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...

  1. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    Science.gov (United States)

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  2. Tuberculin-Specific T Cells Are Reduced in Active Pulmonary Tuberculosis Compared to LTBI or Status Post BCG Vaccination

    Science.gov (United States)

    Streitz, Mathias; Fuhrmann, Stephan; Powell, Fiona; Quassem, Ali; Nomura, Laurel; Maecker, Holden; Martus, Peter; Volk, Hans-Dieter

    2011-01-01

    Functional characteristics of tuberculosis (TB)–specific CD4 T cells were studied in clinically active pulmonary TB (n = 21) and high TB exposure including LTBI (n = 17). Following tuberculin stimulation, activated CD4 T cells were identified by flow-cytometry (CD154 up-regulation, degranulation, interferon γ [IFN-γ], tumor necrosis factor α [TNF-α], and interleukin 2 [IL-2\\ production). Interestingly, CD154 up-regulation accounted for ∼80% of activated CD4 T cells in the active TB group but just 40% in the controls, whereas IFN-γ accounted for only ∼50% of activated cells in each group. The frequencies of CD4 T cells displaying at least 1 activation marker discriminated better between the groups than those displaying degranulation or IFN-γ production alone. PMID:21186260

  3. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  4. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  5. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways.

    Science.gov (United States)

    Walsh, Alice M; Wechalekar, Mihir D; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M; Smith, Malcolm D; Nagpal, Sunil

    2017-01-01

    This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission.

  6. Modification of T-cells activation markers expression of peripheral T lymphocytes of people, who dwell in radiation polluted zone

    International Nuclear Information System (INIS)

    Baeva, E.V.; Sokolenko, V.L.; Bazyka, D.A.

    1998-01-01

    Effect of ionizing radiation low doses on the expression of activation surface markers of T-cells in residents of contaminated areas resulted from the Chernobyl accident is studied. Increase in the number of T-lymphocytes with CD4 + CD25 + and CD4 + HLA-DR + membrane phenotypes in peripheral blood is observed. Appearance of non mature CD4 + CD8 + phenotype T-cells inclined to the apoptosis development in population circulation is accentuated [ru

  7. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells

    OpenAIRE

    Swaims, Alison Y.; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I.; Devadas, Satish; Shi, Yufang; Rabson, Arnold B.

    2010-01-01

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulate...

  8. T cell motility as modulator of interactions with dendritic cells

    Directory of Open Access Journals (Sweden)

    Jens Volker Stein

    2015-11-01

    Full Text Available It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs determines T cell transition from a naïve to an activated or tolerant/anergic status. While many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting pMHC with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC – CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for optimal DCs, while contributing to peripheral tolerance induction in the absence of inflammation.

  9. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  10. Malignant T cells express lymphotoxin alpha and drive endothelial activation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Christensen, Louise; Ralfkiaer, Ulrik

    2015-01-01

    Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes...

  11. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-11

    Science.gov (United States)

    Hyun, Young-Min; Chung, Hung-Li; McGrath, James L.; Waugh, Richard E.; Kim, Minsoo

    2009-01-01

    Lymphocyte migration from blood into lymphoid tissues or to sites of inflammation occurs through interactions between cell surface integrins and their ligands expressed on the vascular endothelium and the extracellular matrix. Very Late Antigen-4 (VLA-4, α4β1) is a key integrin in the effective trafficking of lymphocytes. Although it has been well established that integrins undergo functionally significant conformational changes to mediate cell adhesion, there is no mechanistic information that explains how these are dynamically and spatially regulated during lymphocyte polarization and migration. Using dynamic fluorescence resonance energy transfer (FRET) analysis of a novel VLA-4 FRET sensor under total internal reflection fluorescence (TIRF) microscopy, we show that VLA-4 activation localizes to the lamellipodium in living cells. During T cell migration on VCAM-1, VLA-4 activation concurs with spatial redistribution of chemokine receptor and active Rap1 at the leading edge. Selective inhibition of the activated VLA-4 at leading edge with a small molecule inhibitor is sufficient to block T cell migration. These data suggest that a subpopulation of activated VLA-4 is mainly localized to the leading edge of polarized human T cells, and is critical for T cell migration on VCAM-1. PMID:19542447

  12. Membranes of activated CD4+ T cells expressing T cell receptor (TcR) alpha beta or TcR gamma delta induce IgE synthesis by human B cells in the presence of interleukin-4

    NARCIS (Netherlands)

    Gascan, H.; Aversa, G. G.; Gauchat, J. F.; van Vlasselaer, P.; Roncarolo, M. G.; Yssel, H.; Kehry, M.; Spits, H.; de Vries, J. E.

    1992-01-01

    In the present study it is demonstrated that human B cells can be induced to switch to IgE production following a contact-mediated signal provided by activated T cell receptor (TcR) gamma delta+, CD4+ and TcR alpha beta+, CD4+ T cell clones and interleukin (IL)-4. The signal provided by these T cell

  13. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  14. Circulating intercellular adhesion molecule-1 (ICAM-1) as an early and sensitive marker for virus-induced T cell activation

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Johansen, J; Marker, O

    1995-01-01

    mice, clearly demonstrating that T cells were mandatory. Analysis of MHC class I and MHC class II-deficient mice revealed that either CD4+ or CD8+ T cells alone are sufficient, despite a markedly reduced inflammatory exudate in the former animals. These results indicate that virus-activated T cells......The effect of systemic virus infection on the level of circulating ICAM-1 (cICAM-1) in serum, and the role of virus-activated T cells in this context, were studied using the murine lymphocytic choriomeningitis virus infection as primary model system. A marked virus-induced elevation in cICAM-1...... in serum was revealed, the presence of which coincided with the phase of virus-induced T cell activation. However, high levels of cICAM-1 in serum were observed well before maximal T cell activation could be demonstrated. No increase in cICAM-1 was observed in the serum of infected T cell-deficient nude...

  15. CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and Regulatory T cells in pathogenesis

    Directory of Open Access Journals (Sweden)

    Chansavath ePh