WorldWideScience

Sample records for activated sludge plants

  1. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  2. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  3. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M J; Gianello, C [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P I.F.; Carvalho, E B [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1994-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  4. Optimal design of an activated sludge plant: theoretical analysis

    Science.gov (United States)

    Islam, M. A.; Amin, M. S. A.; Hoinkis, J.

    2013-06-01

    The design procedure of an activated sludge plant consisting of an activated sludge reactor and settling tank has been theoretically analyzed assuming that (1) the Monod equation completely describes the growth kinetics of microorganisms causing the degradation of biodegradable pollutants and (2) the settling characteristics are fully described by a power law. For a given reactor height, the design parameter of the reactor (reactor volume) is reduced to the reactor area. Then the sum total area of the reactor and the settling tank is expressed as a function of activated sludge concentration X and the recycled ratio α. A procedure has been developed to calculate X opt, for which the total required area of the plant is minimum for given microbiological system and recycled ratio. Mathematical relations have been derived to calculate the α-range in which X opt meets the requirements of F/ M ratio. Results of the analysis have been illustrated for varying X and α. Mathematical formulae have been proposed to recalculate the recycled ratio in the events, when the influent parameters differ from those assumed in the design.

  5. Anammox biofilm in activated sludge swine wastewater treatment plants.

    Science.gov (United States)

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimization of the coke-oven activated sludge plants

    Energy Technology Data Exchange (ETDEWEB)

    Raizer Neto, Ernesto [Santa Catarina Univ., Florianopolis, SC (Brazil); Colin, Francois [Institut de Recherches Hydrologiques, 54 - Nancy (France); Prost, Christian [Laboratoire de Sciences de Genie Chimique, Nancy (France)

    1993-12-31

    In the coke-oven activated sludge plants one of the greatest problems of malfunction is due to inffluent variability. The composition and, or, concentration variations of the inffluent substrate, which can cause an unstable system, are function of the pollutant load. Nevertheless, the knowledge of the kinetic biodegradation of the coke-oven effluent represents the limiting factor to develop an effective biological treatment. This work describes a computational model of the biological treatment which was elaborated and validated from continuous pilot scale experiments and calibrated by comparing its predictions to the pilot experiment`s results. 12 refs., 9 figs., 3 tabs.

  7. Optimization of the coke-oven activated sludge plants

    Energy Technology Data Exchange (ETDEWEB)

    Raizer Neto, Ernesto [Santa Catarina Univ., Florianopolis, SC (Brazil); Colin, Francois [Institut de Recherches Hydrologiques, 54 - Nancy (France); Prost, Christian [Laboratoire de Sciences de Genie Chimique, Nancy (France)

    1994-12-31

    In the coke-oven activated sludge plants one of the greatest problems of malfunction is due to inffluent variability. The composition and, or, concentration variations of the inffluent substrate, which can cause an unstable system, are function of the pollutant load. Nevertheless, the knowledge of the kinetic biodegradation of the coke-oven effluent represents the limiting factor to develop an effective biological treatment. This work describes a computational model of the biological treatment which was elaborated and validated from continuous pilot scale experiments and calibrated by comparing its predictions to the pilot experiment`s results. 12 refs., 9 figs., 3 tabs.

  8. Fate of xenobiotic compounds and plants activity in reed bed sludge treatment

    DEFF Research Database (Denmark)

    Chen, Xijuan; Pauli, Udo; Rehfus, Stefan

    different plants: bulrush (Typha), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea) were planted into 12 containers with a size of 1m Х 1m X 1m which were builded with 20cm gravel and 50cm sludge to study the plants activity in sludge degradation process, 4 containers were left...

  9. The location and nature of accumulated phosphorus in seven sludges from activated sludge plants which exhibited enhanced phosphorus removal

    International Nuclear Information System (INIS)

    Buchan, L.

    1981-01-01

    Electron microscopy combined with the energy dispersive analysis of X-rays (EDX) has been used to examine the nature of the phosphorus accumulated in sludges from seven activated sludge plants exhibiting enhanced phosphorus removal. Large phosphorus accumulations were located in identical structures in the sludges examined. The phosphorus was located in large electron-dense bodies, within large bacterial cells which were characteristically grouped in clusters. The calcium:phosphorus ratio of these electron-dense bodies precluded them from being any form of calcium phosphate precipitate. Quantitative analysis indicated that the electron-dense bodies contained in excess of 30% phosphorus. The results obtained are supportive of a biological mechanism of enhanced phosphorus uptake in activated sludge

  10. Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: Science or fiction? A review

    NARCIS (Netherlands)

    Ratsak, C.H.; Verkuijlen, J.

    2006-01-01

    Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic

  11. Management experience on microthrix parvicella bulking in an activated sludge wastewater treatment plant

    International Nuclear Information System (INIS)

    De Bortoli, N.; Mion, M.; Di Giorgio, G.; Goi, D.

    2005-01-01

    Activated sludge wastewater treatment processes may give inefficiencies due to biological imbalances involving biomass. In fact, external causes as temperature lowering can increase the proliferation of the filamentous bacterium Microthrix parvicella into activated sludge flocks. Microthrix parvicella increases may create dangerous bulking phenomena compromising secondary settling without varying bio-kinetic parameters. In this case of study, a method to defeat growth of Microthrix parvicella has been set up. Aluminium poly-chloride (PAC) has been added to activated sludge contained into oxidation tanks of a municipal wastewater treatment plant, where a large growth of Microthrix parvicella has been periodically observed. It has been demonstrated that a definite PAC concentration can reduce Microthrix parvicella proliferation into activated sludge flocks so bulking phenomena can be well reduced [it

  12. An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…

  13. A Novel Method of Biological Start-up in Arak Activated Sludge Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Abdolreza Khalili

    2015-01-01

    Full Text Available Startup is one of the most important stages in the operation of a wastewater treatment plant (WWTP. In this paper, a novel method is presented for the startup of Arak Activated Sludge WWTP, which is shown to contain more advantages than other common methods. In this method, a portion of the inflow is initially allowed to enter gradually into an aeration basin prior to seeding. Under these conditions, less seeding is required due to the low flow of the influent and the low volume of the aeration basin. Once MLSS in the basin reaches the desired level, the rest of the system comes into operation and the sludge developed in the system is used for further seeding. In the case of the WWPT in Arak, it took about 2 months for the total MLSS to be developed and wasting the sludge to start because of the cold weather conditions in the region. The wasted sludge was controlled by the F/M ratio at a constant sludge age. During the start-up, the MLSS increase exhibited a linear trend and the low loading allowed for the variation in influent contaminants to be controlled. The effluent contaminants were below the standard levels recommended by the Environment Protection Organization. BOD5 and COD removals increased from 40% and 60% to 90% and TSS removal increased from 70% to 96%. Lower loading levels, better process control, and lower sludge processing costs are the benefits of this system

  14. Comparison of bioindicator eukaryotes of activated sludge biocenoses on two water-treatment plants: a case study

    Directory of Open Access Journals (Sweden)

    Achmadulina Farida Y.

    2017-06-01

    Full Text Available Activated sludge biocenoses were compared on waste-water treatment plants in the city of Kazan, Russian Federation and the city of Teplice, Czech Republic. Based on Palia-Kovnatski index, Acanthamoeba in Kazan, Epistylis in Teplice, and Acanthamoeba and Centropyxis were dominant genera in both plants. The major subdominant generas identified were Arcella, Opercularia and Aspidisca. This indicates high nitrification ability, high water purification potential and matured activated sludge. Chemical composition of the waste-water was identified as the main factor determining the sludge biocenoses diversity. Higher sludge biodiversity (Shannon, Margalef, and Sorensen indexes was found in Kazan corresponding to more concentrated inflow water.

  15. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  16. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  17. Use of Lecane rotifers for limiting Thiothrix filamentous bacteria in bulking activated sludge in a dairy wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Kowalska Ewa

    2014-01-01

    Full Text Available Excessive growth of filamentous bacteria is a serious problem in many dairy wastewater treatment plants (WWTPs. The objective of the study was to determine whether Lecane inermis rotifers were able to reduce the density of Thiothrix bacteria in activated sludge originating from a dairy WWTP, as well as to identify the impact of rotifers on other organisms in sludge. On a laboratory scale, three experiments were conducted in which activated sludge with a predominance of Thiothrix was inoculated with rotifers at an initial concentration of app. 600 individuals/mL. The results showed that the rotifers, by feeding on the bacterium filaments, are able to reduce significantly the quantity of Thiothrix. A decline in Thiothrix abundance coincided with an improvement of the sedimentation properties of activated sludge. In addition, it was proven that Lecane inermis did not negatively affect the number of Protozoa and Metazoa in activated sludge.

  18. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  19. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  20. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  1. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  2. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  3. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  4. Activated sludge wastewater treatment plant modelling and simulation: state of the art

    DEFF Research Database (Denmark)

    Gernaey, Krist; Loosdrecht, M.C.M. van; Henze, Mogens

    2004-01-01

    This review paper focuses on modelling of wastewater treatment plants (WWTP). White-box modelling is widely applied in this field, with learning, design and process optimisation as the main applications. The introduction of the ASM model family by the IWA task group was of great importance......, providing researchers and practitioners with a standardised. set of basis models. This paper introduces the nowadays most frequently used white-box models for description of biological nitrogen and phosphorus removal activated sludge processes. These models are mainly applicable to municipal wastewater...... systems, but can be adapted easily to specific situations such as the presence of industrial wastewater. Some of the main model assumptions are highlighted, and their implications for practical model application are discussed. A step-wise procedure leads from the model purpose definition to a calibrated...

  5. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  6. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  7. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    Science.gov (United States)

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  8. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    Science.gov (United States)

    Jafarinejad, Shahryar

    2017-09-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  9. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    Science.gov (United States)

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  10. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge...

  11. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    Science.gov (United States)

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  13. Pilot Control of Viscous Bulking in the Activated Sludge Treatment of Industrial Effluent from Soft Drink Plants

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Esfahani

    2007-06-01

    Full Text Available Viscous bulking is a typical problem arising in activated sludge facilities treating effluent from soft drink plants. The drawbacks associated with this phenomenon include increased effluent organic loading and undesirable sludge settlement. In order to investigate this phenomenon, a soft drink factory was selected as a pilot plant for a case study (where metal tanks were used as a biological selector, an aeration basin, and a clarifier. The study shows that the major causes of viscous bulking are high organic loading and undesirable ratio of monovalent to divalent cations. In the biological selector (with a retention time of 20 hours, while the organic load in the influent to the aeration basin decreased by about 50%, with an impact on reduced viscous bulking, pH value decreased from 12 to 6.5 due to fatty acids production. Adjustment of Na/Ca ratio improved bacterial surface hydrophobicity and prevented degradation of biological flocs. This resulted in improved sludge settleability. Application of this method improved sludge settling, made flocs stronger, and reduced effluent organic load (COD to less than 150 mg/l, indicating stability of the system.

  14. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  15. Bacteriology of activated sludge

    NARCIS (Netherlands)

    Gils, van H.W.

    1964-01-01

    The bacteriology and biochemistry of activated sludge grown in domestic waste water or fed with synthetic media were studied. The nature of the flocs was investigated by determining morphological and physiological characteristics of many strains isolated.

    Predominant bacteria were

  16. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  17. Ecophysiology of novel core phylotypes in activated sludge wastewater treatment plants with nutrient removal

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Awata, Takanori; Nierychlo, Marta

    limited to no information is available for their ecophysiology in activated sludge. A combination of MAR-FISH and SIP was applied to identify members of the genera Rhodoferax, Dechloromonas and Sulfuritalea, all within the class Betaproteobacteria, to be core denitrifiers in these systems. Similar...... may explain why many of these core organisms have not attracted attention during the many years of research into the ecology of these systems. The future goal will be to obtain genome sequences for members of these core genera, applying recently developed protocols for the assembly of genomes from...

  18. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk

  19. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

  20. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  1. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.

    Science.gov (United States)

    Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H

    2008-02-01

    Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.

  2. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  3. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz; Saunders, Aaron Marc; Larsen, Poul

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called ‘The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)’. Comprehensive sets of samples have been collected......, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge...

  4. Characterization and distribution of esterase activity in activated sludge

    NARCIS (Netherlands)

    Boczar, BA; Forney, LJ; Begley, WM; Larson, RJ; Federle, TW

    2001-01-01

    The location and activity of esterase enzymes in activated Sludge from three Municipal wastewater treatment plants were characterized using model Substrate, and denaturing and nondenaturing polyacrylamide gel electrophoresis (PAGE) Of particulate, freeze thaw (primarily periplasmic enzymes and those

  5. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    Science.gov (United States)

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  7. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian

    and operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...

  8. Heat recovery from compressed air in sludge activation plants; Waermerueckgewinnung aus der Druckluft von Belebungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Strunkheide, J.; Eckhardt, R.; Witte, H. [IWB Gemeinnuetziges Inst. Wasser und Boden e.V., Sankt Augustin (Germany)

    2002-07-01

    The Herdorf sewage system is presented as an example of heat recovery from compressed air of the activation stage. Consumption of externally supplied fuel (heating oil) was minimised, and full-scale power generation from sewage gas provided additional income. The key element of the heat recovery system is the air cooler with a matched double-shell heat exchanger. Temperatures and water volumes on the heating water side can be varied in order to ensure optimum heat supply to the air cooler at any time. The heat is used in the internal heating system to heat up the raw sludge in the fermentation process. [German] Die Waermerueckgewinnung aus der Druckluft von Belebungsanlagen kann einen wesentlichen Beitrag zum Waermehaushalt von Klaeranlagen liefern, wie hier am Beispiel der Klaeranlage Herdorf erlaeutert wurde. Hierdurch konnte zum einen der Einsatz von Fremdbrennstoffen (Heizoel) auf ein Minimum reduziert und zum anderen konnten zusaetzliche Ertraege aus der vollstaendigen Verstromung des Faulgases erzielt werden. Kernstueck der Waermerueckgewinnungsanlage bildet der Luftkuehler und der darauf abgestimmte Doppelmantelrohr-Waermeuebertrager. Von wesentlicher Bedeutung ist hierbei, dass auf der Heizkreiswasserseite mit variablen Heizwassermengen und korrespondierenden Temperaturen gefahren werden kann, um zu jedem Zeitpunkt die optimale Waerme durch den Luftkuehler bedarfsorientiert abgreifen zu koennen. Die Waerme dient zur Einspeisung in das Betriebs-Heizungssystem und damit zur Rohschlamm-Aufheizung im Faulungsprozess. (orig.)

  9. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-01-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  10. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-07-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  11. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  12. Sludge Recycle of Wastewater Treatment Plant via its Application as Powdered Activated Carbon for Removal of Methyl Tertiary-Butyl Ether (MTBE from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MR Zare

    2016-05-01

    Full Text Available Introduction: Nowadays, application of MTBE due to its physical and chemical characteristics including high solubility in water has been increased, resulting in its release into the water resources. On other hand, waste activated sludge derived from municipal wastewater treatment plant (MWTP contains high amount of carbon. Therefore, this study aimed to provide the activated carbon via sludge of MWTP as well as to evaluate its efficiency for MTBE removal. Methods: The effect of some parameters such as kind of activator, pH (2-10, contact time (0-240min, adsorbent dose (2-6g/L and initial concentration of MTBE (20-70mg/L was investigated on MTBE adsorption via activated carbon, after preparation of coal from wastewater sludge and activation of this coal via 3 molar solution of H2PO4,  and KOH as well as 5 molar solution of ZnCl2. MTBE concentration in solution was determined via Gas-Chromatography instrument. The obtained experimental data were modeled by adsorption model of Freundlich and Langmuir. Results: The maximum adsorbed MTBE per gram of activated carbon was obtained when the ZnCL2 was used as an activator; however, there was no statistically significant difference among different activators. In addition, maximum removal efficiency (about 50% was obtained in acidic pH of 4, 6g/L of activated carbon and 20mg/L of MTBE concentration. Results of adsorption isotherm showed that Freundlich adsorption model had a better compliance with the experimental data. Conclusion: Regarding the problems associated with sludge disposal of wastewater treatment plant, recycling of this sludge, as an adsorbent, can eliminate most of these problems. As a result, the economical features with respect to industrial scale application and the efficiency of this substance in removal of other pollutants are recommended to be investigated.

  13. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  14. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  15. Treatment of pond sludge at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Wienand, J.; Tyler, R.; Baldwin, C.

    1992-01-01

    The treatment of low-level radioactive/hazardous materials sludges from five inactive solar evaporation settling ponds at the Rocky Flats Plant is discussed. The paper presents information on the following topics: history of the ponds; previous pond cleanout activities; current approach to the problem with respect to water management, sludge management, regulatory actions, and disposal; and future processing technology needs in the areas of polymer solidification, microwave solidification, joule-heated glass melters, and advanced technology incineration

  16. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Felfoldi, T.; Szekely, A.J.; Goral, R.; Barkacs, K.; Scheirich, G.; Andras, J.; Racz, A.; Marialigeti, K. [Eotvos Lorand University, Budapest (Hungary). Dept. of Microbiology

    2010-05-15

    Biological purification processes are effective tools in the treatment of hazardous wastes such as toxic compounds produced in coal coking. In this study, the microbial community of a lab-scale activated sludge system treating coking effluent was assessed by cultivation-based (strain isolation and identification, biodegradation tests) and culture-independent techniques (sequence-aided T-RFLP, taxon-specific PCR). The results of the applied polyphasic approach showed a simple microbial community dominated by easily culturable heterotrophic bacteria. Comamonas badia was identified as the key microbe of the system, since it was the predominant member of the bacterial community, and its phenol degradation capacity was also proved. Metabolism of phenol, even at elevated concentrations (up to 1500 mg/L), was also presented for many other dominant (Pseudomonas, Rhodanobacter, Oligella) and minor (Alcaligenes, Castellaniella, Microbacterium) groups, while some activated sludge bacteria (Sphingomonas, Rhodopseudomonas) did not tolerate it even in lower concentrations (250 mg/L). In some cases, closely related strains showed different tolerance and degradation properties. Members of the genus Thiobacillus were detected in the activated sludge, and were supposedly responsible for the intensive thiocyanate biodegradation observed in the system. Additionally, some identified bacteria (e.g. C. badia and the Ottowia-related strains) might also have had a significant impact on the structure of the activated sludge due to their floc-forming abilities.

  17. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant

    International Nuclear Information System (INIS)

    Salgado, R.; Marques, R.; Noronha, J.P.; Mexia, J.T.; Carvalho, G.; Oehmen, A.; Reis, M.A.M.

    2011-01-01

    An intensive sampling campaign has been carried out in a municipal wastewater treatment plant (WWTP) to assess the dynamics of the influent pharmaceutical active compounds (PhAC) and musks. The mass loadings of these compounds in wastewater influents displayed contrasting diurnal variations depending on the compound. The musks and some groups of PhACs tended to follow a similar diurnal trend as compared to macropollutants, while the majority of PhACs followed either the opposite trend or no repeatable trend. The total musk loading to the WWTP was 0.74 ± 0.25 g d -1 , whereas the total PhAC mass loading was 84.7 ± 63.8 g d -1 . Unlike the PhACs, the musks displayed a high repeatability from one sampling day to the next. The range of PhAC loadings in the influent to WWTPs can vary several orders of magnitude from one day or week to the next, representing a challenge in obtaining data for steady-state modelling purposes. - Highlights: → Investigated the variations in influent wastewater pharmaceutical and musk loadings. → A high number of different pharmaceutical and musk compounds was analysed. → Many pharmaceutical groups displayed different characteristic patterns. → A representative steady-state pattern was observable for musks, not pharmaceuticals. → The results are relevant to the design of sampling campaigns for modelling purposes. - The diurnal variations of pharmaceuticals and musks were studied in an activated sludge plant, where the loadings of the musks were more repeatable than the pharmaceuticals.

  18. Dewaterability of sludge digested in extended aeration plants using ...

    African Journals Online (AJOL)

    Dewaterability of unconditioned sludge digested in full scale and lab scale experiments using either extended aeration (EA) or anaerobic digestion were compared on full and lab scale sand drying beds. Sludge digested in EA plants resulted in improvement in sludge dewaterability compared to sludge digested ...

  19. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  20. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    Science.gov (United States)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  1. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  3. Microbiology of the active sludge as a system to improve the effluents quality in the wastewater treatment plants

    International Nuclear Information System (INIS)

    Rodriguez, E.; Reina, E.; Fernandez, N.

    2009-01-01

    Grupo Bioindicacion Sevilla (GBS) is a Spanish group of professionals interested in microbiology. GBS celebrates an annual activity about transfer of technology on microbiology of the active sludge, which fifth edition was celebrated in 2008 with the participation of different universities (Complutense de Madrid, Politecnica de Valencia y Barcelona, etc.) and public and private water companies (DAM, Aguas de Valencia, Aqualia, Emasesa, Emacsa...), and will celebrate again in Seville the next October. During this conference, the GBS group informs about the inter-laboratories exercises too, which last results are showed in this article. (Author) 9 refs

  4. Adsorption of Phthalates on Municipal Activated Sludge

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-01-01

    Full Text Available Phthalates (PAEs are commonly detected in discharge of municipal wastewater treatment plants. This study investigated the removal of six typical PAEs with activated sludge and the results revealed that concentrations of aqueous PAEs decreased rapidly during the beginning 15 min and reached equilibrium within 2 hours due to the adsorption of activated sludge. The process followed first-order kinetic equation, except for dioctyl phthalate (DOP. The factors influencing the adsorption were also evaluated and it was found that higher initial concentrations of PAEs enhanced the removal but affected little the adsorption equilibrium time. The adsorption of PAEs favored lower operating temperature (the optimum temperature was approximately 25°C in this research, which could be an exothermic process. Additionally, lower aqueous pH could also benefit the adsorption.

  5. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area

    International Nuclear Information System (INIS)

    Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

    2014-01-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients ( 2 O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. - Highlights: • All the 21 analyzed PhACs were detected in wastewater and 18 in sludge. • The removal of PhACs was insignificant

  6. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qing, E-mail: qyan2005@hotmail.com [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); College of Geography Science and Tourism, Chongqing Normal University, Chongqing 400047 (China); Gao, Xu, E-mail: gaoxu@cqu.edu.cn [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chen, You-Peng [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Guo, Jin-Song [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China)

    2014-02-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H{sub 2}O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant

  7. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) - a tool for understanding activated sludge population dynamics and community stability.

    Science.gov (United States)

    Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.

  8. Taxonomy and Physiology of un-wanted bacterial flora in activated sludge process. Study in a pilot plant; Taxonomia y fisiologia de la flora bacteriana indeseable en el proceso de fangos activados. Estudio de una plant piloto

    Energy Technology Data Exchange (ETDEWEB)

    Berrocal Escobar, M.; Lopez Fernandez, C. L.; Arias Fernandez, M. E.; Perez Leblic, M. I.; Zapatero Martin, I.; Leton Garcia, P.; Garcia Calvo, E. [Universidad de Alcala de Henares. Madrid (Spain); Aznar Munoz, R.; Rodriguez Medina, P. [Departamento Tecnico y de Calidad de Seragua, S.A. Madrid (Spain)

    1998-12-31

    The activated sludge used in the wastewater depuration in treatment plants could be considered as an artificial microbial ecosystem in balance. In this community which is constituted by free and flocculated bacteria, protozoa, rotifers, nematodes and a few other invertebrates, the stability of the system is maintained by the continuous food competition. The breakdown of this stability due to a high proliferation of filametous bacteria drive to the phenomenon called bulking. Nowadays, to avoid bulking is one of the main objectives in research because is the main cause of the malfunction of wastewater depuration interfering with compaction, settling, thickening and, concentration of activated sludge. In the present work, a taxonomical and physiological study of the microbial community which carries out the cleaning of wastewater in an activated sludge system has been performed by using an airlift bioreactor working in continuous. Activated sludge coming from a conventional wastewater plant was used as inoculum (starter culture). The nutritional conditions and bioreactor system parameters in which the filamentous bacteria grow in excess have been established. Several of filamentous bacteria responsible for bulking have been identified: Sphaerotilus natans, type 021N, Nocardia spp., Microthrix parvicella, Thiotrix I, Thiotrix II, type 0803, type 0581, Nostocoida limicola I and III and, type 1863. In addition, protozoa of groups involved in the depuration process (free-swimming ciliates, attached ciliates, crawling ciliates, carnivorous ciliates, flagellates and amoebae) were observed as well as rotifer and nematode populations. (Author) 13 refs.

  9. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  10. Experience with a pilot plant for the irradiation of sewage sludge: Results on the effect of differently treated sewage sludge on plants and soil

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, Th.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application it is necessary to study the effect of differently treated sewage sludge on plants and soil. In bean and maize experiments in 1973 and 1974 it was found that the treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions, that irradiated sewage sludge gives a slightly better effect than untreated sludge, while the heat-treated sewage sludge indicates always a decrease, especially with the increase of applied amounts (respiration, protease and nitrification). In the field experiments there were almost no differences between untreated and irradiated sewage sludge, whereas there was always a smaller microbial activity after application of heat-treated sewage sludge. Studies on soil fauna (especially on Collemboles and Oribatidae) in the field trials indicate the influences of abiotic factors on the different locations. Besides these influences there was a decrease in the number of Collemboles and mites (in comparison with a normal fertilized plot) on the plots with 800 m 3 /ha treated sewage sludge. There was a remarkably large decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Depending on the soil type, physical and chemical studies indicated an increase in the effective field capacity after the application of sewage sludge, and sometimes the best effects occurred with irradiated sewage sludge. Relative high aggregate values were observed (6-2, 6-5 mm diameter) in the plots with irradiated sewage sludge. (author)

  11. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  12. Hexavalent chromium removal using aerobic activated sludge batch ...

    African Journals Online (AJOL)

    The following Cr(VI) removal systems were tested: activated sludge alone; activated sludge with an external electron donor (5 g/. of lactose); activated sludge with PAC addition (4 g/.); activated sludge with both PAC and lactose; and PAC alone. The results reported here showed that activated sludges are capable of ...

  13. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  14. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    Science.gov (United States)

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  15. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge.

    Directory of Open Access Journals (Sweden)

    Magna C Paiva

    Full Text Available Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1 in raw sewage (RS and activated sludge (AS. The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS and 92% (RS of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS as well as for Enhydrobacter (RS. The activated sludge process decreased (55% the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.

  16. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  17. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  19. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    Science.gov (United States)

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  20. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  1. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  2. Efficiency of Worm Reactors in Reducing Sludge Volume in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Azam Naderi

    2017-01-01

    Full Text Available The activated sludge process is the most widely used on a global scale for the biological treatment of both domestic and industrial effluents. One problem associated with the process, however, is the high volume of sludge produced. Excess sludge treatment and disposal account for up to 60% of the total operating costs of urban wastewater treatment plants due to the stringent environmental regulations on excess sludge disposal. These strict requirements have encouraged a growing interest over the last few years in reducing sludge volumes produced at biological treatment plants and a number of physical, chemical, and mechanical methods have been accordingly developed for this purpose. The proposed methods are disadvantaged due to their rather high investment and operation costs. An alternative technology that avoids many of these limitations is the worm reactor. In this study, the characteristics of this technology are investigated while the related literature is reviewed to derive the optimal conditions for the operation of this process in different situations.

  3. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  4. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  5. Bacteriological studies on dairy waste activated sludge

    NARCIS (Netherlands)

    Adamse, A.D.

    1966-01-01

    Dairy-waste activated sludge was examined for bacterial composition and response to different conditions. Strains isolated were classified mainly into three groups: predominantly coryneform bacteria (largely Arthrobacter), some Achromobacteraceae and a small groups of Pseudomonadaceae.

  6. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants

    Directory of Open Access Journals (Sweden)

    Soudani Leila

    2017-03-01

    Full Text Available The wastewater treatment produces a large amount of sludge. The different uses of eliminations sludge such as landfills or incineration have consequences negative for the environment, the agricultural use has increased worldwide, especially in crops and few or no studies have been conducted with forest plantations in Algeria. The objective of this study is to assess fertilizing characteristics of the sludge from the wastewater treatment plant of Tiaret (Algeria. One-year-old saplings of Eucalyptus camaldulensis were transplanted into pots with sludge/soil mixtures where sludge content was 20%, 40% and 60%. Biometric measurements (height, base diameter, diameter at mid-height and the number of leaves were performed during six months after planting. Results demonstrated the positive effect of sludge application. A significant difference in height increment and number of leaves was found between the control and sludge-treated plants. Biometric values for all sludge mixtures were higher than those for control plants (100% soil. The mixture, which contained 60% sludge, gives the best result, except for a diameter of stem. Plants grown on sludge/soil mixture had average height 49.4 ± 24.1 cm and average number of leaves 68.8 ± 6.2 while average height for plants grown on soil was 34.3 ± 12.8 cm and average number of leaves was 40 ± 3.8. Sludge application provides soil amendment and additional nutrient supply for planted trees.

  7. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Ibrahim, H. I.; EI-Ahwany, A.H.; Ibrahim, G.

    2004-01-01

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  8. Activated Sludge and Aerobic Biofilm Reactors

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged ae...

  9. Modeling of Activated Sludge Floc Characteristics

    OpenAIRE

    Ibrahim H. Mustafa; G. Ibrahim; Ali Elkamel; A. H. Elahwany

    2009-01-01

    Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i) Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii) Study the effect of bulk...

  10. IDENTIFICATION AND ECOPHYSIOLOGY OF ACTIVE DENITRIFIERS IN ACTIVATED SLUDGE

    DEFF Research Database (Denmark)

    Hansen, Aviaja Anna; Le-Quy, Vang; Nielsen, Kåre Lehmann

    reactor studies. To obtain better identification of active denitrifying communities in full-scale wastewater treatment plants (WWTPs) we applied DNA-SIP with 13C-labelled substrates, and RT-PCR of expressed denitrification genes (nirS, nirK and nosZ) upon various substrate-inductions. To come around...... were determined with quantitative FISH, while their active metabolic pathways were investigated directly in activated sludge with a tag-based metatranscriptomic approach under acetate-utilizing and denitrifying conditions. The different methods revealed a majority of denitrifiers in all WWTPs belonging...

  11. The application of different techniques to determine activated sludge ...

    African Journals Online (AJOL)

    The application of different techniques to determine activated sludge kinetic parameters in a food industry wastewater. ... method) and a respirometric technique based on oxygen consumption measurements, were used to compare microbial parameters using a wastewater model system of a potato processing plant.

  12. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows unde...

  13. Sensitivity study of reduced models of the activated sludge process ...

    African Journals Online (AJOL)

    The problem of derivation and calculation of sensitivity functions for all parameters of the mass balance reduced model of the COST benchmark activated sludge plant is formulated and solved. The sensitivity functions, equations and augmented sensitivity state space models are derived for the cases of ASM1 and UCT ...

  14. Effects of sewage sludge on Di-(2-ethylhexyl) phthalate uptake by plants

    International Nuclear Information System (INIS)

    Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.

    1989-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of 14 C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net 14 C concentration in plants grown in soil amended with 14 C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net 14 C concentration, however, was inversely related to sludge rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net 14 C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net 14 C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops

  15. Sludge, garbage may fuel California sewage plant

    Energy Technology Data Exchange (ETDEWEB)

    Sieger, R B

    1977-01-01

    The combustion and pyrolysis of sewage sludge and refuse-derived fuel (RFD) in multiple-hearth furnaces were recommended as a means of generating energy to power the Central Contra Costa Sanitary District's 30 mgd wastewater treatment plant using an off-gas from the pyrolysis process. In a full-scale test, a furnace in Concord, once used for sewage sludge incineration, was operated under O/sub 2/-starved conditions by limiting air addition through the burners and air nozzles, resulting in partial combustion. Using temperature as the controlled variable, the process was regulated to form a fuel gas through composition of the organic feed matter. Just enough fuel gas was combusted to evaporate moisture in the feed solids and furnish heat for the decomposition process. During most of the testing the afterburner was maintained at a temperature > 1400/sup 0/F with pyrolysis gas. At this temperature, automatic ignition of the gas occurred. When the gas generated dropped to a low heat of combustion because of high feed moisture content, the afterburner burner was used to ignite the gas. Some test observations are discussed. Preparation of the solid waste for processing by the use of shredders, air classifiers, and magnetic separators is described.

  16. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge; Verhalten von Nanosilber in Klaeranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Michael [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); HSR Hochschule fuer Technik, Rapperswil (CH). Inst. fuer Umwelt- und Verfahrenstechnik (UMTEC); Zuleeg, Steffen [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); KUSTER + HAGER Ingenieurbuero AG, St. Gallen (Switzerland); Kaegi, Ralf; Sinnet, Brian; Eugster, Jakob; Boller, Markus; Siegrist, Hansruedi [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland)

    2010-10-15

    The application of nanosilver is increasing. Knowledge on the fate and behavior of nanosilver in wastewater and wastewater treatment plants is scarce. Studies under real world conditions are completely lacking. We studied (1) the impact of nanosilver on the nitrification of sewage sludge, (2) quantified the mass flow of nanosilver in a pilot-plant, and (3) verified the mass balance in a full-scale municipal wastewater treatment plant where nanosilver is introduced to the municipal plant by an indirect discharger. The addition of four different nanosilver additives on ammonia oxidation in activated sludge has been studied in batch-reactors at two concentrations (1, 100 mg/L Ag) with two exposure times (2 h, 6 days). The pilot-plant treating 70 population equivalents of domestic wastewater is operated with a 12 day sludge age. Nanosilver was applied to the activated sludge tank within two sludge ages. The silver concentrations were measured in sludge and effluent samples during dosing and the following two sludge ages. The adsorption and speciation of silver particles has been analyzed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Influent, effluent and sludge were sampled on a full-scale plant (60 000 equivalent inhabitants) and analyzed for silver. Silver nitrate, metallic nanosilver, nano-scaled silver chloride and microcomposite silver did not show any effect on ammonia oxidation after the addition of 1 mg/L Ag to the activated sludge (corresponding to 250 mg Ag per kg solids). In contrast, 100 mg/L Ag inhibited the nitrification process by 100 % after the addition of silver nitrate and 20-30 % after addition of colloidal polymer-coated nanosilver. A complete mass balance of the pilot-plant, a steady-state system with known fluxes, demonstrates significant enrichment of silver in the sewage sludge (96 %) after the addition of silver chloride to the plant and small losses of silver into the secondary effluent (4

  17. Impact of accelerated electrons on activating process and foaming potential of sludge

    International Nuclear Information System (INIS)

    Cuba, V.; Pospisil, M.; Mucka, V.; Silber, R.; Jenicek, P.; Dohanyos, M.; Zabranska, J.

    2002-01-01

    Complete text of publication follows. Presently, anaerobic and/or aerobic biological treatment is the cheapest and the most effective method of wastewater and sludge processing. However, due to some non-biodegradable substances present in wastewater and also due to limited capacity of wastewater treatment plants, it is necessary to find effective processes, that would be complementary to existing sludge treatment methods. Beside chemical and physical processes, radiation technology seems to offer improvement of effectivity of biological treatment. The paper describes possibilities of irradiation in activating process. Activated sludge can be affected in all its parameters, including physico chemical properties, such as sedimentation rate, or resulting volume of sludge. For the purpose of this research, laboratory experimental reactors simulating activating process were operated. According to previous results, accelerated electrons were used for irradiation, for e-beam seems to be more expedient than gamma irradiation. Reactor with irradiated sludge has been compared with the one without irradiation. It is shown, that pre-irradiation of sludge can positively affect following process of activation. Beside the activating process, another goal has been pursued. Radiation can strongly affect sludge foaming potential. Biological foaming caused by surfactant microorganisms, represents quite serious problem in many wastewater treatment plants, especially in digesters. It was proved that after irradiation foaming potential of sludge decreases. Pre-irradiation of activated sludge with relatively low doses also results in reduction of number of pathogenic microorganisms, presented in sludge

  18. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  20. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  1. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  2. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  3. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong

    2015-01-01

    TM is a hybrid process, based on the integrated fixed-film activated sludge technology, where plastic carriers for biofilm growth are suspended within activated sludge. To investigate the potential of a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series...

  4. A quick system for estimating the purification performance of waste water treatment plants based on the macroscopic and microscopic characteristics of activated sludge; Sistema rapido de estimacion de los rendimientos en depuracion de una EDAR en funcion de las caracteristicas macroscopicas del fango activado

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Fernandez, N.; Horra de la, J. M.; Rodriguez, E.; Isac, L.; Salas, D.; Gomez, E.; Ortiz Vargas, A.; Gonzalez Carballo, J. A.

    2001-07-01

    Microbiological studies of activated sludge require time, specialized staff and the arduous task of identifying and analysing the results, which is not usually within the scope of every laboratory. This article raises the possibility of carrying out a simplified study of active sludge, based on its macroscopic and microscopic characteristics, which produces a sludge index value that is directly related to the percentage reduction of solids in suspension, COD and BOD in the waste water treatment plant. In addition, this sludge index would also provide the possibility of quickly obtaining a historical record of biological quality values using a simple protocol that could be use for comparisons. (Author) 10 refs.

  5. Avaliação das unidades de tratamento do lodo em uma ete de lodos ativados convencional submetida a distintas estratégias operacionais Evaluation of the sludge treatment units in an activated sludge treatment plant subjected to different operational strategies

    Directory of Open Access Journals (Sweden)

    Alessandra Valadares Álvares da Silva

    2007-06-01

    Full Text Available A finalidade deste trabalho é apresentar uma avaliação da etapa de tratamento de lodos da Estação de Tratamento de Esgotos do Arrudas (Belo Horizonte, em especial os teores de sólidos ao longo do sistema, as principais variáveis de projeto e operação. O processo de tratamento é o de lodos ativados convencional com adensamento por gravidade, digestão anaeróbia e desidratação mecânica. Desde sua entrada em operação até o momento, a estação passou por três fases operacionais quanto ao adensamento dos lodos. A maior concentração média do lodo primário (4,8% foi atingida no adensador por gravidade quando esse recebia apenas lodo primário. O lodo misto alcançou uma concentração média de 2,7% enquanto o valor esperado de projeto era 5,0%. O lodo secundário excedente, concentrado no adensador por gravidade não ultrapassou 1,8%. A maior concentração média da torta do lodo desidratado (28,3% foi obtida quando o lodo digerido era proveniente do tratamento primário.This paper aims to evaluate the sludge treatment stage at the Arrudas Wastewater Treatment Plant (Belo Horizonte, Brazil, especially the solids contents throughout the sludge treatment line, as well as the main design and operating variables. The conventional activated sludge plant has a typical solids-line flowsheet: gravity thickening, anaerobic digestion and mechanical dewatering. Three main operational phases have been identified, whose implications in the plant behaviour are analysed in the paper. The highest concentration of primary sludge (mean value of 4.8% was reached in the gravitational thickening when it was fed with primary sludge only. The mixed sludge concentrated in the gravitational thickening reached only a mean concentration of 2.7%, whereas the expected result was 5.0%. The excess secondary sludge concentrated in the gravitational thickener did not reach 1.8%. The largest concentration of the dewatered sludge cake (means value of 28.3% was

  6. RESPIROMETRIC ACTIVITY OF ACTIVATED SLUDGE AND BIOFILM IN IFAS-MBBR SYSTEM

    Directory of Open Access Journals (Sweden)

    Paula Piechna

    2017-07-01

    Full Text Available The aim of the presented study was: a assessment of activity of microorganisms developed in form of activated sludge and biofilm, b indirect assessment of the role of analyzed biocoenoses in removal of organic compounds in hybrid reactor with moving bed. Oxygen uptake rate tests (OUR have been used, and obtained results were presented as volumetric activity (expressed in mg O2/L · h and mass activity (expressed as mg O2/g VTS · h. Tests were conducted for three different variants, in which, as the biomass: 1 biofilm was used, 2 activated sludge was used, 3 biofilm and activated sludge were used. The biomass was collected from aerobic reactor from a wastewater treatment plant working in IFAS-MBBR system. The highest volumetric activity was observed for variant with biofilm and activated sludge, and the lowest for variant with biofilm only. Nonetheless, the highest value of oxygen uptake rate related to total volatile solids was observed for variant with biofilm and the lowest for activated sludge. Obtained results suggest, that during this research, at the wastewater treatment plant, the main role in removal of organic pollutants played the biomass developed in form of activated sludge.

  7. Kinetic model of excess activated sludge thermohydrolysis.

    Science.gov (United States)

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Toxicity measurement in a waste water treatment plants using active sludge aerobic biological treatment. Medida de la toxicidad en una estacion depuradora de aguas residuales con tratamiento biologico aerobio por fangos activos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.E. (Surcis, Guadalajara (Spain))

    1994-01-01

    The need for reliability in the operation of waste water treatment plants is discussed. In aerobic biological treatments of whatever kind using active sludge, the bio toxicity can be determined by measuring the oxygen consumed in endogenous breathing. The difficulty lies in carrying out the bio toxicity test without effecting the concentration of the organic substrate of the wastes water. This is overcome by operating at maximum organic material load, thereby inducing maximun breathing. (Author)

  9. Ecological and kinetic aspects of amylolysis and proteolysis in activated sludge

    NARCIS (Netherlands)

    Janssen, J.M.A.

    1979-01-01

    An investigation has been made of the enzymic degradation of biopolymers by activated sludge. Starch was chosen as the model substrate; it was administered continuously at different sludge loading values which covered the entire range of loadings applied in sewage purification plants. The

  10. Calibration of the hydraulic model of a full-scale activated sludge plant; Calibracion hidraulica a escala real de un reactor de lodos activados

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Cheikh [Universidad Autonoma del Estado de Mexico (Mexico); Loaiza-Navia, Jimmy [Servicios de Agua y Drenaje de Monterrey (Mexico)

    2008-04-15

    When planning to simulate a wastewater treatment plant (WWTP) with the activated sludge model number 1 (ASM1), one of the first requirements is to determine the hydraulic model of the reactor. The aim of this study was to evaluate the hydrodynamic regime of the aeration tank of a municipal WWTP by using a rhodamine tracer test and the Aquasim simulation software. A pre-simulation was performed in order to quantify the appropriate colorant mass, set up a sampling plan and evaluate the anticipated visual impact of the tracer test in the river receiving the treated effluents. A tracer test and dynamic flow measurements were carried out, the results of which served to establish and calibrate the hydraulic model. The evaluated tank was physically built as a plug-flow reactor subdivided in 7 compartments, but the study revealed that it is best represented by a model with 5 virtual mixed reactors in series. Through the study, the approach of using a WWTP simulator for hydraulics calibration was shown to be a powerful and flexible tool for designing a tracer test and for identifying adequate tank-in-series models of full-scale activated sludge aeration tanks. [Spanish] Cuando se planea simular una planta de tratamiento con base en el modelo numero 1 de lodos activados (ASM1), uno de los primeros requisitos es determinar el modelo hidraulico del reactor. En este trabajo se estudio el regimen hidrodinamico del tanque de accion de una planta de tratamiento de aguas residuales municipales (PTAR), utilizando una prueba de trazador con rodamina y un programa de simulacion (Aquasim). Se realizo una prueba de trazador con el experimento, lo que permitio determinar la cantidad requerida de trazador, fijar los intervalos de muestreo y limitar el impacto visual anticipado del colorante sobre el rio que recibe el efluente tratado. Se llevaron a cabo la prueba de trazador y la medicion de los perfiles dinamicos de caudales, cuyos resultados sirvieron para establecer y calibrar el

  11. Detection of radionuclides originating from a nuclear power plant in sewage sludge

    International Nuclear Information System (INIS)

    Puhakainen, M.; Suomela, M.

    1999-01-01

    Sewage sludge is a sensitive indicator of radionuclides entering the environment. Radionuclides originating in nuclear power stations have been detected in sludge found at wastewater treatment plants in communities near the power plants (NPP). The main contributor is the radionuclide discharges of the NPPs into the atmosphere, but workers may transmit small amounts through their clothes or skin, or from internal contamination. The purpose of the present investigation was to determine the amounts of radionuclides in sewage sludge and to obtain information on transport of the radionuclides from the NPPs to the wastewater treatment plants. Under normal operating conditions and during annual maintenance and refuelling outages at the Loviisa and Olkiluoto NPPs, sewage sludge samples were taken at wastewater treatment plants in communities located in the vicinity of the plants. With the exception of 131 I, the most significant activities in discharges into the air from the Loviisa NPP were due to 110 mAg. The latter was also noted most frequently in the sewage sludge at the wastewater treatment plant in the town of Loviisa about 10 km from the Loviisa pressurised water reactor (PWR) NPP. The other nuclides probably originating from the Loviisa NPP were 51 Cr, 54 Mn, 58 Co, 59 Fe, 60 Co, 110 mAg and 124 Sb. In the wastewater treatment plant in the town of Rauma, about 10 km from the Olkiluoto boiling water reactor (BWR) NPP, the only nuclides possibly origination from the NPP were 54 Mn, 58 Co and 60 Co. In the wastewater treatment plant, the variation in concentration of 60 Co in sludge did not correlate with the activities measured in precipitation. The occurrence of the nuclide in the treatment plant did not correlate over time with the amounts of discharge from the NPP. This suggests that at least some of the activity was transported to the wastewater treatment plant via routes other than precipitation. Small amounts may be transported within NPP workers to sewage

  12. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    Science.gov (United States)

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  14. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  15. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.

    2003-01-01

    of gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination...

  16. Respirometry techniques and activated sludge models

    NARCIS (Netherlands)

    Benes, O.; Spanjers, H.; Holba, M.

    2002-01-01

    This paper aims to explain results of respirometry experiments using Activated Sludge Model No. 1. In cases of insufficient fit of ASM No. 1, further modifications to the model were carried out and the so-called "Enzymatic model" was developed. The best-fit method was used to determine the effect of

  17. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing.

    Science.gov (United States)

    Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-10-01

    Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Predicting the degradability of waste activated sludge.

    Science.gov (United States)

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  19. Application of Activated Sludge Process at Phenol Water Treatment Station in Yanzhou Coal Mine Distract Coking Plant%活性污泥法在兖州矿区焦化厂酚水处理站的应用

    Institute of Scientific and Technical Information of China (English)

    许寒冰; 牟增越

    2001-01-01

    论述活性污泥法处理焦化酚水的若干问题,包括活性污泥的培养、驯化、运行工艺指标、参数,管理中应把握的几个工艺点,运行中常出现的问题及对策,几点探索和体会。%Some of the technical problems of phenol water treatment in coking plant by using the activated sludge process are discussed. These technical problems are including culture, domestication, operation process index of activated sludge; a few of process point control in management; often happened technical problems and countermeasures in operation.

  20. Analysis of sewage sludge and cover soil by neutron activation analysis

    International Nuclear Information System (INIS)

    Moon, J.H.; Lim, J.M.; Kim, S.H.; Chung, Y.S.

    2008-01-01

    The Korean government reported that in 2005, 4395 tons/day of sewage sludge were generated from sewage disposal facilities in Korea and only 11.03% of it was reused. In addition, as a direct landfill of sewage sludge was forbidden from June 2003, research for a relevant disposal technique has been increasing. In this study, the aims were to analyze the collected sewage sludge samples and to evaluate the possibility for their reuse by a comparison of the elemental contents from a sewage sludge and a cover soil. Sludge samples were collected from a sewage disposal plant in Daejeon city and the cover soil was produced by a dilution of a sewage sludge with quicklime. Instrumental neutron activation analysis was employed to determine the elemental contents in the samples. Twenty seven elements were analyzed and their concentrations were compared. (author)

  1. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  2. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  3. Adverse effects of erythromycin on the structure and chemistry of activated sludge

    International Nuclear Information System (INIS)

    Louvet, J.N.; Giammarino, C.; Potier, O.; Pons, M.N.

    2010-01-01

    This study examines the effects of erythromycin on activated sludge from two French urban wastewater treatment plants (WWTPs). Wastewater spiked with 10 mg/L erythromycin inhibited the specific evolution rate of chemical oxygen demand (COD) by 79% (standard deviation 34%) and the specific N-NH 4 + evolution rate by 41% (standard deviation 25%). A temporary increase in COD and tryptophan-like fluorescence, as well as a decrease in suspended solids, were observed in reactors with wastewater containing erythromycin. The destruction of activated sludge flocs was monitored by automated image analysis. The effect of erythromycin on nitrification was variable depending on the sludge origin. Erythromycin inhibited the specific nitrification rate in sludge from one WWTP, but increased the nitrification rate at the other facility. - Erythromycin toxicity on activated sludge is expected to reduce pollution removal.

  4. Global Perspectives on Activated Sludge Community Composition analyzed using 16S rRNA amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Saunders, Aaron Marc; Albertsen, Mads

    communities, and in this study activated sludge sampled from 32 Wastewater Treatment Plants (WWTPs) around the world was described and compared. The top abundant bacteria in the global activated sludge ecosystem were found and the core population shared by multiple samples was investigated. The results......Activated sludge is the most commonly applied bioprocess throughout the world for wastewater treatment. Microorganisms are key to the process, yet our knowledge of their identity and function is still limited. High-througput16S rRNA amplicon sequencing can reliably characterize microbial...

  5. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-07-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD{sub i}nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  6. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    International Nuclear Information System (INIS)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-01-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD i nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  7. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N [Eurotec West A/S (DK); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H [Risoe National Laboratory, DTU (DK); Rasmussen, Soeren [SamRas (DK)

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  8. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  9. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improved waste-activated sludge dewatering using sludge/oil ...

    African Journals Online (AJOL)

    2014-10-07

    Oct 7, 2014 ... 2Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, ... conventional heating methods in chemical reactions is becom- ... the dewaterability of sludge and reduces the organic matter ..... It is unlikely that this technique will be applied in.

  11. Electroosmotically enhanced sludge dewatering-pilot-plant study

    CSIR Research Space (South Africa)

    Smollen, M

    1994-01-01

    Full Text Available role in determining the ease or difficulty of phase separation. It seems that the inefficiency of dewatering applied to gelatinous and fine-particle sludges can be overcome by mechanical dewatering enhanced by electroosmosis. A prototype pilot-plant...

  12. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    OpenAIRE

    Yagüe, A.; Valls, S.; Vázquez, E.; Kuchinow, V.

    2002-01-01

    Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of...

  13. Diversity of foam producing nocardioform actinomycetes isolated from biological foam from activated sludge plants in Comunidad Valenciana; Diversidad de actinomicetos nocardioformes productores de espumas biologicas aislados de plantas depuradoras de aguas residuales de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Soler, A.; Alonso, J.L.; Cuesta, G.

    2009-07-01

    The formation of biological foams in activated sludge systems is one of the most important problems of solid separation in wastewater treatment plants. Nocardioform actinomycetes are the most important filamentous bacteria responsible of foam formation. This group of microorganisms has hydrophobic cellular surfaces due to the mycolic acids. These foams interfere in wastewater treatment process because retain many suspended solids, block conductions and produce overflowing in the digesters and corridors. To identify correctly the nocardioform actinomycetes we have to do poli phasic taxonomy that includes 16S rDNA sequences analysis, determinate several chemo taxonomic markers and some phenotypic tests. (Author) 18 refs.

  14. Bitumen coating of the radio-active sludges from the effluent treatment plant at the Marcoule centre. Review of the progress reports 1, 2, 3 and 4 (1963)

    International Nuclear Information System (INIS)

    Rodier, J.; Lefillatre, G.; Scheidhauer, J.

    1963-01-01

    Besides the very high activity liquids containing fission products, the chemical treatment of irradiated fuels produces a large volume of aqueous effluents and solid waste of relatively low radioactivity. These weakly active products can be eliminated in the ground, in a hydrographic land system or in the sea. Techniques of evaporation, of resin concentration, and of coprecipitation give rise to inorganic sludges with a high water content. All these residues occupy a large volume and represent a far from negligible weight. In the case of the sludge, their relative fluidity necessitates a conditioning guaranteeing safe storage. The solution to the problem will consist in passing directly from a liquid or a suspension, to a solid whose structure is homogeneous and whose matter is inert with respect to the storage medium (soil, sea, etc. ). We have proposed to coat the radioactive products with bitumen. This article is designed to give a review of the studies undertaken on this method. It consists of a progress report rather than a final assessment. (authors) [fr

  15. Effects of organic contaminants in sewage sludge on soil fertility, plants and animals

    International Nuclear Information System (INIS)

    Hall, J.E.; Sauerbeck, D.R.; L'Hermite, P.

    1992-01-01

    Sewage sludge production in Europe will continue to rise as a result of higher environmental standards, making disposal increasingly difficult in the future. A considerable part of this sludge is spread beneficially on agricultural land as an organic fertilizer, however, this outlet is very sensitive to the problems associated with the inorganic and organic contaminants which sludge inevitably contains. Much research has been devoted to the problems of contaminants in sludge and their potential effects on soil, plants, animals and man in recent years, and the European Commission's Concerted Action COST 681 has provided a valuable forum for the exchange of views and progress of research on sludge treatment and disposal. This book contains 19 papers presented to a joint meeting of Working Party 4 (Agricultural Value) and Working Party 5 (Environmental Effects) of COST 681, held at the German Federal Research Centre of Agriculture (FAL), Braunschweig on 6-8 June 1990. The meeting addressed two areas of current concern; the occurrence, behaviour and transfer of sludge-derived organic contaminants (Session 1), and the influence of inorganic and organic contaminants on soil micro-organisms and their activities (Session 2)

  16. Social and environmental aspects of a sewage sludge irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2000-01-01

    The critical environmental parameters involved in an environmental impact study for a 700,000 Ci of 60 Co sewage sludge irradiation plant are described and analyzed. The plant is the first that will operate in Argentina and it is located in a town of 500,000 inhabitants, in an agricultural region with no nuclear tradition. The position of the environmental authorities and of the public opinion is analyzed. Possible information alternatives are proposed. (author)

  17. Toluene in sewage and sludge in wastewater treatment plants.

    Science.gov (United States)

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  18. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  19. Leachate Treatment from Sarimukti Landfill Using Ozone with Sludge from Water Treatment Plant as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yudha Ramdhani Muhammad

    2018-01-01

    Full Text Available Leachate is the liquid waste from anaerobic decomposition in a landfill. The ozonation process can be used for leachate treatment. Sludge from sedimentation in water treatment plant contains 5.96% of Al and 9.35% of Si which can affect of its cation exchange capacity and affects the active site in the catalyst. This study aims to determine the effectivity of sludge in the ozonation process to treat leachate. A 1,5 L semi-batch reactor containing 1 L sample was used in this experiment with the rate of oxygen supply was at 4 L/min taken from ambient air. Two groups of sludge weighing 1.5 grams, 3.0 grams and 4.5 grams were used and activate with physically and chemically activated. The best result was obtained by the physically activated sludge with mass of 4.5 gram O3-L-4,5 AF. The differences of removal efficiency between O3-L-4,5 AF with the control (O3 for turbidity were respectively 13.02% and 7.81%, for EC were 10.57% and 8.29%, for COD were 49.44% and 37.50%, and for residual ozone concentration at the end of contact time were 7.6 mg/L and 9.7 mg/L. It can be concluded that activaed sludge and ozonation can be used as a catalyst in leachate treatment.

  20. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  1. An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge

    Science.gov (United States)

    1993-09-01

    speculated that the plants produced "root exudations" that were active against pathogens , and that the plants specifically showed an affinity for cadmium, zinc...mineralize and for pathogens to be destroyed. This downtime makes multiple beds necessary. The USEPA also reports that the major advantage of the reed...employee to regulate the sludge applications. This employee would also visually assess the beds for possible problems such as weed or insect ( aphid

  2. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    Science.gov (United States)

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights

  3. Examination into the gamma irradiation of activated sludge

    International Nuclear Information System (INIS)

    Mustapha, S.; Forster, C.F.

    1985-01-01

    This study has shown that the treatment of activated sludge by gamma irradiation resulted in a deterioration in the filterability, a decrease in the size of the floc particles and an increase in the organic matter present in the sludge supernatant. A significant difference was found between the results obtained for filamentous and non-filamentous sludges in relation to the amount of soluble polysaccharide produced. (author)

  4. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  5. Plant uptake of pentachlorophenol from sludge-amended soils

    International Nuclear Information System (INIS)

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal 14 C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge

  6. Storage and degradation of poly-ß-hydroxybutyrate in activated sludge under aerobic conditions

    DEFF Research Database (Denmark)

    Dircks, Klaus; Henze, Mogens; van Loosdrecht, M.C.M.

    2001-01-01

    This research analyses the accumulation and degradation of poly-b-hydroxybutyrate (PHB) in experiments with pulse addition of acetate to samples of activated sludge from pilot-plant and full-scale wastewater treatment plants. The experiments are divided into two periods: a feast period defined as...

  7. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  8. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS, play vital roles in the normal operation of wastewater treatment plants (WWTPs. The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm, but different observation were made at higher CuNPs concentrations (30 and 50 ppm. At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  9. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    Science.gov (United States)

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  10. Activated sludge process simulator ASP-Sim, Part-1: Bod and ...

    African Journals Online (AJOL)

    The most commonly used biological treatment of municipal and industrial wastewater is the Activated Sludge Process. The design of activated process is usually done manually; this is ... is a useful tool for predicting the effect of temperature on design and operation of completely mixed activated plant design and operation.

  11. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  12. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  13. Experimental plant for sludge composting. Plant experimental de compostaje de lodos

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, A.; Caellas, N.; Amengual, A.; Calafact, J.

    1993-01-01

    Results and expertise collected during the first year of exploitation of a compost experimental plant located in Mallorca (Spain): The plant is treating sludge from the biological treatment plant of water at the town of Felanitx and the compost produced is used in agriculture. (Author)

  14. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  15. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Directory of Open Access Journals (Sweden)

    Herbert Galler

    2018-03-01

    Full Text Available Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL-harbouring Enterobacteriaceae (Gram negative bacilli, methicillin resistant Staphylococcus aureus (MRSA and vancomycin resistant Enterococci (VRE—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.

  16. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Science.gov (United States)

    Feierl, Gebhard; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Habib, Juliana; Kittinger, Clemens; Luxner, Josefa

    2018-01-01

    Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common. PMID:29522474

  17. Metal uptake by plants from sludge-amended soils: caution is required in the plateau interpretation

    DEFF Research Database (Denmark)

    Hamon, R.E.; Holm, Peter Engelund; Lorenz, S.E.

    1999-01-01

    by increased sorption sites provided by the sludge constituents at the high sludge loading rates. We grew Raphanus sativus L. in a soil historically amended with sewage sludge at different rates and examined concentrations of Cd and Zn in the plants and in corresponding rhizosphere soil solution. Metal...

  18. Can aquatic worms enhance methane production from waste activated sludge?

    NARCIS (Netherlands)

    Serrano, Antonio; Hendrickx, Tim L.G.; Elissen, Hellen; Laarhoven, Bob; Buisman, Cees J.N.; Temmink, Hardy

    2016-01-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30 °C with sludge from a high-loaded membrane bioreactor, the aquatic worm

  19. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  20. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    Science.gov (United States)

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  1. Phytoextraction of heavy metal from sewage sludge by plants

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2010-01-01

    Full Text Available In 2008 and 2009, studies made contents of cadmium and lead in the soil and their uptake by non-traditional plants were studied in a small-plot trial. At the same time also the effect of bio-algeen preparations on phytoextraction of heavy metals by these plants was investigated. Experimental plots were established on the reclaimed land after closing down mining operations in the town of Žacléř (North-East Bohemia where a layer of sewage sludge from a wastewater treatment plant 0.6–0.8 m thick was subsequently applied. The locality is situated in the altitude of 612 m, its average annual temperature is about 6.8 °C and the mean annual precipitations are 857 mm. Analyses revealed higher concentrations of heavy metals in the applied sewage sludge. The average concentrations of lead and cadmium were 180 mg . kg−1 and 6.89 mg . kg−1, respectively. The experiment had two variants: Variant 1 – sewage sludge without any other substances, and Variant 2 – sewage sludge + bio-algeen preparations (B. A. S-90 or B. A. Root Concentrate. To find the most suitable plant species for the phytoextraction of cadmium and lead, the following non-traditional plants were cultivated in both variants: fodder mallow (Malva verticillata L., rye (Secale cereale L. var. multicaule METZG. ex ALEF. and white sweet clover (Melilotus alba MEDIC.. The highest accumulation of cadmium and lead in the aboveground biomass was found out in rye, viz 14.89 mg . kg−1 DM and 14.89 mg . kg−1 DM of Cd and Pb, respectively., As compared with other plants under study, white sweet clover exhibited the significantly lowest capability to extract both heavy metals from soil (viz 0.22 and 3.20 mg . kg−1 DM of Cd and Pb, respectively. A positive effect of bio-algeen on phytoextraction of cadmium and lead was evident in all plants. The highest yield of aboveground biomass was recorded on the plot with white sweet clover with added

  2. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  3. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  4. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Packaging of radioactive sludges at the Saclay effluent processing plant

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile; Bourdrez, Jean; Leconnetable, Jean

    1964-10-01

    The authors describe technical and technological aspects of the packaging workshop for radioactive sludges produced by processes of co-precipitation of Saclay effluents. This facility is an achievement of studies which aimed at improving working conditions for the plant staff. This workshop implements a process of solidification of filtered sludge by mixing with a hydraulic binding agent. After some generalities on the decontamination process applied to effluents produced by the Saclay research centre, the authors present and describe the adopted process, propose a physical description of the facility: building, chemical engineering equipment (filtration, packaging, and handling). They describe facility operation: introduction of a block into the cell, block filling, output of a packaged container. They briefly discuss the first results of facility exploitation [fr

  6. Sewage sludge as a sensitive indicator for airborne radionuclides from nuclear power plants

    International Nuclear Information System (INIS)

    Ingemansson, T.

    1982-01-01

    Sewage sludge collected at waste water treatment plants located in the vicinity of nuclear power stations, has been shown to be a sensitive and convenient indicator for airborne locally released activation products, 60 Co, 65 Zn, 58 Co and 54 Mn. We have therefore been able to study the distribution and behaviour of these radionuclides in the terrestrial environment of three Swedish nuclear power stations. Comparative measurements on ground level air and on samples of lichen (Cladonia alpestris) and soil have also been performed. The variation by distance from the power station of 60 Co measured in sludge as well as on air-filters could be described by the same power function. The temporal variation of the activity concentration in sludge samples well reflects the variation of the reported release rate of airborne radionuclides from the power stations if the prevalent wind direction is taken into consideration. The relation between the activity ratio 60 Co/ 7 Be in air and in sludge was investigated and indicated that most of the detected 60 Co and part of 58 Co and 54 Mn activity is released from a local source and is dry deposited on the ground before it is washed off by rain. (Author)

  7. Effects of ozonation on disinfection and microbial activity in waste activated sludge for land application

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyu-Hong; Maeng, Sung Kyu; Hong, Jun-Seok; Lim, Byung-Ran

    2003-07-01

    Effects of ozonation on microbial biomass activity and community structure in waste activated sludges from various treatment plants were investigated. The densities of viable cells and microbial community structure in the sludges treated with ozone at 0.1, 0.2 and 0.4 gO{sub 3}/gDS were measured on the basis of the respiratory quinone profile and LIVE/DEAD Backlight(TM). The results from the bacterial concentration and quinone profiles of the waste activated sludge showed that respiratory activities of microorganisms were detected at the ozone dose of 0.4 gO{sub 3}/gDS. However, fecal coliform, fecal streptococcus and Salmonella sp. in the ozonized sludge were not detected. This result implies that some microorganisms might be more tolerant to ozonation than the pathogenic indicators. The pathogens reduction requirements for Class A biosolids were still met by the ozonation at 0.4 gO{sub 3}/gDS.

  8. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  9. Experience with Stabilization of SGHWR Sludge in a Commercial Plant in the United Kingdom

    International Nuclear Information System (INIS)

    Hagan, M.; Cornell, R.M.; Riley, B.; Ware, B.

    2009-01-01

    In July 2000, following a competitive tender, Nuvia Limited was contracted to design, build and commission a waste treatment plant to stabilise the active sludge stored in the External Active Sludge Tanks (EAST) at Winfrith, UK. The sludge was generated during the operational lifetime of the Steam Generating Heavy Water Reactor (SGHWR), which was in the early stages of decommissioning. This was in support of UKAEA's mission, which is to carry out environmental restoration of its nuclear sites and to put them to alternative uses wherever possible. Latterly, a new body, the Nuclear Decommissioning Authority (NDA), has become responsible for managing the UK decommissioning legacy and since 2004 UKAEA has been contracted to the NDA to deliver decommissioning work at Winfrith and other UK sites. The purpose of this commercial plant is to stabilise the radioactive sludge by encapsulation into a cement matrix within a purpose-designed 500 litre steel drum. The drum design incorporates a lost paddle mixer used to maintain homogeneity of the sludge as well as mixing it with the stabilising powders. The sludge in the EAST tanks is prepared for recovery by a process of homogenisation using in-tank stirrers. The means of reaching a narrow ratio of suspended solids within an aqueous medium will be described together with some of the problems encountered and the practical solutions devised. The material is transferred to the purpose-built Winfrith EAST Treatment Plant (WETP), where it is held in stainless steel tanks in a process area prior to being metered into a 500 litre stainless steel drum in the cell line for stabilization with powders. The cell line consists of five cells separated by shield doors designed to maintain strict contamination control. The line has a wet cell where the drums are filled with the sludge and powder, a cell with stations for curing and grouting the drums, a cell for lidding, bolting and QA inspection, a maintenance and gamma monitoring cell and a

  10. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  11. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  12. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... separation, on-site applications of such processes (especially fat traps) are often ... edible oil effluent treatment on sludge settleability, floc structure and activity of .... Poor FOG removal was noted in the MLE system as just 7%.

  13. Evaluation of Control Parameters for the Activated Sludge Process

    Science.gov (United States)

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  14. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal; Lens, Piet Nl L

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether

  15. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    Science.gov (United States)

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors

    Science.gov (United States)

    Benchtop bioreactors were run aerobically with activated sludge samples collected from a large municipal wastewater treatment plant (WWTP) to understand how increased hydraulic retention time (HRT) and varying treatment temperatures (21°C and 30°C) impact concentrations of the endocrine disrupting a...

  17. Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications

    DEFF Research Database (Denmark)

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang

    2015-01-01

    was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used...

  18. A comparison between model and rule based control of a periodic activated sludge process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Thornberg, D.

    1997-01-01

    Two strategies for control of nitrogen removal in an alternating activated sludge plant are compared. One is based on simple model predictions determining the cycle length at the beginning of each cycle. The other is based on simple rules relating present ammonia and nitrate concentrations. Both ...

  19. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    Science.gov (United States)

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  20. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  1. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, T.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application, it is necessary to study the effect of differently treated sewage sludge to plants and soil. In bean- and maize experiments in 1973 and 1974 it was found that treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions that irradiated sewage sludge gives a slightly better effect than untreated one. In the field experiments there were nearly no differences between untreated and irradiated sewage sludge. Studies on soil fauna in the performed field trials indicate influences of abiotic factors on the different locations. Besides these influences there is a decrease of the number of Collemboles and Mites on the plots with 800 m 3 /ha treated sewage sludge. There is a remarkable high decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Physical and chemical studies indicated, depending on the soil type, an increase in the effective field capacity after the application of sewage sludge, while there were sometimes the best effects with irradiated sewage sludge. Relative high aggregate values were observed in the plots with irradiated sewage sludge. (orig./MG) [de

  2. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  3. COMPARISON BETWEEN DIFFERENT MODELS FOR RHEOLOGICAL CHARACTERIZATION OF ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    A. H. Khalili Garakani

    2011-09-01

    Full Text Available Activated sludge flow rheology is a very complicated phenomenon. Studies related to activated sludge tend to classify sludge as non-Newtonian fluid. Until now, several theories have been built to describe the complex behavior of activated sludge with varying degrees of success. In this article, seven different models for viscosity of non-Newtonian fluids (i.e., Power law, Bingham plastic, Herschel-Bulkley, Casson, Sisko, Carreau and Cross were considered to evaluate their predictive capability of apparent viscosity of activated sludge. Results showed that although evaluating the constants in the four-parameter models is difficult, they provide the best prediction of viscosity in the whole range of shear rates for activated sludge. For easier prediction of viscosity at different mixed liquor suspended solids (2.74-31g/L, temperature (15-25°C and shear rate (1-1000/s, simple correlations were proposed. Comparing the results with the experimental data revealed that the proposed correlations are in good agreement with real apparent viscosities.

  4. Biofac, a microbiological multimedia tool to perform the analysis of activated sludge

    International Nuclear Information System (INIS)

    Ferrer Torregrosa, C.; Llopis Nicolau, A.; Claramonte Santarrufina, J.; Alonso Hernandez, S.

    2009-01-01

    The composition and structure of the macrobiotic that is part of the active sludge, its temporal evolution, and the analysis of the macroscopic and microscopic characteristics of it are a source of information of great help in making decisions for plant operators. Lack of training and access to specific information linked to the missing standardization of analysis processes hinder the implementation and interpretation of them. Using a multimedia tool in DVD, Facsa has developed the Biofac, an application in which it is documented and illustrated the most relevant aspects that allow the user to perform the analysis of activated sludge. (Author)

  5. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  6. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  7. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  8. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  9. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  10. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  11. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    Science.gov (United States)

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  12. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    NARCIS (Netherlands)

    Leitao, R.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2009-01-01

    The effects of hydraulic retention time (HRT) and influent COD concentration (CODInf) on Specific Methanogenic Activity (SMA) and the biodegradability of an anaerobic sludge need to be elucidated because of the discordant results available in literature. This information is important for the

  13. Reasonable management plan of sludge in sewage disposal plant

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Kyu Jin; Koo, Hyun Jung [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The compost method, which is widely used as a sewage disposal recycling in Korea, is now basically impossible to recycle sludge to compost by the Ministry of Agriculture and Forestry announcement. Therefore, the disposal of sludge will be much harder with reducing the amount of sludge used as compost. The amount of sludge other than using as compost is very small, so the development of various sludge recycling and use will be needed with regulations. This study was implemented to help the establishment of sewage sludge recycling policy in Korea. 30 refs., 17 figs., 58 tabs.

  14. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  15. Exploiting the energy potential of waste activated sludge with MicroSludge[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.; Laliberte, S. [Paradigm Environmental Technologies, Vancouver, BC (Canada); Nemeth, L. [Earth Tech Canada Inc., Burnaby, BC (Canada)

    2007-07-01

    When waste activated sludge (WAS) is efficiently converted to biogas through anaerobic digestion, the energy potential and economic value of WAS can be exploited. This paper discussed the chemical and pressure pre-treatment process using MicroSludge. MicroSludge uses alkaline pre-treatment to weaken cell membranes and a high-pressure homogenizer to liquefy the cells, enabling the anaerobic digester to work at a higher rate and more efficiently, destroying pathogens and generating less biosolids for disposal, with corresponding higher volumes of methane from which to generate added electrical power and/or produce added heat. MicroSludge was demonstrated at the Chilliwack waste water treatment plant (WWTP), located 115 km east of Vancouver. The paper provided a description of the Chilliwack WWTP and discussed the application of MicroSludge at a full-scale prototype plant. The MicroSludge plant was capable of pre-treating all of the waste secondary sludge generated at the Chilliwack WWTP prior to anaerobic digestion. The paper also discussed digester hydraulic retention time; scanning electron microscope images; temperature; pH; mass loading of primary sludge and waste activated sludge; total volatile solids concentrations; and digester gas composition. Operating and maintenance costs were also outlined along with electrical power costs, maintenance costs and chemical costs. Last, the paper presented the energy benefits for WWTPs when using MicroSludge. It was concluded that the economic benefits of MicroSludge are greater for plants with higher biosolids disposal costs and higher electrical utility costs. 6 refs., 8 tabs., 10 figs.

  16. Comparison between thermo balance and classic gravimetric method for determination of suspended solids in sludge from wastewater treatment plant

    International Nuclear Information System (INIS)

    Bruzzone, E.

    2009-01-01

    In this paper two methods for determination of suspended solids in sludge from wastewater treatment plants (activated, thickened and dry, in a range from 0.1 to 20-25%) are compared. Results are similar from statistic point of view between classic gravimetric method and thermo balance method. However the later seems better for its rapid and easy execution. [it

  17. Factors influencing suspended solids concentrations in activated sludge settling tanks.

    Science.gov (United States)

    Kim, Y; Pipes, W O

    1999-05-31

    A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be

  18. Results of exploitation of a pilot-plant installation for bituminization of radioactive sludges

    International Nuclear Information System (INIS)

    Golinski, M.; Ksiazak, Z.; Surala, J.; Dziubecki, R.

    1974-01-01

    Results are discussed of exploitation of a pilot-plant installation for bituminization of radioactive sludges of an efficiency of 25 l/h. In a time period of 20 month 120 cycles were carried out in which 60 m 3 of 2-4% sludges from treatment of low-level waste by the phosphate-ferrocyanide method were solidified. The P-60 asphalt was used for bituminization. The bituminization products contained 5-13.5% of mineral substances. Their activity was in the range 5 x 10 -4 - 5 x 10 -3 μCi/g for alpha emitters and 1.2 - 3.8 x 10 -2 μCi/g for beta emitters. (author)

  19. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    Science.gov (United States)

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  20. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.

    2009-07-01

    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  1. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  2. Inoculum development by using activated sludge to remove hydrogen sulphide (H2S through biofiltration*

    Directory of Open Access Journals (Sweden)

    Alejandra Mora

    2005-07-01

    Full Text Available Different activated sludges were used for developing an inoculum able to degrade hydrogen sulphide in a pilot scale biofiltration plant using two different support materials: sugarcane bagasse and this bagasse mixed with pumice stone. Adapting and selecting microbial species which degrade hydrogen sulphide (H2S was aided by adding nutrients plus a specific substrate to the activated sludge. Population variation was monitored within the different trophic groups in the biofiter medium during pilot scale plant operation, a general trend towards sulphur-oxidising bacteria (SOB growth being observed as was a decrease in heterotrophic bacteria, molds and yeasts. The activated sludge which showed the highest substrate degradation speed was selected for standardising inoculum preparation; the different nutritional mediums were evaluated during this process. Measuring some variables for controlling the process led to choosing the pH for determining the proper point of inoculum adaptation for this specific substrate. The inoculation procedure and support characteristics in terms of establishing and developing the microbial species increased biofilter removal efficiency by up to 99% from start-up. Key words: biofilter, activated sludge, adapted microorganisms, sulphur-oxidising bacteria, respirometry. Este artículo es el resultado de un proyecto cofinanciado por Colciencias y desarrollado por un grupo de investigadores vinculados al proyecto a través de las entidades Corporación

  3. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: fate and mass balance

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Samara, Constantini

    2005-01-01

    The fate and the mass balance of persistent organic pollutants (POPs) during the conventional activated sludge treatment process were investigated in the wastewater treatment plant of the city of Thessaloniki, northern Greece. The POPs of interest were 7 polychlorinated biphenyls and 19 organochlorine pesticides. Target compounds were determined at six different points across the treatment system: the influent, the effluent of the primary sedimentation tank, the effluent of the secondary sedimentation tank, the primary sludge, the activated sludge from the recirculation stream, and the digested/dewatered sludge. The distribution of POPs between the dissolved and the adsorbed phases of wastewater and sludge was investigated. A good linear relationship between the distribution coefficients, K d , and the octanol-water partition coefficients, K ow , of the solutes was observed only in raw wastewater, suggesting that other factors affect the phase distribution of organic compounds in treated wastewater. For all POPs, a significant increase in partitioning with a decreasing solids concentration was observed, revealing an effect from non-settling microparticles remaining in the 'dissolved' phase during the separation procedure. A good linear relationship was also revealed between logK d and the dissolved organic carbon (DOC) content of wastewater, suggesting that DOC favors the advective transport of POPs in the dissolved phase. Almost all POPs showed good mass balance agreements at both the primary and the secondary treatment. The losses observed for some species could be attributed to biodegradation/biotransformation rather than volatilization. The relative distribution between the treated effluent and the waste sludge streams varied largely among different compounds, with p-p'-DDE being highly accumulated in the waste sludge (98%) but almost 60% of α-HCH remaining in the treated effluent

  4. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  5. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  6. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    CERN Document Server

    Moreno, J; Colin, A; Tavera, L

    2002-01-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  7. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.

    Science.gov (United States)

    Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf

    2005-04-01

    The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.

  8. Effect of activated sludge culture conditions on Waxberry wastewater

    Science.gov (United States)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  9. MiDAS Field Guide – a Comprehensive Online Source of Information About the Microbes of Activated Sludge

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Saunders, Aaron Marc

    this information in MiDAS field guide (www.midasfieldguide.org). MiDAS taxonomy gives a solid foundation for the study of microbial ecology of the wastewater treatment processes. The online MiDAS field guide links the identity of genera that are important for the wastewater treatment process to details about...... guide to the microbes of activated sludge by comparing microbial community composition in 32 WWTPs located worldwide. This will facilitate a better understanding of the ecology of the ecosystem of activated sludge. Reference: McIlroy et al. MiDAS: the field guide to the microbes of activated sludge...... on a survey of 25 full-scale Danish wastewater treatment plants over 6 years and using MiDAS taxonomy, we have collected more than 150 key organisms in activated sludge wastewater treatment systems, linked their identity with available information on their function and distribution and included...

  10. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Voldoire, Camille F. [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Newton, Kelly; Praptiwi, Radisti [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Collingnon, Lea [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Dreyfus, Jennifer [Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001 (Australia); Hobson, Peter [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Gaget, Virginie [University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005 (Australia); Newcombe, Gayle, E-mail: gayle.newcombe@sawater.com.au [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia)

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers.

  11. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    International Nuclear Information System (INIS)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma; Voldoire, Camille F.; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-01-01

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers

  12. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lessel, T [Abwasserverband Ampergruppe, Eichenau/Muenchen (Germany, F.R.); Suess, A [Bayerische Landesanstalt fuer Bodenkultur und Pflanzenbau, Muenchen (Germany, F.R.)

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m/sup 3/ of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs.

  13. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    International Nuclear Information System (INIS)

    Lessel, T.; Suess, A.

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m 3 of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs. (author)

  14. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    Science.gov (United States)

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  15. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    Science.gov (United States)

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  16. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  17. Evaluation of Potentially Harmful Substances in Dried Sludge of Isfahan Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2004-05-01

    Thus, taking into account the potential risks caused by presence of heavy metals in sludge and for the control of processes of sludge treatment and disposal and also protect of environmental health and enhauncement of public health level, specially for farmers and consumers of raw crops, needs sampling and characterization of sludge. In the present research concentration of 11 heavy metals and potentially toxic elements in dried sludge of Isfahan South and North and Shahinshahr wastewater treatment plants were determined using standard methods. Samples have been taken from dried sludge of treatment plants, and been measured after being prepared through atomic absorption apparatus and were compared with EPA enacted standards in regulation 40 CFR part 503. As well, fertilizer value parameters of sludge were measured and were compared with standards and guidelines. The results showed that the average concentration of above elements in all three treatment plants, not exceeded from EPA standards, however, regarding the accumulative property of these elements and lack of necessary protective effects of EPA standards, in using these sludges in the agricultural soils, the necessary caution and care should be taken, in other uses of sludges, however, there is no limitation.

  18. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  20. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  1. Effect of TiO2 nanoparticles on UASB biomass activity and dewatered sludge.

    Science.gov (United States)

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2017-02-01

    The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO 2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO 2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO 2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO 2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO 2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.

  2. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  3. Use of Natural Zeolite to Upgrade Activated Sludge Process

    Directory of Open Access Journals (Sweden)

    Hanife Büyükgüngör

    2003-01-01

    Full Text Available The objective of this study was to achieve better efficiency of phosphorus removal in an enhanced biological phosphorus removal process by upgrading the system with different amounts of natural zeolite addition. The system performance for synthetic wastewater containing different carbon sources applied at different initial concentrations of phosphorus, as well as for municipal wastewater, was investigated. Natural zeolite addition in the aerobic phase of the anaerobic/aerobic bioaugmented activated sludge system contributed to a significant improvement of phosphorus removal in systems with synthetic wastewater and fresh municipal wastewater. Improvement of phosphorus removal with regard to the control reactors was higher with the addition of 15 than with 5 g/L of natural zeolite. In reactors with natural zeolite addition with regard to the control reactors significantly decreased chemical oxygen demand, ammonium and nitrate, while higher increment and better-activated sludge settling were achieved, without changes in the pH-values of the medium. It was shown that the natural zeolite particles are suitable support material for the phosphate-accumulating bacteria Acinetobacter calcoaceticus (DSM 1532, which were adsorbed on the particle surface, resulting in increased biological activity of the system. The process of phosphorus removal in a system with bioaugmented activated sludge and natural zeolite addition consisted of: metabolic activity of activated sludge, phosphorus uptake by phosphate-accumulating bacteria adsorbed on the natural zeolite particles and suspended in solution, and phosphorus adsorption on the natural zeolite particles.

  4. Estimates of Radiation Dose Rates Near Large Diameter Sludge Containers in T Plant

    CERN Document Server

    Himes, D A

    2002-01-01

    Dose rates in T Plant canyon during the handling and storage of large diameter storage containers of K Basin sludge were estimated. A number of different geometries were considered from which most operational situations of interest can be constructed.

  5. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    Science.gov (United States)

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  7. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Rosopulo, A.; Fiedler, I.; Staerk, H.; Suess, A.; Technische Univ. Muenchen

    1975-01-01

    Analyses of mineral nutrients and trace elements in sewage sludge over a one year period showed that there are relatively small differences in the content of inorganic constituents. In relation to sewage sludge treatment we found a change in the ratio of NH 4 -N : total N after a heat treatment; this means that the ammonium content increased in 70% of the analysed samples compared to untreated sludge. After radiation treatment of sewage sludge no change can be observed up to a pH of 8. With an increase of the pH-value (>= 8) losses of NH- 4 N can be observed. During the dewatering process of sewage sludge - which is influenced by sewage sludge treatment -, potassium, sodium and ammonium are enriched in the filtering water. While there is a decrease of these alkali elements in the dewatered sewage sludge, nearly no change in the other components can be observed. Studying the availability of mineral compounds and trace elements to plants, results are presented of inorganic nutrients and essential or toxic trace elements of sewage sludge and plants. (orig.) [de

  9. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  10. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.

    Science.gov (United States)

    Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

    2014-10-01

    Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sensitivity study of reduced models of the activated sludge process ...

    African Journals Online (AJOL)

    2009-08-07

    Aug 7, 2009 ... Sensitivity study of reduced models of the activated sludge process, for the purposes of parameter estimation and process optimisation: Benchmark process with ASM1 and UCT reduced biological models. S du Plessis and R Tzoneva*. Department of Electrical Engineering, Cape Peninsula University of ...

  12. Nitrogen removal from urban wastewater by activated sludge ...

    African Journals Online (AJOL)

    This study deals with nitrogen removal from urban wastewater employing the activated sludge process at low temperature. It aims at determining the performances and rates of nitrification, and characterising the autotrophic biomass (concentration and kinetic parameters) at 11°C and for F/M ratios higher than the ...

  13. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  14. Activated sludge filterability and full-scale membrane bioreactor operation

    NARCIS (Netherlands)

    Krzeminski, P.

    2013-01-01

    Despite continuous developments in the field of MBR technology, membrane fouling together with the associated energy demand and related costs issues remain major challenges. The efficiency of the filtration process in an MBR is governed by the activated sludge filterability, which is still limitedly

  15. Short Horizon Control Strategies for an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1996-01-01

    Three control strategies allowing improved operational flexibility of an alternating type activated sludge process are presented in a unified model based framework. The control handles employed are the addition rate of an external carbon source to denitrification, the cycle length, and the dissol...

  16. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    Wastewater discharged from the edible oil industry contains a very concentrated amalgamation of organic and inorganic materials making it a problematic effluent to treat. The aim of this study was to evaluate the activated sludge treatment of edible oil effluent from a sunflower oil processing company in KwaZulu-Natal.

  17. Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge.

    Science.gov (United States)

    Bose, Sutapa; Chandrayan, Sudarshana; Rai, Vivek; Bhattacharyya, A K; Ramanathan, A L

    2008-07-01

    A pot-culture experiment was conducted to observe the effects of acidic sludge addition to the soils on bioavailability and uptake of heavy metals in different parts of pea plant as well as its influence on the growth of that plant. It is observed from our result the abundances of total and bio-available heavy metals in sludge vary as follows: Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Sludge applications increased both the total metals, DTPA-extractable metals and total N in the soils. On the other hand lime application has decreased the bioavailability of heavy metals with no change in total N in sludge amended soils. Organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R(2)>0.7) with the low translocation efficiency of pea plants. The value of translocation factor from shoot to seed was found to be smaller than root to shoot of pea plants. Our study thus shows that pea plants were found to be well adapted to the soil amended with 10% sludge with 0.5% lime treatment, minimizing most of the all metal uptake in the shoot of that plant. So, on the basis of the present study, possible treatment may be recommended for the secure disposal of acidic electroplating sludge.

  18. Effect of process variables on the production of Polyhydroxyalkanoates by activated sludge

    Directory of Open Access Journals (Sweden)

    Mokhtarani Nader

    2012-09-01

    Full Text Available Abstract Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge and determining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogen ratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is much lower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product.

  19. Effect of Process Variables on the Production of Polyhydroxyalkanoates by Activated Sludge

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarani

    2012-09-01

    Full Text Available Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge anddetermining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogenratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is muchlower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product.

  20. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    Science.gov (United States)

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  1. Membrane bioreactor (MBR) sludge inoculation in a hybrid process scheme concept to assist overloaded conventional activated sludge (CAS) process operations.

    Science.gov (United States)

    Fenu, A; Roels, J; Van Damme, S; Wambecq, T; Weemaes, M; Thoeye, C; De Gueldre, G; Van De Steene, B

    2012-01-01

    This study analyzes the effect of inoculating membrane bioreactor (MBR) sludge in a parallel-operated overloaded conventional activated sludge (CAS) system. Modelling studies that showed the beneficial effect of this inoculation were confirmed though full scale tests. Total nitrogen (TN) removal in the CAS increased and higher nitrate formation rates were achieved. During MBR sludge inoculation, the TN removal in the CAS was proven to be dependent on MBR sludge loading. Special attention was given to the effect of inoculation on sludge quality. The MBR flocs, grown without selection pressure, were clearly distinct from the more compact flocs in the CAS system and also contained more filamentous bacteria. After inoculation the MBR flocs did not evolve into good-settling compact flocs, resulting in a decreasing sludge quality. During high flow conditions the effluent CAS contained more suspended solids. Sludge volume index, however, did not increase. Laboratory tests were held to determine the threshold volume of MBR sludge to be seeded into the CAS reactor. Above 16-30%, supernatant turbidity and scum formation increased markedly.

  2. Rapid determination of filamentous microorganisms in activated sludge; Determinacion rapida de microorganismos filamentosos en fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Jimenez, C.; Estevez, F. [Empresa Municipal de Abastecimiento y Saneamiento de Aguas de Sevilla (Spain)

    1999-07-01

    Despite many methods available biomass estimation of a bioprocess may sometimes become laborious and impracticable. Samples containing filamentous organisms, as in Wastewater Treatment Plants, present special counting difficulties. If they are abundant they may need to be estimated separately. In this work a counting method for these organisms is show. The main goal is to improve chlorination of activated sludge suffering bulking or foaming through a quantitative record of filamentous bacteria. (Author) 12 refs.

  3. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chemical dissolving of sludge from a high level waste tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Hill, A.J. Jr.

    1977-11-01

    The concept for decontamination and retirement of radioactive liquid waste tanks at the Savannah River Plant (SRP) involves hydraulic slurrying to remove most of the settled sludges followed by chemical dissolving of residual sludges. Dissolving tests were carried out with small samples of sludge from SRP Tank 16H. Over 95 percent of the sludge was dissolved by 8 wt percent oxalic acid at 85 0 C with agitation in a two-step dissolving process (50 hours per step) and an initial reagent-to-sludge volume of 20. Oxalic acid does not attack the waste tank material of construction, appears to be compatible with the existing waste farm processes and equipment after neutralization, and with future processes planned for fixation of the waste into a high-integrity solid for packaging and shipping

  5. Corrosivity of cement pastes with addition of sludge generated in water treatment plant

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Martins, B.E.D.B.S.; Couto, V.M.P.; Carvalho, L.J.; Almeida, V.C.

    2011-01-01

    The amount of sludge produced in a water treatment plant (WTP) is an important economic factor in the context of waste treatment. The present article has the objective of study the corrosion of cement pastes produced with blended sludge. Aqueous extracts were produced from the milling of masses containing 5%, 10% and 30% of sludge in relation to cement after 28 days of healing. These extracts were used for polarization assays in order to determine the corrosiveness of the folders when in contact with the used fittings. Moreover, other chemical analysis tests were carried out for sludge characterization: X-ray fluorescence and X-ray diffraction. The obtained results point to the possibility of use of the studied cement masses in the development of construction materials promoting the economic reuse of WTP sludge before discarded in landfills. (author)

  6. Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.

    Science.gov (United States)

    da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard

    2015-01-01

    The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.

  7. SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

    1997-12-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 ± 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems

  8. Legislation concerning the energy reuse of sludge from waste water treatment plant in the region of Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mislej, V. (Vodovod-Kanalizacija, Ljubljana (Slovenia)), Email: vmislej@vo-ka.si; Grilc, V. (National Inst. of Chemistry, Ljubljana (Slovenia)), Email: viktor.grilc@ki.si

    2009-07-01

    The legislation on waste management in Slovenia was markedly renovated in the year 2008. The main changes were related to the treatment of biologically degradable wastes, which was extended to the energy-from-waste option. New regulations in Slovenia have set criteria on which wastes can be processed and transformed into a solid recovered fuel and the conditions concerning its quality and use. The legislation also outlines other process conditions for placing sewage sludge on the market as a secondary solid fuel and its application in various thermal processes. Sewage sludge represents the largest share of wastes. generated at biological wastewater treatment plants (BWWTP). In fresh form it is formed as excess active sludge formed during biological treatment of municipal wastewater and may be consecutive stabilized by an aerobic or anaerobic process. Anaerobic stabilization (digestion)of the raw gravity thickened sludge, followed by mechanical and thermal dehydration transform the fresh sludge into stable dry granules. In this form it is suitable for marketing and utilization in thermal processes. The main problems may be low calorific value and relative high metals content (especially mercury) and sulphur. Sulphur and cadmium are not among the limiting parameters of the noted technical specification for alternative fuels, so the new regulation in Slovenia will be appealed. (orig.)

  9. Experience with a pilot plant for the irradiation of sewage sludge: Experiments on the inactivation of viruses in sewage sludge after radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a 60 Co-plant have up to now been limited to attempts to isolate virus from sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in these sludge samples the presence of virus could be proved only on a rather irregular basis, an experiment was carried out in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. In addition one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content of the sludge titrated before and after the radiation treatment. (author)

  10. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  12. Thermal activation of an industrial sludge for a possible valorization

    Directory of Open Access Journals (Sweden)

    Lamrani Sanae

    2014-04-01

    Full Text Available This work fits within the framework of sustainable management of sludge generated from wastewater treatment in industrial network. The studied sludge comes from an industry manufacturing sanitary ware products.Physico-chemical and mineralogical characterization was performed to give an identity card to the sludge. We noted the absence of metal pollution.The industrial sludge has been subjected to thermal activation at various temperatures (650°C to 850°C. The pozzolanic activity was evaluated by physico- chemical and mechanical methods [1]. Pozzolanicity measurement was carried out based on Chapelle test and conductivity revealed the existence of pozzolanic properties of the calcined samples. The best pozzolanic reactivity was obtained for the sample calcined at 800°C. We noticed a decrease in the reactivity of the sample calcined at 850°C. In addition, analysis by means of X-ray diffraction and Fourier transform infrared spectroscopy showed that sludge recrystallization begins at a temperature of 850°C. Pozzolanicity index of the thermally treated samples was determined by measuring the mechanical resistance of mortar specimens previously kept in a saturated lime solution for 28 days (ASTM C618 [2]. The best pozzolanic activity index was obtained for the sample calcined at 800°C (109.1%.This work is a contribution to the research for new supplying sources of raw materials and additives in the field of construction. It presents a proposition of a promising solution for the valorization of waste material as an additive instead of being discharged into open air dumps causing a major environmental problem.

  13. Application of Fast Neutron Activation to Determinate of N, P and K Element Contents in the Sludge

    International Nuclear Information System (INIS)

    Supriyatni E; Yazid M; Nuraini E; Sunardi

    2003-01-01

    The application of fast neutron activation to determinate of N, P and K element contents in the sludge has been performed. The aim of this research is to determine the content of N, P and K elements in the sludge for the possibility of reuse as organic fertilizer. Sludge sample was taken from waste water retainer at Bantul Waste Water Treatment Plant. The sample was dried and ground, then irradiated using 14.7 MeV fast neutron from neutron generator. Result was qualitatively and quantitatively analyses using gamma spectrometer. The result showed that the sludge contains N with energy 511 keV, P with energy 1778 keV and K with energy 1273 keV. The concentration of N is (4.101 ± 0.007) mg/g, P is = (640.510 ± 14.34) mg/g and K = (3.045 ± 0.064) mg/g. (author)

  14. Effect of the presence of Actinomycetes in the activated sludge on the quality of the treated wastewater

    Directory of Open Access Journals (Sweden)

    Bezak-Mazur Elżbieta

    2017-01-01

    Full Text Available The aim of the study was to determine the effect of the Actinomycetes proliferation in the activated sludge on the quality of the treated wastewater and the sewage receiver. The river which is the sewage receiver flows near the wastewater treatment plant. The study was performed on the wastewater (raw and treated and on the river water samples (collected before and after wastewater discharge. The analysis of the research results, such as the content of total organic carbon (TOC, total phosphorus and oxygen consumption in the examined samples, permit the conclusion that the presence of relatively large population of the Actinomycetes in sewage sludge has a negative impact on the quality of the sewage receiver. Determining the effect of the Actinomycetes in the activated sludge on the wastewater treatment process involved the application of specific analyses, such as Sludge Biotic Index (SBI and the identification of filamentous bacteria in the activated sludge. The analysis of studies indicates that the presence of the Actinomycetes in the activated sludge adversely affects the efficiency of the wastewater treatment process.

  15. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review

    International Nuclear Information System (INIS)

    Fonollosa, E.; Nieto, A.; Peñalver, A.; Aguilar, C.; Borrull, F.

    2015-01-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. - Highlights: • In this review we discuss the methods used to determine radionuclides in sludge from DWTP. • We summarize the different coagulants used and the consequences in the characteristics of the sludge. • We mention different possibilities to reuse the sludge generated in DWTPs

  16. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R.L.; Fernandes, L.; Sun, X. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  17. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R L; Fernandes, L; Sun, X [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  18. Preliminary studies on the use of irradiation for decontaminating water and sludge in wastewater treatment plants in Chile

    International Nuclear Information System (INIS)

    Villanueva, Loreto; Schrader, Rosemarie

    1999-01-01

    This work describes the activities carried out to date by the Chilean Nuclear Energy Commission, CCHEN, in prospecting the application of gamma and electron beam irradiation to the decontamination of sewage water and sludge in the country. Sludge, in particular, will become a relevant environmental problem in the coming years, because of the large amounts that will be generated, due to the construction of many wastewater treatment plants in the country. The main study consisted of experimental gamma irradiation tests on representative samples of digested sludge from two pilot wastewater treatment plants operating in Santiago. This study showed the technical feasibility of using low irradiation doses, of around 2-3 kGy to significantly reduce the pathogen content in this sludge. Preliminary tests were also carried out to determine that the disinfected sludge was fit for agricultural use due to its nutrient content. A preliminary technical and economic evaluation is being prepared on the use of gamma irradiation for sludge disinfection, as a complement to the experimental studies. With this evaluation a feasible process has been outlined for using gamma irradiation in conjunction with conventional processes for the sludge disinfection or hygienization in domestic wastewater treatment plants, in order to produce a useful material for agricultural use that meets the demanding EPA standards when classified as class A sludge, which permits agricultural use without sanitary restrictions. Several evaluations have been made to determine the potential use of irradiation for water and industrial wastewater effluents decontamination, considering normative standards as well as technical and economic aspects. One of these has been the preliminary evaluation of using electron beam irradiation for disinfecting drinking water, which has the technical advantage of preventing the formation of trihalomethanes, that occur in water chlorination due to the presence of natural humic

  19. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stasinakis, Athanasios S. [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)]. E-mail: astas@env.aegean.gr; Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 157 71 (Greece); Nikolaou, Anastasia [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece); Kantifes, Andreas [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)

    2005-04-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 {mu}g l{sup -1} as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t{sub 1/2}) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t{sub 1/2} values could not be determined for MBT and TPhT (t{sub 1/2} > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems.

  20. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    International Nuclear Information System (INIS)

    Stasinakis, Athanasios S.; Thomaidis, Nikolaos S.; Nikolaou, Anastasia; Kantifes, Andreas

    2005-01-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 μg l -1 as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t 1/2 ) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t 1/2 values could not be determined for MBT and TPhT (t 1/2 > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems

  1. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    Science.gov (United States)

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  2. Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge.

    Science.gov (United States)

    Zhang, Yuyao; Li, Huan

    2017-09-18

    During anaerobic digestion, low-organic-content sludge sometimes is used as feedstock, resulting in deteriorated digestion performance. The operational experience of conventional anaerobic digestion cannot be applied to this situation. To investigate the feature of low-organic-content sludge digestion and explain its intrinsic mechanism, batch experiments were conducted using designed feedstock having volatile solids (VS) contents that were 30-64% of total solids (TS). The results showed that the accumulative biogas yield declined proportionally from 173.7 to 64.8 ml/g VS added and organic removal rate decreased from 34.8 to 11.8% with decreasing VS/TS in the substrate. The oligotrophic environment resulting from low-organic-content substrates led to decreased microbial activity and a switch from butyric fermentation to propionic fermentation. A first-order model described the biogas production from the batch experiments very well, and the degradation coefficient decreased from 0.159 to 0.069 day -1 , exhibiting a positive relation with organic content in substrate. The results observed here corroborated with data from published literature on anaerobic digestion of low-organic-content sludge and showed that it may not be feasible to recover energy from sludge with an organic content lower than 50% through mono digestion.

  3. Toxicity formation and distribution in activated sludge during treatment of N,N-dimethylformamide (DMF) wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Chen, Xiurong, E-mail: xrchen@ecust.edu.cn; Lin, Fengkai; Ding, Yi; Zhao, Jianguo; Chen, Shanjia

    2014-01-15

    Highlights: • We studied mechanism of sludge organic toxicity formation in wastewater treatment. • The organic toxicity distributed mainly in the inner section of sludge flocs. • The organic toxicity of sludge increased with DMF initial concentrations increments. • The property of bacteria community correlates significantly with sludge toxicity. -- Abstract: The organic toxicity of sludge in land applications is a critical issue; however, minimal attention has been given to the mechanism of toxicity formation during high-strength wastewater treatment. To investigate the relevant factors that contribute to sludge toxicity, synthetic wastewater with N,N-dimethylformamide (DMF) was treated in a sequential aerobic activated sludge reactor. The acute toxicity of sludge, which is characterised by the inhibition rate of luminous bacteria T3, is the focus of this study. Using an operational time of 28 days and a hydraulic retention time of 12 h, the study demonstrated a positive relationship between the acute toxicity of sludge and the influent DMF concentration; the toxicity centralised in the intracellular and inner sections of extracellular polymeric substances (EPS) in sludge flocs. Due to increased concentrations of DMF, which ranged from 40 to 200 mg L{sup −1}, the sludge toxicity increased from 25 to 45%. The organic toxicity in sludge flocs was primarily contributed by the biodegradation of DMF rather than adsorption of DMF. Additional investigation revealed a significant correlation between the properties of the bacterial community and sludge toxicity.

  4. MiDAS Field Guide – a Comprehensive Online Source of Information About the Microbes of Activated Sludge

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Saunders, Aaron Marc

    activated sludge wastewater treatment systems, linking their identity with available information on their function and distribution. The guide includes the approx. 100 abundant genera that are present in most treatment plants (based on a survey of 25 full-scale Danish wastewater treatment plants...... are provided. The MiDAS Field Guide is a continuously developing resource where all working in the field are invited to contribute....... that would be otherwise excluded from analyses. The MiDAS database importantly provides a common taxonomy for the field that gives a solid foundation for the study of microbial ecology of the activated sludge process and related wastewater treatment processes, such as biofilms and granular sludge. Each genus...

  5. Technical and economical feasibility study of a sewage sludge disinfection plants by irradiation process

    International Nuclear Information System (INIS)

    Rojas Bustos, Gustavo

    1999-01-01

    This report presents a technical and economical evaluation for a disinfection plant of sewage sludge based on irradiation. The process starts after sludge stabilization which is achieved by anaerobic digestion. It includes two stages, plus an optional: the first corresponds to dewatering of sewage sludge up to a solids content between 20 and 25 %, the second stage corresponds to disinfection by gamma or electron beam irradiation, and the third, which is optional, corresponds to the drying of sewage sludge up to a water content of 50%, which allows to diminish significantly the volumes of solids to be transported. If this stage is not accomplished the final product corresponds to a sewage sludge with 25 % of dry solids, which can also be disposed in agricultural land. Process was designed to treat 60 tons per day of sewage sludge (dry matter basis). The report presents the design of process equipment, principal and auxiliary, the investment and operational cost estimations as well as the total cost of treatment per ton of sewage sludge. A sensitivity analysis is also included to determine the influence of operational process parameters in operational and investment costs. The results showed that a sewage sludge plant including dewatering and disinfection process through gamma irradiation, achieves a capital investment of about US$ 12.000.000 with a treatment cost per ton of dry sludge of US$140. Including the optional air-drying stage, the total cost of treatment is about US$148 per ton of dry matter. In the case of electron beam irradiation the capital investment achieves a value of US$ 11 millions with a total treatment cost of US$ 136 per ton of dry matter. These values resulted quite similar to the cost of alternative treatment, i.e., disposal in a dedicated landfill. (L.V.)

  6. Potential investigation of Reusing Ardabil Municipal Wastewater Treatment Plant Sludge Based on AHP and TOPSIS Models

    Directory of Open Access Journals (Sweden)

    Bizhan Maghsoudlou Kamali

    2013-07-01

    Full Text Available Introduction :By ever-increasing of population, shortage of water resources and the necessity of wastewater treatment, huge volumes of sludge that is a byproduct of wastewater treatment, requires to be disposed in environmentally secure ways. The target of specifying strategic preferences of reuse of sludge has been to find the correct way of disposal or beneficial use of sludge. Material and methods: In this study, to select the best alternative for reuse of wastewater sludge two systematic methods are introduced, which four alternatives for reuse of sludge (use in agriculture, use in green space, biogas, desert combat are introduced and they are compared by four main parameters including: 1- physicochemical 2-biological 3 - economic, social and cultural, and 4 - environmental pollution situation, that each contains some criteria. In this study, first each of the related parameters and criteria are compared by the expert groups of and through questionnaire. Then these weights are entered into Expert Choice software for the analyze of AHP model and paired comparisons and weightings have been done on the related parameters and criteria. Ultimately, the output of the software is entered into TOPSIS software for the analyze of TOPSIS model until the best alternative is selected. Results: sludge of Ardabil municipal wastewater treatment plant, according to standards and EPA regulations is eligible to class B, and due to the chemical in terms of heavy metals have special (excellent quality and contains considerable quantities of organic substance, nutrients and micronutrients which indicates the fertilizer value of the sludge. Conclusion: The result of this comparison has shown that the application of sludge in green spaces is the most appropriate alternative and then use in agriculture, biogas alternative, and desert combat alternative are, respectively, placed in the second to fourth preference for the reuse of sludge derived from municipal

  7. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings

    Directory of Open Access Journals (Sweden)

    Maria Isidoria Silva

    Full Text Available ABSTRACT: Sewage sludge has long been successfully used in the production of nursery plants; however, some restriction may apply due to its high pathogenic characteristics. The process of charring the organic waste significantly reduces that undesired component and may be as effective as the non-charred residue. The aim of this study was to evaluate the effect of sewage sludge biochar on the growth and morphological traits of eucalyptus ( Eucalyptus grandis L. seedlings, and compare results with those observed when using uncharred sewage sludge. Treatments were arranged in a completely randomized design, in a 2 x 2 factorial scheme, with four replications. Charred and non-charred sewage sludge were tested with and without NPK addition. A control treatment was also evaluated. Ten weeks old eucalyptus seedlings were transferred to the pots and grew for eight weeks. Chlorophyll content, plant height and stem diameter were measured at 0, 30 and 60 days after transplant. Shoot and root biomass were measured after plant harvest. Dickson Quality Index was calculated to evaluate the overall quality of seedlings. Biochar was effective in improving the seedlings quality, and had similar effects as the non-charred waste. Therefore, sewage sludge biochar has the potential to improve the process of production of forest species seedlings and further reduce the environmental risks associated with the use of non-charred sewage sludge.

  8. Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process

    International Nuclear Information System (INIS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2004-01-01

    The effects of Ni(II) in a synthetic wastewater on the activity of activated sludge microorganisms and sequencing batch reactor (SBR) treatment process were investigated. Two parallel lab-scale SBR systems were operated. One was used as a control unit, while the other received Ni(II) concentrations equal to 5 and 10 mg/l. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the time ratio of 0.5:3.5:1.0:0.75:0.25 for a cycle time of 6 h. The addition of Ni(II) into SBR system caused drastically dropped in TOC removal rate (k) and specific oxygen uptake rate (SOUR) by activated sludge microorganisms due to the inhibitory effects of Ni(II) on the bioactivity of microorganisms. The addition of 5 mg/l Ni(II) caused a slight reduction in TOC removal efficiency, whereas 10 mg/l Ni(II) addition significantly affected the SBR performance in terms of suspended solids and TOC removal efficiency. Termination of Ni(II) addition led to almost full recovery of the bioactivity in microorganisms as shown in the increase of specific oxygen uptake rate (SOUR) and SBR treatment performance

  9. Activated sludge models ASM1, ASM2, ASM2d and ASM3

    DEFF Research Database (Denmark)

    Henze, Mogens; Gujer, W.; Mino, T.

    This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time.Modelling of activated...... sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research.ContentsASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes...... in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2...

  10. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  11. Secondary clarifier hybrid model calibration in full scale pulp and paper activated sludge wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sreckovic, G.; Hall, E.R. [British Columbia Univ., Dept. of Civil Engineering, Vancouver, BC (Canada); Thibault, J. [Laval Univ., Dept. of Chemical Engineering, Ste-Foy, PQ (Canada); Savic, D. [Exeter Univ., School of Engineering, Exeter (United Kingdom)

    1999-05-01

    The issue of proper model calibration techniques applied to mechanistic mathematical models relating to activated sludge systems was discussed. Such calibrations are complex because of the non-linearity and multi-model objective functions of the process. This paper presents a hybrid model which was developed using two techniques to model and calibrate secondary clarifier parts of an activated sludge system. Genetic algorithms were used to successfully calibrate the settler mechanistic model, and neural networks were used to reduce the error between the mechanistic model output and real world data. Results of the modelling study show that the long term response of a one-dimensional settler mechanistic model calibrated by genetic algorithms and compared to full scale plant data can be improved by coupling the calibrated mechanistic model to as black-box model, such as a neural network. 11 refs., 2 figs.

  12. An activated sludge model for xenobiotic organic micro-pollutants (ASM-X)

    DEFF Research Database (Denmark)

    Plósz, Benedek; Lehnberg, K.; Dott, W.

    2010-01-01

    In this paper, we present an evaluation of the process model developed by Plósz et al. (2010a) to predict the fate of antibiotics xenobiotic organic micro-pollutants (XOMs) in activated sludge systems. Instead of spiking the batch reactors with reference substances, observations were made using...... the XOMs content of pre-clarified municipal sewage. Evaluation of the model structure is carried out in dynamic simulations using data obtained in samples taken in a measuring campaign in a full-scale activated sludge wastewater treatment plant (WWTP). Our results suggest that the sorption...... deteriorate; thereby hindering the effluent quality of secondary treatment step, and thereby increasing the XOM mass load on the tertiary treatment step. Besides the impact of different redox conditions, divalent iron-salt dosing used for enhanced phosphorus removal and pH have been identified as potential...

  13. Application of the International Water Association activated sludge models to describe aerobic sludge digestion.

    Science.gov (United States)

    Ghorbani, M; Eskicioglu, C

    2011-12-01

    Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.

  14. Disturbance opens recruitment sites for bacterial colonization in activated sludge

    OpenAIRE

    Marr, Junko; Spear, John; Drewes, Jörg; Vuono, David

    2015-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we sh...

  15. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  16. Co-digestion of sewage sludge from external small WWTP's in a large plant

    Science.gov (United States)

    Miodoński, Stanisław

    2017-11-01

    Improving energy efficiency of WWTPs (Waste Water Treatment Plants) is crucial action of modern wastewater treatment technology. Technological treatment process optimization is important but the main goal will not be achieved without increasing production of renewable energy from sewage sludge in anaerobic digestion process which is most often used as sludge stabilization method on large WWTP's. Usually, anaerobic digestion reactors used for sludge digestion were designed with reserve and most of them is oversized. In many cases that reserve is unused. On the other hand, smaller WWTPs have problem with management of sewage sludge due to lack of adequately developed infrastructure for sludge stabilization. Paper shows an analysis of using a technological reserve of anaerobic digestion reactors at large WWTP (1 million P.E.) for sludge stabilization collected from smaller WWTP in a co-digestion process. Over 30 small WWTPs from the same region as the large WWTP were considered in this study. Furthermore, performed analysis included also evaluation of potential sludge disintegration pre-treatment for co-digestion efficiency improvement.

  17. Toxicity of carbon nanotubes to the activated sludge process

    International Nuclear Information System (INIS)

    Luongo, Lauren A.; Zhang Xiaoqi

    2010-01-01

    The discharge of carbon nanotubes (CNTs) from industrial waste or disposal of such materials from commercial and/or domestic use will inevitably occur with increasing production and enter into wastewater treatment facilities with unknown consequences. Therefore, a better knowledge of the toxicity of CNTs to biological processes in wastewater treatment will be critical. This study examined the toxicity of multi-walled carbon nanotubes (MWCNTs) on the microbial communities in activated sludge. A comparative study using the activated sludge respiration inhibition test was performed on both unsheared mixed liquor and sheared mixed liquor to demonstrate the potential toxicity posed by MWCNTs and to illustrate the extent of extracellular polymeric substances (EPS) in protecting the microorganisms from the toxicity of CNTs. Respiration inhibition was observed for both unsheared and sheared mixed liquor when MWCNTs were present, however, greater respiration inhibition was observed for the sheared mixed liquor. The toxicity observed by the respiration inhibition test was determined to be dose-dependent; the highest concentration of MWCNTs exhibited the highest respiration inhibition. Scanning Electron Microscopy (SEM) images demonstrated direct physical contact between MWCNTs and activated sludge flocs.

  18. Microbiology of the active sludge as a system to improve the effluents quality in the wastewater treatment plants; La microbiologia del fango activo como sistema para mejorar la calidad de los efluentes en las depuradoras de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, E.; Reina, E.; Fernandez, N.

    2009-07-01

    Grupo Bioindicacion Sevilla (GBS) is a Spanish group of professionals interested in microbiology. GBS celebrates an annual activity about transfer of technology on microbiology of the active sludge, which fifth edition was celebrated in 2008 with the participation of different universities (Complutense de Madrid, Politecnica de Valencia y Barcelona, etc.) and public and private water companies (DAM, Aguas de Valencia, Aqualia, Emasesa, Emacsa...), and will celebrate again in Seville the next October. During this conference, the GBS group informs about the inter-laboratories exercises too, which last results are showed in this article. (Author) 9 refs.

  19. Optimization and control of the activated sludge process by adaptation of aeration tank volume

    Energy Technology Data Exchange (ETDEWEB)

    Staud, R

    1982-04-01

    Purpose of full scale studies conducted at a municipal wastewater treatment plant at Schwetzingen, Germany, was to optimize the activated sludge treatment process. Influent loading fluctuations were answered by operating a distinct number of the four parallel treatment plant units (aeration tank/clarifier) present. During the intermediate period of time the aerators were also switched off, and the activated sludge was kept anaerobically. The purpose of this particular technique is to equalize the nutrient supply of the microorganisms to gain an improved metabolic potential, as well as to decrease the energy demand for aeration. A mathematical algorithm for process control was developed to accomplish this technique. Initial parameters are inflow rate, MLSS and plateau-BOD to evaluate the substrate concentration. The results of the full scale studies prove the practicability of this concept. Equalization of the F:M ratio fluctuations leads to an increase of the average substrate loading but not to any decrease in the overall process efficiency. Anaerobic sludge storage did not cause any problem. Odor problems could be handled by limitation of the storage period to 24 hours. As far as energy consumption for aeration is concerned a decrease by 47% percent could be achieved.

  20. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  1. Bioproducts for Sludge Reduction in Activated Sludge Systems Treating Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre V.M.F.

    2016-03-01

    Full Text Available The use of bioproducts that change the cellular metabolism and reduce microbial growth without affecting the organic matter removal is very promising for reducing the amount of sludge in wastewater treatment systems. In this study, two bioproducts were evaluated and compared with a well-known chemical (2,4-DiNitroPhenol – DNP in activated sludge treating petroleum refinery wastewater. In batch experiments, 10 mg/L of DNP, 0.8 mg/L of a bioproduct based on Folic Acid (FA and 10 mg/L of a bioproduct based on Stress Proteins (SP led to 30.6%, 43.2% and 29.8% lower disposal of total solids, respectively. Operating on a continuous regimen, the addition of 10 mg/L of the bioproduct based on SP led to 45.7% lower disposal for 50 days. In all cases, no loss of efficiency in the Chemical Oxygen Demand (COD removal was observed.

  2. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    Energy Technology Data Exchange (ETDEWEB)

    AbdElHaleem, H S [Cairo Univ.-CivlI Eng. Dept., Giza (Egypt); EI-Ahwany, A H [CairoUlmrsity- Faculty ofEngincering - Chemical Engineering Department, Giza (Egypt); Ibrahim, H I [Helwan University- Faculty of Engineering - Biomedical Engineering Department, Helwan (Egypt); Ibrahim, G [Menofia University- Faculty of Engineering Sbebin EI Kom- Basic Eng. Sc. Dept., Menofia (Egypt)

    2004-07-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type.

  3. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    International Nuclear Information System (INIS)

    AbdElHaleem, H.S.; EI-Ahwany, A. H.; Ibrahim, H.I.; Ibrahim, G.

    2004-01-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type

  4. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    Science.gov (United States)

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  5. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  6. Activated sludge and activated carbon treatment of a wood preserving effluent containing pentachlorophenol

    National Research Council Canada - National Science Library

    Guo, P. H. M

    1980-01-01

    ...; however, PCP removal averaged only 35% and the effluent was toxic to rainbow trout. Treatment of the activated sludge effluent by carbon adsorption resulted in effective PCP removal and non-toxic effluents...

  7. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  8. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  9. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  10. [From waste to treasure: turning activated sludge into bioplastic poly-3-hydroxybutyrate].

    Science.gov (United States)

    Chen, Jia'ni

    2017-12-25

    Large quantity of activated sludge is generated from wastewater treatment but without yet an appropriate deposition. High temperature can lyse the activate sludge so that nitrogen and phosphorus containing nutrients are released. Halomonas CJN was found to grow on the heat lysed activated sludge and glucose for production of bioplastic poly-3-hydroxybutyrate (PHB) in the absence of yeast extract, nitrogen and phosphorus sources as well as trace elements. This reduces the PHB production cost significantly. Furthermore, acetic acid formed from anaerobic fermentation of heat lysed activated sludge can be used to replace glucose for cell growth but not much for PHB production. After construction of an additional PHB synthesis pathway in Halomonas CJN, we can produce PHB entirely from heat lysed activated sludge, reducing production cost of PHB roughly from ¥ 30 000 Yuan/ton to ¥ 20 000 Yuan/ton, thus turning waste activated sludge to valuable raw material resource.

  11. Optimal policies for activated sludge treatment systems with multi effluent stream generation

    Directory of Open Access Journals (Sweden)

    Gouveia R.

    2000-01-01

    Full Text Available Most industrial processes generate liquid waste, which requires treatment prior to disposal. These processes are divided into sectors that generate effluents with time dependent characteristics. Each sector sends the effluent to wastewater treatment plants through pumping-stations. In general, activated sludge is the most suitable treatment and consists of equalization, aeration and settling tanks. During the treatment, there is an increase in the mass of microorganisms, which needs to be removed. Sludge removal represents the major operating costs for wastewater treatment plants. The objective of this work is to propose an optimization model to minimize sludge generation using a superstructure in which the streams from pumping-stations can be sent to the equalization tank. In addition, the aeration tank is divided into cells that can be fed in series and parallel. The model relies on mass balances, kinetic equations, and the resulting Nonlinear Programming problem generates the best operational strategy for the system feed streams with a high substrate removal. Reductions of up to 30 % can be achieved with the proposed strategy maintened BOD efficiency removal upper than 98 %.

  12. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  13. Radiation treatment of sewage sludge - experience with an operating pilot plant

    International Nuclear Information System (INIS)

    Suess, A.; Lessel, T.

    1977-01-01

    After an operation time of a pilot plant for the γ-irradiation of sewage sludge after 3 years promising results could be obtained for economic considerations, killing rate of pathogenes and radiation induced changes in sedimentation properties. Irradiated sewage sludge indicated nearly the same effect on soil and plant as untreated. No special trained personnel are necessary for maintenance because of the simple design. Successful experience during 18 months resulted in an increase of the daily capacity up to 120 m 3 from December 1975. (author)

  14. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  15. Activated sewage sludge, a potential animal foodstuff. Part I. Nutritional characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tacon, A.G.J.

    1979-08-01

    The nutritive value of activated sewage sludge is discussed in terms of its amino acid N, non-amino acid N, carbohydrate, fat, mineral, vitamin and microbial content. Processed activated sewage sludge is described as a stable dark brown material of relatively uniform quality, having a nutritive value broadly equivalent to brewers yeast or a protein-rich cereal. The potential hazards associated with the use of activated sewage sludge as a feed ingredient are discussed. 29 references

  16. Sewage sludge fertiliser use: implications for soil and plant copper evolution in forest and agronomic soils.

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Rigueiro-Rodríguez, Antonio; Mosquera-Losada, M Rosa

    2012-05-01

    Fertilisation with sewage sludge may lead to crop toxicity and environmental degradation. This study aims to evaluate the effects of two types of soils (forest and agronomic), two types of vegetation (unsown (coming from soil seed bank) and sown), and two types of fertilisation (sludge fertilisation and mineral fertilisation, with a no fertiliser control) in afforested and treeless swards and in sown and unsown forestlands on the total and available Cu concentration in soil, the leaching of this element and the Cu levels in plant. The experimental design was completely randomised with nine treatments and three replicates. Fertilisation with sewage sludge increased the concentration of Cu in soil and plant, but the soil values never exceeded the maximum set by Spanish regulations. Sewage sludge inputs increased both the total and Mehlich 3 Cu concentrations in agronomic soils and the Cu levels in plant developed in agronomic and forest soils, with this effect pronounced in the unsown swards of forest soils. Therefore, the use of high quality sewage sludge as fertiliser may improve the global productivity of forest, agronomic and silvopastoral systems without creating environmental hazards. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  18. Disposal of sewage sludge. Rotary kiln plants and energetic utilization of sewage sludge; Klaerschlammentsorgung. Drehrohranlagen in der Trocknung und energetischen Nutzung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, Franz [Visser und Smit Hanab GmbH, Kaarst (Germany). Rotary Kilns

    2013-03-01

    The author of the contribution under consideration reports on rotary kiln plants in the disposal of sewage sludge. The examples give an insight into the systems engineering for the thermal treatment of sewage sludge, for the minimization or full thermal utilization. The examples show that there exists any specific solution. The process selection depends on the legal requirements and the framework conditions in dependence from the site and infrastructure. Generally, the following statements are valid: (a) The co-combustion is cheaper than every mono-combustion; (b) The costs for the transport of wet sludge often are more favourable than the costs of drying; (c) Plants for low capacities are specifically expensive. The following criteria become more important: (a) energy costs, recycling of energy; (b) recycling of phosphorus from sewage sludge; (c) Reduction of the input of heavy metals in order to comply with the fertilizer ordinance.

  19. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  20. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  1. Sludge settling processes in SBR-related sewage treatment plants according to the Biocos method.

    Science.gov (United States)

    Meusel, S; Englert, R

    2004-01-01

    This paper describes the investigations in a sedimentation and circulation reactor (SU-reactor) of a three-phase Biocos plant. The aim of these investigations was the determination of the temporal and depth-dependent distribution of suspended solid contents, as well as describing the sludge sedimentation curves. The calculated results reveal peculiarities of the Biocos method with regard to sedimentation processes. In the hydraulically uninterrupted (pre-)settling phase, a sludge level depth was observed, which remained constant over the reactor surface and increased linearly according to the sludge volume. The settling and the thickening processes of this phase corresponded to a large extent to the well-known settling test in a one-litre measuring cylinder. During the discharge phase, the investigated settling rate was overlaid by the surface loading rate and the sludge level changed depending on the difference between those two parameters. The solid distribution of the A-phase indicated a formation of functional zones, which were influenced by the surface loading. The formation was comparable to the formation of layers in secondary settling tanks with vertical flow. The concentration equalisation between the biological reactor and the SU-reactor proved to be problematic during the circulation phase, because a type of internal sludge circulation occurred in the SU-reactor. A permanent sludge recirculation seems to be highly recommendable.

  2. PBDEs versus NBFR in wastewater treatment plants: occurrence and partitioning in water and sludge

    Directory of Open Access Journals (Sweden)

    Joyce Cristale

    2015-06-01

    Full Text Available This study evaluates the occurrence of flame retardants (FR in five wastewater treatment plants (WWTPs located close to Barcelona (NE Spain, an area with high urban and industrial pressures. Compounds studied include eight polybromodiphenyl ethers (PBDEs and eight New Brominated Flame Retardants (NBFRs, for which little information regarding their presence, partitioning and fate within the WWTPs is available. In unfiltered influent samples, PBDEs were not detected and bis(2-ethyl-1-hexyltetrabromophthalate was the only NBFR detected, and all WWTPs were efficient in eliminating this compound as no residues were found in the effluents. However, primary sludge contained from 279 to 2299 ng/g dry weight of ΣFR and the concentration increased in secondary (biological sludge. NBFRs accounted for the main FR detected in sludge, representing a 63-97% of the total load, and among PBDEs, BDE-209 was the most ubiquitous congener. Considering the amount of sludge generated in each WWTP, it was estimated that 0.34-17.2 kg of FR are released annually through the sludge, which can have negative environmental and health implications if sludge is used as biosolid in agriculture. Overall, this study provides a sampling design and analytical protocol to be used to determine the evolution of FR in WWTPs and compares the levels detected, considering that PBDEs are being phased out to be substituted by other compounds which also have high accumulative and recalcitrant properties.

  3. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  4. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  5. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  6. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.

    Science.gov (United States)

    Shukla, O P; Juwarkar, Asha A; Singh, S K; Khan, Shoeb; Rai, U N

    2011-01-01

    Five woody plants species (i.e. Terminalia arjuna, Prosopis juliflora, Populus alba, Eucalyptus tereticornis and Dendrocalamus strictus) were selected for phytoremediation and grow on tannery sludge dumps of Common Effluent Treatment Plant (CETP), Unnao (Uttar Pradesh), India. Concentration of toxic metals were observed high in the raw tannery sludge i.e. Fe-1667>Cr-628>Zn-592>Pb-427>Cu-354>Mn-210>Cd-125>Ni-76 mg kg(-1) dw, respectively. Besides, physico-chemical properties of the raw sludge represented the toxic nature to human health and may pose numerous risks to local environment. The growth performances of woody plants were assessed in terms of various growth parameters such as height, diameter at breast height (DBH) and canopy area of plants. All the plant species have the capabilities to accumulate substantial amount of toxic metals in their tissues during the remediation. The ratio of accumulated metals in the plants were found in the order Fe>Cr>Mn>Pb>Zn>Cu>Cd>Ni and significant changes in physico-chemical parameters of tannery sludge were observed after treatment. All the woody plants indicated high bioconcentration factor for different metals in the order Fe>Cr>Mn>Ni>Cd>Pb>Zn>Cu. After one year of phytoremediation, the level of toxic metals were removed from tannery sludge up to Cr (70.22)%, Ni (59.21)%, Cd (58.4)%, Fe (49.75)%, Mn (30.95)%, Zn (22.80)%, Cu (20.46)% and Pb (14.05)%, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  8. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  9. Unravelling the protein preference of aquatic worms during waste activated sludge degradation

    NARCIS (Netherlands)

    de Valk, S.L.; Khadem, A.F.; van Lier, J.B.; de Kreuk, M.K.

    2017-01-01

    Worm predation (WP) by Tubifex tubifex was investigated using waste activated sludge (WAS) as the substrate. In order to better understand the sludge degradation mechanisms during WP, the activity of five common hydrolytic enzymes was determined and compared among the initial feed activated

  10. Characterization of Wastewater for Modelling of Activated Sludge Processes

    DEFF Research Database (Denmark)

    Henze, Mogens

    1992-01-01

    The fractionation of organic matter in the various parts which are used for mathematical modelling is discussed. The fractions include inert soluble, readily biodegradable, rapidly hydrolyzable, slowly hydrolyzable, biomass and inert suspended material. Methods for measuring are also discussed....... Fractionation of biomass in wastewater and in activated sludge is difficult at present, as methods are only partly developed. Nitrogen fractions in wastewater are mainly inorganic. The organic nitrogen fractions are coupled to the organic COD fractions. The fractions of COD, biomass and nitrogen found...

  11. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Science.gov (United States)

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  12. Composting plant of vegetables wastes and sewage sludges in Castesdefells. Plant de compostaje de restos de poda y lodos de depuradora en Castelldefells

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Castelldefells Municipality (Catalonia, Spain) has set up a recycling plant for vegetable wastes mixed with sewage sludge to obtain compost. The plant treats 48.000 m''3/y. of vegetable wastes, and receive 8.000 m''3/y. of sewage sludge. (Author)

  13. Effects Of Various Parameters On The Thickening Of Softening Plant Sludges

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Baumann, E. R.; Larson, M. A.

    1989-01-01

    Spectroscopic and thermal data for sludges from full-scale softening plants showed calcium and magnesium precipitated as calcite and an amorphous hydrated hydroxide, respectively. Magnesium ions were not incorporated into the calcium lattice to form a magnesian calcite. Scanning electron...

  14. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Science.gov (United States)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  15. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Comas, J.S.; Rodríguez Roda, I.

    2009-01-01

    The main objective of this paper is to evaluate the effect of filamentous bulking sludge on the predicted performance of simulated plant-wide WWTP control strategies. First, as a reference case, several control strategies are implemented, simulated and evaluated using the IWA Benchmark Simulation...

  16. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology.

    Science.gov (United States)

    Lares, Mirka; Ncibi, Mohamed Chaker; Sillanpää, Markus; Sillanpää, Mika

    2018-04-15

    Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  19. Removal of heavy metals from sewage sludge by extraction with organic acids

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    1999-01-01

    Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable

  20. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    Science.gov (United States)

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  1. Improving Settling Dynamics of Activated Sludge by Adding Fine Talc Powder

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben; Clauss, F.

    1996-01-01

    The effect of adding varying mixtures of talc and chlorite powder to activated sludge in order to improve the settling characteristic has been studied. The powder is found to improve the settling velocity of the sludge, strictly by increasing the average density of the sludge floc aggregate. The ....... The settling velocity was measured with a recirculated settling column under different concentrations and turbulence levels. Numerical simulation of a secondary settling tank indicates that adding fine powder will improve the overall performance considerably.......The effect of adding varying mixtures of talc and chlorite powder to activated sludge in order to improve the settling characteristic has been studied. The powder is found to improve the settling velocity of the sludge, strictly by increasing the average density of the sludge floc aggregate...

  2. Removal of secondary sludge from steam generators used in French 900 class nuclear power plants

    International Nuclear Information System (INIS)

    Lebouc, B.

    1982-09-01

    The objective is to remove magnetite deposits which have formed on a steam generator tubesheet during plant operation. The deposits are separated from the tubesheet by spraying water at high pressure (about 200 bar at lance nozzle outlets) on each tube bundle ligament, i.e. the spaces between steam generator tubes. The water is recovered in suction lines and then filtered in two seperate units. The residue obtained after settling is removed in the form of solid waste. This paper presents the sludge lancing technique (spray lances, sludge recovery, liquid waste, cooling). A typical operating sequence is detailed (duration, personnel). Specifications for the equipment used are given

  3. Environmental and plant effects of sewage sludge application to forests and pastures

    International Nuclear Information System (INIS)

    Van Miegroet, H.; Boston, H.L.; Johnson, D.W.; Nevada Univ., Reno, NV

    1989-01-01

    Digested sewage sludge was applied to pastures and tree plantations at 19 to 44 Mg/ha (dry weight) as part of a municipal sludge disposal program. The sludge had low concentrations of heavy metals and traces of 137 Cs and 60 Co. Monitoring of soils, soil solutions, and runoff indicated that N, P, heavy metals, and radionuclides were largely retained in the upper 15cm of the soil. Soil solutions had elevated NO 3 - concentrations often >100 mg/L, but no significant increases in groundwater NO 3 - were found during the first year. Runoff from active sites had elevated concentrations of NO 3 - (20--30 mg/L), soluble P (1 mg/L), BOD 5 (5--30 mg/L), and fecal coliform (up to 14,000 colonies per 100 ml), not unlike runoff from pastures with cattle. Enrichment of organic N (2 times), available (inorganic) N (5 to 10 times), and Bray-P in the upper soils persisted for several years following sludge application. Sludge increased vegetation N concentrations from 1.5% to 2.3% and P concentrations from 0.16% to 0.31%. With the exception of Zn, heavy metals did not accumulate substantially in the vegetation. The sludge addition increased the survival and growth of sycamore (Platanus occidentalis L.). For a loblolly pine (Pinus taeda L.) plantation future growth improvements are expected based on elevated foliar N concentrations. 37 refs., 3 figs., 7 tabs

  4. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    Science.gov (United States)

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    Science.gov (United States)

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  6. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites.

    Science.gov (United States)

    Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M

    2018-06-11

    The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of

  7. Chromium fractionation and plant availability in tannery-sludge amended soil

    Science.gov (United States)

    Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte

    2013-04-01

    The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the

  8. Comparison of the Modeling Approach between Membrane Bioreactor and Conventional Activated Sludge Processes

    DEFF Research Database (Denmark)

    Jiang, Tao; Sin, Gürkan; Spanjers, Henri

    2009-01-01

    Activated sludge models (ASM) have been developed and largely applied in conventional activated sludge (CAS) systems. The applicability of ASM to model membrane bioreactors (MBR) and the differences in modeling approaches have not been studied in detail. A laboratory-scale MBR was modeled using ASM...

  9. Conversion of sewage treatment plants on sludge digestion. Energetic and economic optimization potential

    International Nuclear Information System (INIS)

    Schmitt, Theo G.; Gretzschel, Oliver

    2014-03-01

    Investigations within the framework of the state-commissioned project ''Re-evaluation of wastewater purification plants with anaerobic sludge treatment with due consideration to framework conditions in terms of the energy and the wastewater management situation in Rhineland-Palatinate'', abbreviated ''NAwaS'', have shown that due to the rise in energy prices and availability of innovative techniques and methods it can be economically efficient, from a plant capacity of 10,000 inhabitants upwards, to convert sewage treatment plants to sludge digestion. Findings from the NAwaS project show the state of Rhineland-Palatinate to have a large potential for the conversion of sewage treatment plants to sludge digestion. Depending on the rate of price increase as well as interest rates the use of digester gas could permit an increase in electricity output by up to 50% over today's levels. Moreover, converted plants would be able to almost completely cover their own heat demand and in addition permit energy savings totalling an expected 5 kWh/(inhabitant x a). If one incorporates the possibilities offered by the procurement of sludge or suitable co-substrates from outside sources, by retrofitting sewage plants with combined heat and power stations or micro gas turbines as well as by process optimisation in existing digestion plants, this gives a further significant increase in potential production capacity and hence economic efficiency. In some of the sewage plants the above measures for saving energy and boosting energy production will even lead to energy self-sufficiency. [de

  10. Bases for a sewage sludge treatment plant by irradiation in Mexico

    International Nuclear Information System (INIS)

    Alcantara, Jaime M.; Cruz, Arturo C.

    1997-01-01

    A good place for the first sludge irradiator in Mexico would be the Toluca Norte sewage water treatment plant. This plant has a definitive biological treatment, and handles only domestic wastewater and assures therefore good and stead sewage sludge quality, and has capacity do deliver sufficient sludge (approximately 22,000 ton.y -1 or 70 ton.d -1 ) to the irradiator. Capital and operating cost calculations for a sewage sludge plant by irradiation in Mexico were done using a mathematical model considering a 50 k W electron linear accelerator of 10 MeV beam energy, an irradiation dose of 5 kGy, a treatment capacity of 346 ton.d -1 , an absorption efficiency of 40%, an electricity consumption of 400 k W, an operating mode of 325 days per year and one shift per day. Total annual operating costs is estimated to be $1,007,900 for treating 346 ton.d -1 with irradiation dose of 5 kGy, including both fixed ($664,000) and variable costs ($343,920). The unit cost at maximum utilization was obtained as $9.00 per ton. (author). 16 refs., 3 tabs

  11. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  12. Research on vitrification technology to immobilize radioactive sludge generated from Fukushima Daiichi power plant. Enhanced glass medium

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya; Fukayama, Daigen; Nagano, Yuichi; Jantzen, Tatjana; Hack, Klaus

    2016-01-01

    The search for an enhanced glass medium to immobilize the sludge at the Fukushima Daiichi Nuclear Power Plant is our main purpose. The iron phosphate glass (IPG) is a potential candidate as we set about assessing it by means of theoretical and experimental investigation. Based on the results of this study, the IPG showed favorable characteristics as a vitrification medium for the sludge. (author)

  13. The effects of modification for contact stabilization activated sludge on EBPR

    Directory of Open Access Journals (Sweden)

    Hamdy I. Ali

    2015-04-01

    Available design and research information for the EBPR process were directly related to organic strength, solids and phosphorus content in wastewater. The success of excess biological phosphorus removal (EBPR process is largely dependent on the characteristics of organic carbon present in wastewater. The COD and BOD5 content of wastewater will also determine whether a phosphorus removal EBPR system is required. For this paper, the performance of EBPR was investigated using modified contact stabilization activated sludge pilot plant. The study involved the construction of pilot plant which was setup in Quhafa WasteWater Treatment Plant (WWTP, Al Fayoum, Egypt. Results showed average removal efficiencies of COD, BOD5 and TP are 91%, 92% and 85% respectively.

  14. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    Science.gov (United States)

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  15. Energy efficiency improvements in sewage sludge processing plants; Energetische Optimierung der Klaerschlammaufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, H.; Burger, S.

    2006-07-01

    From October 1st, 2006, sewage sludge may no longer be used as a fertilizer by farmers in Switzerland. Mechanical dewatering and drying of the sludge are the pre-stages of incineration. Based on a monitoring campaign and the results thereof, recommendations aiming at improving the energy efficiency have been worked out for use by waste water treatment plant operators and engineers for the design of drying plants. From the energetic point of view, solar drying of sludge is the best process. However, due to the large area required and the limited drying capacity, solar drying cannot be implemented everywhere. Therefore, three further drying processes have been monitored for eleven months: the fluidized bed drying process at the waste water treatment plant (WWTP) of the Region Berne, the low temperature/air recirculation dryer at WWTP Schwyz and the middle-temperature belt dryer at WWTP Wohlen. The electric energy consumption of the three investigated sludge drying processes was between 22 and 94 kWh per ton of evaporated water. The low temperature dryer showed the lowest energy consumption. The thermal energy consumption (expressed in useful energy) was between 648 and 1'033 kWh per ton of evaporated water, with the middle temperature dryer having the lowest consumption. On the other hand, the most advantageous process is the low temperature dryer if the comparison is based on the final energy consumption. This process has the advantage of making possible the integration of low-temperature waste heat. For whole Switzerland, the energy savings potential is estimated to be 133 GWh/year for fuel and 32 GWh/year for electricity, provided the drying process with the lowest energy consumption is implemented. It is recommended to conduct another measuring campaign at the first just commissioned sludge drying plant comprising a heat pump using waste water as a heat source, to check the effective energy savings. (author)

  16. Optimization of polyhydroxylalkanoates production from excess activated sludge

    International Nuclear Information System (INIS)

    Chua, H.; Yu, P.H.F.; Ma, C.K.

    2000-01-01

    Polyhydroxy alkanoates (PHAS) produced by microbial fermentation are biodegradable and can be used as environmentally-friendly substitutes for conventional plastics to resolve the environmental problems associated with plastics wastes. However, widespread applications of PHA are hampered by high production cost. In this study, activated sludge bacteria from a conventional wastewater treatment process were induced, by controlling the carbon-nitrogen (C:N) ratio in the reactor liquor, to accumulate PHA as a low-cost source of biodegradable plastic. Specific polymer yield increased to a maximum of O.27 g polymer/g dry cell mass when the C:N ratio was increased from 24 to 144, whereas specific growth yield decreased with increasing C:N ratio. An optimum C:N ratio of 96 provided the highest overall polymer production yield of 0.09 g polymer/g carbonaceous substrate consumed. Moreover, an intermittent nitrogen feeding program was established to further optimize the polymer volumetric productivity. The overall polymer production yield of O.11 g polymer/g carbonaceous substrate consumed was achieved under C:N ratio of 96 by feeding nitrogen in the reactor liquor once every 4 cycles. While reducing the production costs of biodegradable plastics, this technique also reduced the amount of excess sludge generated from the wastewater treatment process as the polymer portion of biomass was extracted for use. (Author)

  17. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    Science.gov (United States)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  18. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  19. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge

    International Nuclear Information System (INIS)

    Tan Phong Nguyen; Hankins, Nicholas P.; Hilal, Nidal

    2007-01-01

    This study investigates the effect of calcium, alginate, fibrous cellulose, and pH on the flocculation dynamics and final properties of synthetic activated sludges. A laboratory-scale batch reactor, fed with standard synthetic sludges was used. The effects of varying calcium concentration (5-25 mM), alginate concentration (25-125 mg/L), fibrous cellulose concentration (0.2-0.8 g/L) and pH (3-9) on the sludge characteristics were studied by varying one parameter whilst keeping the others constant. The results from experiments indicated that the calcium, alginate, fibrous cellulose, and pH had the critical effect on the aggregation rate, flocs size, and made the improvement of the final properties of sludge. Dynamic measurements have established the optimum conditions for floc formation and can accurately reflect the state of formation of the synthetic activated sludge flocs. These correlate well with measurements of settleability and turbidity of the synthetic activated sludge. The results of this study support the bonding theory and indicate that formation of cations-polymer complexes and polymer gelation are important means of flocculation. The development of synthetic activated sludges is suggested also to be a possible surrogate for studying the final properties of activated sludge

  20. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Andersen, Henrik Rasmus; Ledin, Anna

    2012-01-01

    Removal of five acidic pharmaceuticals (ibuprofen, ketoprofen, naproxen, diclofenac and clofibric acid) by activated sludge from five municipal activated sludge treatment processes, with various sludge ages and nitrification capacities, was assessed through batch experiments. The increase...... in aerobic sludge age from 1-3 to 7 days seemed to be critical for the removal of naproxen and ketoprofen, with markedly higher rates of removal at sludge ages of 7 days or more. No removal was shown for diclofenac and clofibric acid, while high rates were observed for ibuprofen in all investigated sludges...

  2. Experience with a pilot plant for sewage sludge: Experiments on the inactivation of viruses in sewage sludge after a radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a Cobalt-60-plant were, till now, limited to the attempts to isolate virus from the sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in those sludge samples virus presence could be proven only on a rather irregular basis, an experiment was devised in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. Furthermore one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content was determined before and after the radiation treatment. In 33 sludge samples examined before hygienization, presence of one or several viruses occurred in 8 samples. With the 33 capsules examined after hygienization with 300 krad, only 2 showed presence of virus. Suspensions of attenuated polio virus type I packed into synthetic capsules with a medium virus dosis of 10sup(6.92) JD 50/0.1 were immersed into sludge. In 6 experiments it was found that after hygienization, virus dosis was reduced to an average value of 10sup(5.4) JD 50/0.1 ml. Accordingly, the experimental results showed that after the radiation treatment the reduction of the exposed virus was more than 90%. Under natural conditions the investigation of the sewage sludge samples showed presence of virus 4 times less after hygienization than in the samples examined before hygienization. (orig./AK) [de

  3. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    Science.gov (United States)

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  4. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    Science.gov (United States)

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  5. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  6. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.; Bartacek, Jan; Manzano, Ramon; van Leeuwen, Herman P.; Lens, Piet N.L.

    2010-01-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize

  7. Identification and quantification of nitrogen nutrient deficiency in the activated sludge process using respirometry

    NARCIS (Netherlands)

    Ning, Z.; Patry, G.G.; Spanjers, H.

    2000-01-01

    Experimental protocols to identify and quantify nitrogen nutrient deficiency in the activated sludge process were developed and tested using respirometry. Respirometric experiments showed that when a nitrogen nutrient deficient sludge is exposed to ammonia nitrogen, the oxygen uptake rate (OUR) of

  8. Development of a model describing virus removal process in an activated sludge basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.; Shiragami, N. Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-06-20

    The virus removal process from the liquid phase in an activated sludge basin possibly consists of physicochemical processes, such as adsorption onto sludge flocs, biological processes such as microbial predating and inactivation by virucidal components excreted by microbes. To describe properly the virus behavior in an activated sludge basin, a simple model is proposed based on the experimental data obtained using a poliovirus type 1. A three-compartments model, which include the virus in the liquid phase and in the peripheral and inner regions of sludge flocs is employed. By using the model, the Virus removal process was successfully simulated to highlight the implication of its distribution in the activated sludge basin. 17 refs., 8 figs.

  9. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process

    Institute of Scientific and Technical Information of China (English)

    Xiao-feng Sima; Bing-bing Li; Hong Jiang

    2017-01-01

    Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used.Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process.In this work,we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge.Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g.,flocculating ability,zeta-potential,hydrophobicity,and extracellular polymeric substances constituents).Moreover,the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.

  10. The pilot plant in Geiselbullach for the gamma irradiation of sewage sludge - design, operation experience and cost calculations

    International Nuclear Information System (INIS)

    Lessel, T.; Hennig, E.

    1976-01-01

    The pilot plant for sewage sludge irradiation in Geiselbullach near Munich has been in operation from July '73 to October '75 with a capacity of 30 m 3 per day. Successful experiences during this period resulted in an increase of the installed radiation energy and in several improvements for the technique and the efficiency. From December 1975 on the plant has been operating with a daily capacity of 120 m 3 of sludge per day. The experience with this plant brought several problems which caused interruptions of the continuous operation and that had to be solved with new measures. But although the facility at Geiselbullach is a pilot plant the availability was more than 350 days per year. Due to the simple design of the plant and of the fully automatic operation no special trained personal is necessary for the maintenance. Beside the effect of the hygienization the irradiation caused improved sedimentation properties of the sludge. Presently investigations are undertaken to prove better mechanical sludge dewatering properties. Cost calculations resulted in about DM 2.30 for operating expenses and DM 2.25 for capital costs per m 3 of sludge for the fully charged plant. The capital costs will be less in commercial plants. The conditioning effect on the sludge by the irradiation means savings of about DM 1.00 per m 3 . The irradiation of sewage sludge proved to be possible at about equal costs compared to the wellknown heat treatment (pasteurization at 70 0 C during 30 minutes.). Further investigations have to be done to overcome the contrary development of the plant capacity, limited by the decaying radiation energy and the normally rising sludge quantities of a sewage water treatment plant. (author)

  11. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    Science.gov (United States)

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  13. THE EFFECT OF THE SLUDGE RECYCLE RATIO IN AN ACTIVATED SLUDGE SYSTEM FOR THE TREATMENT OF AMOL'S INDUSTRIAL PARK WASTEWATER

    Directory of Open Access Journals (Sweden)

    BAHAR HOSSEINI

    2008-09-01

    Full Text Available An activated sludge aeration tank and a sedimentation basin were used to treat Amol’s industrial park effluents originating from all industrial units. A continuous system was implemented and the kinetic parameters were measured.The parameters such as rate constant, substrate utilization rate constant, yield and decay coefficient were 2.12 d-1, 232.4 mg l-1, 0.33 g/g of substrate and 0.096 d−1, respectively. The hydraulic retention times (HRT were in the range of 9 to 27 h. The sludge recycle ratios in the range from 0.3 to 1 were considered. The COD removal, SVI and DO were determined and the optimal values were obtained. It was observed that at HRT of 16 h and the sludge recycle ratio of 0.85, the COD removal and SVI were 95 and 85 %, respectively. The sludge recycle ratio greater than 0.85 had no significant effect on the COD removal.

  14. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  15. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  16. Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp strains isolated from industrial waste activate sludge

    OpenAIRE

    García, Rocío; Campos, Juan; Cruz, Julio Alfonso; Calderón, Ma. Elena; Raynal, Ma. Elena; Buitrón, Germán

    2016-01-01

    Abstract The microorganisms are capable of accumulating heavy metal ions from water as biosorbent agents, offering a potential alternative for the detoxification and recovery of toxic/precious metals in industrial wastewater. In the present work, metal-resistant bacterial strains were isolated and identified from activated sludge of a waste treatment plant in the Municipality of Santa Rosa Jauregui, Querétaro. To obtain bacteria tolerant to metals, 37 bacterial strains and two isolates were s...

  17. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge

    OpenAIRE

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2013-01-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerpri...

  18. ELIMINATION OF CLOSTRIDIUM PERFRINGENS DURING SURPLUS ACTIVATED SLUDGE HANDLING

    Directory of Open Access Journals (Sweden)

    Klaudiusz Grűbel

    2014-10-01

    Basis on the results of the research was concluded that microwave radiation (700W and 900W shows disintegration action expressed in COD value in the supernatant increase: 12 times increase value of COD with power 700W and 13 times for 900W radiation power. Electromagnetic wave contributed to partial higienisation of surplus activated sludge. The number of Clostridium perfringens decrease about 52% and 56% during the 120s of higienisation process with power 700W and 900W, respectively. Reduction of the overall number of bacteria under the influence of microwave radiation was 42% and 51% (respectively for 700W and 900W, and sticks from the family Enterobacteriaceae from 54% to 70% depending on the power of radiation, the time of operation and biochemical properties.

  19. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  20. ACTIVATED SLUDGE DESIGN ON MS.EXCEL 8.0

    Directory of Open Access Journals (Sweden)

    Köksal SARICAOĞLU

    2000-01-01

    Full Text Available In this study, the planing of the Activated Sludge Method used on Environmental Engineering, was done by MS Excel 8.0, which very commonly used for spread sheet design. The program contained five sections. They are; the "DATA" section to enter the available data for calculations, the "RESULTS" section to show the outcomes of calculations, the "DETERMINATION of DIMENSIONS" section to determine the dimensions of the reactor, the "CALCULATION of AIR DIFFUSER" section to calculate the dimensions and capacity of air diffuser and the "EVALUATION" section to evaluate the results of calculations according to the criteria. The aim of this study was, to demonstrate that every engineer ca do easily needed programs related to her or his field using Excel's functions although can not know about any program language.

  1. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    Science.gov (United States)

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  2. Degradation of typical N-nitrosodimethylamine (NDMA) precursors and its formation potential in anoxic-aerobic (AO) activated sludge system.

    Science.gov (United States)

    Wang, Lin; Li, Yongmei; He, Guodong

    2014-01-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.

  3. The Influence of Gamma Irradiation on the Bacterial Growth and the Concentration of Macro nutrient Plant Elements (N,P,K) in The Sludge

    International Nuclear Information System (INIS)

    Yazid, M.; Zainul Kamal; Elin Nuraini

    2002-01-01

    The investigation of the gamma irradiation influence for bacterial growth and macro-nutrient plant element in the sludge has been done. The objective of the research is to study the gamma irradiation influence on bacterial growth and macro-nutrient plant element concentration; after that, can be determine the effective dose for killing pathogenic bacteria, while the other kind of bacteria such as the decomposer has been survived. The sludge samples was collected from the vicinity of Surabaya such as Sukolilo for sewage, PT SIER Rungkut for industrial and Dr. Sutomo hospital waste sludge. The irradiation of the sludge has been done at P3TIR-BATAN by Co-60 irradiator and the dose variation are 0, 5, 10, 15, 20 and 25 kGy. Microbiological observation was done after irradiation at FMIPA-UNAIR laboratory and the analysis of N,P,K elements by using fast neutron activation analysis. The observation involving total bacterial and one kind of pathogenic microbial which is Salmonella, from this observation can be deduced that population of total bacteria in the sludge is in the range at 1.0 x 10 7 to 3.7 x 10 8 . For every 5 kGy increment could be able to decrease total bacterial growth about 10 times, and at 25 kGy the total bacterial growth can be suppressed. The higher population of Salmonella can be found in the hospital sludge is in range of 3.0 to 3.5 x 10 5 , in the sewage sludge is 1.4 to 1.6 x 10 4 and industry is 1.0 to 1.4 x 10 3 . For the Salmonella disinfection need the 15 to 20 kGy radiation dose. From the calculation results can be known that the nitrogen content in the sludge is in the range at 1.393 ± 0.692 to 3.147 ± 0.697 % , the phosphor 3.714 ± 0.892 to 8.120 ± 1.034 % and the potassium 1.999 ± 0.523 to 4.52 ± 0.599 %. The variation of the irradiation dose 10 - 25 kGy does not have any significant influence for the macro-nutrient plant (N,P,K) content in the sludge from the industrial, the sewage or the hospital waste water treatment. (author)

  4. Removal of Organic Micropollutants by Aerobic Activated Sludge

    KAUST Repository

    Wang, Nan

    2013-06-01

    The study examined the removal mechanism of non-acclimated and acclimated aerobic activated sludge for 29 target organic micropollutants (OMPs) at low concentration. The selection of the target OMPs represents a wide range of physical-chemical properties such as hydrophobicity, charge state as well as a diverse range of classes, including pharmaceuticals, personal care products and household chemicals. The removal mechanisms of OMPs include adsorption, biodegradation, hydrolysis, and vaporization. Adsorption and biodegradation were found to be the main routes for OMPs removal for all target OMPs. Target OMPs responded to the two dominant removal routes in different ways: (1) complete adsorption, (2) strong biodegradation and weak adsorption, (3) medium biodegradation and adsorption, and (4) weak sorption and weak biodegradatio. Kinetic study showed that adsorption of atenolol, mathylparaben and propylparaben well followed first-order model (R2: 0.939 to 0.999) with the rate constants ranging from 0.519-7.092 h-1. For biodegradation kinetics, it was found that benzafibrate, bisphenol A, diclofenac, gemfibrozil, ibuprofen, caffeine and DEET followed zero-order model (K0:1.15E-4 to 0.0142 μg/Lh-1, R2: 0.991 to 0.999), while TCEP, naproxen, dipehydramine, oxybenzone and sulfamethoxazole followed first-order model (K1:1.96E-4 to 0.101 h-1, R2: 0.912 to 0.996). 4 Inhibition by sodium azide (NaN3)and high temperature sterilization was compared, and it was found that high temperature sterilization will damage cells and change the sludge charge state. For the OMPs adaptation removal study, it was found that some of OMPs effluent concentration decreased, which may be due to the slow adaptation of the sludge or the increase of certain bacteria culture; some increased due to chromic toxicity of the chemicals; most of the OMPs had stable effluent concentration trend, it was explained that some of the OMPs were too difficutl to remove while other showed strong quick adaptation

  5. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    Science.gov (United States)

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. (c) IWA Publishing 2008.

  6. Operational experience with a commercial plant for stabilisation Of radioactive sludge and other materials in the United Kingdom - 16042

    International Nuclear Information System (INIS)

    Hagan, M.; Cornell, R.M.; Riley, B.; Ware, B.

    2009-01-01

    In 2000, Nuvia Limited was contracted to design, build and commission a waste treatment plant (WETP) to stabilise the active sludge stored in the External Active Storage Tanks (EAST) at UKAEA Winfrith, UK. The sludge was generated during the operational period of the prototype Steam Generating Heavy Water Reactor (SGHWR), which is now in the process of being decommissioned. This work supports UKAEA's mission, which is to carry out environmental restoration of its nuclear sites and to put them to alternative uses wherever possible. Recently UKAEA has been reorganised and responsibility for the site lies with Research Sites Restoration Limited (RSRL) with funding provided by the Nuclear Decommissioning Authority (NDA). The process of stabilisation of the SGHWR sludge from the EAST tanks within 500 litre stainless steel drums in the Winfrith EAST Treatment Plant (WETP) using ordinary Portland cement (OPC) and blast furnace slag (BFS) is now almost complete. At this stage it was planned to decommission and demolish the WETP facilities but RSRL have introduced a further stabilisation project involving thorium metal waste ahead of the start of the planned decommissioning. As a result, the facilities are to be revised to provide for the encapsulation of bars of thorium metal within modified 500 litre drums together with a number of necessary changes to the plant control system. The cell line used for stabilisation consists of five operational cells separated by shield doors designed to maintain strict contamination control. There is a wet cell where the drums are filled with sludge and powder, a cell with stations for curing and grouting the drums, a cell for lidding, bolting and QA inspection, a maintenance and gamma monitoring cell and a buffer store to hold the completed drums. After completion, drums are moved in a shielded overpack to the Treated Radwaste Store located on a different part of the Winfrith site. In the revised cell line configuration the wet cell will

  7. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  8. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge

    Czech Academy of Sciences Publication Activity Database

    Vrkoslavová, J.; Demnerová, K.; Macková, M.; Zemanová, T.; Macek, Tomáš; Hajšlová, J.; Pulkrabová, J.; Hrádková, P.; Stiborová, H.

    2010-01-01

    Roč. 81, č. 3 (2010), s. 381-386 ISSN 0045-6535 R&D Projects: GA MŠk 2B06151 Grant - others:GA ČR(CZ) GP104/08/P188 Institutional research plan: CEZ:AV0Z40550506 Keywords : polybrominated diphenyl ethers * contaminated sewage sludge * plant uptake * bioconcentration factors * Nicotiana tabacum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.155, year: 2010

  9. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    Science.gov (United States)

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  10. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  11. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  12. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions

    DEFF Research Database (Denmark)

    Chen, Xijuan; Nielsen, Jeppe Lund; Furgal, Karolina

    2011-01-01

    of triclosan- methyl was investigated in activated sludge from a standard activated sludge WWTP equipped with enhanced biological phosphorus removal. The removal was found to occur mainly under aerobic conditions while under anoxic (nitrate reducing) and anaerobic conditions rather low removal rates were...... determined. In a laboratory-scale activated sludge reactor 75% of the triclosan was removed under aerobic conditions within 150 h, while no removal was observed under anaerobic or anoxic conditions. One percent of the triclosan was converted to triclosan-methyl under aerobic conditions, less under anoxic...

  13. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000 degrees C (900 to 1800 degrees F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement

  14. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    Science.gov (United States)

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  16. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Chhetri, Ravi Kumar [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Ooi, Gordon [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Litty, Klaus [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Christensson, Magnus [AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund (Sweden); Kragelund, Caroline [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Bester, Kai, E-mail: kb@envs.au.dk [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark)

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h{sup −1}, from 0 to 7.78 × 10{sup −1} h{sup −1}, from 0 to 7.86 × 10{sup −1} h{sup −1} and from 0 to 1.07 × 10{sup −1} h{sup −1} for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase

  17. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M.S.; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R.; Bester, Kai

    2015-01-01

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h −1 , from 0 to 7.78 × 10 −1 h −1 , from 0 to 7.86 × 10 −1 h −1 and from 0 to 1.07 × 10 −1 h −1 for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step

  18. Spontaneous plant colonization of brownfield soil and sludges and effects on substrate properties and pollutants mobility

    Science.gov (United States)

    Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola

    2017-04-01

    This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal

  19. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    Science.gov (United States)

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  20. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    Science.gov (United States)

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  1. Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling

    Directory of Open Access Journals (Sweden)

    Abdelsalam Elawwad

    2018-09-01

    Full Text Available Wastewater containing high ammonium concentrations is produced from various industrial activities. In this study, the author used a complex activated sludge model, improved by utilizing BioWin© (EnviroSim, Hamilton, Canada simulation software, to gain understanding of the problem of instability in biological nitrogen removal (BNR. Specifically, the study focused on BNR in an industrial wastewater treatment plant that receives high-strength ammonium wastewater. Using the data obtained from a nine-day sampling campaign and routinely measured data, the model was successfully calibrated and validated, with modifications to the sensitive stoichiometric and kinetic parameters. Subsequently, the calibrated model was employed to study various operating conditions in order to optimize the BNR. These operating conditions include alkalinity addition, sludge retention time, and the COD/N ratio. The addition of a stripping step and modifications to the configuration of the aerators are suggested by the author to increase the COD/N ratio and therefore enhance denitrification. It was found that the calibrated model could successfully represent and optimize the treatment of the high-strength ammonium wastewater.

  2. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  3. Extraction of bioflocculants from activated sludge and their application to wastewater treatment

    Directory of Open Access Journals (Sweden)

    Vasilieva Zh. V.

    2018-03-01

    Full Text Available Extracellular polymeric substances (EPS – biopolymers produced by the microorganisms – are effective flocculants of wastewater pollution and lack the shortcomings of traditional coagulants and flocculants, which can pose direct threat to health and human life, as well as to the sustainable existence of aquatic and terrestrial ecosystems. EPS do not form secondary contamination of their degradation intermediates, are biodegradable and eco-friendly. Industrial production of bacterial EPS is associated with high cost of growing specific microbial biomass and the functioning of technologies for the synthesis of microbial products. At the same time, there is an underused resource of excess activated sludge, which can be used as cheap substrate for producing bioflocculants and a possible measure to reduce costs. The conducted researches have shown the prospects of extracting EPS from excess activated sludge for their subsequent use as wastewater treatment bioflocculants. EPS extraction has been conducted using three methods: combination of centrifugation processes, extraction using the aqueous solution of disodium ethylenediaminetetraacetic acid, and precipitation with isopropyl alcohol (the EDTA method; combination of centrifugation, extraction with (NH22CO, precipitation and ethanol reprecipitation (the (NH22CO method; combination of activated sludge ultrasonic treatment, centrifugation, extraction with glacial acetic acid, and precipitation with acetone (the CH3COOH method. The research has shown that the extraction method affects not only the efficiency of EPS extraction, but also the possibility of EPS application for the purification of certain types of sewage. The (NH22CO method has shown the best extraction efficiency, but at the same time EPSs produced have not be able to perform fish processing wastewater treatment. The EDTA and CH3COOH methods are more preferable for producing efficient bioflocculants for fish processing wastewater

  4. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-08

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading

  5. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    International Nuclear Information System (INIS)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs

  6. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs.

  7. Parameters affecting the degradation of benzothiazoles and benzimidazoles in activated sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vos, D de [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry; Wever, H de [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry; Verachtert, H [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry

    1993-07-01

    It was found that benzothiazole, 2-oxybenzothiazole and 2-benzothiazolesulphonate were degraded in activated sludge systems. 2-Mercaptobenzothiazole (MBT) was more resistant, although the first step in MBT degradation seemed to be transformation to the sulphonate form. At higher MBT concentrations, it was transformed into a disulphide, which accumulated in the sludge. MBT was also found to be mainly responsible for the toxicity of rubber chemical waste-water towards activated sludges. It inhibited the degradation of the other heterocycles. Only at concentrations of around 20 ppm was MBT degraded. Mercaptobenzimidazole ranked second in resistance to degradation. (orig.)

  8. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  9. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    Directory of Open Access Journals (Sweden)

    Yagüe, A.

    2002-09-01

    Full Text Available Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of sludge was determined over time. Leaching of the bricks was determined according to the NEN 7345 standard. In most cases the addition of sludge produces a decrease in porosity and absorption coefficients and an increase in compressive strength, so one could expect these bricks to have greater durability. As regards leaching pollutants in the bricks, they are below the limit of the Dutch NEN standard for construction materials and thus can be classified as inert material.

    El estudio ha consistido en la utilización de lodo seco de origen biológico de la depuradora de aguas residuales de Sabadell (Riu Sec, como adición en la preparación de adoquines de hormigón prefabricado. Después de caracterizar los lodos y el proceso de fabricación de los adoquines que utilizaremos, definimos las condiciones de adición de los lodos en esta fabricación. Se prepararon muestras de referencia, sin adición, y muestras con el 2 % de lodo seco sobrepeso de cemento. Se determinaron cómo variaban en el tiempo, con la presencia de lodos: la densidad, la porosidad y el coeficiente de absorción, y la resistencia mecánica a compresión de los adoquines. También se determinó la lixiviación que estas piezas presentaban de acuerdo a la norma NEN 7345. La adición de lodos produce, en la mayoría de los casos, una disminución de las porosidades y de los coeficientes de absorción y un aumento en las resistencias mecánicas, por lo que cabe esperar una mayor

  10. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  11. Ion exchange flowsheet for recovery of cesium from purex sludge supernatant at B Plant

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1977-01-01

    Purex Sludge Supernatant (PSS) contains significant amounts of 137 Cs left after removal of strontium from fission product bearing Purex wastes. To remove cesium from PSS, an Ion Exchange Recovery system has been set up in Cells 17-21 at B Plant. The cesium that is recovered is stored within B Plant for eventual purification through the Cesium Purification process in Cell 38 and eventual encapsulation and storage in a powdered form at the Waste Encapsulation Storage Facility. Cesium depleted waste streams from the Ion Exchange processes are transferred to underground storage

  12. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  13. Transfer of Cobalt-60 to plants from soils treated with sewage sludge

    International Nuclear Information System (INIS)

    Grummitt, W.E.

    1976-01-01

    The uptake of 60 Co from soils fertilized with contaminated sewage sludge has been investigated under a variety of experimental conditions. A number of garden plots were prepared by thoroughly mixing sludge containing 60 Co with farm soils from the Ottawa Valley. Edible plants were grown in the open on these plots under conditions approximating those in market gardens. The crops were harvested at maturity and were prepared for measurement of 60 Co by drying portions of the roots, leaves, stems and fruit. The samples were counted on a large germanium detector which was capable of resolving 60 Co from other gamma-emitting nuclides. Cobalt was readily taken up from contaminated sludge but was nonuniformly distributed in various parts of the plant. In general, the roots showed the highest levels while edible portions such as seeds and tubers had much lower concentrations. The uptake ratio, expressed as radioactivity in the sample to radioactivity in the soil, varied from 0.003 to 8 on a dry-weight basis. (author)

  14. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Wizigmann, I.

    1976-01-01

    Reduction of viable micro-organisms could be achieved by irradiation of sewage sludge in a pilot plant ( 60 Co gamma-radiation 300 krad, 300 min.). The reduction amounted to an average of 2 log with Enterococces and total bacterial count and to 5 log with Enterobacteriaceae. Out of 23 sludge batches from digestor II, 21 were free of Salmonella after irradiation. Of 7 sludge batches from digestor I with a higher level of Enterobacteriaceae and Salmonellae, 5 batches still contained Salmonella after treatment. By making some alterations in the pipe system and reloading further cobalt 60-sources, the duration of irradiation could be reduced to 65 min. while maintaining the dose level of 300 krad. Employing this altered procedure, 16 batches from digestor II and 4 from digestor I were irradiated to date. Only in one of 60 samples were Salmonellae detectable. The hygienic effects of the irradiation plant were confirmed by means of model experiment with pure bacterial cultures. Microorganisms of different species as well as strains of the same species differ in their radiosensitivity. Parasitological experiments were conducted with Ascaris suum ova. No embryonation was noted after radiation treatment at a dose of 300 krad. (orig./HK) [de

  15. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis.

    Science.gov (United States)

    Yang, Xiaoyi; Xue, Yu; Wang, Wenna

    2009-01-01

    Enhanced activated sludge by interior microelectrolysis (EAIM) was studied to treat textile wastewater, kinetics, mechanism and application of which were also discussed in comparison with traditional activated sludge and interior microelectrolysis, respectively. The results of kinetics study indicated three different processes all followed first-order kinetics well. In EAIM, three impact factors take effects on COD removal, which are flocculation, activated sludge and electrophoresis and redox. In terms of assumption of no interaction among three COD removal mechanisms, 49.6% of the total COD removal is ascribed to flocculation, 30.1% to activated sludge and 20.3% to electrophoresis and redox. EAIM showed its advantages in COD removal efficiency, extensive adaptability to complex composition and wide range of pH. EAIM-aerobic process provided an efficient and economic performance for dealing with textile wastewater.

  16. Batch system for study of Cr(VI) Bio sorption by dried waste activated sludge

    International Nuclear Information System (INIS)

    Farzadkia, M.; Gholami, M.; Darvishi Cheshmeh Soltani, R.; Yaghmaeian, K.; Shams Khorramabadi, G.

    2009-01-01

    Activated sludge from wastewater treatment systems contains both bacteria and protozoa. The cell wall of bacteria essentially consists of various compounds, such as carboxyl, acidic polysaccharides,lipids, amino acids and other components. (Author)

  17. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal; Oerther, Daniel B. Barton

    2010-01-01

    and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  18. Plant availability of trace elements in sewage sludge-treated soils: methodology¹

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2011-08-01

    Full Text Available Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.

  19. Chemical analysis of sewage sludge of southern sewerage treatment plant (SSTP) Hyderabad for achieving sustainable development in sector of agriculture

    International Nuclear Information System (INIS)

    Qureshi, K.; Shaikh, N.; Ahmed, R.S.; Nawaz, Z.

    2003-01-01

    A study on the chemical analysis of sewage sludge of southern sewerage treatment plant (SSPP) Hyderabad was studied. Chemical analysis on sludge samples collected form the waste stabilization for different micro-nutrients (essential manures, nitrogen, phosphorus, potassium, calcium and magnesium) were conducted in year 1999-2000. These nutrients and metal were detected by reliable analytical method i.e. Kjeldahls method and Atomic Absorption Spectrophotometer. The analysis showed that sewage sludge contained sufficient quantity of primary and secondary nutrients, hence sewage sludge could be utilized as a natural fertilizer. This will not only solve the disposal problem but it would also be environmentally safer way of providing regulators to the plants. (author)

  20. Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge.

    Science.gov (United States)

    Li, Fangjie; Jiang, Bingqi; Nastold, Peter; Kolvenbach, Boris Alexander; Chen, Jianqiu; Wang, Lianhong; Guo, Hongyan; Corvini, Philippe François-Xavier; Ji, Rong

    2015-04-07

    The fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.3 days) was accompanied by mineralization (17% of initial TBBPA). Twelve metabolites, including those with single benzene ring, O-methyl TBBPA ether, and nitro compounds, were identified. When allylthiourea was added to the sludge to completely inhibit nitrification, TBBPA transformation was significantly reduced (half-life 28.9 days), formation of the polar and single-ring metabolites stopped, but O-methylation was not significantly affected. Abiotic experiments confirmed the generation of mono- and dinitro-brominated forms of bisphenol A in NAS by the abiotic nitration of TBBPA by nitrite, a product of ammonia-oxidizing microorganisms (AOMs). Three biotic (type II ipso-substitution, oxidative skeletal cleavage, and O-methylation) and one abiotic (nitro-debromination) pathways were proposed for TBBPA transformation in NAS. Apart from O-methylation, AOMs were involved in three other pathways. Our results are the first to provide information about the complex metabolism of TBBPA in NAS, and they are consistent with a determining role for nitrifiers in TBBPA degradation by initiating its cleavage into single-ring metabolites that are substrates for the growth of heterotrophic bacteria.

  1. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  2. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phthalic acid and benzo[a]pyrene in soil-plant-water systems amended with contaminated sewage sludge

    DEFF Research Database (Denmark)

    Mougin, C.; Dappozze, F.; Brault, A.

    2006-01-01

    We studied the fate of C-14-labelled phthalic acid and benzo[a]pyrene applied to the soil by the way of contaminated sewage sludge in model ecosystems allowing the simultaneous assessment of physicochemical and biological descriptors. Here we show that the mineralisation of phthalic acid is highe......[a]pyrene is recalcitrant to biodegradation whatever the type of soil contamination. We show also that the chemicals present in the sludge are poorly transferred to soil leachates and plant seedlings....

  4. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  5. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    Science.gov (United States)

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  6. New biological deodrization device using dried activated sludge. Kanso odei wo mochiita shinki seibutsu dasshu sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S.; Nagayasu, K.; Suwa, T.; Hayashitani, M.; Ito, H.; Habata, K.; Kitakaze, T. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1993-10-20

    The new biological deodorization device was developed using dried activated sludge as deodorant. Activated sludge obtained from a waste water treatment plant was dried at room temperature to protect from extinction of microorganisms in it before its charge into the device, and washed by water only as required. Offensive odor substances were oxidation-decomposed by microorganism after their adsorption into sludge surfaces, while microorganisms survived for a long time while getting such substances as nutritive sources. As basic deodorization characteristics were studied with the experimental device and artificial odor gases, more than 99% of 200 and 2,000 ppm H2S were removed at space velocities of 400/h and 33/h, respectively, together with nine typical offensive odor substances. As the result of demonstration tests with the small test device installed in a public waste water treatment plant, a high deodorizing efficiency was retained for 10 months or more, and its running cost was as low as 75% of that of current systems because of only one necessary washing every month. 3 refs., 14 figs., 12 tabs.

  7. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  8. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    Science.gov (United States)

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ecological and Economic Aspects of the Application of Sewage Sludge in Energetic Plant Plantations - A Swot Analysis

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2017-12-01

    Sewage sludge management in Poland is a relatively new field of waste management called "in statu nascendi", the standards of which have not been recognized yet. It also requires the implementation of new solutions in the field of sewage sludge. So far, the most popular method of sewage sludge utilization has been landfill disposal. In line with the restriction placed on landfill waste with a calorific value above 6 MJ/kg introduced on 1 January 2016, agricultural use and thermal methods are particularly applied. Municipal sewage sludge may be successfully used in the cultivation of energetic plant plantations. The aforementioned waste could be treated as an alternative to traditional mineral fertilizers, which in turn might successfully provide valuable nutrients for plants. This paper illustrates the SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats) associated with the use of sewage sludge from Świlcza-Kamyszyn WTTP (Podkarpackie Province, Poland) for agricultural purposes. This analysis could be useful in evaluating the utility of sewage sludge in perennial plant plantations in order to determine the appropriate waste management strategies.

  11. Value-Added Products Derived from Waste Activated Sludge: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-04-01

    Full Text Available Substantial research has been carried out on sustainable waste activated sludge (WAS management in the last decade. In addition to the traditional approach to reduce its production volume, considering WAS as a feedstock to produce bio-products such as amino acids, proteins, short chain fatty acids, enzymes, bio-pesticides, bio-plastics, bio-flocculants and bio-surfactants represents a key component in the transformation of wastewater treatment plants into biorefineries. The quality of these bio-products is a key factor with respect to the feasibility of non-conventional WAS-based production processes. This review provides a critical assessment of the production process routes of a wide range of value-added products from WAS, their current limitations, and recommendations for future research to help promote more sustainable management of this under-utilised and ever-growing waste stream.

  12. Aerobic activated sludge transformation of vincristine and identification of the transformation products.

    Science.gov (United States)

    Kosjek, Tina; Negreira, Noelia; Heath, Ester; López de Alda, Miren; Barceló, Damià

    2018-01-01

    This study aims to identify (bio)transformation products of vincristine, a plant alkaloid chemotherapy drug. A batch biotransformation experiment was set-up using activated sludge at two concentration levels with and without the addition of a carbon source. Sample analysis was performed on an ultra-high performance liquid chromatograph coupled to a high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometer. To identify molecular ions of vincristine transformation products and to propose molecular and chemical structures, we performed data-dependent acquisition experiments combining full-scan mass spectrometry data with product ion spectra. In addition, the use of non-commercial detection and prediction algorithms such as MZmine 2 and EAWAG-BBD Pathway Prediction System, was proven to be proficient for screening for transformation products in complex wastewater matrix total ion chromatograms. In this study eleven vincristine transformation products were detected, nine of which were tentatively identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biofac, a microbiological multimedia tool to perform the analysis of activated sludge; Biofac, una herramienta de autoformacion microbiologica para el analisis del fango activo

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Torregrosa, C.; Llopis Nicolau, A.; Claramonte Santarrufina, J.; Alonso Hernandez, S.

    2009-07-01

    The composition and structure of the macrobiotic that is part of the active sludge, its temporal evolution, and the analysis of the macroscopic and microscopic characteristics of it are a source of information of great help in making decisions for plant operators. Lack of training and access to specific information linked to the missing standardization of analysis processes hinder the implementation and interpretation of them. Using a multimedia tool in DVD, Facsa has developed the Biofac, an application in which it is documented and illustrated the most relevant aspects that allow the user to perform the analysis of activated sludge. (Author)

  14. Study on The Use of Sludge From Yogyakarta Waste Water Processing Plant as Environmental Friendly Organic Fertilizer

    International Nuclear Information System (INIS)

    M-Yazid; Mintargo-K; M-E-Supriyatni; Budiono

    2005-01-01

    Study on feasibility of the use of sludge from Yogjakarta Waste Water Processing Plant (JWWPP) as organic fertilizer with several aspects to be considered, such as plant nutrient content, heavy metal content and its pathogenic microbial. From the observation result is expected can be used as an input data for analyzing the use of sludge impact as fertilizer. Sludge sample was taken from JWWPP that located at Bantul. Sludge sample was dried at the room temperature, ground and weighed to be appropriate to the analysis type. The macro element content was analyzed using Neutron Activation Analysis (NAA), then counted using Ge(Li) Gamma Spectrometer. The heavy metal content, such as Pb, Cd and Hg was analyzed using AAS, while for Sm, Th, Sb, Cr and Co contents were analyzed using NAA. Sample was irradiated in order to kill pathogenic microbial, using varied doses which are 5, 10, 15, 20 and 25 kGy. Microbial observation was carried out at Microbiological Laboratory of Biological Faculty-Gadjah Mada University that include of total bacteria, Escherichia coli, Streptococcus and Salmonella. The average macro element content was determined from the analysis result, N is 4.10 ± 0.007 ppm, P is 640.51 ± 14.34, K is 3.04 ± 0.06 ppm, while micro element content consist of Mg is 79.31 ± 6.48 ppm, Zn is 599.8 ± 42.2 ppm, Cu is 16.13 ± 0.4 ppm, Ca is 117.6 ± 9.20 ppm and Fe is 4.35 ± 0.18 ppm. The range of heavy metal content consist of Pb is 73.27 - 125.65 ppm, Cd is 1.44 - 2.59 ppm, while Hg is undetected. Another that Sm is 0.04 - 18.68 ppm, Th is 2.20 - 6.37 ppm; Sb is 1.06 - 76.37 ppm, Cr is 1.94 - 51.40 ppm and Co is 0.57 - 84.03 ppm. The greatest bacteria population is Salmonella sp, then Streptococcus and the latest is Escherichia coli. The analysis result can be deduced that sludge from JWWPP can be used as organic fertilizer with specific treatment to decrease Cu, Fe and Zn content to be less then the critical value to hinder the growth of a plant. While the

  15. Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge

    International Nuclear Information System (INIS)

    Luo, Yuan-ling; Yang, Zhao-hui; Xu, Zheng-yong; Zhou, Ling-jun; Zeng, Guang-ming; Huang, Jing; Xiao, Yong; Wang, Li-ke

    2011-01-01

    This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3 L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period. The results showed that all of the PAM addition not only improved the removal efficiencies of COD and ammonium, but also exhibited some advantages on sludge performance. It was found that the sludge performance of settling property, flocculation and microbial activity increased with increasing concentration of PAM. However, high level of PAM (1 mg/L) led to the formation of large amounts of loose-structure flocs, which eliminated dissolved oxygen transfer and caused the sludge disintegration, resulting in bad settleability and lower microbial activity. In this way, when the dosage of PAM was 0.1 mg/L, the sludge had the best settling property and activity.

  16. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    Science.gov (United States)

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  17. Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge.

    Science.gov (United States)

    Luo, Yuan-ling; Yang, Zhao-hui; Xu, Zheng-yong; Zhou, Ling-jun; Zeng, Guang-ming; Huang, Jing; Xiao, Yong; Wang, Li-ke

    2011-05-15

    This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period. The results showed that all of the PAM addition not only improved the removal efficiencies of COD and ammonium, but also exhibited some advantages on sludge performance. It was found that the sludge performance of settling property, flocculation and microbial activity increased with increasing concentration of PAM. However, high level of PAM (1mg/L) led to the formation of large amounts of loose-structure flocs, which eliminated dissolved oxygen transfer and caused the sludge disintegration, resulting in bad settleability and lower microbial activity. In this way, when the dosage of PAM was 0.1mg/L, the sludge had the best settling property and activity. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    Orozco, A. Micaela Ferro; Contreras, Edgardo M.; Zaritzky, Noemi E.

    2008-01-01

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  19. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  20. The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge

    OpenAIRE

    Machnicka, A; Grűbel, K; Suschka, J

    2009-01-01

    Disintegration by hydrodynamic cavitation has a positive effect on the degree and rate of sludge anaerobic digestion. By applying hydrodynamic disintegration the lysis of cells occurs in minutes instead of days. The intracellular and extracellular components are set free and are immediately available for biological degradation which leads to an improvement of the subsequent anaerobic process. Hydrodynamic disintegration of the activated sludge results in organic matter and a polymer transfer ...

  1. Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

    Directory of Open Access Journals (Sweden)

    Jorge Avelino Rodriguez Lozada

    Full Text Available ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P. The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

  2. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design

    OpenAIRE

    Girault , R.; Bridoux , G.; Nauleau , F.; Poullain , C.; Buffet , J.; Peu , P.; Sadowski , A.G.; Béline , F.

    2012-01-01

    In this study, the maximum ratio of greasy sluvdge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determi...

  3. Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge.

    Directory of Open Access Journals (Sweden)

    Michael D Short

    Full Text Available We report on the first study trialling a newly-developed, functional gene microarray (FGA for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively. FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples - an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.

  4. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D`Avila, J.S.; Nascimento, R.R. [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1993-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  5. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D` Avila, J S; Nascimento, R R [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1994-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  6. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    Science.gov (United States)

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2017-06-01

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH 4 PO 4 .6H 2 O), potassium struvite (KMgPO 4 .6H 2 O) and calcium phosphates (e.g. Ca 3 (PO 4 ) 2 ) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved. [Formula: see text].

  7. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    International Nuclear Information System (INIS)

    Sandoval Lozano, Claudia Johanna; Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-01-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH 4 and CO 2 ) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L -1 and a concentration of CO 2 of 90%. In this reactor, the fermentative population was predominant (10 5 -10 6 MPN mL -1 ). The acetogenic population was (10 5 MPN mL -1 ) and the sulphate-reducing population was (10 4 -10 5 MPN mL -1 ). In the methanogenic reactor (R2), levels of CH 4 (70%) were higher than CO 2 (25%), whereas the VFA values were lower than 4000 mg L -1 . Substrate competition between sulphate-reducing (10 4 -10 5 MPN mL -1 ) and methanogenic bacteria (10 5 MPN mL -1 ) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH 4 g -1 VSS -1 day -1 ) and hydrogenophilic (0.94 g COD-CH 4 g -1 VSS -1 day -1 ) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified

  8. Development of a test method to access the sludge reduction potential of aquatic organisms in activated sludge

    NARCIS (Netherlands)

    Buijs, B.R.; Klapwijk, A.; Elissen, H.J.H.; Rulkens, W.H.

    2008-01-01

    This article shows the development of a quantitative sludge reduction test method, which uses the sludge consuming aquatic worm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential for the test are sufficient oxygen supply and the presence of a non-stirred layer of sludge for burrowing of

  9. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2014-09-15

    The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Zeng Lixi; Wang Thanh; Ruan Ting; Liu Qian; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80–52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C 11 and Cl 7,8 were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r 2 ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. - Highlights: ► Levels and distribution patterns of SCCPs were studied in sewage sludge in China. ► Concentrations of total SCCPs in sludge ranged from 0.8 to 52.7 μg/g dry weight. ► C 11 and Cl 7,8 were identified as the dominant congener groups within SCCPs. ► Significant linear relationships were found among SCCP congener groups (r 2 ≥ 0.9). ► SCCPs are present in household products and can be exposing to human. - High levels of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China have been found.

  11. Pick up of cesium and cobalt activity by oxide sludge in steam generator

    International Nuclear Information System (INIS)

    Rufus, A.L.; Subramanian, H.; Velmurugan, S.; Santanu Bera; Narasimhan, S.V.; Reddy, G.L.N.; Sankara Sastry, V.

    2002-01-01

    A pinhole developed near the tube sheet in the steam generator (SG) tube of a pressurised heavy water reactor (PHWR) caused leak of primary coolant containing radioactive contaminants ( 137 Cs, 134 Cs and 60 Co) to the shell side. The sludge collected from the tube sheet region was found to have adsorbed these radionuclides at the high temperature (230-240 deg C) that prevailed in the SG. An attempt has been made to evaluate the quantity of activity retained in the various oxide phases that constitute the sludge and their mode of pick-up. The sludge was characterized by XRD and XPS, which showed the presence of various oxides of iron, copper and nickel along with the silicates of calcium, magnesium and aluminium. Gamma-spectrometry of the sludge confirmed the presence of 137 Cs, 134 Cs and 60 Co to an extent of 7.6, 1.3 and 0.9 μCi/g of sludge, respectively. Selective dissolution in various EDTA based formulations and equilibration with nitric acid and magnesium chloride solutions helped to understand the quantity of activity adsorbed by various constituents of the sludge. It was concluded that a major portion of cesium was picked up by a reversible ion exchange process on various oxide constituents and about 10% by an irreversible specific adsorption process on insoluble silicates. Also, it was proved that 60 Co was specifically adsorbed over the oxides of iron and nickel. (author)

  12. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  13. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    Science.gov (United States)

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  14. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  15. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... Yuanyuan Yan, Leiyu Feng*, Chaojie Zhang, Hongguang Zhu and Qi Zhou. State Key ... soluble chemical oxygen demand; TCOD, total chemical oxygen demand ... studied as well as their effects on the characteristics of sludge. .... universal liquid module (ULM) which could detect particle size from. 0.04 up ...

  16. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.

    Science.gov (United States)

    Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M

    2017-11-01

    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  17. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    Science.gov (United States)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  18. Understanding the contribution of biofilm in an integrated fixed-film-activated sludge system (IFAS) designed for nitrogen removal.

    Science.gov (United States)

    Moretti, P; Choubert, J M; Canler, J P; Petrimaux, O; Buffiere, P; Lessard, P

    2015-01-01

    The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45-70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40-70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.

  19. Occurrence of Giardia cysts and Cryptosporidium oocysts in activated sludge samples in Campinas, SP, Brazil.

    Science.gov (United States)

    Santos, Luciana Urbano; Bonatti, Taís Rondello; Cantusio Neto, Romeu; Franco, Regina Maura Bueno

    2004-01-01

    Giardia and Cryptosporidium have caused several outbreaks of gastroenteritis in humans associated with drinking water. Contaminated sewage effluents are recognized as a potential source of waterborne protozoa. Due to the lack of studies about the occurrence of these parasites in sewage samples in Brazil, we compared the efficiency of two procedures for concentrating cysts and oocysts in activated sludge samples of one sewage treatment plant. For this, the samples were submitted to i) concentration by the ether clarification procedure (ECP) and to ii) purification by sucrose flotation method (SFM) and aliquots of the pellets were examined by immunofluorescence. Giardia cysts were present in all samples (100.0%; n = 8) when using ECP and kit 1 reagents, while kit 2 resulted in six positive samples (85.7%; n = 7). As for SFM, cysts were detected in 75.0% and 100.0% of these samples (for kit 1 and 2, respectively). Regarding Cryptosporidium, two samples (25.0%; kit 1 and 28.5% for kit 2) were detected positive by using ECP, while for SFM, only one sample (examined by kit 1) was positive (12.5%). The results of the control trial revealed Giardia and Cryptosporidium recovery efficiency rates for ECP of 54.5% and 9.6%, while SFM was 10.5% and 3.2%, respectively. Considering the high concentration detected, a previous evaluation of the activated sludge before its application in agriculture is recommended and with some improvement, ECP would be an appropriate simple technique for protozoa detection in sewage samples.

  20. MiDAS: the field guide to the microbes of activated sludge.

    Science.gov (United States)

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.

  1. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge.

    Science.gov (United States)

    Cabbai, Valentina; De Bortoli, Nicola; Goi, Daniele

    2016-03-01

    Anaerobic codigestion of source selected organic fraction of municipal solid waste (SS-OFMSW) and sewage sludge may be one of the most viable solutions to optimize oversized digesters efficiency in wastewater treatment plants. Based on results of BMP tests obtained for sewage sludge and SS-OFMSW, pilot plant tests were carried out by 3.4 m(3) CSTR reactor at mesophilic temperature. A mix of fruit and vegetable waste from wholesale market and canteen waste was used as SS-OFMSW substrate. Tests were conducted applying an OLR (organic loading rate) ramp with 6 different phases until a value of 3.2 kgVS/m(3) d. Feedstock and digestate characteristics, efficiency and process parameters were monitored. The anaerobic codigestion development was stable in each phase: early indicators like VFA (volatile fatty acids) and FOS/TAC ratio were always below instability threshold values. The maximum OLR tested determined a GPR (gas production rate) of 0.95 N m(3)/m(3) d and SGP (specific gas production) of 0.49 N m(3)/kgVS with a VS abatement of 67.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Radionuclides in sewage sludge and problems of use and disposal

    International Nuclear Information System (INIS)

    Schneider, P.; Tiefenbrunner, F.; Dierich, M.P.; Brunner, P.

    1987-01-01

    In a sewage plant with radioactive contaminated sewage an accumulation of radionuclide in the sewage sludge was to be found. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge shows the highest specific activities. These enriched radionuclides seem to be absorbed from the sludge. Yet they can be utilized by plants. This was demonstrated in experiments with Trifolium repens and Secale cereale, where the rate of absorption amounted 15-33% (inCi/kg dry weight plant:nCi/kg dry weight soil X 100) (transfer factors). This is why fertilization with radioactive contaminated sewage sludge seems to cause problems. In further experiments an extraction of radionuclides from ashed sewage sludge was shown. By acidifying the mobile phasis an increase in radioactivity in the eluated fractions was achieved. (orig./HP) [de

  4. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    Science.gov (United States)

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  5. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    Science.gov (United States)

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  6. Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; Dueholm, Morten Simonsen

    2017-01-01

    Anaerobic digestion for biogas production is reliant on the tightly coupled synergistic activities of complex microbial consortia. Members of the uncultured A6 phylotype, within the phylum Chloroflexi, are among the most abundant genus-level-taxa of mesophilic anaerobic digester systems treating...... primary and surplus sludge from wastewater treatment plants, yet are known only by their 16S rRNA gene sequence. This study applied metagenomics to obtain a complete circular genome (2.57 Mbp) from a representative of the A6 taxon. Preliminary annotation of the genome indicates these organisms...

  7. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  8. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  9. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    Science.gov (United States)

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  11. APPLICATION OF RESPIROMETRIC TESTS FOR ASSESSMENT OF METHANOGENIC BACTERIA ACTIVITY IN WASTEWATER SLUDGE PROCESSING

    Directory of Open Access Journals (Sweden)

    Małgorzata Cimochowicz-Rybicka

    2013-07-01

    Full Text Available Production of a methane-rich gas (‘biogas’ is contemporary popular sludges processing technology which allows to generate thermal and/or electric energy. Formal requirements issued by the European Union to promote so called renewable energy resources made these process more attractive leading to its application in WWTPs which were designed based on different sludge handling processes. Authors (as active design engineers noted that dimensioning sludge digestion chamber is usually based on SRT assessment without any emphasis on sludge characteristics. Bio-mass characteristics and the estimation of its activity with respect to methane production are of great importance, from both scientific and practical points of view, as anaerobic digestion appears to be one of crucial processes in municipal wastewater handling and disposal. The authors propose respirometric tests to estimate a biomass potential to produce ‘a biogas’ and several years’ laboratory and full scale experience proved its usefulness and reliability both as a measurement and a design tool applicable in sludge handling. Dimensioning method proposed by authors, allows to construct and optimize operation of digestion chambers based on a methanogenic activity.

  12. Effect of ultrasonic and microwave disintegration on physico-chemical and biodegradation characteristics of waste-activated sludge.

    Science.gov (United States)

    Doğruel, Serdar; Özgen, Aslı Sedem

    2017-04-01

    The purpose of this study was to investigate the effect of ultrasonic and microwave disintegration on physico-chemical and biodegradability properties of waste-activated sludge (WAS) from a municipal wastewater treatment plant. Another aim was to carry out particle size distribution (PSD) analysis as an integral component of sludge characterization to highlight the transformation mechanisms involved in pretreatment processes and better understand the biodegradation patterns of sonicated and irradiated WAS liquids examined by means of respirometric measurements. Various combinations of sonication and microwave irradiation parameters were applied to optimize operating conditions. The optimum ultrasonic density was determined as 1.5 W/mL, and energy dosages lower than 30,000 kJ/kg TS resulted in a fairly linear increase in the soluble chemical oxygen demand (SCOD) release. An irradiation time of 10 min and a temperature of 175°C were selected as the optimum microwave pretreatment conditions for sludge liquefaction. The most apparent impact of ultrasonication on the PSD of COD was the shifting of the peak at the particulate fraction (>1600 nm) toward the lowest size range (<2 nm). Microwave heating at the selected experimental conditions and ultrasonic pretreatment at 30,000 kJ/kg TS exhibited comparable size distribution and biodegradation characteristics to those of domestic sewage.

  13. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  14. Analysis of As, Cr and Hg in crude oil sludge by using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Syazwani Mohd Fadzil; Khoo Kok Sionga, Amran Ab Majid; Sukiman Sarmani

    2009-01-01

    Environment are carrying toxic elements. The aim of this study was to determine As, Cr and Hg elements in crude oil sludge. In this study, crude oil sludge samples from a refining plant at Kerteh, Terengganu was carried out using Instrumental Neutron Activation Analysis (INAA). The samples were packed and irradiated at the Malaysian Nuclear Agency reactor TRIGA Mark II. Later, the samples were counted using a HPGe detector and were analyzed using the SAMPO 90 software. The certified reference material (CRM) namely NBS Coal Fly Ash 1633a was used as a standard to obtain the concentration average using a comparative method. A total of 11 elements (i.e. As, Co, Cr, Fe, Ga, Hg, Mn, Na, Sc, Se and Sr) were determined in all samples. The concentrations of As, Cr and Hg were found to be in the range of 0-18.8, 98.2-124 and 52.8-57.9 μg.g -1 respectively. From the concentration of these elements, the results showed that the value for total As element is low but the values for the total Cr and Hg are considerable higher than the permissible value. However, almost all the potential environmental impacts can be controlled by sludge disposal options such as well-designed, carefully, efficiently and continuously managed, by following accepted guidelines and regulations. (Author)

  15. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    Science.gov (United States)

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  16. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation

    International Nuclear Information System (INIS)

    Yao, Yanlai; Lu, Zhenmei; Zhu, Fengxiang; Min, Hang; Bian, Caimiao

    2013-01-01

    Highlights: • Rhodococcus sp. YYL is an efficient tetrahydrofuran-degrading strain. • Strain YYL was used to augment an activated sludge system for THF degradation. • Successful bioaugmentation was achieved only by coinoculation of strain YYL and the two bacilli. • Successful bioaugmentation of the system resulted in efficient THF degradation. -- Abstract: The exchange of tetrahydrofuran (THF)-containing wastewater should significantly affect the performance of an activated sludge system. In this study, the feasibility of using THF-degrading Rhodococcus sp. strain YYL to bioaugment an activated sludge system treating THF wastewater was explored. As indicated by a DGGE analysis, strain YYL alone could not dominate the system, with the concentration of mixed liquor suspended solids (MLSS) decreasing to nearly half of the initial concentration after 45 d, and the microbial diversity was found to be significantly reduced. However, after the reactor was augmented with the mixed culture of strain YYL and two bacilli initially coexisting in the enriched isolation source, strain YYL quickly became dominant in the system and was incorporated into the activated sludge. The concentration of MLSS increased from 2.1 g/L to 7.3 g/L in 20 d, and the efficiency of THF removal from the system was remarkably improved. After the successful bioaugmentation, more than 95% of THF was completely removed from the wastewater when 20 mM THF was continuously loaded into the system. In conclusion, our research first demonstrates that bioaugmentation of activated sludge system for THF degradation is feasible but that successful bioaugmentation should utilize a THF-degrading mixed culture as the inoculum, in which the two bacilli might help strain YYL colonize in activated sludge by co-aggregation

  17. The Assessment of Water Treatment Plant Sludge Properties and the Feasibility of Its Re-use according to Environmental Standards: Shahid Beheshti Water Treatment Plant Case Study, Hamadan

    Directory of Open Access Journals (Sweden)

    H. Pourmand

    2016-04-01

    Full Text Available Introduction & Objectives: Water treatment leads to produce large volumes of sludges in water treatment plants which are considered as solid waste, and should be managed appropriately and logically to avoid bioenvironmental effects. Materials & Methods: In this cross-sectional study, the required samples were taken from the sludge of Shahid Beheshti water treatment plant to assay physical and chemical characteristics during one year from summer, autumn and winter 93 until spring 94. Sampling and testing procedures were full fit according to standard methods. Results: The average concentration of total solids parameters (TSS, total suspended solids (TSS, and total dissolved solids (TDS were 22346, 21350 and 1005 mg/L, respectively. Among the heavy metals, aluminum, iron, manganese and zinc have the highest concentrations with the values of 1400, 956, 588 and 100 mg per kg of dry solids, respectively. The measured concentrations for cadmium were also higher than the permissible limits for agricultural purposes and discharges into the environment. The average concentrations of nickel were more than the recommended standard for industrial, agricultural and parkland application purposes. The concentrations were also slurry higher than the dry sludge. Conclusion: According to the past studies and results of this study, it could be concluded that contamination of heavy metals in sludge and slurry samples are more than dried sludge, .Therefore, if they are discharged into the environment, it is better to be disposed as dry sludges. Furthermore, because these types of waste sludges are routinely disposed in the environment, it is recommended to take the routine samples in order to measure the heavy metals and other relevant parameters contents of sludge before discharging it. (Sci J Hamadan Univ Med Sci 2016; 23 (1:57-64

  18. Growth of plants on TBT-contaminated harbour sludge and effect on TBT removal.

    Science.gov (United States)

    Novak, Jana; Trapp, Stefan

    2005-11-01

    Worldwide, large amounts of sediments have to be dredged annually from waterways and harbours. These sediments are sometimes polluted with a variety of toxic compounds. In some countries, including Belgium, the load with the biocide tributyltin (TBT) from ship coatings prohibits the dumping of harbour sludge into the sea. Land-based dumping is a commonly used alternative. This research investigated the feasibility to use land-deposited harbour sludge for plant production. In a field trial, the growth of 38 more or less salt-tolerant plant species on low and high TBT-contaminated sediments was studied. The elimination of TBT from sludge with and without vegetation was compared. The uptake of TBT and its degradation products di- and monobutyltin (DBT and MBT) into harvest products under field conditions was determined. EXPERIMENTAL SET-UP: Sediments dredged in May 2003 from the brackish waters of the port of Antwerp were analysed in the laboratory for soil texture, pH, electroconductivity, sodium, magnesium, potassium, calcium, ammonium, nitrate, total nitrogen, chloride, sulphur and the organotins TBT, DBT and MBT. The sediments were lagooned for one year to dewater, desalinate and improve their structure. Salt-tolerant domestic and wild plants were selected and sown in May 2004. In August 2004, plants were harvested and the produced biomass was determined. Samples were taken from vegetated and non-vegetated top and bottom sediments and from plants growing above soil and analysed for TBT, DBT and MBT. The fresh sediments showed a good supply with nutrients and a neutral pH, but were rather saline (EC 14 mS cm(-1) of the saturated paste extract). The salinity decreased to 3.7 mS cm(-1) during lagoonation. The high and the low contaminated sediment had initially 43 and 1.6 mg TBT kg(-1) dry weight, respectively. Besides TBT, several other contaminants were present in the sediments at critical levels. The biomass production of the plant species from the field trial

  19. Microbial Activity In A Degraded Latosol Treated With Sewage Sludge [atividade Microbiana Em Um Latossolo Degradado Tratado Com Lodo De Esgoto

    OpenAIRE

    Colodro G.; Espindola C.R.; Cassiolato A.M.R.; Alves M.C.

    2007-01-01

    The degraded soil shows, in general, poor biological activity, considering its physical characteristics, low fertility and organic matter, mainly due to removal or degradation of its superficial layer. The sewage sludge, due to its high content of easily decomposed organic matter can be an alternate source of organic residues and combined to its high content of the principal nutrients for the plants can be an important factor to promote biological activities in degraded soil. In order to stud...

  20. The Application of Active Sewage Sludge on the Vermicomposting of Agricultural Waste

    Directory of Open Access Journals (Sweden)

    seyyedeh maryam kharrazi

    2015-11-01

    Full Text Available In this experiment, active sewage sludge was inoculated in organic waste. The objective was to study its effect on nutrient dynamics during vermicomposting. Active sewage sludge, as a source of nitrogen fixing and phosphorous solubilizing bacteria, was added in four combinations to the vermicomposting substrate. Prior to inoculation with active sludge, the treatments were precomposted for 30 days and finally vermicomposted for 40 days. Results showed that inoculation of microorganisms in the substrate accompanied by earthworms’ activity enhances the organic waste biodegradation rate. Increasing sludge concentration from 0 to 6000 mg/l led to reduced Total Organic Carbon from 32.76 to 29.91%, Total Volatile Solids from 49.85 to 48/02%, and C/N ratio from 19.59 to 16.06 but increased Total Kjeldahl Nitrogen from 1.68 to 1.87%, nitrate from 1476.75 to 1699.60 mg/kg, Total Phosphorous from 1.66 to 1.77 g/kg, and Electrical Conductivity from 3.10 to 3.48 mS/cm. By increasing the concentration of sewage sludge, heavy metals content also increased significantly due to the enhanced organic matter biodegradation. Finally, the results showed that, among the treatments, the one with an active sewage sludge concentration of 6000 mg/l had more desirable effects on the final vermicompost quality. Based on the reproducibility of the process and the quality of the final products, this experimental procedure may be proposed for studies requiring a mass reduction in the initial composted waste mixtures.

  1. Dehydrating sewage plant sludge using a mobile centrifuge; Deshidratacion de fangos en las depuradoras mediante una centrifuga movil

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Palou, P.; Arnau Planas de Farnes, A.; Arnau Figuerola, J.

    1997-09-01

    This study set out to examine various mechanical sludge dehydration systems as alternatives to the drying beds currently in existence in the sewage plants managed by the Costa Brava Consortium at Portbou, Colera, El Port de la Selva and Cadaques by determining their technical and economic feasibility. (Author) 11 refs.

  2. The role of diatomite particles in the activated sludge system for treating coal gasification wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.Q.; Rao, P.H.; Zhang, H.; Xu, J.L. [Shanghai University of Engineering Science, Shanghai (China)

    2009-02-15

    Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L{sup -1} to 4518 mg.L{sup -1} and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlated to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.

  3. The exploitation of sludge from aggregate plants in the manufacture of porous fired clay bricks

    Directory of Open Access Journals (Sweden)

    Chamorro-Trenado, M. A.

    2016-09-01

    Full Text Available Aggregates (gravel and sand are, after water, the Earth’s second most used natural resource, representing about 50% of all consumed mineral resources. Aggregate production generates a large quantity of waste from the aggregate washing process. This waste is made up of suspended solids – sludge – which has a great environmental impact. It is deposited in huge troughs because of the impossibility of discharging it directly into rivers. Many plants have incorporated decanters and filter presses to separate the solid from the liquid fraction. This paper evaluates the possibility of exploiting the solid fraction (i.e. sludge in the manufacture of fired clay bricks. The added value of these bricks is, on the one hand, the exploitation of sludge as a currently useless waste product, and on the other, the use of this sludge to enhance the physical and mechanical properties of conventional fired clay bricks.Los áridos son la segunda materia prima más consumida en la Tierra después del agua, representando alrededor del 50% de todos los recursos minerales consumidos. El proceso de elaboración de estos áridos genera una gran cantidad de residuos procedentes de su lavado. Se trata de partículas sólidas en suspensión – lodos – de gran impacto ambiental, que se depositan en grandes charcas ante la imposibilidad de verterlos directamente al rio. Muchas empresas han incorporado decantadores y filtros de prensa para separar la fracción solida de la líquida. El presente trabajo evalúa la posibilidad de utilizar la fracción sólida, es decir el barro, para la fabricación de piezas cerámicas. El valor añadido de estas piezas es por un lado el aprovechamiento del barro como producto residual, que en estos momentos es desechable, y por otro, conseguir que este barro mejore las propiedades físico-mecánicas de la cerámica convencional.

  4. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  5. CHARACTERIZATION OF THE SLUDGE OF IBN ZIAD CONSTANTINE SEWAGE TREATMENT PLANT FOR ITS LANDSPREADING

    Directory of Open Access Journals (Sweden)

    WASSILA CHEURFI

    2016-04-01

    Full Text Available The purpose of this study was to determine the content of metals elements in the sludge of Ibn Ziad sewage treatment plant of Constantine in order to preserve its quality for subsequent use in agriculture. The use of X-ray fluorescence spectroscopy allowed us to identify the following constituents in this mud: Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Ba, Pb. These elements represent 49.82 % of the total mass of the sludge. The elements present with regulated content limit are chromium, copper, nickel, lead and zinc. They occur respectively with the following concentrations: 0.27 mg·g-1, 0.48 mg·g-1, 0.11 mg·g-1, 0.35 mg·g-1 and 2.70 mg·g-1. We have achieved an extraction for evaluating the concentration of the dissolved nitrate ions, the chemical oxygen demand (COD, and pH. The nitrate ions were transformed into sodium paranitrosalicylate to be dosed by ultraviolet-visible (UV-Vis spectroscopy at 420 nm. The concentration measured was 0.12 mg·g-1. The measuring of the COD issued a value of 0.45 mg·g-1. pH was 7.1.

  6. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    Science.gov (United States)

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  7. The content of chromium and copper in plants and soil fertilized with sewage sludge with addition of various amounts of CaO and lignite ash

    Directory of Open Access Journals (Sweden)

    Wysokiński Andrzej

    2016-09-01

    Full Text Available The influence of fertilization with fresh sewage sludge with the addition of calcium oxide and lignite ash in the proportions dry mass 6:1, 4:1, 3:1 and 2:1 on the content of chromium and copper in plants and soil and uptake of these elements was investigated in pot experiment. Sewage sludge were taken from Siedlce (sludge after methane fermentation and Łuków (sludge stabilized in oxygenic conditions, eastern Poland. The chromium content in the biomass of the test plants (maize, sunflower and oat was higher following the application of mixtures of sewage sludge with ash than of the mixtures with CaO. The copper content in plants most often did not significantly depend on the type of additives to the sludge. Various amounts of additives to the sewage sludge did not have a significant effect on the contents of either of the studied trace elements in plants. The contents of chromium and copper in soil after 3 years of cultivation of plants were higher than before the experiment, but these amounts were not significantly differentiated depending on the type and the amount of the used additive (i.e. CaO vs. ash to sewage sludge.

  8. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    Science.gov (United States)

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    Science.gov (United States)

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.

    Science.gov (United States)

    Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie

    2018-02-01

    Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    B. Subha

    2012-01-01

    Full Text Available Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2 of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81% was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87% was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction.

  13. Research for waste water treatment technology with low production of excessive active sludge

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available The article reflects the possibility to create a technological scheme of waste water treatment of domestic and similar type of sewage within minimal amount of excessive active sludge by means of bioreactors with immobilized feed. There are various aspects to be considered: technical, economic, social and ecological. According to the above it is strongly needed to provide a combination of proper waste water treatment, minimal sludge formation and the possibility for a further use of the sludge. One of the ways to achieve the goal above is to use an immobilized feed in the aeration tank. The necessary experiments were carried out in the department of waste water treatment and water ecology. The article includes the scheme of the facility and other parameters of the experiments, which has been carried. The combination of aerobic and anaerobic processes helps to provide proper quality of integrated biological treatment. Chambers of the aeration reactor were also equipped with the polymer feed of various structures. The sludge treatment that was also strongly needed was made by means of aerobic stabilization with the use of ejecting aeration. The results of experiment showed a good effect in both components – sewage and sludge treatment. Afterwards there was also an industrial model launched which confirmed the results of the previous stage.

  14. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.

    Science.gov (United States)

    Li, Xiaoling; Peng, Yongzhen; Li, Baikun; Wu, Changyong; Zhang, Liang; Zhao, Yaqian

    2017-11-01

    The effects of two alkali agents, NaOH and Ca(OH) 2 , on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH) 2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH) 2 system. For Ca(OH) 2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca 2+ precipitation, which was revealed by the decrease of Ca 2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH) 2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH) 2 was more economically feasible owning to its lower price and better dewaterability of residual sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  16. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    Science.gov (United States)

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    Science.gov (United States)

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  18. The effect of sludge water treatment plant residuals on the properties of compressed brick

    Science.gov (United States)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  19. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Social and environmental aspects of a sewage sludge irradiation plant; Aspectos sociales y ambientales de una planta irradiadora de barros

    Energy Technology Data Exchange (ETDEWEB)

    Mangussi, J [Universidad Nacional de Tucuman (Argentina). Dept. de Fisica

    2000-07-01

    The critical environmental parameters involved in an environmental impact study for a 700,000 Ci of {sup 60}Co sewage sludge irradiation plant are described and analyzed. The plant is the first that will operate in Argentina and it is located in a town of 500,000 inhabitants, in an agricultural region with no nuclear tradition. The position of the environmental authorities and of the public opinion is analyzed. Possible information alternatives are proposed. (author)

  1. Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

    Directory of Open Access Journals (Sweden)

    Lacatusu Radu

    2014-10-01

    Full Text Available The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1, i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

  2. Radioactivity of sludge in Finland in 1987

    International Nuclear Information System (INIS)

    Puhakainen, M.; Rahola, T.

    1989-05-01

    Sewage sludge from municipal wastewater treatment plants was studied to determine its radionuclide concentrations. Measurements were made to find out whether any radionuclides from the nuclear power stations at Loviisa and Olkiluoto and from hospitals and medical laboratories could be detected in sludge additional to those originating from global and Chernobyl fallout. In the treatment process of water, aluminium sulphate sludge is developed at treatment plants using surface water. This kind of sludge was measured since it also concentrates radionuclides. Fallout nuclides from the Chernobyl nuclear power station after the accident predominated in all sewage sludge samples in Finland. In 1987 six different radionuclides originating from the Chernobyl fallout were detected in sewage sludge. In spring when the snow melted and large quantities of run off water flowed into the treatment plants, the activity concentrations clearly increased, but then started decreasing again. At the end of the year the highest measured 137 Cs activity concentrations were below 1000 Bq kg -1 dry weight. The highest activity concentration in sludge originated from iodine used fro medical purposes

  3. Radionuclide X-ray fluorescence determination of Mn, Fe, Cu, Zn and Pb in wastewaters and sludges from wastewater treatment plants in Bratislava (SR)

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.

    1997-01-01

    Radiometric X-ray fluorescence analysis was used for the determination of Mn, Fe, Cu, Zn and Pb in wastewater and sludges from three wastewater treatment plants in Bratislava (SR). Metals were determined in wastewaters after preconcentration by 8-hydroxyquinoline and in sludges by drying and pressing to pellets. 238 Pu and 109 Cd was used for excitation of fluorescence radiation. (author)

  4. Degradation of PPCPs in activated sludge from different WWTPs in Denmark

    DEFF Research Database (Denmark)

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund

    2015-01-01

    was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown...... to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55–90 % for Fenoprofen, 77–94 % for Ketoprofen and 46–90 % for Naproxen), followed by Triclosan (61–91 %), while Dichlofenac...... and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026–0.0407 for NSAID pharmaceuticals and 0.0022–0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However...

  5. Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent.

    Science.gov (United States)

    Raju, P; Saseetharan, M K

    2010-01-01

    A novel adsorbent was prepared from waste sludge obtained from a sugar mill for removing heavy metals from industrial wastewater. The adsorption studies were carried out in batch and continuous modes for both sugar mill sludge based carbon and commercial carbon. In batch studies, experiments were conducted at ambient temperature to assess the influence of the parameters such as pH, adsorbent dose, contact time and equilibrium concentration. Adsorption data for the prepared carbon was found to satisfy both the Freundlich and Langmuir isotherms. Column studies were carried out to delineate the effect of varying depth of carbon at constant flow rate. The breakthrough curves were drawn to establish the mechanism. The result shows that the sludge based activated carbon can be used as an alternative for commercial carbon.

  6. Influence of microbial acitivity on the stability of activated sludge flocs

    DEFF Research Database (Denmark)

    Wilén, Britt-Marie; Nielsen, Jeppe Lund; Keiding, Kristian

    2000-01-01

    . These results strongly suggested that microorganisms using oxygen and/or nitrate as electron acceptors were important for maintaining the floc strength. The increase in turbidity under deflocculation was well correlated with the number of bacteria and concentration of protein, humic substances and carbohydrates...... sludge. Furthermore, the importance of Fe(III) for the floc strength was illustrated by removal of Fe(III) from the sludge matrix by adding sulphide, which resulted in strong deflocculation. Thus, the deflocculation observed could be either directly due to lack of aerobic microbial activity or indirectly...

  7. Optimization of activated carbon from sewage sludge using response surface methodology

    International Nuclear Information System (INIS)

    Muhammad Salleh Abustan; Hamidi Abdul Aziz; Mohd Azmier Ahmad

    2010-01-01

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central co