WorldWideScience

Sample records for activated protein kinases

  1. Degradation of Activated Protein Kinases by Ubiquitination

    OpenAIRE

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

  2. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  3. Mitogen-activated protein kinases in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dorota Bryk

    2014-01-01

    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  4. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  5. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  6. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    Science.gov (United States)

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  7. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  8. Protein kinase D activity controls endothelial nitric oxide synthesis

    OpenAIRE

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-01-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase ...

  9. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Science.gov (United States)

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  10. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    OpenAIRE

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well ...

  11. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  12. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Science.gov (United States)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  13. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  14. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  15. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  16. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  17. Mitogen activated protein kinases: a role in inflammatory bowel disease?

    DEFF Research Database (Denmark)

    Broom, O J; Widjaya, B; Troelsen, J;

    2009-01-01

    Since their discovery more than 15 years ago, the mitogen activated protein kinases (MAPK) have been implicated in an ever-increasingly diverse array of pathways, including inflammatory signalling cascades. Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease...... and their related signalling proteins in influencing the progression of IBD....

  18. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include......Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation...... crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...

  19. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    Science.gov (United States)

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  20. Protein kinase C controls activation of the DNA integrity checkpoint

    Science.gov (United States)

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  1. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  2. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  3. Redox Regulation of the AMP-Activated Protein Kinase

    OpenAIRE

    Yingying Han; Qilong Wang; Ping Song; Yi Zhu; Ming-Hui Zou

    2010-01-01

    Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. Objectives The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). Methods Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation. Results In BAEC, Berberine caused a dos...

  4. Inactivation of a MAPK-like protein kinase and activation of a MBP kinase in germinating barley embryos

    NARCIS (Netherlands)

    Testerink, C.; Vennik, M.; Kijne, J.W.; Wang, M.; Heimovaara-Dijkstra, S.

    2000-01-01

    We provide evidence for involvement of two different 45 kDa protein kinases in rehydration and germination of barley embryos. In dry embryos, a myelin basic protein (MBP) phosphorylating kinase was detected, which could be immunoprecipitated with an anti-MAPK (mitogen-activated protein kinase) antib

  5. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  6. Protein kinase D activity controls endothelial nitric oxide synthesis.

    Science.gov (United States)

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. PMID:24928905

  7. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  8. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting

    NARCIS (Netherlands)

    Verbeek, D. S.; Knight, M. A.; Harmison, G. G.; Fischbeck, K. H.; Howell, B. W.

    2005-01-01

    The protein kinase C gamma (PKCgamma) gene is mutated in spinocerebellar ataxia type 14 (SCA14). In this study, we investigated the effects of two SCA14 missense mutations, G118D and C150F, on PKCgamma function. We found that these mutations increase the intrinsic activity of PKCgamma. Direct visual

  9. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation were......Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...

  10. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  11. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo

    2016-08-01

    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  12. Modulation of the protein kinase activity of mTOR.

    Science.gov (United States)

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  13. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells.

    Science.gov (United States)

    Partovian, Chohreh; Simons, Michael

    2004-08-01

    Protein kinase Balpha (PKBalpha/Akt-1) is a key mediator of multiple signaling pathways involved in angiogenesis, cell proliferation and apoptosis among others. The unphosphorylated form of Akt-1 is virtually inactive and its full activation requires two phosphatidylinositol-3,4,5-triphosphate-dependent phosphorylation events, Thr308 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser473 by an undefined kinase that has been termed PDK2. Recent studies have suggested that the Ser473 kinase is a plasma membrane raft-associated kinase. In this study we show that protein kinase Calpha (PKCalpha) translocates to the membrane rafts in response to insulin growth factor-1 (IGF-1) stimulation. Overexpression of PKCalpha increases Ser473 phosphorylation and Akt-1 activity, while inhibition of its activity or expression decreases IGF-1-dependent activation of Akt-1. Furthermore, in vitro, in the presence of phospholipids and calcium, PKCalpha directly phosphorylates Akt-1 at the Ser473 site. We conclude, therefore, that PKCalpha regulates Akt-1 activity via Ser473 phosphorylation and may function as PDK2 in endothelial cells. PMID:15157674

  14. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2(-

  15. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O;

    1999-01-01

    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we...

  16. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    Science.gov (United States)

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  17. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  18. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer;

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...

  19. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Science.gov (United States)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  20. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.

    Science.gov (United States)

    Luz, Simão; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D; Kunzelmann, Karl; Farinha, Carlos M

    2011-11-01

    Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation.

  1. Ca2+/calmodulin-dependent protein kinase kinase is not involved in hypothalamic AMP-activated protein kinase activation by neuroglucopenia.

    Directory of Open Access Journals (Sweden)

    Junji Kawashima

    Full Text Available Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+/Calmodulin-dependent protein kinase kinase (CaMKK, which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO, a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV in rats 30 min before 2DG ICV injection (40 µmol to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.

  2. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  3. Amygdala kindling alters protein kinase C activity in dentate gyrus.

    Science.gov (United States)

    Chen, S J; Desai, M A; Klann, E; Winder, D G; Sweatt, J D; Conn, P J

    1992-11-01

    Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.

  4. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    Science.gov (United States)

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  5. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A;

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...

  6. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    Mitogen-activated protein (MAP) kinases are activated in response to a large variety of extracellular signals, including growth factors, hormones, and neurotransmitters, which activate distinct intracellular signaling pathways. Their activation by the cAMP-dependent pathway, however, has not been...

  7. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2008-01-01

    BACKGROUND AND PURPOSE: The pathogenesis of cerebral ischemia associated with subarachnoid hemorrhage (SAH) still remains elusive. The aim of this study was to examine the involvement of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) subtypes in the pathophysiology of cerebral...... enhanced phosphorylation only at 48 hours after SAH. The pattern was identical in large cerebral arteries and in intracerebral microvessels. Treatment with either the PKC (RO-31-7549) or the raf (SB386023-b) inhibitor prevented the kinase activation. CONCLUSIONS: The results show that specific subtypes...... ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood...

  8. Oscillatory change of SR-protein kinase activities during oocyte maturation meiosis in fish

    Institute of Scientific and Technical Information of China (English)

    杨仲安; 曹丹; 桂建芳

    2000-01-01

    The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.

  9. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  10. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice.

    Science.gov (United States)

    Rao, Kudupudi Prabhakara; Richa, Tambi; Kumar, Kundan; Raghuram, Badmi; Sinha, Alok Krishna

    2010-06-01

    Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries.

  11. Activation of tracheal smooth muscle contraction: synergism between Ca2+ and activators of protein kinase C.

    OpenAIRE

    Park, S.; Rasmussen, H

    1985-01-01

    The effects of divalent ionophores (A23187 and ionomycin), Ca2+ channel agonist (BAY K 8644), and protein kinase C (C-kinase) activators [phorbol 12-myristate 13-acetate (PMA), mezerein] on bovine tracheal smooth muscle contraction were investigated. A23187 (5 microM) and ionomycin (0.5 microM) produced a prompt but transient contraction. C-kinase activators either produced no effect--e.g., PMA at 200 nM--or produced a rise in tension that was slow in onset but then gradually increased--e.g.,...

  12. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete;

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation......DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed....... Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA...

  13. Protein kinase A binds and activates heat shock factor 1.

    Directory of Open Access Journals (Sweden)

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  14. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Science.gov (United States)

    Kong, Xiangpei; Lv, Wei; Zhang, Dan; Jiang, Shanshan; Zhang, Shizhong; Li, Dequan

    2013-01-01

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  15. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Directory of Open Access Journals (Sweden)

    Xiangpei Kong

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  16. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen;

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxicall...... and subsequent rise in cellular [G6P]....

  17. Phosphorylation of synaptosomal cytoplasmic proteins: Inhibition of calcium-activated, phospholipid-dependent protein kinase (protein kinase c) by bay k 8644.

    Science.gov (United States)

    Robinson, P J; Lovenberg, W

    1988-01-01

    The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C(1) phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C(2) phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca(2+) /phosphatidylserine/diolein than by Ca(2+) alone or Cal(2+) /calmodulin (group C(1)) or was completely dependent upon Ca(2+) /phosphatdylserine/diolein (group C(2)); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca(2+); (d) NaCl, which inhibited cAMP- and Ca(2+)/calmodulindependent phosphorylation, slightly increased phosphorylation of group C(1) and slightly decreased phosphorylation of group C(2) phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20-30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C(2) phosphoproteins were considerably more sensitive. The IC(50) for inhibition of P96 labeling was 19 ?M. but for P83 was 190 ?M. Group B phosphoproteins were also slightly inhibited, and the

  18. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  19. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  20. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    Science.gov (United States)

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  1. Protein kinase C-dependent activation of P44/42 mitogen-activated protein kinase and heat shock protein 70 in signal transduction during hepatocyte ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Yu-Qiang Shan; Ming-Xin Pan; Yu Wang; Li-Jun Tang; Hao Li; Zhi Zhang

    2004-01-01

    AIM: To investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (MAPKs) and heat shock protein (HSP)70 signal transduction during hepatocyte ischemic preconditioning.METHODS: In this study we used an in vitro ischemic preconditioning (IP) model for hepatocytes and an in vivo model for rat liver to investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (P44/42 MAPKs) and heat shock protein 70 (HSP70) signal transduction in IP. Through a normal liver cell hypoxic preconditioning (HP) model in which cultured normal liver cells were subjected to 3 cycles of 5 min of incubation under hypoxic conditions followed by 5 min of reoxygenation and subsequently exposed to hypoxia and reoxygenation for 6 h and 9 h respectively. PKC inhibitor, activator and MEK inhibitor were utilized to analyze the phosphorylation of PKC, the expression of P44/42 MAPKs and HSP70.Viability and cellular ultrastructure were also observed. By using rat liver as an in vivo model of liver preconditioning (3 cycles of 10-min occlusion and 10-min reperfusion),in vivo phosphorylation of PKC and P44/42MAPKs, HSP70 expression were further analyzed. AST/ALT concentration,cellular structure and ultrastruture were also observed.All the data were statistically analyzed.RESULTS: Similar results were obtained in both in vivo and in vitro IP models. Compared with the control without IP (or HP), the phosphorylation of PKC and P44/42 MAPKs and the expression of HSP70 were obviously increased in IP (or HP) treated model in which cytoprotection could be found. The effects of preconditioning were mimicked by stimulating PKC with 4β phorobol-12-myristate13-acetate (PMA). Conversely, inhibiting PKC with chelerythrine abolished the protection given by preconditioning. PD98059,inhibitor of MEK (the upstream kinase of P44/42MAPKs),also reverted the cytoprotection exerted by preconditioning.CONCLUSION: The results demonstrate that

  2. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis;

    2005-01-01

    Recent studies have demonstrated that AMP-activated protein kinase (AMPK) in the hypothalamus is involved in the regulation of food intake. Because exercise is known to influence appetite and cause substrate depletion, it may also influence AMPK in the hypothalamus. Male rats that either rested...

  3. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    Science.gov (United States)

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2014-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in a dose-dependent manner. Cordycepin-induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin-dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit. PMID:24286368

  4. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    OpenAIRE

    Miao Xu; Yuanyuan Xiao; Jun Yin; Wolin Hou; Xueying Yu; Li Shen; Fang Liu; Li Wei; Weiping Jia

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation wer...

  5. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  6. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    OpenAIRE

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2013-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in...

  7. INHIBITION OF IL-6-INDUCED STAT3 ACTIVATION IN MYELOMA CELLS BY PROTEIN KINASE A

    Institute of Scientific and Technical Information of China (English)

    宋伦; 黎燕; 沈倍奋

    2001-01-01

    To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn't participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.

  8. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway.

    Science.gov (United States)

    Yao, Z; Zhou, G; Wang, X S; Brown, A; Diener, K; Gan, H; Tan, T H

    1999-01-22

    The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway. PMID:9890973

  9. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  10. The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism

    OpenAIRE

    Anna Dziewulska; Paweł Dobrzyń; Agnieszka Dobrzyń

    2010-01-01

    AMP-activated protein kinase (AMPK) is a conserved, ubiquitously expressed eukaryotic enzyme that is activated in response to increasing AMP level. Regulation of AMPK activity in skeletal muscle is coordinated by contraction and phosphorylation by upstream kinases and a growing number of hormones and cytokines. Once activated, AMPK turns on catabolic, ATP-generating pathways, and turns off ATP-consuming metabolic processes such as biosynthesis and proliferation. Activation of AMPK promotes gl...

  11. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    Energy Technology Data Exchange (ETDEWEB)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-08-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC8), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 M. Diolein (100 M), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4US -phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4 -phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable (TVS)methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua.

  12. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  13. Activation of mitogen-activated protein kinase pathway by extremely low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami [Nagasaki Univ., Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2003-07-01

    We demonstrated here that X-ray irradiation at very low doses of between 2 and 5 cGy stimulated activity of a member of mitogen-activated protein (MAP) kinase, the extracellular signal-regulated kinase (ERK) 1/2, in normal human diploid cells. Higher doses of irradiation at more than 1 Gy induced phosphorylation of ERK1/2 and accumulated p53 protein. Phosphorylation of ERK1/2 decreased with dose down to 50 cGy, however, doses of between 5 cGy and 2 cGy phosphorylated ERK1/2 as efficiently as higher doses of X-rays, while the p53 protein level was no longer changed by doses below 50 cGy. ATM-dependent phosphorylation of p53 protein at Ser15 and histone H2AX at Ser139 was only observed at higher doses at more than 10 cGy of X-rays. We found that MEK1 was phosphorylated with both 2 cGy and 6 Gy of X-rays, and that the MEK1 inhibitor, PD98059 decreased phosphorylation of the ERK1/2 proteins induced by 2 cGy or 6 Gy of X-rays. Similar suppressive effect was observed with the specific epidermal growth factor (EGF) receptor tyrosine kinase inhibitor, AG1478. These results indicate that a limited range of low dose ionizing radiation differentially activate ERK1/2 kinases via activation of EGF receptor and MEK, which mediates various effects of cells receiving very low doses of ionizing radiation. (author)

  14. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  15. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase

    OpenAIRE

    Mendoza-Mendoza, Artemio; Pozo, María J.; Grzegorski, Darlene; Martínez, Pedro; García, Juan M.; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-01-01

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant ...

  16. Mitogen-activated protein kinase-dependent apoptosis in norcan-tharidin-treated A375-S2 cells is proceeded by the activation of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    AN Wei-wei; WANG Min-wei; Tashiro Shin-ichi; Onodera Satoshi; Ikejima Takashi

    2005-01-01

    Background We have reported that norcantharidin (NCTD) induces human melanoma A375-S2 cell apoptosis and that the activation of caspase and the mitochondrial pathway are involved in the apoptotic process. This study aimed at investigating the roles of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) in A375-S2 cell apoptosis induced by NCTD. Methods We assessed the effects of NCTD on cell growth inhibition using the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide (MTT) assay, DNA fragmentation (DNA agarose gel electrophoresis), and MAPK protein levels (Western blot analysis) in A375-S2 cells. Photomicroscopic data were also collected.Results The NCTD inhibitory effect on A375-S2 cells was partially reversed by MAPK and PKC inhibitors. The expression of phosphorylated JNK and p38 also increased after the treatment with NCTD, and inhibitors of c-Jun NH2-terminal kinase (JNK) and p38 (SP600125 and SB203580, respectively) had significant inhibitory effects on the upregulation of phosphorylated JNK and p38 expression. Simultaneously, the PKC inhibitor staurosporine blocked the upregulation of phosphorylated JNK and phosphorylated p38, but had little effect on extracellular signal-regulated kinase (ERK) expression. Conclusion These results suggest that the activation of JNK and p38 MAPK promotes the process of NCTD-induced A375-S2 cell apoptosis and that PKC plays an important regulation role in the activation of MAPKs.

  17. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  18. Association of Common Genetic Variants in Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 with Type 2 Diabetes Mellitus in a Chinese Han Population

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Li; Hong Qiao; Hui-Xin Tong; Tian-Wei Zhuang; Tong-Tong Wang

    2016-01-01

    Background:A study has identified several novel susceptibility variants of the mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) gene for type 2 diabetes mellitus (T2DM) within the German population.Among the variants,five single nucleotide polymorphisms (SNPs) of MAP4K4 (rs1003376,rs11674694,rs2236935,rs2236936,and rs6543087) showed significant association with T2DM or diabetes-related quantitative traits.We aimed to evaluate whether common SNPs in the MAP4K4 gene were associated with T2DM in the Chinese population.Methods:Five candidate SNPs were genotyped in 996 patients newly diagnosed with T2DM and in 976 control subjects,using the SNPscanTM method.All subjects were recruited from the Second Affiliated Hospital,Harbin Medical University from October 2010 to September 2013.We evaluated the T2DM risk conferred by individual SNPs and haplotypes using logistic analysis,and the association between the five SNPs and metabolic traits in the subgroups.Results:Of the five variants,SNP rs2236935T/C was significantly associated with T2DM in this study population (odds ratio =1.293;95% confidence interval:1.034-1.619,P =0.025).In addition,among the controls,rs 1003376 was significantly associated with an increased body mass index (P =0.045) and homeostatic model assessment-insulin resistance (P =0.037).Conclusions:MAP4K4 gene is associated with T2DM in a Chinese Han population,and MAP4K4 gene variants may contribute to the risk toward the development of T2DM.

  19. Identification of a protein kinase activity in purified foot- and-mouth disease virus.

    OpenAIRE

    Grubman, M J; Baxt, B; La Torre, J L; Bachrach, H L

    1981-01-01

    Purified preparations of foot-and-mouth disease virus types A, O, and C contain a protein kinase activity which can transfer the gamma phosphate of [32P]ATP to virion structural proteins VP2 and VP3 and exogenous acceptor proteins. Utilizing protamine sulfate as an acceptor, the kinase activity can be demonstrated in disrupted virus but not in intact virus. The enzyme is heat labile with optimal activity at pH 7 or greater. Serine residues of protamine sulfate were identified as the amino aci...

  20. AMP-activated protein kinase phosphorylation in brain is dependent on method of sacrifice and tissue preparation

    OpenAIRE

    Scharf, Matthew T.; Mackiewicz, Miroslaw; Naidoo, Nirinjini; O'Callaghan, James P.; Pack, Allan I.

    2007-01-01

    AMP-activated protein kinase is activated when the catalytic α subunit is phosphorylated on Thr172 and therefore, phosphorylation of the α subunit is used as a measure of activation. However, measurement of α-AMP-activated protein kinase phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring α-AMP-activated protein kinase phosphorylation in the mouse brain, we compared different methods of sacrifice and tissue preparation. We found that fre...

  1. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.

    Science.gov (United States)

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J; Molina, María

    2013-03-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1-cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module.

  2. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  3. Linked decreases in Liver Kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes

    OpenAIRE

    Petursson, Freyr; Husa, Matt; June, Ron; Lotz, Martin; Terkeltaub, Robert; Liu-Bryan, Ru

    2013-01-01

    Abstract Introduction AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and p...

  4. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas;

    2012-01-01

    in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...... microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate...

  5. Role of 5'AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Wojtaszewski, Jørgen F. P.

    2008-01-01

    5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first...

  6. Molecular basis for activation of G protein-coupled receptor kinases

    Energy Technology Data Exchange (ETDEWEB)

    Boguth, Cassandra A.; Singh, Puja; Huang, Chih-chin; Tesmer, John J.G. (Michigan)

    2012-03-16

    G protein-coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N-terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N-terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.

  7. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts

    OpenAIRE

    Wright, Jocelyn H.; Munar, Erlynda; Jameson, Damon R; Andreassen, Paul R.; Margolis, Robert L.; Seger, Rony; Krebs, Edwin G.

    1999-01-01

    The mitogen-activated protein kinase (MAPK) cascade is required for mitogenesis in somatic mammalian cells and is activated by a wide variety of oncogenic stimuli. Specific roles for this signaling module in growth were dissected by inhibiting MAPK kinase 1 (MAPKK1) activity in highly synchronized NIH 3T3 cells. In addition to the known role of this kinase in cell-cycle entry from G0, the level of MAPKK activity was observed to affect the kinetics of progression through both the G1 and G2 pha...

  8. Protein Kinase D family kinases

    OpenAIRE

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lo...

  9. Fluorous-assisted metal chelate affinity extraction technique for analysis of protein kinase activity.

    Science.gov (United States)

    Hayama, Tadashi; Kiyokawa, Ena; Yoshida, Hideyuki; Imakyure, Osamu; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2016-08-15

    We have developed a fluorous affinity-based extraction method for measurement of protein kinase activity. In this method, a fluorescent peptide substrate was phosphorylated by a protein kinase, and the obtained phosphopeptide was selectively captured with Fe(III)-immobilized perfluoroalkyliminodiacetic acid reagent via a metal chelate affinity technique. Next, the captured phosphopeptide was selectively extracted into a fluorous solvent mixture, tetradecafluorohexane and 1H,1H,2H,2H-tridecafluoro-1-n-octanol (3:1, v/v), using the specificity of fluorous affinity (fluorophilicity). In contrast, the remained substrate peptide in the aqueous (non-fluorous) phase was easily measured fluorimetrically. Finally, the enzyme activity could be assayed by measuring the decrease in fluorescence. The feasibility of this method was demonstrated by applying the method for measurement of the activity of cAMP-dependent protein kinase (PKA) using its substrate peptide (kemptide) pre-labeled with carboxytetramethylrhodamine (TAMRA).

  10. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  11. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  12. Emerging Roles of AMP-Activated Protein Kinase

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel

    or has focused on specific physiological situations and tissues. The present PhD thesis has addressed the role of AMPK in regulation of: 1) substrate utilisation during and in recovery from exercise, 2) adipose tissue metabolism during weight loss, and 3) autophagy in skeletal muscle during exercise...... is an upstream kinase phosphorylating Unc51 like kinase 1 (ULK1) at Ser555, but this interaction per se seems not to be sufficient to change the autophagosome content. It cannot be excluded whether the AMPK-ULK1 association is important and necessary for regulation of autophagy and autophagosome biogenesis...

  13. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    Science.gov (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  14. Antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity

    International Nuclear Information System (INIS)

    Two site-specific antibodies that immunoprecipitate the human insulin receptor have been prepared by immunizing rabbits with chemically synthesized peptides derived from the cDNA-predicted amino acid sequence of the β subunit of the proreceptor. Antibodies to the carboxyl terminus (AbP5) and to a domain around tyrosine-960 (AbP4) specifically recognize the β subunit of the receptor on immunoblots. Both antibodies immunoprecipitated 125I-labeled insulin-receptor complexes and the autophosphorylated receptor. Although neither antibody inhibited insulin binding to the receptor, both insulin-dependent autophosphorylation and exogenous substrate phosphorylation were inhibited by AbP4. Inhibition by AbP4 was dependent upon the phosphorylation state of the receptor; it was not detected when the receptor was autophosphorylated prior to addition of AbP4. AbP4 did not inhibit activity of the related epidermal growth factor (EGF)-receptor tyrosine protein kinase nor did it inhibit the activity of cAMP-dependent kinase or protein kinase C. The observation that an antibody directed to residues 952-967 of the proreceptor neutralizes the protein kinase activity of the β subunit suggest that this region may play a critical role in the function of the hormone-dependent, protein tyrosine-specific kinase activity of the insulin receptor

  15. Purification, renaturation, and reconstituted protein kinase activity of the Sendai virus large (L) protein: L protein phosphorylates the NP and P proteins in vitro.

    OpenAIRE

    Einberger, H; Mertz, R; Hofschneider, P H; Neubert, W J

    1990-01-01

    Sodium dodecyl sulfate-solubilized Sendai virus large (L) protein was highly purified by a one-step procedure, using hydroxylapatite column chromatography. Monoclonal antibodies addressed to the carboxyl-terminal amino acid sequence of the L protein were used for monitoring L protein during purification. By removing sodium dodecyl sulfate from purified L protein, a protein kinase activity was successfully renatured. P and NP proteins served as its substrates. After immunoprecipitation with an...

  16. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer.

    Science.gov (United States)

    Guo, Chengcheng; Hao, Chuncheng; Shao, RuPing; Fang, Bingliang; Correa, Arlene M; Hofstetter, Wayne L; Roth, Jack A; Behrens, Carmen; Kalhor, Neda; Wistuba, Ignacio I; Swisher, Stephen G; Pataer, Apar

    2015-05-10

    We have demonstrated that RNA-dependent protein kinase (PKR) and its downstream protein p-eIF2α are independent prognostic markers for overall survival in lung cancer. In the current study, we further investigate the interaction between PKR and AMPK in lung tumor tissue and cancer cell lines. We examined PKR protein expression in 55 frozen primary lung tumor tissues by Western blotting and analyzed the association between PKR expression and expression of 139 proteins on tissue samples examined previously by Reverse Phase Protein Array (RPPA) from the same 55 patients. We observed that biomarkers were either positively (phosphorylated AMP-activated kinase(T172) [p-AMPK]) or negatively (insulin receptor substrate 1, meiotic recombination 11, ATR interacting protein, telomerase, checkpoint kinase 1, and cyclin E1) correlated with PKR. We further confirmed that induction of PKR with expression vectors in lung cancer cells causes activation of the AMPK protein independent of the LKB1, TAK1, and CaMKKβ pathway. We found that PKR causes nutrient depletion, which increases AMP levels and decreases ATP levels, causing AMPK phosphorylation. We further demonstrated that inhibiting AMPK expression with compound C or siRNA enhanced PKR-mediated cell death. We next explored the combination of PKR and p-AMPK expression in NSCLC patients and observed that expression of p-AMPK predicted a poor outcome for adenocarcinoma patients with high PKR expression and a better prognosis for those with low PKR expression. These findings were consistent with our in vitro results. AMPK might rescue cells facing metabolic stresses, such as ATP depletion caused by PKR. Our data indicate that PKR causes nutrient depletion, which induces the phosphorylation of AMPK. AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation. PMID:25798539

  17. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  18. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  19. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu

    2012-01-01

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  20. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;

    1997-01-01

    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites...... localization and/or protein stability. Our data suggest that CK2-mediated phosphorylation of Myf-5 is required for Myf-5 activity....

  1. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  2. In vitro and in vivo assays of protein kinase CK2 activity.

    Science.gov (United States)

    Prudent, Renaud; Sautel, Céline F; Moucadel, Virginie; Laudet, Béatrice; Filhol, Odile; Cochet, Claude

    2010-01-01

    Protein kinase CK2 (formerly casein kinase 2) is recognized as a central component in the control of the cellular homeostasis; however, much remains unknown regarding its regulation and its implication in cellular transformation and carcinogenesis. Moreover, study of CK2 function and regulation in a cellular context is complicated by the dynamic multisubunit architecture of this protein kinase. Although a number of robust techniques are available to assay CK2 activity in vitro, there is a demand for sensitive and specific assays to evaluate its activity in living cells. We hereby provide a detailed description of several assays for monitoring the CK2 activity and its subunit interaction in living cells. The guidelines presented herein should enable researchers in the field to establish strategies for cellular screenings of CK2 inhibitors. PMID:21050938

  3. Diacylglycerol kinase theta and zeta isoforms: regulation of activity, protein binding partners and physiological functions

    OpenAIRE

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblastoma tumour suppressor protein (pRB) and the pRB-related proteins p107 and p130, key regulators of the cell-cycle, differentiation and apoptosis. The interaction between pRB and DGKzeta is regulated ...

  4. Phospholipase D1 Mediates AMP-Activated Protein Kinase Signaling for Glucose Uptake

    OpenAIRE

    Jong Hyun Kim; Ji-Man Park; Kyungmoo Yea; Hyun Wook Kim; Pann-Ghill Suh; Sung Ho Ryu

    2010-01-01

    BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glu...

  5. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    Science.gov (United States)

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (Pmechanism of fibrosis. PMID:27385084

  6. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette;

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  7. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm;

    2013-01-01

    -activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for...... increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein...

  8. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan;

    2014-01-01

    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...

  9. Changes of p38 Mitogen-activated Protein Kinase and Apoptosis after Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Xin-yu Zhang; Chu-song Zhou; Zheng-da Kuang

    2005-01-01

    @@ There were very few studies about signal transduction of apoptosis of the spinal cord injury (SCI). We applied spinal cord compression rats model (Nystrom's method) to study the changes of p38 mitogen-activated protein kinase(MAPK) and its relationship with apoptosis.

  10. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M;

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated......Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show...... on histidine residues, however, only the B isoform appeared to be serine phosphorylated....

  11. Crosstalk and signalling switches in mitogen-activated protein kinase cascades

    Directory of Open Access Journals (Sweden)

    Dirk eFey

    2012-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades control cell fate decisions, such as proliferation, differentiation and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength and dynamics. This implies that signalling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK, p38 mitogen-activated protein kinase (p38, c-Jun N-terminal kinase (JNK, and also include input from protein kinase B (AKT. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonises different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38 and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signalling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure ocertain drugs to

  12. Corticosterone activates Erk1/2 mitogen-activated protein kinase in primary hippocampal cells through rapid nongenomic mechanism

    Institute of Scientific and Technical Information of China (English)

    QI Aiqun; QIU Jian; XIAO Lin; CHEN Yizhang

    2005-01-01

    Nongenomic effects of glucocorticoids (GC) in various cell types have been well documented, but it still remains unknown whether the mechanism also works in hippocampus which is a crucial target of glucocorticoids in neural system during physiological and/or pathophysiological processes. We present here that corticosterone (B) could rapidly activate Erk1/2 mitogen-activated protein kinase (MAPK) in primarily cultured hippocampal cells within minutes, with a bell-shaped time dependent curve which peaked at 15min and then went down to normal level in 30 min. This activation was blocked by protein kinase C (PKC) inhibitor (Go6976), G protein inhibitor (GDPβs), and MEK(MAPK/extracellular signal-regulated kinase kinase) inhibitor(PD98059), but not by protein kinase A (PKA) inbibitor (H89), tyrosine kinase inhibitor (genistein), and glucocorticoid receptor ( GR ) antagonist (RU38486). Thus, the rapid activation of Erk1/2 MAPK in primary hippocampal cells induced by B was likely mediated by a G protein coupled receptor (GPCR) pathway with involvement of PKC, which belonged to the nongenomic rather than genomic mechanism of GC' s effects.

  13. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X;

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically......, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate...

  14. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  15. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  16. Involvement of mitogen-activated protein kinase pathways in N-methyl-D-aspartate-induced excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Yang; Ping Sun; Huaping Qin; Rui Wang; Ye Wang; Ruihong Shi; Xin Zhao; Ce Zhang

    2011-01-01

    Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyl-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK-specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.

  17. Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    NARCIS (Netherlands)

    Parikh, Kaushal; Diks, Sander H.; Tuynman, Jurriaan H. B.; Verhaar, Auke; Lowenberg, Mark; Hommes, Daan W.; Joore, Jos; Pandey, Akhilesh; Peppelenbosch, Maikel P.

    2009-01-01

    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to pred

  18. Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase.

    Science.gov (United States)

    Lewitt, M S

    2001-04-20

    Insulin-like growth factor-binding protein-1 (IGFBP-1) is stimulated during intensive exercise and in catabolic conditions to very high concentrations, which are not completely explained by known regulators such as insulin and glucocorticoids. The role of AMP-activated protein kinase (AMPK), an important signaling system in lipid and carbohydrate metabolism, in regulating IGFBP-1 was studied in H4-II-E rat hepatoma cells. Arsenic(III) oxide and 5-aminoimidazole-4-carboxamide-riboside (AICAR) were used as activators. AICAR (150 microM) stimulated IGFBP-1 secretion twofold during a 5-h incubation (P = 0.002). Insulin (100 ng/ml) inhibited IGFBP-1 by 80% (P < 0.001), but this was completely abolished in the presence of 150 microM AICAR. The effect of dexamethasone in stimulating IGFBP-1 threefold was additive to the effect of AICAR (P < 0.001) and, in the presence of AICAR, was incompletely inhibited by insulin. In conclusion AMPK is identified as a novel regulatory pathway for IGFBP-1, stimulating secretion and blocking the inhibitory effect of insulin. PMID:11302732

  19. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein.

    Science.gov (United States)

    Ohtsuka, T; Shimizu, K; Yamamori, B; Kuroda, S; Takai, Y

    1996-01-19

    Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.

  20. Hippocampal activation of c-Jun N-terminal kinase,protein kinase B,and p38 mitogen-activated protein kinase in a chronic stress rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Wei Dai; Weidong Li; Jun Lu; Yingge A; Ya Tu

    2010-01-01

    Recent studies have shown that vaned stress stimuli activate c-Jun N-terminal kinase(JNK),protein kinase B(Akt),and p38 mitogen-activated protein kinase(p38)signal transduction pathway,and also regulate various apoptotic cascades.JNK and p38 promote apoptosis,but Akt protects against apoptosis,in hippocampal neurons.However,changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood.Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group(P 0.05).These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.

  1. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald;

    2010-01-01

    The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion.......The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion....

  2. Age-related changes in AMP-activated protein kinase after stroke

    OpenAIRE

    Liu, Fudong; Benashski, Sharon E; Persky, Rebecca; Xu, Yan; Li, Jun; McCullough, Louise D.

    2011-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionary conserved energy sensor sensitive to changes in cellular AMP/ATP ratio which is activated by phosphorylation (pAMPK). pAMPK levels decrease in peripheral tissues with age, but whether this also occurs in the aged brain, and how this contributes to the ability of the aged brain to cope with ischemic stress is unknown. This study investigated the activation of AMPK and the response to AMPK inhibition after induced stroke...

  3. Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-11-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [(3)H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A(2) and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C. PMID:19003213

  4. EFFECT OF PHORBOL ESTER ON cAMP-DEPENDENT PROTEIN KINASE ACTIVITY IN CARDIOMYOCYTES

    Institute of Scientific and Technical Information of China (English)

    周文华; 肖殿模; 郑超强; 王小鲁; 张俊保

    1995-01-01

    Cardiomyocytes isolated from neonatal rats were treated with phorbol-12-myristate-13-acetate(PMA) ranging from 10-11 to 10-7mol/L for 20 min,causing cytosol protein kinase A (PKA) activity to decrease while particulate PKA activity increase in a concentration-dependent manner.The change of PKA activity induced by PMA was abolished completely by pretreatment of polymyxin B or depletion of protein kinase C (PKC).Type Ⅱ PKA activity in particulate fraction was enhanced remarkably,while that of type I PKA was not altered when the cells were treated with 100 nmol/L PMA.The results suggested that subcellular distribution and activity of PKA in cardiomyocytes may be regulated by PKC.

  5. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  6. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  7. Protein kinase D regulates RhoA activity via rhotekin phosphorylation.

    Science.gov (United States)

    Pusapati, Ganesh V; Eiseler, Tim; Rykx, An; Vandoninck, Sandy; Derua, Rita; Waelkens, Etienne; Van Lint, Johan; von Wichert, Götz; Seufferlein, Thomas

    2012-03-16

    The members of the protein kinase D (PKD) family of serine/threonine kinases are major targets for tumor-promoting phorbol esters, G protein-coupled receptors, and activated protein kinase C isoforms (PKCs). The expanding list of cellular processes in which PKDs exert their function via phosphorylation of various substrates include proliferation, apoptosis, migration, angiogenesis, and vesicle trafficking. Therefore, identification of novel PKD substrates is necessary to understand the profound role of this kinase family in signal transduction. Here, we show that rhotekin, an effector of RhoA GTPase, is a novel substrate of PKD. We identified Ser-435 in rhotekin as the potential site targeted by PKD in vivo. Expression of a phosphomimetic S435E rhotekin mutant resulted in an increase of endogenous active RhoA GTPase levels. Phosphorylation of rhotekin by PKD2 modulates the anchoring of the RhoA in the plasma membrane. Consequently, the S435E rhotekin mutant displayed enhanced stress fiber formation when expressed in serum-starved fibroblasts. Our data thus identify a novel role of PKD as a regulator of RhoA activity and actin stress fiber formation through phosphorylation of rhotekin. PMID:22228765

  8. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    Science.gov (United States)

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  9. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E;

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane......The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  10. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  11. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  12. Activation of transfer RNA-guanine ribosyltransferase by protein kinase C.

    OpenAIRE

    Morris, R C; Brooks, B. J.; Eriotou, P; Kelly, D F; Sagar, S.; Hart, K L; Elliott, M.S.

    1995-01-01

    Transfer RNA-guanine ribosyltransferase (TGRase) irreversibly incorporates queuine into the first position in the anticodon of four tRNA isoacceptors. Rat brain protein kinase C (PKC) was shown to stimulate rat liver TGRase activity. TGRase preparations derived from rat liver have been observed to decrease in activity over time in storage at -20 or -70 degrees C. Contamination of the samples by phosphatases was indicated by a p-nitrophenylphosphate conversion test. The addition of micromolar ...

  13. Adiponectin Increases Skeletal Muscle Mitochondrial Biogenesis by Suppressing Mitogen-Activated Protein Kinase Phosphatase-1

    OpenAIRE

    Qiao, Liping; Kinney, Brice; Yoo, Hyung sun; Lee, Bonggi; Schaack, Jerome; Shao, Jianhua

    2012-01-01

    Adiponectin enhances mitochondrial biogenesis and oxidative metabolism in skeletal muscle. This study aimed to investigate the underlying mechanisms through which adiponectin induces mitochondrial biogenesis in skeletal muscle. Mitochondrial contents, expression, and activation status of p38 mitogen-activated protein kinase (MAPK) and PPARγ coactivator 1α (PGC-1α) were compared between skeletal muscle samples from adiponectin gene knockout, adiponectin-reconstituted, and control mice. Adenovi...

  14. Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C.

    OpenAIRE

    Disatnik, M H; Hernandez-Sotomayor, S M; G. Jones; Carpenter, G.; Mochly-Rosen, D

    1994-01-01

    Phospholipase C-gamma 1 (PLC-gamma 1; EC 3.1.4.11) hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol 1,4,5-trisphosphate and is activated in response to growth factor stimulation and tyrosine phosphorylation. Concomitantly, the enzyme translocates from the cytosol to the particulate cell fraction. A similar process of activation-induced translocation from the cytosol to the cell particulate fraction has also been described for protein kinase C (PKC). We ...

  15. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    OpenAIRE

    Videla, Luis A; Virginia Fernández; Pamela Cornejo; Romina Vargas

    2012-01-01

    The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP-) activated protein kinase (AMPK) constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reve...

  16. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

    OpenAIRE

    Aronson, D; Violan, M A; Dufresne, S D; Zangen, D; FIELDING, R.A.; Goodyear, L J

    1997-01-01

    Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pat...

  17. Activation of the cellular mitogen-activated protein kinase pathways ERK, P38 and JNK during Toxoplasma gondii invasion

    Directory of Open Access Journals (Sweden)

    Valère A.

    2003-03-01

    Full Text Available Host cell invasion is essential for the pathogenicity of the obligate intracellular protozoan parasite Toxoplasma gondii. In the present study, we evaluated the ability of T. gondii tachyzoites to trigger phosphorylation of the different mitogen-activated protein kinases (MAPK in human monocytic cells THP1. Kinetic experiments show that the peak of extracellular-signal-regulated kinase (ERK 1/2, P38 and cjun-NH2 terminal kinase (JNKs phosphorylation occurs between 10 and 60 min. The use of specific inhibitors of ERK1/2, P38 and JNK1/2 phosphorylation indicates the specificity of MAPKs phosphorylation during invasion. Signaling through cellular and parasite mitogen-activated protein (MAP kinase pathways appears to be critical for T. gondii invasion.

  18. GTP plus water mimic ATP in the active site of protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Pütter, M; Guerra, B;

    1999-01-01

    The structures of the catalytic subunit of protein kinase CK2 from Zea mays complexed with Mg2+ and with analogs of ATP or GTP were determined to 2.2 A resolution. Unlike most other protein kinases, CK2 from various sources shows 'dual-cosubstrate specificity', that is, the ability to efficiently...... that target CK2 or other kinases with this property....

  19. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Al-Tawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  1. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macro

  2. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, S.; Edvinsson, L.

    2008-01-01

    ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood...

  3. Changes in Protein Kinase A Activity Accompany Sclerotial Development in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Harel, A; Gorovits, R; Yarden, O

    2005-04-01

    ABSTRACT Sclerotia of Sclerotinia sclerotiorum are pigmented, multihyphal structures that play a central role in the life and infection cycles of this pathogen. Sclerotial formation has been shown to be affected by increased intracellular cAMP levels. Cyclic AMP (cAMP) is a key modulator of cAMP-dependent protein kinase A (PKA) and the latter may prove to play a significant role in sclerotial development. Therefore, we monitored changes in relative PKA activity levels during sclerotial development. To do so, we first developed conditions for near-synchronous sclerotial development in culture, based on hyphal maceration and filtering. Relative PKA activity levels increased during the white-sclerotium stage in the wild-type strain, while low levels were maintained in nonsclerotium-producing mutants. Furthermore, applying caffeine, an inducer of PKA activity, resulted in increased relative PKA activity levels and was correlated with the formation of sclerotial initial-like aggregates in cultures of the non-sclerotium-producing mutants. In addition, low PKA activities were found in an antisense smk1 strain, which exhibits low extracellular-signal-regulated kinase (ERK)-type mitogen-activated protein kinase (MAPK) activity, and does not produce sclerotia. The changes in PKA activity, as well as the abundance of phosphorylated MAPKs (ERK-like as well as p38-like) that accompany sclerotial development in a distinct developmental phase manner represent a potential target for antifungal intervention. PMID:18943042

  4. Protein kinaseactivates NF-κB in response to camptothecin-induced DNA damage

    International Nuclear Information System (INIS)

    Highlights: → Protein kinase C-eta (PKCη) is an upstream regulator of the NF-κB signaling pathway. → PKCη activates NF-κB in non-stressed conditions and in response to DNA damage. → PKCη regulates NF-κB by activating IκB kinase (IKK) and inducing IκB degradation. -- Abstract: The nuclear factor κB (NF-κB) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-κB in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-κB regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKCη) regulates NF-κB upstream signaling by activating the IκB kinase (IKK) and the degradation of IκB. Furthermore, PKCη enhances the nuclear translocation and transactivation of NF-κB under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKCη confers protection against DNA damage-induced apoptosis. Our present study suggests that PKCη is involved in NF-κB signaling leading to drug resistance.

  5. A translational regulator, PUM2, promotes both protein stability and kinase activity of Aurora-A.

    Directory of Open Access Journals (Sweden)

    Yei-Hsuan Huang

    Full Text Available Aurora-A, a centrosomal serine-threonine kinase, orchestrates several key aspects of cell division. However, the regulatory pathways for the protein stability and kinase activity of Aurora-A are still not completely understood. In this study, PUM2, an RNA-binding protein, is identified as a novel substrate and interacting protein of Aurora-A. Overexpression of the PUM2 mutant which fails to interact with Aurora-A, and depletion of PUM2 result in a decrease in the amount of Aurora-A. PUM2 physically binds to the D-box of Aurora-A, which is recognized by APC/C(Cdh1. Overexpression of PUM2 prevents ubiquitination and enhances the protein stability of Aurora-A, suggesting that PUM2 protects Aurora-A from APC/C(Cdh1-mediated degradation. Moreover, association of PUM2 with Aurora-A not only makes Aurora-A more stable but also enhances the kinase activity of Aurora-A. Our study suggests that PUM2 plays two different but important roles during cell cycle progression. In interphase, PUM2 localizes in cytoplasm and plays as translational repressor through its RNA binding domain. However, in mitosis, PUM2 physically associates with Aurora-A to ensure enough active Aurora-A at centrosomes for mitotic entry. This is the first time to reveal the moonlight role of PUM2 in mitosis.

  6. The case for inhibiting p38 mitogen-activated protein kinase in heart failure

    Directory of Open Access Journals (Sweden)

    Pelin eArabacilar

    2015-05-01

    Full Text Available This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.

  7. The case for inhibiting p38 mitogen-activated protein kinase in heart failure.

    Science.gov (United States)

    Arabacilar, Pelin; Marber, Michael

    2015-01-01

    This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.

  8. Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.

    Science.gov (United States)

    Wan, Jinrong; Zhang, Shuqun; Stacey, Gary

    2004-03-01

    SUMMARY Chitin, a polysaccharide composed of beta-1-->4-linked N-acetyl-d-glucosamine, has been shown or implicated as a signal in plant defence and development. However, the key components of chitin perception and downstream signalling in non-leguminous plants are largely unknown. In recent years, mitogen-activated protein kinases (MAPKs) and their cascades were shown to transduce various extracellular stimuli into internal cellular responses. To investigate the possible involvement of MAPKs in chitin signalling in plants, the model plant Arabidopsis thaliana was treated with crab-shell chitin and also with the purified chitin oligomers (degree of polymerization, d.p. = 2-8). Both mRNA levels and kinase activity of two MAPK genes, AtMPK6 and AtMPK3, were monitored after treatment. The mRNA of AtMPK3 was strongly up-regulated by both chitin and its larger oligomers (d.p. = 6-8), but the mRNA of AtMPK6 did not appear to be regulated by these treatments. However, the kinase activity of both MAPKs was induced by chitin and the larger oligomers (d.p. = 6-8), with AtMPK6 much more strongly induced. In addition, WRKY22, WRKY29, WRKY33 and WRKY53, which encode four WRKY transcription factors that recognize TTGAC(C/T) W-box elements in promoters of numerous plant defence-related genes, were up-regulated by these treatments. WRKY33 and WRKY53 expression was induced by the transgenic expression of the tobacco MAPKK NtMEK2 active mutant NtMEK2(DD), suggesting a potential role for these WRKY transcription factors in relaying the signal generated from the MAPK cascade to downstream genes. These data suggest that AtMPK6/AtMPK3 and WRKY transcription factors (such as WRKY33 and WRKY53) may be important components of a pathway involved in chitin signalling in Arabidopsis plants.

  9. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard;

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...

  10. Ethanol Regulation of Synaptic GABAA α4 Receptors Is Prevented by Protein Kinase A Activation.

    Science.gov (United States)

    Carlson, Stephen L; Bohnsack, John Peyton; Morrow, A Leslie

    2016-04-01

    Ethanol alters GABAA receptor trafficking and function through activation of protein kinases, and these changes may underlie ethanol dependence and withdrawal. In this study, we used subsynaptic fraction techniques and patch-clamp electrophysiology to investigate the biochemical and functional effects of protein kinase A (PKA) and protein kinase C (PKC) activation by ethanol on synaptic GABAA α4 receptors, a key target of ethanol-induced changes. Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or kinase modulators for 4 hours, a paradigm that recapitulates GABAergic changes found after chronic ethanol exposure in vivo. PKA activation by forskolin or rolipram during ethanol exposure prevented increases in P2 fraction α4 subunit abundance, whereas inhibiting PKA had no effect. Similarly, in the synaptic fraction, activation of PKA by rolipram in the presence of ethanol prevented the increase in synaptic α4 subunit abundance, whereas inhibiting PKA in the presence of ethanol was ineffective. Conversely, PKC inhibition in the presence of ethanol prevented the ethanol-induced increases in synaptic α4 subunit abundance. Finally, we found that either activating PKA or inhibiting PKC in the presence of ethanol prevented the ethanol-induced decrease in GABA miniature inhibitory postsynaptic current decay τ1, whereas inhibiting PKA had no effect. We conclude that PKA and PKC have opposing effects in the regulation of synaptic α4 receptors, with PKA activation negatively modulating, and PKC activation positively modulating, synaptic α4 subunit abundance and function. These results suggest potential targets for restoring normal GABAergic functioning in the treatment of alcohol use disorders.

  11. Negative regulation of active zone assembly by a newly identified SR protein kinase.

    Directory of Open Access Journals (Sweden)

    Ervin L Johnson

    2009-09-01

    Full Text Available Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila or ribbon (vertebrates are believed to facilitate vesicle movement to the active zone (AZ of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D. This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.

  12. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  13. Activation of resting human T cells requires prolonged stimulation of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Berry, N.; Ase, K.; Kishimoto, A.; Nishizuka, Y. (Kobe Univ. School of Medicine (Japan))

    1990-03-01

    Purified resting human T cells can be induced to express the {alpha} subunit of the interleukin 2 receptor and to proliferate by treatment with 12-0-tetradecanoylphorbol-13-acetate plus ionomycin but not with 1,2-dioctanoylglycerol plus ionomycin. Determination of the translocation of protein kinase C showed that 12-0-tetradecanoylphorbol-13-acetate plus ionomycin caused a prolonged membrane association of the enzyme for more than 4 hr, whereas 1,2-dioctanoylglycerol plus ionomycin induced a transient membrane association, which was maximal at 20 min. Delivery of multiple additions of 1,2-dioctanoylglycerol plus ionomycin to the T cells resulted in progressively increased expression of the {alpha} subunit of the interleukin 2 receptor and proliferation commensurate with the number of multiple additions delivered, suggesting that prolonged protein kinase C activity is required for T-cell activation.

  14. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    Science.gov (United States)

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  15. Influence of protein kinase C inhibitor in phagocytosis activity toward Candida sp

    Directory of Open Access Journals (Sweden)

    Adiprayitno Adiprayitno

    2001-09-01

    Full Text Available Protein kinase C isoenzyme family that expresses in all of cells plays a pivotal role in the signal transduction pathway of a variety of hormones, cytokines, neurotransmitter, and growth factors. The immunity against Candida sp is mainly mediated and performed by the T cells and macrophages. The objective of this experiment is to know the influence the protein kinase C inhibitor - bisindolylmaleimides in phagocytosis activity toward Candida sp. The culture of peritoneal macrophage derived from BALB/c mice are treated with bisindolylmaleimides as a protein kinase C inhibitor concentration varied from 5 ng/ml to 100 ng/ml for as long as 10 minute. Then the Candida sp added is observed after every 30 minute for as long as 120 minute. As the experimental design is used the method of factorial and orthogonal polynomial. The data consisting the length of pseudopodia and the number of Candida sp which are phagocytosed are analyzed applying the Anova. One Way Anova to show the differences of each manipulation, the Two Way Anova to show the interaction of manipulations and the Student's t Test to show the differences with control. Statistical test show significant differences on the length of pseudopodia, and phagocytosed Candida sp, at different bisindolylmaleimides concentration (p<0.001 and different observed time (p<0.001. The data show a significant interaction between the bisindolylmaleimides concentration and observed time (p<0.001. The higher the bisindolylmaleimides concentration, the earlier the observed time, the much number the protein kinase C are going inactive and the shorter the length of pseudopodia or the lower the macrophages phagocytic activity toward Candida sp. The result of this experiment indicates that bisindolylmaleimides can inhibit the macrophage mobility and phagocytic activity toward Candida sp. Further experiment in protein kinase C, especially in macrophage, is suggested. (Med J Indones 2001; 10: 150

  16. Protein kinase C activity is associated with prefrontal cortical decline in aging

    OpenAIRE

    Brennan, Avis R.; Yuan, Peixiong; Dickstein, Dara L; Rocher, Anne B.; Hof, Patrick R.; Manji, Husseini; Arnsten, Amy F.T.

    2007-01-01

    Aging is associated with deficiencies in the prefrontal cortex, including working memory impairment, and compromised integrity of neuronal dendrites. Although protein kinase C (PKC) is implicated in structural plasticity, and overactivation of PKC results in working memory impairments in young animals, the role of PKC in prefrontal cortical impairments in the aged has not been examined. This study provides the first evidence that PKC activity is associated with prefrontal cortical dysfunction...

  17. Skeletal muscle metabolic flexibility : The roles of AMP-activated protein kinase and calcineurin

    OpenAIRE

    Long, Yun Chau

    2007-01-01

    Skeletal muscle fibers differ considerably in their metabolic and physiological properties. The metabolic properties of skeletal muscle display a high degree of flexibility which adapts to various physiological demands by shifting energy substrate metabolism. Studies were conducted to evaluate the roles of AMP-activated protein kinase (AMPK) and calcineurin in the regulation of skeletal muscle metabolism. Fasting elicited a coordinated expression of genes involved in lipid ...

  18. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives

    OpenAIRE

    Javadov, Sabzali; Jang, Sehwan; Agostini, Bryan

    2014-01-01

    Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and cross-talk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myria...

  19. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1

    OpenAIRE

    Smith, A Ian; Lew, Rebecca A.; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-01-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC)....

  20. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    OpenAIRE

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2012-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tole...

  1. Mitogen-Activated Protein Kinase Signaling in Male Germ Cell Apoptosis in the Rat1

    OpenAIRE

    Jia, Yue; Castellanos, Jesse; Wang, Christina; Sinha-Hikim, Indrani; Lue, YanHe; Swerdloff, Ronald S.; Sinha-Hikim, Amiya P.

    2008-01-01

    Programmed germ cell death is critical for functional spermatogenesis. Increased germ cell apoptosis can be triggered by various regulatory stimuli, including testicular hyperthermia or deprivation of gonadotropins and intratesticular testosterone. We have previously shown the involvement of the mitogen-activated protein kinase (MAPK) 14 in apoptotic signaling of male germ cells across species after hormone deprivation. This study investigates the role of MAPK14 in germ cell apoptosis in rats...

  2. Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C beta 1.

    OpenAIRE

    Pai, J K; Dobek, E A; Bishop, W R

    1991-01-01

    Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of pho...

  3. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e., the specific molecular targets by which they kill the parasite--would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS, St. Jude Children's Research Hospital (260 compounds, and the Medicines for Malaria Venture (the 400-compound Malaria Box were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4, mitogen-associated protein kinase 2 (MAPK2/MAP2, protein kinase 6 (PK6, and protein kinase 7 (PK7. Novel potent inhibitors (IC50 < 1 μM were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2 cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.

  4. Dynamic ubiquitination of the mitogen-activated protein kinase kinase (MAPKK) Ste7 determines mitogen-activated protein kinase (MAPK) specificity.

    Science.gov (United States)

    Hurst, Jillian H; Dohlman, Henrik G

    2013-06-28

    Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCF(Cdc4) and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCF(Cdc4) ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCF(Cdc4) and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCF(Cdc4) is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK. PMID:23645675

  5. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans.

    Science.gov (United States)

    Chen, Jiangye; Chen, Jing; Lane, Shelley; Liu, Haoping

    2002-12-01

    Candida albicans had been thought to lack a mating process until the recent discovery of a mating type-like locus and mating between MTLa and MTL(alpha) strains. To elucidate the molecular mechanisms that regulate mating in C. albicans, we examined the function of Cph1 and its upstream mitogen-activated protein (MAP) kinase pathway in mating, as they are homologues of the pheromone-responsive MAP kinase pathway in Saccharomyces cerevisiae. We found that overexpressing CPH1 in MTLa, but not in MTLa/alpha strains, induced the transcription of orthologues of S. cerevisiae pheromone-induced genes and also increased mating efficiency. Furthermore, cph1 and hst7 mutants were completely defective in mating, and cst20 and cek1 mutants showed reduced mating efficiency, as in S. cerevisiae. The partial mating defect in cek1 results from the presence of a functionally redundant MAP kinase, Cek2. CEK2 complemented the mating defect of a fus3 kss1 mutant of S. cerevisiae and was expressed only in MTLa or MTL(alpha), but not in MTLa/alpha cell types. Moreover, a cek1 cek2 double mutant was completely defective in mating. Our data suggest that the conserved MAP kinase pathway regulates mating in C. albicans. We also observed that C. albicans mating efficiency was greatly affected by medium composition, indicating the potential involvement of nutrient-sensing pathways in mating in addition to the MAP kinase pathway. PMID:12453219

  6. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated protein kinase/nuclear factor... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  7. Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein

    Science.gov (United States)

    Homma, Miwako Kato; Li, Dongxia; Krebs, Edwin G.; Yuasa, Yasuhito; Homma, Yoshimi

    2002-01-01

    Mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis coli and also sporadic colorectal cancer development. By using antibodies raised against the N-terminal region of APC protein, we have detected the variable masses of endogenous APC proteins in individual cell lines established from human colorectal carcinomas caused by nonsense mutations of the gene. Phosphorylation of immunoprecipitates of full-length and truncated APC were observed in in vitro kinase reaction, indicating association of APC with protein kinase activity. The kinase activity complexed with APC was sensitive to heparin and used GTP as phosphoryl donor, suggesting an involvement of casein kinase 2 (CK2). Both CK2α- and β-subunits were found to associate with APC in immunoprecipitates as well as in pull-down assays, with preferential interaction of APC with tetrameric CK2 holoenzyme. In synchronized cell populations, the association of APC with CK2 was cell cycle dependent, with the highest association in G2/M. Unexpectedly, APC immunoprecipitates containing full-length APC protein inhibited CK2 in vitro, whereas immunoprecipitates of truncated APC had little effect. This was confirmed by using recombinant APC, and the inhibitory region was localized to the C terminus of APC between residues 2086 and 2394. Overexpression of this fragment in SW480 cells suppressed cell proliferation rates as well as tumorigenesis. These results demonstrate a previously uncharacterized functional interaction between the tumor suppressor protein APC and CK2 and suggest that growth-inhibitory effects of APC may be regulated by inhibition of CK2. PMID:11972058

  8. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  9. Activation of G Protein-Coupled Receptor Kinase 1 Involves Interactions between Its N-Terminal Region and Its Kinase Domain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chih-chin; Orban, Tivadar; Jastrzebska, Beata; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2012-03-16

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its 20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

  10. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Pozo, María J; Grzegorski, Darlene; Martínez, Pedro; García, Juan M; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-12-23

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant pathogen Rhizoctonia solani. The null mutants displayed an increased protein secretion phenotype as measured by the production of lytic enzymes in culture supernatant compared to the wild type. Consistently, biocontrol assays demonstrated that the null mutants were considerably more effective in disease control than the wild-type strain or a chemical fungicide. In addition, tvk1 gene disruptant strains sporulated abundantly in submerged cultures, a condition that is not conducive to sporulation in the wild type. These data suggest that Tvk1 acts as a negative modulator during host sensing and sporulation in T. virens. PMID:14673101

  11. Jiawei Wendan decoction affects mitogen-activated protein kinase signal pathway in the hippocampus of depression rats

    Institute of Scientific and Technical Information of China (English)

    Liping Zhang; Man Zhang; Li Wu; Meng Xia; Guangbin Li

    2011-01-01

    A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity.

  12. Role of p38 Mitogen-activated Protein Kinase in Mediating Monocyte Chemoattractant Protein-1 in Human Umbilical Vein Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    李艳波; 邓华聪; 郑丹; 李呼伦

    2004-01-01

    @@ p38 mitogen-activated protein kinase (p38MAPK)is a member of the mitogen-activated protein kinase (MAPK) family. p38MAPK pathway is one of the most widely studied signaling pathways involved in the transduction of intracellular signals including survival, growth,differentiation and death.

  13. Identification of a protein kinase activity that phosphorylates connexin43 in a pH-dependent manner

    Directory of Open Access Journals (Sweden)

    P. Yahuaca

    2000-04-01

    Full Text Available The carboxyl-terminal (CT domain of connexin43 (Cx43 has been implicated in both hormonal and pH-dependent gating of the gap junction channel. An in vitro assay was utilized to determine whether the acidification of cell extracts results in the activation of a protein kinase that can phosphorylate the CT domain. A glutathione S-transferase (GST-fusion protein was bound to Sephadex beads and used as a target for protein kinase phosphorylation. A protein extract produced from sheep heart was allowed to bind to the fusion protein-coated beads. The bound proteins were washed and then incubated with 32P-ATP. Phosphorylation was assessed after the proteins were resolved by SDS-PAGE. Incubation at pH 7.5 resulted in a minimal amount of phosphorylation while incubation at pH 6.5 resulted in significant phosphorylation reaction. Maximal activity was achieved when both the binding and kinase reactions were performed at pH 6.5. The protein kinase activity was stronger when the incubations were performed with manganese rather than magnesium. Mutants of Cx43 which lack the serines between amino acids 364-374 could not be phosphorylated in the in vitro kinase reaction, indicating that this is a likely target of this reaction. These results indicate that there is a protein kinase activity in cells that becomes more active at lower pH and can phosphorylate Cx43.

  14. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.

    Science.gov (United States)

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J; Hastie, C James; Lamont, Douglas J; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J; Keyse, Stephen M; Cuenda, Ana; Dinkova-Kostova, Albena T

    2016-09-15

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  15. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    Science.gov (United States)

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  16. The mitogen-activated protein kinase (MAPK pathway: role in immune evasion by trypanosomatids

    Directory of Open Access Journals (Sweden)

    Mercedes Carolina Soares-Silva

    2016-02-01

    Full Text Available Leishmania spp and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas' disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae and are both obligate intracellular parasites that manipulate host signaling pathways to establish the infection, and also subvert the host innate immune system. Mitogen-activated protein kinases (MAPKs are serine and threonine protein kinases, highly conserved in eukaryotes, and are involved in signal transduction pathways that are related to modulation of physiological and pathophysiological cell responses. This mini-review highlights the current knowledge about the mechanisms that Leishmania spp and T. cruzi have evolved to target host MAPK signaling pathway, highjack immune response, and in this manner, promote parasite maintenance in the host.

  17. Diglyceride kinase activity of microtubules. Characterization and comparison with the protein kinase and ATPase activities associated with vinblastine-isolated tubulin of chick embryonic muscles.

    Science.gov (United States)

    Daleo, G R; Piras, M M; Piras, R

    1976-09-15

    Vinblastine-isolated microtubule protein from chick embryonic muscles has an enzymatic activity which catalyzes the formation of phosphatidic acid from diglycerides and ATP. The pH optimum (6.4), sedimentation on sucrose gradients (Mr = 85 000), and sensitivity to ions of this diglyceride kinase activity are different to those of a similar enzymatic activity present in 150 000 X g supernatants of chick embryonic muscle homogenates, suggesting that it is a different species which is associated specifically with the microtubules. The reaction requires a divalent ion (e.g. 0.4 mM Mg2+ gives half-maximal stimulation), and GTP can replace ATP rather effectively, especially at nucleotide concentrations lower than 50 muM. The sedimentation of the diglyceride kinase on sucrose gradients coincides with that of the microtubules-associated protein kinase (Mr = 75 000); the heat-stability and sensivitity to proteolysis of both activities are also very similar. Stimulation of one reaction by the addition of the corresponding exogenous substrate does not impair the phosphorylation of the other, and no radioactivity is lost from phosphatidic acid or the protein moiety upon incubation of pre-labelled microtubules with a large excess of unlabelled ATP or GTP. In addition to diglyceride and protein kinase activities (0.2 and 0.3 nmol 32P-transferred X min-1 X mg-1 microtubular protein, respectively), microtubules also contain an associated ATPase (2.8 nmol X min-1 X mg-1), which requires either Mg2+ or Ca2+, can hydrolyze GTP quite effectively, and sediments with a molecular weight of 95000. The results obtained are discussed in connection with the possible relationships existing among these enzymatic activities, as well as their probable role in microtubular functions.

  18. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways.

    Science.gov (United States)

    Guan, Hongtao; Shuaib, Aban; Leon, David Davila De; Angyal, Adrienn; Salazar, Maria; Velasco, Guillermo; Holcombe, Mike; Dower, Steven K; Kiss-Toth, Endre

    2016-01-01

    Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways. PMID:27600771

  19. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  20. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells.

    Science.gov (United States)

    Lee, Wei-Hwa; Lin, Ren-Jye; Lin, Shyr-Yi; Chen, Yu-Chien; Lin, Hsiu-Ming; Liang, Yu-Chih

    2011-12-28

    AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. Activation of AMPK in skeletal muscles, the liver, and adipose tissues results in a favorable metabolic milieu for preventing and treating type 2 diabetes, i.e., decreased levels of circulating glucose, plasma lipids, and ectopic fat accumulation and enhanced insulin sensitivity. Osthole was extracted from a Chinese herbal medicine, and we found that it had glucose lowering activity in our previous study. However, the detailed glucose lowering mechanisms of osthole are still unclear. In this study, we used skeletal muscle cells to examine the underlying molecular mechanisms of osthole's glucose lowering activity. A Western blot analysis revealed that osthole significantly induced phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). Next, we found that osthole significantly increased the level of translocation of glucose transporter 4 (GLUT4) to plasma membranes and glucose uptake in a dose-dependent manner. Osthole-induced glucose uptake was reversed by treatment with Compound C, an AMPK inhibitor, suggesting that osthole-induced glucose uptake was mediated in an AMPK-dependent manner. The increase in the AMP:ATP ratio was involved in osthole's activation of AMPK. Finally, we found that osthole counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that the increase in the AMP:ATP ratio by osthole triggered activation of the AMPK signaling pathway and led to increases in plasma membrane GLUT4 content and glucose uptake level. Therefore, osthole might have potential as an antidiabetic agent for treating diabetes. PMID:22098542

  1. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan

    2011-01-01

    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  2. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Jing SHANG; Lu-lu CHEN; Eang-xi XIAO; Hui SUN; Hong-cheng DING; Hu XIAO

    2008-01-01

    Aim: To investigate whether resveratrol (RSV) can improve non-alcoholic fatty liver disease (NAFLD) and to find the possible mechanism. Methods: Rats fed a high-fat diet were treated with RSV. The liver histology was observed. Hyperinsulinemic euglycemic clamp was performed to assess insulin sensitivity. Fat accumulation was induced in HepG2 cells, and the cells were treated with RSV. AMP-activated protein kinase (AMPK) phosphorylation levels were de-termined both in the animal study and cell study. Results: Rats fed a high-fat diet developed abdominal obesity, NAFLD, and insulin resistance (IR), which were markedly improved by 10 weeks of RSV administration. RSV treatment prevented triacylglycerol (TG) accumulation in HepG2 cells that were incubated with high concentration of glucose and insulin. Both in vivo and in vitro studies showed that RSV treatment could promote the phosphorylation of AMPK, which in this study, suppressed 2 lipogenesis gene expressions, contributing to the improvement of NAFLD and IR. Conclusion: The results indicated that by re-ducing TG accumulation and improving IR, RSV could protect the liver from NAFLD. The activation of AMPK was involved in the mechanism. RSV has the therapeutic potential for preventing or treating NAFLD and IR-related metabolic disorders.

  3. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange.

    Science.gov (United States)

    Oliver, Antony W; Paul, Angela; Boxall, Katherine J; Barrie, S Elaine; Aherne, G Wynne; Garrett, Michelle D; Mittnacht, Sibylle; Pearl, Laurence H

    2006-07-12

    The protein kinase Chk2 (checkpoint kinase 2) is a major effector of the replication checkpoint. Chk2 activation is initiated by phosphorylation of Thr68, in the serine-glutamine/threonine-glutamine cluster domain (SCD), by ATM. The phosphorylated SCD-segment binds to the FHA domain of a second Chk2 molecule, promoting dimerisation of the protein and triggering phosphorylation of the activation segment/T-loop in the kinase domain. We have now determined the structure of the kinase domain of human Chk2 in complexes with ADP and a small-molecule inhibitor debromohymenialdisine. The structure reveals a remarkable dimeric arrangement in which T-loops are exchanged between protomers, to form an active kinase conformation in trans. Biochemical data suggest that this dimer is the biologically active state promoted by ATM-phosphorylation, and also suggests a mechanism for dimerisation-driven activation of Chk2 by trans-phosphorylation.

  4. KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity.

    Science.gov (United States)

    Caldas, Gina V; DeLuca, Keith F; DeLuca, Jennifer G

    2013-12-23

    Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT attachments. Phosphorylation of kinetochore proteins during late mitosis is low, promoting attachment stabilization, which is required for anaphase onset. The kinetochore protein KNL1 recruits Aurora B–counteracting phosphatases and the Aurora B–targeting factor Bub1, yet the consequences of KNL1 depletion on Aurora B phospho-regulation remain unknown. Here, we demonstrate that the KNL1 N terminus is essential for Aurora B activity at kinetochores. This region of KNL1 is also required for Bub1 kinase activity at kinetochores, suggesting that KNL1 promotes Aurora B activity through Bub1-mediated Aurora B targeting. However, ectopic targeting of Aurora B to kinetochores does not fully rescue Aurora B activity in KNL1-depleted cells, suggesting KNL1 influences Aurora B activity through an additional pathway. Our findings establish KNL1 as a requirement for Aurora B activity at kinetochores and for wild-type kinetochore–MT attachment dynamics.

  5. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  6. Components of the mitogen-activated protein kinase cascade are activated in hepatic cells by Echinococcus multilocularis metacestode

    Institute of Scientific and Technical Information of China (English)

    Ren-Yong Lin; Jun-Hua Wang; Xiao-Mei Lu; Xiao-Tao Zhou; Georges Mantion; Hao Wen; Dominique A Vuitton; Lysiane Richert

    2009-01-01

    AIM: To explore the ef fec t of Echinococ cus multilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on liver cell proliferation. METHODS: Changes in the phosphorylation of MAPKs and proliferating cell nuclear antigen (PCNA) expression were measured in the liver of patients with alveolar echinococcosis (AE). MAPKs, MEK1/2 [MAPK/ extracellular signal-regulated protein kinase (ERK) kinase] and ribosomal S6 kinase (RSK) phosphorylation were detected in primary cultures of rat hepatocytes in contact in vitro with (1) E. multilocularis vesicle fluid (EmF), (2) E. multilocularis-conditioned medium (EmCM). RESULTS: In the liver of AE patients, ERK 1/2 and p38 MAPK were activated and PCNA expression was increased, especially in the vicinity of the metacestode. Upon exposure to EmF, p38, c-Jun N-terminal kinase (JNK) and ERK1/2 were also activated in hepatocytes in vitro, as well as MEK1/2 and RSK, in the absence of any toxic effect. Upon exposure to EmCM, only JNK was up-regulated. CONCLUSION: Previous studies have demonstrated an influence of the host on the MAPK cascade in E. multilocularis. Our data suggest that the reverse, i.e. parasite-derived signals efficiently acting on MAPK signaling pathways in host liver cells, is actually operating.

  7. Cholecystokinin (CCK) stimulates S6 phosphorylation and induced activation of S6 protein kinase in rat pancreatic acini

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C.; Okabayashi, Y.; Williams, J.

    1987-05-01

    CCK and insulin stimulate pancreatic protein synthesis at a post transcriptional step. To better understand this regulation the authors evaluated the phosphorylation state of ribosomal protein S6 and the presence of a specific S6 protein kinase in pancreatic acini from diabetic rats. Both CCK and insulin increased S6 phosphorylation by up to 400% in intact TSP-labelled acini. The phorbol ester 12-0-tetradecanoylphorbol 13-acetate also stimulated both protein synthesis and S6 phosphorlyation suggesting a role for protein kinase C in mediating the effect of CCK. By contrast, the CaS ionophore ionomycin had no effect on either parameter. Recently, insulin has been shown to activate a unique S6 kinase in various cells. To test for its presence, cytosolic extracts were prepared from acini stimulated with CCK and insulin by homogenization in US -glycerophosphate buffer and assayed for the kinase using el-TSP ATP and rat pancreatic ribosomes followed by SDS-polyacrylamide gel electrophoresis. CCK and insulin both increased S6 kinase activity which required neither CaS or phospholipid. The dose response for CCk was similar to S6 phosphorlyation in the intact acini. TPA did not stimulate the S6 kinase. Thus, CCK may induce S6 phosphorylation both via C kinase and by activation of a unique S6 kinase.

  8. Adiponectin Stimulates Angiogenesis by Promoting Cross-talk between AMP-activated Protein Kinase and Akt Signaling in Endothelial Cells*

    OpenAIRE

    Ouchi, Noriyuki; Kobayashi, Hideki; Kihara, Shinji; Kumada, Masahiro; Sato, Kaori; Inoue, Tatsuya; Funahashi, Tohru; Walsh, Kenneth

    2003-01-01

    Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Here, we investigated whether adiponectin regulates angiogenic processes in vitro and in vivo. Adiponectin stimulated the differentiation of human umbilical vein endothelium cells (HUVECs) into capillary-like structures in vitro and functioned as a chemoattractant in migration assays. Adiponectin promoted the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase Akt/protein ...

  9. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Wojtaszewski, Jørgen; Richter, Erik

    2009-01-01

    In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved...

  10. Repetitive Peroxide Exposure Reveals Pleiotropic Mitogen-Activated Protein Kinase Signaling Mechanisms

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    2011-01-01

    Full Text Available Oxidative stressors such as hydrogen peroxide control the activation of many interconnected signaling systems and are implicated in neurodegenerative disease etiology. Application of hydrogen peroxide to PC12 cells activated multiple tyrosine kinases (c-Src, epidermal growth factor receptor (EGFR, and Pyk2 and the serine-threonine kinase ERK1/2. Peroxide-induced ERK1/2 activation was sensitive to intracellular calcium chelation and EGFR and c-Src kinase inhibition. Acute application and removal of peroxide allowed ERK1/2 activity levels to rapidly subside to basal serum-deprived levels. Using this protocol, we demonstrated that ERK1/2 activation tachyphylaxis developed upon repeated peroxide exposures. This tachyphylaxis was independent of c-Src/Pyk2 tyrosine phosphorylation but was associated with a progressive reduction of peroxide-induced EGFR tyrosine phosphorylation, EGFR interaction with growth factor receptor binding protein 2, and a redistribution of EGFR from the plasma membrane to the cytoplasm. Our data indicates that components of peroxide-induced ERK1/2 cascades are differentially affected by repeated exposures, indicating that oxidative signaling may be contextually variable.

  11. Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation

    Directory of Open Access Journals (Sweden)

    Giuseppe Vassalli

    2012-01-01

    Full Text Available In solid organ transplantation, ischemia/reperfusion (IR injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK, extracellular signal- regulated kinase-1/2 (ERK1/2, p38 MAPK, and big MAPK-1 (BMK1/ERK5. Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.

  12. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  13. The MEKK1-MKK1/MKK2-MPK4 Kinase Cascade Negatively Regulates Immunity Mediated by a Mitogen-Activated Protein Kinase Kinase Kinase in Arabidopsis[C][W

    Science.gov (United States)

    Kong, Qing; Qu, Na; Gao, Minghui; Zhang, Zhibin; Ding, Xiaojun; Yang, Fan; Li, Yingzhong; Dong, Oliver X.; Chen, She; Li, Xin; Zhang, Yuelin

    2012-01-01

    In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of mkk1 mkk2, we found that mutations in suppressor of mkk1 mkk2 1 (summ1) suppress the cell death and defense responses not only in mkk1 mkk2 but also in mekk1 and mpk4. SUMM1 encodes the MAP kinase kinase kinase MEKK2. It interacts with MPK4 and is phosphorylated by MPK4 in vitro. Overexpression of SUMM1 activates cell death and defense responses that are dependent on the nucleotide binding–leucine-rich repeat protein SUMM2. Taken together, our data suggest that the MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates MEKK2 and activation of MEKK2 triggers SUMM2-mediated immune responses. PMID:22643122

  14. Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Darborg, Barbara Vasek; Rentsch, Maria Louise;

    2006-01-01

    The mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, play a major role in the regulation of pivotal cellular processes such as cell death/survival balance, cell cycle progression, and cell migration. MAPK...... activity is regulated by a three-tiered phosphorelay system, which is in turn regulated by a complex network of signaling events and scaffolding proteins. The ubiquitous plasma membrane Na(+)/H(+) exchanger NHE1 is activated by, and implicated in, the physiological/pathophysiological responses to many of...

  15. Activation of mitogen activated protein kinases via complement receptor type 2

    Institute of Scientific and Technical Information of China (English)

    LUO Min-hua 罗敏华; CHEN Ming-liang 陈明亮; Heribert Stoiber; Manfred P Dierich

    2004-01-01

    Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein-Barr virus. The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen-activated protein kinases (MAPKs, including ERK, JNK, and p38MAPK), and to highlight the molecular mechanism of CD4+ cell deletion in AIDS.Results FACS results showed that the positive rates of HOS-CR2 and HOS-CD4CR2 cells were greater than 96%, and Western blot showed that the CR2 expression levels on HOS-CR2 and HOS-CD4CR2 cells were high. Activation and blocking tests of MAPKs (ERK, JNK, and p38MAPK) were carried out in HOS-CR2, HOS-CD4, and HOS-CD4CR2 cells. The activation of MAPKs in HOS-CR2 cells stimulated with PMA (100 ng/ml) and NHS (10%) was identical. The activation of MAPKs increased at 5 minutes, reached a peak at 10 minutes, and decreased to baseline within 30 minutes, all in a time-dependent manner; the activation of MAPKs was blocked by anti-CR2 McAb, PD98059 (inhibitor of ERK), and Wortmanin (inhibitor of PI-3K), respectively. In HOS-CD4 cells, MAPKs were activated by HIV-gp160. In HOS-CD4CR2 cells, MAPK activation was induced by HIV-gp160, 10% NHS, and HIV-gp160+10%NHS; phosphorylation of p38MAPK was dramatically induced by HIV-gp160+NHS, and lasted for 1 hour. The cell proliferation results showed that HIV-gp160 inhibited the proliferation of HOS-CD4 and HOS-CD4CR2 cells (P<0.01) and that NHS enhanced the effect of HIV-gp160 (P<0.01).Conclusions The activation of MAPKs is independently mediated by CR2 and that anti-CR2 McAb, PD98059, and Wortmanin block the activation of MAPKs, respectively. The results of the signal transduction and cell proliferation assays of HOS-CD4CR2 cells show that CR2 plays a role in the pathogenesis of HIV infection, especially in the inhibition of CD4+ cell proliferation.

  16. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  17. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    International Nuclear Information System (INIS)

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 μM PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 μM of PAT. Treatment of human PBMCs for 30 min with 30 μM PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 μM PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression

  18. Protein kinase a activity is increased in rat heart during late hypodynamic phase of sepsis.

    Science.gov (United States)

    Yang, S L; Hsu, C; Lue, S I; Hsu, H K; Liu, M S

    1997-07-01

    Changes in the activities of protein kinase A (PKA, or cAMP-dependent protein kinase) in rat heart during different cardiodynamic phases of sepsis were investigated. Sepsis was induced by cecal ligation and puncture. Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals killed at 9 and 18 h, respectively, after cecal ligation and puncture. Cardiac PKA was extracted and partially purified by acid precipitation, ammonium sulfate fractionation, and DEAE-cellulose chromatography. PKA was eluted from DEAE-cellulose column with a linear NaCl gradient. Two peaks of PKA, type I (eluted at low ionic strength) and type II (eluted at high ionic strength), were collected and their activities were determined based on the rate of incorporation of [gamma-32P]ATP into histone. Results obtained show that during early sepsis, both type I and type II PKA activities were unaffected. During late sepsis, type I PKA activities were stimulated by 66.7-97.7%, while type II PKA activities remained constant. Kinetic analysis of the data on type I PKA during late sepsis reveals that the Vmax values for ATP, cAMP, and histone were increased by 84.7, 66.7, and 97.7%, respectively; while the Km values for ATP, cAMP, and histone were unaltered. These data indicate that type I PKA is activated in rat heart during late hypodynamic phase of sepsis. Since kinase-mediated phosphorylation plays an important role in regulating myocardial function and metabolism, an activation of type I PKA during late sepsis may contribute to the development of altered myocardial function during hypodynamic phase of sepsis. PMID:9249915

  19. Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Kuang-Ren Chung

    2013-06-01

    Full Text Available Mitogen-activated protein kinase (MAPK- mediated signaling pathways have been known to have important functions in eukaryotic organisms. The mechanisms by which the filamentous fungus Alternaria alternata senses and responds to environmental signals have begun to be elucidated. Available data indicate that A. alternata utilizes the Fus3, Hog1 and Slt2 MAPK-mediated signaling pathways, either separately or in a cooperative manner, for conidia formation, resistance to oxidative and osmotic stress, and pathogenesis to citrus. This review provides an overview of our current knowledge of MAPK signaling pathways, in conjunction with the two-component histidine kinase and the Skn7 response regulator, in the tangerine pathotype of A. alternata.

  20. Homology modeling studies of yeast Mitogen-Activated Protein Kinases (MAPKS): structural motifs as a basis for specificity.

    Science.gov (United States)

    Smith, D L; Nilar, S H

    2010-06-01

    Mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction. It is the objective of this communication to demonstrate that insight into protein-protein interactions in the Common Docking motif of yeast mitogen-activated protein kinases can be obtained based on homology models. Homology models for four yeast MAPKs, FUS3, KSS1, HOG1 and MPK1 were built based on the X-ray structures of active and inactive rat ERK2. The structural motifs required for the basis of specificity were rationalized based on these structures. PMID:19995338

  1. The protein kinase D1 COOH terminus: marker or regulator of enzyme activity?

    Science.gov (United States)

    Qiu, Weihua; Zhang, Fan; Steinberg, Susan F

    2014-10-01

    Protein kinase D1 (PKD1) is a Ser/Thr kinase implicated in a wide variety of cellular responses. PKD1 activation is generally attributed to a PKC-dependent pathway that leads to phosphorylation of the activation loop at Ser(744)/Ser(748). This modification increases catalytic activity, including that toward an autophosphorylation site (Ser(916)) in a postsynaptic density-95/disks large/zonula occludens-1 (PDZ)-binding motif at the extreme COOH terminus. However, there is growing evidence that PKD1 activation can also result from a PKC-independent autocatalytic reaction at Ser(744)/Ser(748) and that certain stimuli increase in PKD1 phosphorylation at Ser(744)/S(748) without an increase in autophosphorylation at Ser(916). This study exposes a mechanism that results in a discrepancy between PKD1 COOH-terminal autocatalytic activity and activity toward other substrates. We show that PKD1 constructs harboring COOH-terminal epitope tags display high levels of in vitro activation loop autocatalytic activity and activity toward syntide-2 (a peptide substrate), but no Ser(916) autocatalytic activity. Cell-based studies show that the COOH-terminal tag, adjacent to PKD1's PDZ1-binding motif, does not grossly influence PKD1 partitioning between soluble and particulate fractions in resting cells or PKD1 translocation to the particulate fraction following treatment with PMA. However, a COOH-terminal tag that confers a high level of activation loop autocatalytic activity decreases the PKC requirement for agonist-dependent PKD1 activation in cells. The recognition that COOH-terminal tags alter PKD1's pharmacological profile is important from a technical standpoint. The altered dynamics and activation mechanisms for COOH-terminal-tagged PKD1 enzymes also could model the signaling properties of localized pools of enzyme anchored through the COOH terminus to PDZ domain-containing scaffolding proteins.

  2. Role of AMP-activated protein kinase in metabolic depression in animals.

    Science.gov (United States)

    Rider, Mark H

    2016-01-01

    AMP-activated protein kinase (AMPK) is a highly conserved eukaryotic protein serine/threonine kinase that controls cellular and whole body energy homoeostasis. AMPK is activated during energy stress by a rise in AMP:ATP ratio and maintains energy balance by phosphorylating targets to switch on catabolic ATP-generating pathways, while at the same time switching off anabolic ATP-consuming processes. Metabolic depression is a strategy used by many animals to survive environmental stress and has been extensively studied across phylogeny by comparative biochemists and physiologists, but the role of AMPK has only recently been addressed. This review first deals with the evolution of AMPK in eukaryotes (excluding plants and fungi) and its regulation. Changes in adenine nucleotides and AMPK activation are described in animals during environmental energy stress, before considering the involvement of AMPK in controlling β-oxidation, fatty acid synthesis, triacylglycerol mobilization and protein synthesis. Lastly, strategies are presented to validate the role of AMPK in mediating metabolic depression by phosphorylating downstream targets.

  3. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure....... The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and...... specifically target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  4. Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury.

    Science.gov (United States)

    Ma, Yina; Wang, Jinli; Gao, Junjie; Yang, Hui; Wang, Yanqing; Manithody, Chandrashekhara; Li, Ji; Rezaie, Alireza R

    2015-02-01

    Antithrombin (AT) is a protein of the serpin superfamily involved in regulation of the proteolytic activity of the serine proteases of the coagulation system. AT is known to exhibit anti-inflammatory and cardioprotective properties when it binds to heparan sulfate proteoglycans (HSPGs) on vascular cells. AMP-activated protein kinase (AMPK) plays an important cardioprotective role during myocardial ischaemia and reperfusion (I/R). To determine whether the cardioprotective signaling function of AT is mediated through the AMPK pathway, we evaluated the cardioprotective activities of wild-type AT and its two derivatives, one having high affinity and the other no affinity for heparin, in an acute I/R injury model in C57BL/6J mice in which the left anterior descending coronary artery was occluded. The serpin derivatives were given 5 minutes before reperfusion. The results showed that AT-WT can activate AMPK in both in vivo and ex vivo conditions. Blocking AMPK activity abolished the cardioprotective function of AT against I/R injury. The AT derivative having high affinity for heparin was more effective in activating AMPK and in limiting infraction, but the derivative lacking affinity for heparin was inactive in eliciting AMPK-dependent cardioprotective activity. Activation of AMPK by AT inhibited the inflammatory c-Jun N-terminal protein kinase (JNK) pathway during I/R. Further studies revealed that the AMPK activity induced by AT also modulates cardiac substrate metabolism by increasing glucose oxidation but inhibiting fatty acid oxidation during I/R. These results suggest that AT binds to HSPGs on heart tissues to invoke a cardioprotective function by triggering cardiac AMPK activation, thereby attenuating JNK inflammatory signalling pathways and modulating substrate metabolism during I/R. PMID:25230600

  5. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    OpenAIRE

    Leippe, Donna M.; Kate Qin Zhao; Kevin Hsiao; Slater, Michael R.

    2010-01-01

    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access t...

  6. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase

    Directory of Open Access Journals (Sweden)

    Lin Yu-Hsin

    2010-04-01

    Full Text Available Abstract Photodynamic therapy (PDT has been developed as an anticancer treatment, which is based on the tumor-specific accumulation of a photosensitizer that induces cell death after irradiation of light with a specific wavelength. Depending on the subcellular localization of the photosensitizer, PDT could trigger various signal transduction cascades and induce cell death such as apoptosis, autophagy, and necrosis. In this study, we report that both AMP-activated protein kinase (AMPK and mitogen-activated protein kinase (MAPK signaling cascades are activated following 5-aminolevulinic acid (ALA-mediated PDT in both PC12 and CL1-0 cells. Although the activities of caspase-9 and -3 are elevated, the caspase inhibitor zVAD-fmk did not protect cells against ALA-PDT-induced cell death. Instead, autophagic cell death was found in PC12 and CL1-0 cells treated with ALA-PDT. Most importantly, we report here for the first time that it is the activation of AMPK, but not MAPKs that plays a crucial role in mediating autophagic cell death induced by ALA-PDT. This novel observation indicates that the AMPK pathway play an important role in ALA-PDT-induced autophagy.

  7. Genome-Wide Identification, Evolution, and Co-expression Network Analysis of Mitogen-Activated Protein Kinase Kinase Kinases in Brachypodium distachyon

    Science.gov (United States)

    Feng, Kewei; Liu, Fuyan; Zou, Jinwei; Xing, Guangwei; Deng, Pingchuan; Song, Weining; Tong, Wei; Nie, Xiaojun

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are the conserved and universal signal transduction modules in all eukaryotes, which play the vital roles in plant growth, development, and in response to multiple stresses. In this study, we used bioinformatics methods to identify 86 MAPKKK protein encoded by 73 MAPKKK genes in Brachypodium. Phylogenetic analysis of MAPKKK family from Arabidopsis, rice, and Brachypodium has classified them into three subfamilies, of which 28 belonged to MEKK, 52 to Raf, and 6 to ZIK subfamily, respectively. Conserved protein motif, exon-intron organization, and splicing intron phase in kinase domains supported the evolutionary relationships inferred from the phylogenetic analysis. And gene duplication analysis suggested the chromosomal segment duplication happened before the divergence of the rice and Brachypodium, while all of three tandem duplicated gene pairs happened after their divergence. We further demonstrated that the MAPKKKs have evolved under strong purifying selection, implying the conservation of them. The splicing transcripts expression analysis showed that the splicesome translating longest protein tended to be adopted. Furthermore, the expression analysis of BdMAPKKKs in different organs and development stages as well as heat, virus and drought stresses revealed that the MAPKKK genes were involved in various signaling pathways. And the circadian analysis suggested there were 41 MAPKKK genes in Brachypodium showing cycled expression in at least one condition, of which seven MAPKKK genes expressed in all conditions and the promoter analysis indicated these genes possessed many cis-acting regulatory elements involved in circadian and light response. Finally, the co-expression network of MAPK, MAPKK, and MAPKKK in Brachypodium was constructed using 144 microarray and RNA-seq datasets, and ten potential MAPK cascades pathway were predicted. To conclude, our study provided the important information for evolutionary and

  8. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  9. Differential activation of protein kinase A in various regions of myocardium during sepsis.

    Science.gov (United States)

    Hsu, C; Yang, S L; Hsu, S P; Hsu, H K; Liu, M S

    1997-08-01

    Changes in the activities of protein kinase A (PKA) (cAMP-dependent protein kinase) in various regions of rat myocardium during different cardiodynamic phases of sepsis were studied in an attempt to understand the pathophysiology of cardiac dysfunction during sepsis. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals sacrificed at 9 and 18 hr, respectively, after CLP. Cardiac PKA was extracted and partially purified by acid precipitation, ammonium sulfate fractionation, and DEAE-cellulose chromatography. PKA was eluted from DEAE-cellulose column with a linear NaCl gradient. Two types of PKA, Type I (eluted at low ionic strength) and Type II (eluted at high ionic strength), were collected, and their activities were determined based on the rate of incorporation of [gamma-32P]ATP into histone. Under physiological conditions, Type I PKA activities were unevenly distributed (left atrium > right atrium > pacemaker region > left ventricle > right ventricle > ventricular septum) while Type II PKA activities were evenly distributed among different regions of myocardium. During early sepsis, Type I PKA activities remained unchanged while Type II PKA activities were activated by 32 and 70% in right atrium and pacemaker regions, respectively. During late sepsis, Type I PKA activities were stimulated by 228% in ventricular septum while Type II PKA activities were not affected. These data demonstrate that different PKA activities exist in various regions of the myocardium and that PKA activities were preferentially activated in certain areas during the progression of sepsis. Since PKA plays an important role in the regulation of myocardial function and metabolism, the activation of PKA in different regions of myocardial during different stages of sepsis may contribute to the altered cardiac function during the progression of sepsis. PMID:9299285

  10. Mitogen-activated protein kinase activator with WD40 repeats (MAWD) and MAWD-binding protein induce cell differentiation in gastric cancer

    OpenAIRE

    Li, Dongmei; Zhang, Jun; Xi, Yu; Zhang, Lei; Li, Wenmei; Cui, Jiantao; Xing, Rui; Pan, Yuanmin; Pan, Zemin; Li, Feng; Lu, Youyong

    2015-01-01

    Background Our previous proteomic analysis revealed that mitogen-activated protein kinase activator with WD40 repeats (MAWD) and MAWD-binding protein (MAWBP) were downregulated in gastric cancer (GC) tissues. These proteins interacted and formed complexes in GC cells. To investigate the role of MAWD and MAWBP in GC differentiation, we analyzed the relationship between MAWD/MAWBP and clinicopathologic characteristics of GC tissues and examined the expression of E-cadherin and pepsinogen C (PGC...

  11. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    Directory of Open Access Journals (Sweden)

    Michael J. Brumlik

    2011-01-01

    Full Text Available Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.

  12. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB

    OpenAIRE

    Felton-Edkins, Zoe A.; Fairley, Jennifer A.; Graham, Emma L.; Johnston, Imogen M.; White, Robert J.; Scott, Pamela H.

    2003-01-01

    RNA polymerase (pol) III transcription increases within minutes of serum addition to growth-arrested fibroblasts. We show that ERK mitogen-activated protein kinases regulate pol III output by directly binding and phosphorylating the BRF1 subunit of transcription factor TFIIIB. Blocking the ERK signalling cascade inhibits TFIIIB binding to pol III and to transcription factor TFIIIC2. Chromatin immunoprecipitation shows that the association of BRF1 and pol III with tRNALeu genes in cells decrea...

  13. Effects of metformin on expression of AMP-activated protein kinase in rat glomerular mesangial cells

    Institute of Scientific and Technical Information of China (English)

    顾俊菲

    2014-01-01

    Objective To observe the effects of metformin on expression of Adenosine 5’-monophosphate(AMP)-activated protein kinase(AMPK),nuclear factor-κB(NF-κB)and transforming growth factorβ1(TGF-β1)in cultured rat glomerular mesangial cells(MCs),and explore its reno-protective mechanisms.Methods MCs were cultured in the medium with normal glucose(group NG,5.6mmol/L),high glucose(group HG,25 mmol/L)and different concentrations of metformin(group M1,M2,M3).After 48 h exposure,the supernatants and MCs

  14. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz;

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  15. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    Institute of Scientific and Technical Information of China (English)

    Takahiro Nemoto; Shunichiro Kubota; Hideyuki Ishida; Nobuo Murata; Daijo Hashimoto

    2005-01-01

    AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.

  16. Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: a meta-analysis of 20 case-control studies.

    Directory of Open Access Journals (Sweden)

    Qiaoli Zheng

    Full Text Available BACKGROUND: The genome-wide single-nucleotide polymorphisms (SNPs profiles can be used as diagnostic markers for human cancers. The associations between mitogen-activated protein kinase kinase kinase 1 (MAP3K1 SNPs rs889312 A>C, rs16886165 T>G and breast cancer risk have been widely evaluated, but the results were inconsistent. To derive a conclusive assessment of the associations, we performed a meta-analysis by combining data from all eligible case-control studies up to date. METHODS: By searching PubMed, ISI web of knowledge, Embase and Cochrane databases, we identified all eligible studies published before September 2013. Odds ratios (ORs with 95% confidence intervals (CIs were used to assess the strength of associations in fixed-effect or random-effect model. False-positive report probability (FPRP was calculated to confirm the significance of the results. RESULTS: A total of 59670 cases in 20 case-control studies were included in this meta-analysis. Significant associations with breast cancer risk were observed for SNPs rs889312 and rs16886165 polymorphisms with a per-allele OR of 1.11 (95% CI: 1.09-1.13 and 1.14 (95% CI: 1.09-1.20 respectively. For rs889312, in subgroup analysis by ethnicity, significant associations were identified in Europeans and Asians, but not in Africans. When stratified by estrogen receptor (ER expression status, rs889312 was associated with both ER-positive and ER-negative breast cancers. Results from the FPRP analyses were consistent with and supportive to the above results. CONCLUSIONS: The present meta-analysis suggests that rs889312-C allele and rs16886165-G allele might be risk factors for breast cancer, especially in Europeans and Asians.

  17. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  18. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  19. Intramolecular activation of a Ca(2+)-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase

    Science.gov (United States)

    Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.

  20. Mitogen-activated protein kinase (MAPK pathway regulates branching by remodeling epithelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Anneliis Ihermann-Hella

    2014-03-01

    Full Text Available Although the growth factor (GF signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.

  1. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis.

  2. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  3. Inhibition of Vascular Smooth Muscle Growth via Signaling Crosstalk between AMP-Activated Protein Kinase and cAMP-Dependent Protein Kinase

    Directory of Open Access Journals (Sweden)

    Joshua Daniel Stone

    2012-10-01

    Full Text Available Abnormal vascular smooth muscle (VSM growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK and cAMP-dependent protein kinase (PKA. Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remains unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells, the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSM cell migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashions. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

  4. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    Science.gov (United States)

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.

  5. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  6. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  7. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana.

    Science.gov (United States)

    Sheikh, Arsheed H; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  8. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  9. Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro.

    Science.gov (United States)

    Klaus, Anna; Zorman, Sarah; Berthier, Alexandre; Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe

    2013-01-01

    AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions.

  10. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain.

    Science.gov (United States)

    Steingruber, Mirjam; Socher, Eileen; Hutterer, Corina; Webel, Rike; Bergbrede, Tim; Lenac, Tihana; Sticht, Heinrich; Marschall, Manfred

    2015-08-11

    Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.

  11. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  12. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases

    Institute of Scientific and Technical Information of China (English)

    Moe KYAW; Masanori YOSHIZUMI; Koichiro TSUCHIYA; Yuki IZAWA; Yasuhisa KANEMATSU; Toshiaki TAMAKI

    2004-01-01

    Reactive oxygen species (ROS) have been known to play an important role in the pathogenesis of atherosclerosis and several other cardiovascular diseases. It is now apparent that ROS induce endothelial cell damage and vascular smooth muscle cell (VSMC) growth and cardiac remodeling, which are associated with hypertension,atherosclerosis, heart failure, and restenosis. Several lines of evidence have indicated that ROS and mitogenactivated protein (MAP) kinases were involved in vascular remodeling under various pathological conditions. Recenfiy,it was also reported that MAP kinases were sensitive to oxidative stress. MAP kinases play an important role in cell differentiation, growth, apoptosis, and the regulation of a variety of transcription factors and gene expressions.Bioflavonoids and polyphenolic compounds are believed to be beneficial for the prevention and treatment of atherosclerosis and cardiovascular diseases. One of the most widely distributed bioflavonoids, 3,3',4',5,7-pentahydroxyflavone (quercetin) and its metabolite quercetin 3-O-β-D-glucuronide (Q3GA) inhibited Angiotensin Ⅱstimulated JNK activation and resultant hypertrophy of VSMC. Several studies have suggested that various antioxidants including probucol, N-acetyl-L-cysteine, diphenylene iodonium, Trolox C (vitamin E analogue), and vitamin C inhibit VSMC growth, which is associated with pathogenesis of cardiovascular diseases. Therefore, inhibition of MAP kinases by antioxidant treatment may prove to be a therapeutic strategy for cardiovascular diseases. In contrast, some clinical studies have reported that antioxidant vitamins did not show beneficial effects in coronary artery disease or in a number of high-risk people. Thus, further studies are needed to clarify why antioxidants showed beneficial effects in vitro, whereas less satisfactory results were obtained in some clinical conditions.

  13. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities

    Science.gov (United States)

    Wender, Paul A.; Buschmann, Nicole; Cardin, Nathan B.; Jones, Lisa R.; Kan, Cindy; Kee, Jung-Min; Kowalski, John A.; Longcore, Kate E.

    2011-08-01

    The daphnane diterpene orthoesters constitute a structurally fascinating family of natural products that exhibit a remarkable range of potent biological activities. Although partial activity information is available for some natural daphnanes, little information exists for non-natural congeners or on how changes in structure affect mode of action, function, potency or selectivity. A gateway strategy designed to provide general synthetic access to natural and non-natural daphnanes is described and utilized in the synthesis of two novel members of this class. In this study, a commercially available tartrate derivative was elaborated through a key late-stage diversification intermediate into B-ring yuanhuapin analogues to initiate exploration of the structure-function relationships of this class. Protein kinase C was identified as a cellular target for these agents, and their activity against human lung and leukaemia cell lines was evaluated. The natural product and a novel non-natural analogue exhibited significant potency, but the epimeric epoxide was essentially inactive.

  14. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  15. Protein Kinase Inhibitor H89 Enhances the Activity of Pseudomonas Exotoxin A-Based Immunotoxins.

    Science.gov (United States)

    Liu, Xiufen; Müller, Fabian; Wayne, Alan S; Pastan, Ira

    2016-05-01

    HA22 (Moxetumomab pasudotox) is a recombinant immunotoxin (RIT), composed of an anti-CD22 Fv fused to a truncated portion of Pseudomonas exotoxin A. HA22 is in clinical trials to treat patients with hairy cell leukemia and acute lymphoblastic leukemia (ALL). LMB-11 is an improved variant of HA22 with reduced immunogenicity, has a longer half-life in the blood and high activity in vitro and in a Burkitt lymphoma model in vivo Searching for RIT enhancing combination therapies, we found the protein kinase A inhibitor H89 to enhance LMB-11 and HA22 activity 5- to 10-fold on ALL cell lines and on patient-derived ALL samples. In addition, H89 increased the activity of mesothelin-targeting RITs SS1P (38-fold) and RG7787 (7-fold) against the cervical cancer cell line KB31. Unexpectedly we found that the enhancement by H89 was not because of inhibition of protein kinase A; it was partially recapitulated by inhibition of S6K1, which led to inactivation of its downstream targets rpS6 and GSK3β, resulting in a fall in MCL1 levels. H89 increased the rate of ADP-ribosylation of eukaryotic elongation factor 2, enhancing the arrest of protein synthesis and the reduction of MCL1 in synergy with the RIT. In summary, H89 increased RIT activity by enhancing the two key events: ADP-ribosylation of eEF2 and reduction of MCL1 levels. Significant enhancement was seen with both CD22- and mesothelin-targeting RITs, indicating that H89 might be a potent addition to RIT treatment of CD22-positive ALL and mesothelin-expressing solid tumors. Mol Cancer Ther; 15(5); 1053-62. ©2016 AACR. PMID:26939705

  16. Liver protein kinase A activity is decreased during the late hypoglycemic phase of sepsis.

    Science.gov (United States)

    Hsu, C; Hsu, H K; Yang, S L; Jao, H C; Liu, M S

    1999-10-01

    Changes in protein kinase A (PKA, or cAMP-dependent protein kinase) activity in the rat liver during different metabolic phases of sepsis were investigated. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into 3 groups: control, early sepsis, and late sepsis. Early and late sepsis refer to those animals killed at 9 and 18 h, respectively, after CLP. Hepatic PKA was extracted and partially purified by acid precipitation, ammonium sulfate fractionation, and diethylaminoethyl (DEAE)-cellulose chromatography. PKA was eluted from DEAE-cellulose column with a linear NaCl gradient. Two peaks of PKA, type I (eluted at low ionic strength) and type II (eluted at high ionic strength), were collected and their activities were determined on the basis of the rate of incorporation of [gamma-32-P]ATP into histone. The results show that during early sepsis, both type I and type II PKA activities remained unchanged. During late sepsis, type I PKA activity was decreased by 40.7-53.6%, whereas type II PKA activity was unaffected. Kinetic analysis of the data on type I PKA during the late phase of sepsis reveals that the Vmax (maximal velocity) values for ATP, cAMP, and histone were decreased by 40.7, 53.6, and 47.3%, respectively whereas the Km (substrate concentration required for half-maximal enzymatic activity) values for ATP, cAMP, and histone were unaltered. These data indicate that type I PKA was inactivated during the late hypoglycemic phase of sepsis in the rat liver. Because PKA-mediated phosphorylation plays an important role in the regulation of hepatic glucose metabolism, an inactivation of PKA may contribute to the development of hypoglycemia during the late phase of sepsis. PMID:10509629

  17. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K;

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  18. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. A novel Lyn-protein kinase Cδ/ε-protein kinase D axis is activated in B cells by signalosome-independent alternate pathway BCR signaling.

    Science.gov (United States)

    Guo, Benchang; Rothstein, Thomas L

    2013-06-01

    BCR signaling initiates multiple activities critical for B-cell function. Recently, we identified an alternate BCR signaling pathway, induced by IL-4, that is signalosome-independent, unlike the classical signalosome-dependent pathway, and that leads to activation of the MAP kinase, ERK. Here we questioned whether alternate pathway signaling extends to other key downstream events, especially protein kinase D (PKD) activation. We found that in murine spleen-derived B cells the IL-4-induced alternate pathway for BCR signaling results in PKD and PKD substrate phosphorylation, and that alternate pathway phosphorylation of HDAC5/7 and other key substrates requires PKD. Furthermore, we found that tyrosine phosphorylation of PKCδ/ε occurs as a result of alternate but not classical pathway signaling and is required for phosphorylation of PKD and PKD substrates. This result identifies PKCδ/ε tyrosine phosphorylation as a unique outcome of the alternate pathway. The alternate pathway is mediated by Lyn that is not required for classical pathway signaling and we found that Lyn associates directly with PKCδ/ε and is required for phosphorylation of PKCδ/ε and of PKD. These findings indicate that IL-4 influences B-cell activation by inducing a novel signaling pathway from BCR to Lyn to PKCδ/ε to PKD.

  20. Enediyne lidamycin induces apoptosis in human multiple myeloma cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Zhen, Yong-Zhan; Lin, Ya-Jun; Shang, Bo-Yang; Zhen, Yong-Su

    2009-07-01

    In the present study, the effects of lidamycin (LDM), a member of the enediyne antibiotic family, on two human multiple myeloma (MM) cell lines, U266 and SKO-007, were evaluated. In MTS assay, LDM showed much more potent cytotoxicity than conventional anti-MM agents to both cell lines. The IC(50) values of LDM for the U266 and SKO-007 cells were 0.0575 +/- 0.0015 and 0.1585 +/- 0.0166 nM, respectively, much lower than those of adriamycin, dexamethasone, and vincristine. Mechanistically, LDM triggered MM cells apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in LDM-induced cell death. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed the LDM-induced apoptosis through decreasing the level of cleaved PARP and caspase-3/7. Interestingly, phosphorylation of extracellular signal-related kinase was increased by LDM; conversely, MEK inhibitor synergistically enhanced LDM-induced cytotoxicity and apoptosis in MM cells. The results demonstrated that LDM suppresses MM cell growth through the activation of p38 MAPK and JNK, with the potential to be developed as a chemotherapeutic agent for MM. PMID:19468799

  1. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo.

    Science.gov (United States)

    Canault, Matthias; Duerschmied, Daniel; Brill, Alexander; Stefanini, Lucia; Schatzberg, Daphne; Cifuni, Stephen M; Bergmeier, Wolfgang; Wagner, Denisa D

    2010-03-01

    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.

  2. Platelet-activating factor (PAF)-dependent biochemical, morphologic, and physiologic responses of human platelets: Demonstration of translocation of protein kinase C associated with protein phosphorylation

    International Nuclear Information System (INIS)

    Platelet-activating factor (PAF) is a potent stimulus for platelet aggregation and secretion. PAF has been shown to stimulate the phosphatidylinositol (PI) pathway in platelets, which implies that PAF should activate protein kinase C. In this study, measurements of PI metabolites, the elevation of intracellular free calcium concentration, (Ca2+)i, the activation of protein kinase C, and the phosphorylation of platelet proteins (using a two-dimensional gel electrophoretic technique) were performed before and after the addition of 10(-8) M PAF to human platelets. These findings were correlated with morphologic changes in the platelets as determined by immunoelectron microscopic studies on the cytoskeleton and by X-ray analysis of dense bodies. The results show that PAF stimulates the production of PI metabolites and causes an increase in the membrane-associated activity of protein kinase C. These changes are accompanied by a rise in the (Ca2+)i and protein phosphorylation. The increase in protein kinase C activity reaches a maximum at approximately 60 s, a time frame that is consistent with the protein phosphorylation and the subsequent morphologic and secretory events. X-ray analysis revealed two types of dense bodies containing various amounts of calcium which appeared to be released sequentially after PAF activation. These results suggest that the protein phosphorylation that controls the physiologic events resulting from PAF activation of human platelets is catalyzed by protein kinase C

  3. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase.

    Science.gov (United States)

    Zakikhani, Mahvash; Dowling, Ryan J O; Sonenberg, Nahum; Pollak, Michael N

    2008-10-01

    Population studies provide evidence that obesity and insulin resistance are associated not only with elevated serum insulin levels and reduced serum adiponectin levels but also with increased risk of aggressive prostate and colon cancer. We show here that adiponectin activates AMP-activated protein kinase (AMPK) in colon (HT-29) and prostate (PC-3) cancer cells. These results are consistent with prior observations in myocytes, but we show that in epithelial cancer cells AMPK activation is associated with reduction in mammalian target of rapamycin activation as estimated by Ser(2448) phosphorylation, with reduction in p70S6 kinase activation as estimated by Thr(389) phosphorylation, with ribosomal protein S6 activation as estimated by Ser(235/236) phosphorylation, with reduction in protein translation as estimated by [(35)S]methionine incorporation, and with growth inhibition. Adiponectin-induced growth inhibition is significantly attenuated when AMPK level is reduced using small interfering RNA, indicating that AMPK is involved in mediating the antiproliferative action of this adipokine. Thus, adiponectin has the characteristics of a AMPK-dependent growth inhibitor that is deficient in obesity, and this may contribute to the adverse effects of obesity on neoplastic disease. Furthermore, metformin was observed to activate AMPK and to have growth inhibitory actions on prostate and colon cancer cells, suggesting that this compound may be of particular value in attenuating the adverse effects of obesity on neoplasia. PMID:19138981

  4. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    Directory of Open Access Journals (Sweden)

    Krause Carola

    2011-06-01

    Full Text Available Abstract Background Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β has been implicated as a key stimulator of myofibroblast activity and fascial contraction in Dupuytren's disease. Results We studied Dupuytren's fibroblasts in tissues ex vivo and in cells cultured in vitro and found increased TGF-β expression compared to control fibroblasts. This correlated not only with elevated expression and activation of downstream Smad effectors but also with overactive extracellular signal-regulated kinase 1/2 (ERK1/2/mitogen-activated protein (MAP kinase signalling. Treatment with the TGF-β type I receptor kinase inhibitor SB-431542 and bone morphogenetic protein 6 (BMP6 led to inhibition of elevated Smad and ERK1/2/MAP kinase signalling as well as to inhibition of the increased contractility of Dupuytren's fibroblasts. BMP6 attenuated TGF-β expression in Dupuytren's fibroblasts, but not in control fibroblasts. Platelet-derived growth factor (PDGF expression was strongly promoted by TGF-β in Dupuytren's fibroblasts and was curbed by SB-431542 or BMP6 treatment. High basal expression of phosphorylated ERK1/2 MAP kinase and fibroproliferative markers was attenuated in Dupuytren's fibroblasts by a selective PDGF receptor kinase inhibitor. Cotreatment of Dupuytren's fibroblasts with SB-431542 and the mitogen-activated protein kinase kinase 1 inhibitor PD98059 was sufficient to abrogate proliferation and contraction of Dupuytren's fibroblasts. Conclusions Both TGF-β and ERK1/2 MAP kinase pathways cooperated in mediating the enhanced proliferation and high spontaneous contraction of Dupuytren's fibroblasts. Our data indicate that both signalling pathways are prime targets for the development of nonsurgical intervention strategies to treat Dupuytren's disease.

  5. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design.

    Science.gov (United States)

    Miglianico, Marie; Nicolaes, Gerry A F; Neumann, Dietbert

    2016-04-14

    As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK. PMID:26510622

  6. Ginsenosides stimulated the proliferation of mouse spermatogonia involving activation of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Kai-ming WANG; Cai-qiao ZHANG

    2009-01-01

    The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice.Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA).After 72-h culture,Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached.Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression.Ginsenosides (1.0~10 μg/ml) significantly stimulated proliferation of spermatogonia.Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10-8 to 107 mol/L and the PKC inhibitor H7 inhibited this effect.Likewise,ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H7.These results indicate that the proliferating effect ofginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.

  7. Activation of protein kinase Ceta triggers cortical granule exocytosis in Xenopus oocytes.

    Science.gov (United States)

    Gundersen, Cameron B; Kohan, Sirus A; Chen, Qian; Iagnemma, Joseph; Umbach, Joy A

    2002-03-15

    Previous work has shown that phorbol esters or diacylglycerol trigger cortical granule exocytosis in Xenopus oocytes. We sought to identify the isoform(s) of protein kinase C (PKC) that mediate(s) this regulated secretory event. Because this process is initiated by lipid activators of PKC but is independent of calcium ions, we focused on the family of novel (calcium-independent) PKCs. Pharmacological investigations using Gö6976 and Gö6983 tended to exclude PKCdelta, epsilon and mu as secretory triggers. Subcellular fractionation and immunoblot data revealed that these oocytes expressed all five members of the novel PKC family, but it was only PKCeta that colocalized with cortical granules. Finally, expression of wild type or constitutively active forms of PKCdelta and eta strongly supported the conclusion that it is PKCeta that initiates cortical granule exocytosis in these cells. These observations represent an important step in identifying the mechanism of secretory triggering in this system. PMID:11884530

  8. Improved control of tuberculosis and activation of macrophages in mice lacking protein kinase R.

    Directory of Open Access Journals (Sweden)

    Kangyun Wu

    Full Text Available Host factors that microbial pathogens exploit for their propagation are potential targets for therapeuic countermeasures. No host enzyme has been identified whose genetic absence benefits the intact mammalian host in vivo during infection with Mycobacterium tuberculosis (Mtb, the leading cause of death from bacterial infection. Here, we report that the dsRNA-dependent protein kinase (PKR is such an enzyme. PKR-deficient mice contained fewer viable Mtb and showed less pulmonary pathology than wild type mice. We identified two potential mechanisms for the protective effect of PKR deficiency: increased apoptosis of macrophages in response to Mtb and enhanced activation of macrophages in response to IFN-gamma. The restraining effect of PKR on macrophage activation was explained by its mediation of a previously unrecognized ability of IFN-gamma to induce low levels of the macrophage deactivating factor interleukin 10 (IL10. These observations suggest that PKR inhibitors may prove useful as an adjunctive treatment for tuberculosis.

  9. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein

    DEFF Research Database (Denmark)

    Goldberg, Y; Glineur, C; Gesquière, J C;

    1988-01-01

    -v-erbA is enhanced 10-fold following treatment of cells with activators of either protein kinase C or cAMP-dependent protein kinase. Since cAMP-dependent protein kinase phosphorylates both p46c-erbA and P75gag-v-erbA in vitro at the same site as that observed in vivo, at least part of the c......, defined by the limit tryptic phosphopeptide 28SSQCLVK, is retained on the v-erbA-encoded P75gag-v-erbA protein. This site is located in the amino-terminal domain of these molecules, 21 amino acids upstream of the DNA-binding region. Phosphorylation of this site in both p46c-erbA and P75gag...

  10. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  11. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    Science.gov (United States)

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2013-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance. PMID:23221751

  12. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T;

    2000-01-01

    Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3...... and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess...... the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis...

  13. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    Science.gov (United States)

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  14. AMP-activated protein kinase is activated by non-steroidal anti-inflammatory drugs.

    Science.gov (United States)

    King, Tanya S; Russe, Otto Quintus; Möser, Christine V; Ferreirós, Nerea; Kynast, Katharina L; Knothe, Claudia; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-09-01

    AMP-activated kinase (AMPK) is a cellular energy sensor, which is activated in stages of increased adenosine triphosphate (ATP) consumption. Its activation has been associated with a number of beneficial effects such as decrease of inflammatory processes and inhibition of disease progression of diabetes and obesity. A recent study suggested that salicylate, the active metabolite of the non-steroidal anti-inflammatory drug (NSAID) acetyl-salicylic acid (aspirin), is able to activate AMPK pharmacologically. This observation raised the question whether or not other NSAIDs might also act as AMPK activators and whether this action might contribute to their cyclooxygenase (COX)-independent anti-inflammatory properties. In this study, we investigated mouse and human neuronal cells and liver tissue of mice after treatment with various NSAIDs. Our results showed that the non-selective acidic NSAIDs ibuprofen and diclofenac induced AMPK activation similar to aspirin while the COX-2 selective drug etoricoxib and the non-opioid analgesic paracetamol, both drugs have no acidic structure, failed to activate AMPK. In conclusion, our results revealed that AMPK can be activated by specific non-steroidal anti-inflammatory drugs such as salicylic acid, ibuprofen or diclofenac possibly depending on the acidic structure of the drugs. AMPK might therefore contribute to their antinociceptive and anti-inflammatory properties. PMID:26049010

  15. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau;

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were...

  16. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  17. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.

  18. Immunochemical characterization of rat brain protein kinase

    International Nuclear Information System (INIS)

    Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein

  19. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride.

    Science.gov (United States)

    Li, Xue; Zhou, Yunlei; Xu, Yan; Xu, Huijie; Wang, Minghui; Yin, Huanshun; Ai, Shiyun

    2016-08-31

    Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity.

  20. Regulation of Extrasynaptic GABAA α4 Receptors by Ethanol-Induced Protein Kinase A, but Not Protein Kinase C Activation in Cultured Rat Cerebral Cortical Neurons.

    Science.gov (United States)

    Carlson, Stephen L; Bohnsack, J Peyton; Patel, Vraj; Morrow, A Leslie

    2016-01-01

    Ethanol produces changes in GABAA receptor trafficking and function that contribute to ethanol dependence symptomatology. Extrasynaptic γ-aminobutyric acid A receptors (GABAA-R) mediate inhibitory tonic current and are of particular interest because they are potentiated by physiologically relevant doses of ethanol. Here, we isolate GABAA α4δ receptors by western blotting in subsynaptic fractions to investigate protein kinase A (PKA) and protein kinase C (PKC) modulation of ethanol-induced receptor trafficking, while extrasynaptic receptor function is determined by measurement of tonic inhibition and responses evoked by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or PKA/PKC modulators. Ethanol exposure (1 hour) did not alter GABAA α4 receptor abundance, but it increased tonic current amplitude, an effect that was prevented by inhibiting PKA, but not PKC. Direct activation of PKA, but not PKC, increased the abundance and tonic current of extrasynaptic α4δ receptors. In contrast, prolonged ethanol exposure (4 hours) reduced α4δ receptor abundance as well as tonic current, and this effect was also PKA dependent. Finally, PKC activation by ethanol or phorbol-12,13-dibutyrate (PdBu) had no effect on extrasynaptic α4δ subunit abundance or activity. We conclude that ethanol alters extrasynaptic α4δ receptor function and expression in cortical neurons in a PKA-dependent manner, but ethanol activation of PKC does not influence these receptors. These results could have clinical relevance for therapeutic strategies to restore normal GABAergic functioning for the treatment of alcohol use disorders.

  1. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    Science.gov (United States)

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  2. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  3. PTH stimulated growth and decreased Col-X deposition are phosphotidylinositol-3,4,5 triphosphate kinase and mitogen activating protein kinase dependent in avian sterna.

    Science.gov (United States)

    Harrington, Erik Kern; Coon, David J; Kern, Matthew F; Svoboda, Kathy K H

    2010-02-01

    Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.

  4. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP- activated protein kinase (AMPK constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reversible phosphorylation of AMPK, in response to signals such as energy status, serum insulin/glucagon ratio, nutritional stresses, pharmacological and natural compounds, and oxidative stress status. Reactive oxygen species (ROS lead to cellular AMPK activation and downstream signaling under several experimental conditions. Thyroid hormone (L-3,3′,5-triiodothyronine, T3 administration, a condition that enhances liver ROS generation, triggers the redox upregulation of cytoprotective proteins affording preconditioning against ischemia-reperfusion (IR liver injury. Data discussed in this work suggest that T3-induced liver activation of AMPK may be of importance in the promotion of metabolic processes favouring energy supply for the induction and operation of preconditioning mechanisms. These include antioxidant, antiapoptotic, and anti-inflammatory mechanisms, repair or resynthesis of altered biomolecules, induction of the homeostatic acute-phase response, and stimulation of liver cell proliferation, which are required to cope with the damaging processes set in by IR.

  5. Protein kinase C {alpha} activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle

    DEFF Research Database (Denmark)

    Thomassen, Martin; Rose, Adam John; Jensen, Thomas Elbenhardt;

    2011-01-01

    Exercise induced phosphorylation of FXYD1 is a potential important regulator of Na(+), K(+) pump activity. It was investigated if skeletal muscle contractions induce phosphorylation of FXYD1 and if Protein Kinase C a (PKCa) activity is a prerequisite for this possible mechanism. In part 1, human...

  6. Involvement of the p38 mitogen-activated protein kinase signal transduction pathway in burns-induced lung injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu-lin; XIA Zhao-fan; WEI Duo; WANG Yong-jie; WANG Chang-rong

    2005-01-01

    @@ Acute lung injury (ALI) is a leading complication in extensively burned patients, especially those with inhalation injury.1 It can cause hypoxia resulting in injury of remote organs and dysfunction. P38 mitogen-activated protein kinase (p38 MAPK) is a stress activated protein kinase in the MAPK family.2 Most of the previous studies have demonstrated that p38 MAPK signal transduction pathway mediated ALI in rats with acute severe pancreatitis, sepsis etc.3-5 However, there is little information regarding the role of p38 MAPK signal transduction pathway in ALI after severe burn trauma.

  7. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jeppesen, Jacob;

    2015-01-01

    after prolonged exercise and during the following six hours post exercise in 5´AMP activated protein kinase (AMPK)α2 and α1 knock-out (KO) and wild type (WT) mice with free access to food. Substrate oxidation was similar during exercise at the same relative intensity between genotypes. During post...... in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...... increased (63 %, P protein content, lower (P

  8. Regulation of skeletal muscle sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes.

    OpenAIRE

    Rune, A.; Osler, M. E.; Fritz, T.; Zierath, J. R.

    2010-01-01

    Aims/hypothesis Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) is involved in cellular stress responses linked to obesity and type 2 diabetes. We determined the role of SNARK in response to metabolic stress and insulin action on glucose and lipid metabolism in skeletal muscle. Methods Vastus lateralis skeletal muscle biopsies were obtained from normal glucose tolerant (n = 35) and type 2 diabetic (n = 31) men and women for SNARK expression studies. Primary myotu...

  9. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    Science.gov (United States)

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  10. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  11. Synthesis, protein kinase inhibitory potencies, and in vitro antiproliferative activities of meridianin derivatives.

    Science.gov (United States)

    Giraud, Francis; Alves, Georges; Debiton, Eric; Nauton, Lionel; Théry, Vincent; Durieu, Emilie; Ferandin, Yoan; Lozach, Olivier; Meijer, Laurent; Anizon, Fabrice; Pereira, Elisabeth; Moreau, Pascale

    2011-07-14

    The synthesis of new meridianin derivatives is described. The indolic ring system was substituted at the C-4 to C-7 positions either by a bromine atom or by nitro or amino groups. Additionally, an iodine atom or various aryl groups were introduced at the C-5 position of the 2-aminopyrimidine ring. These compounds as well as some of their synthetic intermediates were tested for their kinase inhibitory potencies and for their in vitro antiproliferative activities. We found that this series of compounds is particularly interesting in the development of new inhibitors of DYRK1A and CLK1 kinases. The most effective compounds toward these two kinase families are the 6- and 7-bromo derivatives 30, 33, and 34 that showed more than 45-fold selectivity toward DYRK1A/CLK1 kinases over the other kinases tested. Meridianin derivatives could thus be developed toward potent and selective inhibitors of key RNA splicing regulators and potential therapeutic agents. PMID:21623630

  12. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1.

    Science.gov (United States)

    Smith, A Ian; Lew, Rebecca A; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-09-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC). Furthermore, by monitoring specific ECE-1 activity on the surface of live cells, we also show that following PKC activation, enzyme activity is significantly increased at the cell surface, where it is positioned to catalyse the generation of active endothelin. We believe this novel finding is unprecedented for a peptide processing enzyme. Indeed, this new knowledge regarding the control of endothelin production by regulating ECE-1 activity at the cell surface opens up a new area of endothelin biology and will provide novel insights into the physiology and pathophysiology of endothelin and endothelin-associated diseases. In addition, the information generated in these studies may provide valuable new insights into potential extra- and intracellular targets for the pharmacological and perhaps even therapeutic regulation of endothelin production and thus vascular tone. PMID:19617920

  13. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.

    Science.gov (United States)

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-10-27

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  14. Protein kinase A activity is associated with metacyclogenesis in Leishmania amazonensis.

    Science.gov (United States)

    Genestra, Marcelo; Cysne-Finkelstein, Léa; Leon, Leonor

    2004-01-01

    Because of the importance of cell signalling processes in proliferation and differentiation, the adenylate cyclase pathway was studied, specifically the protein kinase A (PKA) in Leishmania amazonensis. The PKAs of soluble (SF) and enriched membrane fractions (MF) from infective/non-infective promastigotes and axenic amastigotes were assayed. In order to purify the PKA molecule, fractions were chromatographed on DEAE-cellulose columns and the phosphorylative activity was evaluated using [gamma(32)P]-ATP as the phosphate source. These experiments were performed in the presence of cyclic adenosine monophosphate (cAMP) and an inhibitor of PKA. Our data demonstrated that the PKA activity was significantly higher (about two times) in SF from promastigotes with a high concentration of metacyclic forms, when compared with the non-infective promastigotes, suggesting an association of this activity and the metacyclogenesis process. A discrete phosphorylative activity in axenic amastigotes was observed. As the adenylate cyclase/cAMP pathway would be involved in the parasite-host interiorization, the PKA activity may constitute a good intracellular target for studies of leishmanicidal drugs. PMID:15338471

  15. Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform

    Directory of Open Access Journals (Sweden)

    Kvissel Anne-Katrine

    2011-02-01

    Full Text Available Abstract Background Protein kinase A type I (PKAI and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB in vivo. Results We show that PKAI when expressed at equal levels as PKAII was significantly (p Conclusion We suggest that differential effects of PKAI and PKAII in inducing Cre-luciferace activity depend on R and not C subunit identity.

  16. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma.

    Directory of Open Access Journals (Sweden)

    Xinqi Wu

    Full Text Available GNAQ mutations at codon 209 have been recently identified in approximately 50% of uveal melanomas (UM and are reported to be oncogenic through activating the MAPK/Erk1/2 pathway. Protein kinase C (PKC is a component of signaling from GNAQ to Erk1/2. Inhibition of PKC might regulate GNAQ mutation-induced Erk1/2 activation, resulting in growth inhibition of UM cells carrying GNAQ mutations. UM cells carrying wild type or mutant GNAQ were treated with the PKC inhibitor enzastaurin. Effects on proliferation, apoptosis, and signaling events were evaluated. Enzastaurin downregulated the expression of several PKC isoforms including PKCβII PKCθ, PKCε and/or their phosphorylation in GNAQ mutated cells. Downregulation of these PKC isoforms in GNAQ mutated cells by shRNA resulted in reduced viability. Enzastaurin exhibited greater antiproliferative effect on GNAQ mutant cells than wild type cells through induction of G1 arrest and apoptosis. Enzastaurin-induced G1 arrest was associated with inhibition of Erk1/2 phosphorylation, downregulation of cyclin D1, and accumulation of cyclin dependent kinase inhibitor p27(Kip1. Furthermore, enzastaurin reduced the expression of antiapoptotic Bcl-2 and survivin in GNAQ mutant cells. Inhibition of Erk1/2 phosphorylation with a MEK specific inhibitor enhanced the sensitivity of GNAQ wild type cells to enzastaurin, accompanied by p27(Kip1 accumulation and/or inhibition of enzastaurin-induced survivin and Bcl-2 upregulation. PKC inhibitors such as enzastaurin have activity against UM cells carrying GNAQ mutations through inhibition of the PKC/Erk1/2 pathway and induction of G1 arrest and apoptosis. Inhibition of the PKC pathway provides a basis for clinical investigation in patients with UM.

  17. Benzotropolone moiety in theaflavins is responsiblefor inhibitingpeptide-transport and activating AMP-activated protein kinase in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Ha-Young Park

    2013-05-01

    Full Text Available ABSTRACTObjective:In the small intestine, peptide transporter 1 (PEPT1 plays a role in the transport of di- and tri-peptides. Recently, we found that theaflavins (TFs, dimeric catechins, inhibitedthe transport of di-peptides across Caco-2 monolayersby suppressingthe expression of PEPT1 through AMP-activated protein kinase (AMPK activation. In this study, we investigated the structural requirement of theaflavinsfor the effect, and the mechanism(sunderling theaflavin-induced AMPK activation.Methods:Theaflavin-3’-O-gallate (TF3’G was used forthis study, since it possessed the most potent inhibition power for peptide-transport among theaflavins. Absorption ability was measured with Caco-2 cell monolayers treated with or without 20 M sample (TF3’G or its related compounds in an Ussing Chamber. The amountof Gly-Sar (a model of PEPT1-transporing peptide transportat fixed time-pointsto 60min wasdeterminedby fluorescent naphthalene-2,3-dicarboxaldehyde-derivatized assay(Ex/Em: 405 nm/460 nm. The apparent permeability coefficient(Papp wasused to evaluate the permeability. Expression of PEPT1 protein in Caco-2 cells treated with or without 20 M TF3’G in the presence or absence of inhibitor (10 μM compound C as AMPK inhibitor or 25 μMSTO-609 as CaMKK inhibitor wasevaluated by Western blot.Results:The Pappvalue of Gly-Sar significantly (P<0.05 decreasedin 20 μM purprogallin-treated Caco-2 cellsas well asin TF3’G-treated cells, together with the reduction of PEPT1 expression, while their monomeric catechins did not show any Pappreduction. In TF3’G-treated Caco-2 cells, the recovery of the reduced PEPT1 expression was found by 10 μM compound C,but not STO-609.Conclusion:The study demonstrated that the benzotropolone moiety in theaflavins was a crucial structural requirement for exerting the inhibition of intestinal peptide-transport,and the suppression of PEPT1 expression by theaflavins would be caused by activating LKB1/AMPK pathway

  18. Novel small-molecule AMP-activated protein kinase allosteric activator with beneficial effects in db/db mice.

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    Full Text Available AMP-activated protein kinase (AMPK is an energy sensor of metabolism that is an attractive therapeutic target for type 2 diabetes mellitus and metabolic syndrome. Using a homogeneous scintillation proximity assay (SPA, we identified a new small-molecule AMPK activator, ZLN024, which allosterically stimulated active AMPK heterotrimers and the inactive α1 subunit truncations α1 (1-394 and α1 (1-335 but not α1 (1-312. AMPK activation by ZLN024 requires the pre-phosphorylation of Thr-172 by at least one upstream kinase and protects AMPK Thr-172 against dephosphorylation by PP2Cα. ZLN024 activated AMPK in L6 myotubes and stimulated glucose uptake and fatty acid oxidation without increasing the ADP/ATP ratio. ZLN024 also activated AMPK in primary hepatocytes, decreased fatty acid synthesis and glucose output. Treatment of db/db mice with 15 mg/kg/day ZLN024 improved glucose tolerance; liver tissue weight, triacylglycerol and the total cholesterol content were decreased. The hepatic transcriptional level of G6Pase, FAS and mtGPAT were reduced. The transcription of genes involved in fatty acid oxidation and the mitochondrial biogenesis of muscle tissue were elevated. The ACC phosphorylation was increased in muscle and liver. This study provides a novel allosteric AMPK activator for functional study in vitro and in vivo and demonstrates that AMPK allosteric activators could be a promising therapeutic approach for type 2 diabetes mellitus and metabolic syndrome.

  19. The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2

    OpenAIRE

    Maitra, Sushmit; Chou, Chu-Fang; Luber, Christian A.; Lee, Kyung-Yeol; Mann, Matthias; Chen, Ching-Yi

    2008-01-01

    Regulated mRNA decay is a highly important process for the tight control of gene expression. Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3′ untranslated regions that direct rapid mRNA decay by interaction with decay-promoting ARE-binding proteins (ARE-BPs). The decay of ARE-containing mRNAs is regulated by signaling pathways that are believed to directly target ARE-BPs. Here, we show that BRF1 involved in ARE-mediated mRNA decay (AMD) is phosphorylated by MAPK-activated p...

  20. The mechanism of protein kinase C regulation

    Institute of Scientific and Technical Information of China (English)

    Julhash U. KAZI

    2011-01-01

    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  1. Combined computational and experimental analysis reveals mitogen-activated protein kinase-mediated feedback phosphorylation as a mechanism for signaling specificity.

    Science.gov (United States)

    Hao, Nan; Yildirim, Necmettin; Nagiec, Michal J; Parnell, Stephen C; Errede, Beverly; Dohlman, Henrik G; Elston, Timothy C

    2012-10-01

    Different environmental stimuli often use the same set of signaling proteins to achieve very different physiological outcomes. The mating and invasive growth pathways in yeast each employ a mitogen-activated protein (MAP) kinase cascade that includes Ste20, Ste11, and Ste7. Whereas proper mating requires Ste7 activation of the MAP kinase Fus3, invasive growth requires activation of the alternate MAP kinase Kss1. To determine how MAP kinase specificity is achieved, we used a series of mathematical models to quantitatively characterize pheromone-stimulated kinase activation. In accordance with the computational analysis, MAP kinase feedback phosphorylation of Ste7 results in diminished activation of Kss1, but not Fus3. These findings reveal how feedback phosphorylation of a common pathway component can limit the activity of a competing MAP kinase through feedback phosphorylation of a common activator, and thereby promote signal fidelity. PMID:22875986

  2. Delineation of Platelet Activation Pathway of Scutellarein Revealed Its Intracellular Target as Protein Kinase C.

    Science.gov (United States)

    Tian, Xiaoxuan; Chang, Lianying; Ma, Guangyin; Wang, Taiyi; Lv, Ming; Wang, Zhilong; Chen, Liping; Wang, Yuefei; Gao, Xiumei; Zhu, Yan

    2016-01-01

    Erigeron breviscapus has been widely used in traditional Chinese medicine (TCM) and its total flavonoid component is commonly used to treat ischemic stroke, coronary heart disease, diabetes and hypertension. Scutellarin is the major ingredient of E. breviscapus and scutellarein is one of the main bioactive metabolites of scutellarin in vivo, but the latter's pharmacological activities have not been fully characterized. Provided evidence that could inhibit platelet aggregation, the effect of scutellarein on rat washed platelets and its underlying mechanisms were evaluated in our research. Scutellarein inhibited platelet adhesion and aggregation induced by multiple G protein coupled receptor agonists such as thrombin, U46619 and ADP, in a concentration-dependent manner. Furthermore, the mild effect of scutellarein on intracellular Ca(2+) mobilization and cyclic AMP (cAMP) level was observed. On the other hand, the role of scutellarein as potential protein kinase C (PKC) inhibitor was confirmed by PKC activity analysis and molecular docking. The phorbol myristate acetate-induced platelets aggregation assay with or without ADP implied that the scutellarein takes PKC(s) as its primary target(s), and acts on it in a reversible way. Finally, scutellarein as a promising agent exhibited a high inhibition effect on ADP-induced platelet aggregation among its analogues. This study clarifies the PKC-related signaling pathway involved in antiplatelet action of scutellarein, and may be beneficial for the treatment of cardiovascular diseases. PMID:26581323

  3. TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation.

    Science.gov (United States)

    Numaga-Tomita, Takuro; Nishida, Motohiro; Putney, James W; Mori, Yasuo

    2016-01-15

    Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.

  4. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis.

    Science.gov (United States)

    Khanal, Prem; Oh, Won-Keun; Yun, Hyo Jeong; Namgoong, Gwang Mo; Ahn, Sang-Gun; Kwon, Seong-Min; Choi, Hoo-Kyun; Choi, Hong Seok

    2011-04-01

    Phenolic constituents of virgin olive oil are reported to have antitumor activity. However, the underlying molecular mechanisms and specific target proteins of virgin olive oil remain to be elucidated. Here, we report that dialdehydic form of decarboxymethyl ligstroside aglycone (p-HPEA-EDA), a phenolic compound of virgin olive oil, inhibits tumor promoter-induced cell transformation in JB6 Cl41 cells and suppress cyclooxygenase-2 (COX-2) and tumorigenicity by adenosine monophosphate-activated protein kinase (AMPK) activation in HT-29 cells. p-HPEA-EDA inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of extracellular signal-regulated kinases 1/2 and p90RSK in JB6 Cl41 cells, resulting in the inhibition of cell proliferation, activator protein-1 transactivation and cell transformation promoted by TPA. Moreover, p-HPEA-EDA strongly inhibited the cell viability and COX-2 expression by activation of AMPK activity in HT-29 cells, resulted from depletion of intracellular adenosine triphosphate. p-HPEA-EDA-induced activation of caspase-3 and poly-adenosine diphosphate-ribose polymerase, phosphorylation of p53 (Ser15) and DNA fragmentation in HT-29 cells, leading to apoptosis. Importantly, p-HPEA-EDA suppressed the colony formation of HT-29 cells in soft agar. In contrast, Compound C, an AMPK inhibitor, and Z-DEVD-FMK, a caspase-3 inhibitor, blocked the p-HPEA-EDA-inhibited colony formation in HT-29 cells. In vivo chorioallantoic membrane assay also showed that p-HPEA-EDA-inhibited tumorigenicity of HT-29 cells. These findings revealed that targeted activation of AMPK and inhibition of COX-2 expression by p-HPEA-EDA contribute to the chemopreventive and chemotherapeutic potential of virgin olive oil against colon cancer cells. PMID:21216846

  5. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.

    OpenAIRE

    R. Jiang; Carlson, M

    1997-01-01

    The Snf1 protein kinase plays a central role in the response to glucose starvation in the yeast Saccharomyces cerevisiae. Previously, we showed that two-hybrid interaction between Snf1 and its activating subunit, Snf4, is inhibited by high levels of glucose. These findings, together with biochemical evidence that Snf1 and Snf4 remain associated in cells grown in glucose, suggested that another protein (or proteins) anchors Snf1 and Snf4 into a complex. Here, we examine the possibility that a ...

  6. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    Science.gov (United States)

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  7. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  8. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed;

    2012-01-01

    Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA......) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......(2)) may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX). Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK) was inhibited. Unlike the case for murine preadipocytes cell lines, long...

  9. Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent

    Institute of Scientific and Technical Information of China (English)

    Bei ZHOU; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Fumiaki UCHIUMI; Takashi IKEJIMA

    2007-01-01

    Aim: To investigate the mechanism of silibinin-protected isoproterenol-induced apoptosis in rat cardiac myocytes.Methods: The viability of rat cardiac myocytes was measured by MTT method. The apoptotic ratio was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Protein kinase C (PKC) activity assay was carried out according to the instructions of the PepTag non-radioactive protein kinase C assay kit. Western blot analysis was used to evaluate the level of Ras, Raf-1 and mitogen-activated protein kinase (MAPK) expression.Results: The protective effects of silibinin were significantly sup-pressed by inhibitors, including genistein, manumycin A and GW5074 [inhibitors for protein tyrosine kinases (PTK), Ras and Raf- 1, respectively]. The exposure of rat cardiac myocytes to isoproterenol alone caused decreased PKC activity, which was prevented by pretreatment with silibinin dose-dependently. Simultaneously,the increased expression of Ras and Raf-1 activated by silibinin were blocked by the PKC inhibitor, stauroporine. In addition, the extracellularly responsive kinase (ERK) inhibitor, PD98059, suppressed silibinin-protected apoptosis, whereas the p38 MAPK inhibitor, SB203580, protected cardiac myocytes from isoproterenol-induced injury, and the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 had no protective effects. Furthermore, Western blot analysis showed that the expres-sion of phosphorylated ERK was increased by silibinin, the expression of phos-phorylated p38 MAPK was decreased and total ERK, p38, JNK and phosphory-lated JNK MAPK did not change after treatment with both isoproterenol and silibinin. Furthermore, pretreatment of cardiac myocyte with PKC, Ras and Raf inhibitors significantly blocked ERK phosphorylation.Conclusion: Silibinin is suggested to protect isoproterenol-induced rat cardiac myocyte apoptosis by activating the tyrosine kinase pathway, PKC and MAPK pathways.

  10. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); A. Smolenski; B.C. Tilly (Bernard); A.B. Houtsmuller (Adriaan); E.M.E. Ehlert (Ehrich); A.G. Bot (Alice); M.J. Edixhoven (Marcel); W.E. Boomaars (Wendy); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo)

    1998-01-01

    textabstractA recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cys

  11. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert;

    2002-01-01

    constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1...

  12. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Huachen Gan

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3 were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  13. IL-1β activates p44/42 and p38 mitogen-activated protein kinases via different pathways in cat esophageal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tai Sang Lee; Hyun Ju Song; Ji Hoon Jeong; Young Sil Min; Chang Yell Shin; Uy Dong Sohn

    2006-01-01

    AIM: To examine the pathway related to the IL-1β-induced activation of mitogen-activated protein (MAP)kinases in cat esophageal smooth muscle cells.METHODS: Culture of the esophageal smooth muscle cells from cat was prepared. Specific inhibitors were treated before applying the IL-1β. Western blot analysis was performed to detect the expressions of COX, iNOS and MAP kinases.RESULTS: In the primary cultured cells, although IL-1βfailed to upregulate the COX and iNOS levels, the levels of the phosphorylated forms of p44/42 MAP kinase and p38 MAP klnase increased in both concentration- and time-dependent manner, of which the level of activation reached a maximum within 3 and 18 h, respectively.The pertussis toxin reduced the level of p44/42 MAP kinase phosphorylation. Tyrphostin 51 and genistein also inhibited this activation. Neomycin decreased the density of the p44/42 MAP kinase band to the basal level.Phosphokinase C (PKC) was found to play a mediating role in the IL-1β-induced p44/42 MAP kinase activity.In contrast, the activation of p38 MAP kinase was inhibited only by a pretreatment with forskolin, and was unaffected by the other compounds.CONCLUSION: Based on these results, IL-1β-Induced p44/42 MAP kinase activation is mediated by the Gi protein, tyrosine kinase, phospholipase C (PLC) and PKC. The pathway for p38 MAP kinase phosphorylation is different from that of p44/42 MAP kinase, suggesting that it plays a different role in the cellular response to IL-1β.

  14. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  15. Targeting Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts To Lead Small Molecule Inhibitors to Clinical Trials.

    Science.gov (United States)

    Fiore, Mario; Forli, Stefano; Manetti, Fabrizio

    2016-04-28

    The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases to prevent tumor metastasis and to increase tumor sensitivity to chemotherapeutics.

  16. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    Science.gov (United States)

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  17. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblasto

  18. EhMAPK, the mitogen-activated protein kinase from Entamoeba histolytica is associated with cell survival.

    Science.gov (United States)

    Ghosh, Anupama Sardar; Ray, Doel; Dutta, Suman; Raha, Sanghamitra

    2010-10-08

    Mitogen Activated Protein Kinases (MAPKs) are a class of serine/threonine kinases that regulate a number of different cellular activities including cell proliferation, differentiation, survival and even death. The pathogen Entamoeba histolytica possess a single homologue of a typical MAPK gene (EhMAPK) whose identification was previously reported by us but its functional implications remained unexplored. EhMAPK, the only mitogen-activated protein kinase from the parasitic protist Entamoeba histolytica with Threonine-X-Tyrosine (TXY) phosphorylation motif was cloned, expressed in E. coli and functionally characterized under different stress conditions. The expression profile of EhMAPK at the protein and mRNA level remained similar among untreated, heat shocked and hydrogen peroxide-treated samples in all cases of dose and time. But a significant difference was obtained in the phosphorylation status of the protein in response to different stresses. Heat shock at 43°C or 0.5 mM H(2)O(2) treatment enhanced the phosphorylation status of EhMAPK and augmented the kinase activity of the protein whereas 2.0 mM H(2)O(2) treatment induced dephosphorylation of EhMAPK and loss of kinase activity. 2.0 mM H(2)O(2) treatment reduced parasite viability significantly but heat shock and 0.5 mM H(2)O(2) treatment failed to adversely affect E. histolytica viability. Therefore, a distinct possibility that activation of EhMAPK is associated with stress survival in E. histolytica is seen. Our study also gives a glimpse of the regulatory mechanism of the protein under in vivo conditions. Since the parasite genome lacks any typical homologue of mammalian MEK, the dual specificity kinases which are the upstream activators of MAPK, indications of the existence of some alternate regulatory mechanisms of the EhMAPK activity is perceived. These may include the autophosphorylation activity of the protein itself in combination with some upstream phosphatases which are not yet identified.

  19. EhMAPK, the mitogen-activated protein kinase from Entamoeba histolytica is associated with cell survival.

    Directory of Open Access Journals (Sweden)

    Anupama Sardar Ghosh

    Full Text Available Mitogen Activated Protein Kinases (MAPKs are a class of serine/threonine kinases that regulate a number of different cellular activities including cell proliferation, differentiation, survival and even death. The pathogen Entamoeba histolytica possess a single homologue of a typical MAPK gene (EhMAPK whose identification was previously reported by us but its functional implications remained unexplored. EhMAPK, the only mitogen-activated protein kinase from the parasitic protist Entamoeba histolytica with Threonine-X-Tyrosine (TXY phosphorylation motif was cloned, expressed in E. coli and functionally characterized under different stress conditions. The expression profile of EhMAPK at the protein and mRNA level remained similar among untreated, heat shocked and hydrogen peroxide-treated samples in all cases of dose and time. But a significant difference was obtained in the phosphorylation status of the protein in response to different stresses. Heat shock at 43°C or 0.5 mM H(2O(2 treatment enhanced the phosphorylation status of EhMAPK and augmented the kinase activity of the protein whereas 2.0 mM H(2O(2 treatment induced dephosphorylation of EhMAPK and loss of kinase activity. 2.0 mM H(2O(2 treatment reduced parasite viability significantly but heat shock and 0.5 mM H(2O(2 treatment failed to adversely affect E. histolytica viability. Therefore, a distinct possibility that activation of EhMAPK is associated with stress survival in E. histolytica is seen. Our study also gives a glimpse of the regulatory mechanism of the protein under in vivo conditions. Since the parasite genome lacks any typical homologue of mammalian MEK, the dual specificity kinases which are the upstream activators of MAPK, indications of the existence of some alternate regulatory mechanisms of the EhMAPK activity is perceived. These may include the autophosphorylation activity of the protein itself in combination with some upstream phosphatases which are not yet identified.

  20. Dietary modulation of rat colonic cAMP-dependent protein kinase activity.

    Science.gov (United States)

    Aukema, H M; Davidson, L A; Chang, W C; Lupton, J R; Derr, J N; Chapkin, R S

    1994-10-20

    Malignant transformation of cells is associated with enhanced proliferation and alterations in cAMP-dependent protein kinase (PKA) activity. To investigate the role of PKA in normal colonic cell proliferation, PKA was characterized in rat colonic mucosa. In addition, rats were fed diets containing different fats (corn oil, fish oil) and fibers (pectin, cellulose, fiber free) to elicit varying levels of colonic cell proliferation in order to study this signaling system under normal physiologic conditions. Overall, PKA activities were higher in cytosolic compared to membrane fractions. PKA type II (PKA II) isozyme contributed 89 +/- 1% and 96 +/- 1% of total PKA activity in cytosolic and membrane fractions, respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed the presence of mRNA for both the alpha and beta isoforms of the regulatory subunits of PKA II. PKA activities were 21-33% higher in distal membrane and total distal fractions in rats fed a cellulose/corn oil diet compared to animals consuming the other fiber/fat diets. These effects were seen only in the distal colon, where the number of cells per crypt column was elevated only in animals fed the cellulose/corn oil diet relative to other diets. Diet-induced mitogenic responses did not involve significant changes in the relative activity of PKA I and II isozymes. These data demonstrate that dietary effects on PKA activity in the distal colon may be related to changes in cell differentiation as indicated by the number of cells per crypt column. PMID:7948042

  1. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wenjuan; Huang, Hui; Wang, Yanfei [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Tsz Yan [Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wang, C.C. [Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Leung, Lai K., E-mail: laikleung@cuhk.edu.hk [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2013-06-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice.

  2. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    International Nuclear Information System (INIS)

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice

  3. T3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets

    Science.gov (United States)

    Videla, Luis A; Fernández, Virginia; Cornejo, Pamela; Vargas, Romina; Morales, Paula; Ceballo, Juan; Fischer, Alvaro; Escudero, Nicolás; Escobar, Oscar

    2014-01-01

    AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver. METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum β-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA). RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-β and transforming growth factor-β-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1α (CPT-1α) activation and higher expression of peroxisome proliferator-activated receptor-γ co-activator-1α and that of the fatty acid oxidation (FAO)-related enzymes CPT-1α, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of β-hydroxybutyrate, a surrogate marker for hepatic FAO. CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury. PMID:25516653

  4. Piperlongumine as a potential activator of AMP-activated protein kinase in HepG2 cells.

    Science.gov (United States)

    Ryu, Jahee; Kim, Myoung-Jin; Kim, Tae-Oh; Huh, Tae-Lin; Lee, Sung-Eun

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of fatty acid biosynthesis and fatty acid oxidation throughout the body. Piperlongumine (PL) isolated from Piper longum (L.) was shown to potently upregulate activation of AMPK via phosphorylation and inactivation of acetyl-CoA carboxylases in cultured HepG2 cells, presumably enhancing the transfer of fatty acids into mitochondrial cells by inhibiting malonyl-CoA production. PL showed cytotoxicity on HepG2 cell growth at the concentration of 5 μM of PL, while more than 80% of HepG2 cells were survived at the concentration of 2 μM of PL. Overall, the results of this study indicate that PL activates AMPK phosphorylation and possesses cytotoxicity in HepG2 cells. PMID:24853732

  5. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning.

    Science.gov (United States)

    Crow, T; Xue-Bian, J J; Siddiqi, V; Kang, Y; Neary, J T

    1998-05-01

    The pathway supporting the conditioned stimulus (CS) is one site of plasticity that has been studied extensively in conditioned Hermissenda. Several signal transduction pathways have been implicated in classical conditioning of this preparation, although the major emphasis has been on protein kinase C. Here we provide evidence for the activation and phosphorylation of a mitogen-activated protein kinase (MAPK) pathway by one-trial and multi-trial conditioning. A one-trial in vitro conditioning procedure consisting of light (CS) paired with the application of 5-HT results in the increased incorporation of 32PO4 into proteins detected with two-dimensional gel electrophoresis. Two of the phosphoproteins have molecular weights of 44 and 42 kDa, consistent with extracellular signal-regulated protein kinases (ERK1 and ERK2). Phosphorylation of the 44 and 42 kDa proteins by one-trial conditioning was inhibited by pretreatment with PD098059, A MEK1 (ERK-Activating kinase) inhibitor. Assays of ERK activity with brain myelin basic protein as a substrate revealed greater ERK activity for the group that received one-trial conditioning compared with an unpaired control group. Western blot analysis of phosphorylated ERK using antibodies recognizing the dually phosphorylated forms of ERK1 and ERK2 showed an increase in phosphorylation after one-trial conditioning compared with unpaired controls. The increased phosphorylation of ERK after one-trial conditioning was blocked by pretreatment with PD098059. Hermissenda that received 10 or 15 conditioning trials showed significant behavioral suppression compared with pseudo-random controls. After conditioning and behavioral testing, the conditioned animals showed significantly greater phosphorylation of ERK compared with the pseudo-random controls. These results show that the ERK-MAPK signaling pathway is activated in Pavlovian conditioning of Hermissenda.

  6. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  7. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  8. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  9. AMP-activated protein kinase (AMPK mediates nutrient regulation of thioredoxin-interacting protein (TXNIP in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maayan Shaked

    Full Text Available Thioredoxin-interacting protein (TXNIP regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression. The mechanisms involved in the opposing effects of glucose and fatty acids on TXNIP expression are unknown. We found that both palmitate and oleate inhibited TXNIP in a rat beta-cell line and islets. Palmitate inhibition of TXNIP was independent of fatty acid beta-oxidation or esterification. AMP-activated protein kinase (AMPK has an important role in cellular energy sensing and control of metabolic homeostasis; therefore we investigated its involvement in nutrient regulation of TXNIP. As expected, glucose inhibited whereas palmitate stimulated AMPK. Pharmacologic activators of AMPK mimicked fatty acids by inhibiting TXNIP. AMPK knockdown increased TXNIP expression in presence of high glucose with and without palmitate, indicating that nutrient (glucose and fatty acids effects on TXNIP are mediated in part via modulation of AMPK activity. TXNIP is transcriptionally regulated by carbohydrate response element-binding protein (ChREBP. Palmitate inhibited glucose-stimulated ChREBP nuclear entry and recruitment to the Txnip promoter, thereby inhibiting Txnip transcription. We conclude that AMPK is an important regulator of Txnip transcription via modulation of ChREBP activity. The divergent effects of glucose and fatty acids on TXNIP expression result in part from their opposing effects on AMPK activity. In light of the important role of TXNIP in beta-cell apoptosis, its inhibition by fatty acids can be regarded as an adaptive/protective response to glucolipotoxicity. The finding that AMPK mediates nutrient regulation of TXNIP may have important implications for the pathophysiology and treatment

  10. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  11. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection.

    Science.gov (United States)

    Lee, Changhee; Kim, Youngnam; Jeon, Ji Hyun

    2016-08-15

    The mitogen-activated protein kinase (MAPK) pathways, which are central building blocks in the intracellular signaling network, are often manipulated by viruses of diverse families to favor their replication. Among the MAPK family, the extracellular signal-regulated kinase (ERK) pathway is known to be modulated during the infection with porcine epidemic diarrhea virus (PEDV); however, involvement of stress-activated protein kinases (SAPKs) comprising p38 MAPK and c-Jun NH2-terminal kinase (JNK) remains to be determined. Therefore, in the present study, we investigated whether activation of p38 MAPK and JNK cascades is required for PEDV replication. Our results showed that PEDV activates p38 MAPK and JNK1/2 up to 24h post-infection, whereas, thereafter their phosphorylation levels recede to baseline levels or even fall below them. Notably, UV-irradiated inactivated PEDV, which can enter cells but cannot replicate inside them, failed to induce phosphorylation of p38 MAPK and JNK1/2 suggesting that viral biosynthesis is essential for activation of these kinases. Treatment of cells with selective p38 or JNK inhibitors markedly impaired PEDV replication in a dose-dependent manner and these antiviral effects were found to be maximal during the early times of the infection. Furthermore, direct pharmacological inhibition of p38 MAPK or JNK1/2 activation resulted in a significant reduction of viral RNA synthesis, viral protein expression, and progeny release. However, independent treatments with either SAPK inhibitor did not inhibit PEDV-induced apoptotic cell death mediated by activation of mitochondrial apoptosis-inducing factor (AIF) suggesting that SAPKs are irrelevant to the apoptosis pathway during PEDV infection. In summary, our data demonstrated critical roles of the p38 and JNK1/2 signaling pathways in facilitating successful viral infection during the post-entry steps of the PEDV life cycle. PMID:27215486

  12. Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Chen Yi-Ping

    2006-08-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation. Results This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research. Conclusion Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

  13. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  14. Proteolytic Inhibition of Salmonella enterica Serovar Typhimurium-Induced Activation of the Mitogen-Activated Protein Kinases ERK and JNK in Cultured Human Intestinal Cells

    OpenAIRE

    Mynott, Tracey L.; Crossett, Ben; Prathalingam, S. Radhika

    2002-01-01

    Bromelain, a mixture of cysteine proteases from pineapple stems, blocks signaling by the mitogen-activated protein (MAP) kinases extracellular regulated kinase 1 (ERK-1) and ERK-2, inhibits inflammation, and protects against enterotoxigenic Escherichia coli infection. In this study, we examined the effect of bromelain on Salmonella enterica serovar Typhimurium infection, since an important feature of its pathogenesis is its ability to induce activation of ERK-1 and ERK-2, which leads to inter...

  15. Hyperlipidemia intensifies cerulein-induced acute pancreatitis associated with activation of protein kinase C in rats

    Institute of Scientific and Technical Information of China (English)

    Ya-Jun Wang; Jia-Bang Sun; Fei Li; Shu-Wen Zhang

    2006-01-01

    AIM: To investigate the effects of hyperlipidemia on acute pancreatitis (AP) and the possible mechanisms.METHODS: Rat models of hyperlipidemia and AP were established by Triton WR1339 and cerulein respectively.Human albumin was used to treat AP complicated by hyperlipidemia. In each group, we compared the histological score, volume of ascites, ratio of pancreatic wet/dry weight, serum amylase (AMY) and pancreatic acinar cell apoptosis. The level of protein kinase C (PKC) membrane translocation in pancreatic tissue was detected by Western blot.RESULTS: In the hyperlipidemia model established by Triton WR1339, triglyceride (TG) increased remarkably and reached its peak 6 h after injection, and most rats developed mild acute pancreatitis. Histological score, volume of ascites, ratio of wet/dry weight and serum AMY in AP animals with hyperlipidemia were obviously higher than those in AP animals (P <0.05) and decreased after albumin therapy but not significantly (P > 0.05). Apoptotic cells detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) increased in AP animals with hyperlipidemia and did not change distinctly after albumin therapy. PKC membrane translocation level increased in AP animals with hyperlipidemia and decreased remarkably after albumin therapy (P < 0.05).CONCLUSION: Hyperlipidemia may induce AP or intensify pancreatic injury. Albumin therapy can not alleviate pancreatic lesion effectively. PKC activation may be one mechanism by which AP is intensified by hyperlipidemia.

  16. p21-Activated protein kinases and their emerging roles in glucose homeostasis.

    Science.gov (United States)

    Chiang, Yu-ting Alex; Jin, Tianru

    2014-04-01

    p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.

  17. Alpha-latrotoxin modulates the secretory machinery via receptor-mediated activation of protein kinase C.

    Science.gov (United States)

    Liu, Jie; Wan, Qunfang; Lin, Xianguang; Zhu, Hongliang; Volynski, Kirill; Ushkaryov, Yuri; Xu, Tao

    2005-09-01

    The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C. PMID:16101679

  18. Influence of physical activity of racehorses on lactate dehydrogenase and creatine kinase activities, and protein synthesis

    Directory of Open Access Journals (Sweden)

    Jović Slavoljub

    2013-01-01

    Full Text Available The aim of the research was to assess the effects of physical activity of various intensity on the degree of damage to certain organs resulting from increased free radical production, as well as the adaptability of the organism to physical exercise. Two groups of healthy 3-5-year-old full-blooded racehorses were assessed. The first one ran a 2400-meter gallop race, which is considered a short-lasting, intense physical activity; lipid status was assessed prior to, and 48 and 72 h after the race. The second group ran a forty-kilometer endurance ride, which is a long-lasting moderate physical activity; the lipid status was assessed immediately before, on finishing and 48, 72, 96, 120 and 144 h after the race. The total activity of LDH changed 72 h and 96 h following the gallop race (p>0.05, whilst the maximum activity was measured immediately after the endurance ride. By means of electrophoresis LDH in all the horses 5 isoforms were detected. The activity of LDH1 72 h after the gallop race significantly rose in comparison to the one before the race (p0.05. Following the endurance ride LDH1 activity rose at all sampling times, reaching the maximum at 96 h and 144 h in comparison to the values both before and on finishing the ride (p<0.01. The increase in the activity of LDH2 was significantly higher 48 h, 72 h, 96 h and 120 h (p<0.05 after the race in comparison to that before the race, and at 48 h, 72 h, 96 h, 120 h and 144 h (p<0.05 in comparison to the values on finishing the race. LDH3 activity significantly decreased and LDH5 rose immediately after the endurance ride (p<0.01, whilst LDH4 significantly rose at all times following the endurance ride (p<0.01. The CK activity pointed to high, medium and low degree of adaptation of horses to physical activity. The concentrations of total proteins, albumins and globulins remained within the physiological range at all sampling times, with the exception of 96 h after the endurance ride, when the fall

  19. Activation of resting human T cells requires prolonged stimulation of protein kinase C.

    OpenAIRE

    Berry, N; Ase, K; Kishimoto, A.; Nishizuka, Y

    1990-01-01

    Purified resting human T cells can be induced to express the alpha subunit of the interleukin 2 receptor and to proliferate by treatment with 12-O-tetradecanoylphorbol-13-acetate plus ionomycin but not with 1,2-dioctanoylglycerol plus ionomycin. Determination of the translocation of protein kinase C showed that 12-O-tetradecanoylphorbol-13-acetate plus ionomycin caused a prolonged membrane association of the enzyme for more than 4 hr, whereas 1,2-dioctanoylglycerol plus ionomycin induced a tr...

  20. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C

    DEFF Research Database (Denmark)

    Oh, E S; Woods, A; Couchman, J R

    1997-01-01

    During cell-matrix adhesion, both tyrosine and serine/threonine kinases are activated. Integrin ligation correlates with tyrosine phosphorylation, whereas the later stages of spreading and focal adhesion and stress fiber formation in primary fibroblasts requires interactions of cell surface...... adhesions. This represents the first report of direct transmembrane signaling through cell surface proteoglycans....

  1. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7.

    OpenAIRE

    Bardwell, L; Cook, J G; E. C. Chang; Cairns, B R; Thorner, J

    1996-01-01

    Kss1 and Fus3 are mitogen-activated protein kinases (MAPKs or ERKs), and Ste7 is their activating MAPK/ERK kinase (MEK), in the pheromone response pathway of Saccharomyces cerevisiae. To investigate the potential role of specific interactions between these enzymes during signaling, their ability to associate with each other was examined both in solution and in vivo. When synthesized by in vitro translation, Kss1 and Fus3 could each form a tight complex (Kd of approximately 5 nM) with Ste7 in ...

  2. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas;

    2009-01-01

    The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of...... numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites, the...... the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2...

  3. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity.

    Science.gov (United States)

    Liu, Chenghui; Chang, Lijuan; Wang, Honghong; Bai, Jie; Ren, Wei; Li, Zhengping

    2014-06-17

    Protein kinases play important regulatory roles in intracellular signal transduction pathways. The aberrant activities of protein kinases are closely associated with the development of various diseases, which necessitates the development of practical and sensitive assays for monitoring protein kinase activities as well as for screening of potential kinase-targeted drugs. We demonstrate here a robust luminescence resonance energy transfer (LRET)-based protein kinase assay by using NaYF4:Yb,Er, one of the most efficient upconversion nanophosphors (UCNPs), as an autofluorescence-free LRET donor and a tetramethylrhodamine (TAMRA)-labeled substrate peptide as the acceptor. Fascinatingly, besides acting as the LRET donor, NaYF4:Yb,Er UCNPs also serve as the phosphopeptide-recognizing matrix because the intrinsic rare earth ions of UCNPs can specifically capture the fluorescent phosphopeptides catalyzed by protein kinases over the unphosphorylated ones. Therefore, a sensitive and generic protein kinase assay is developed in an extremely simple mix-and-read format without any requirement of surface modification, substrate immobilization, separation, or washing steps, showing great potential in protein kinases-related clinical diagnosis and drug discovery. To the best of our knowledge, this is the first report by use of rare earth-doped UCNPs as both the phospho-recognizing and signal reporting elements for protein kinase analysis.

  4. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity.

    Science.gov (United States)

    Liu, Chenghui; Chang, Lijuan; Wang, Honghong; Bai, Jie; Ren, Wei; Li, Zhengping

    2014-06-17

    Protein kinases play important regulatory roles in intracellular signal transduction pathways. The aberrant activities of protein kinases are closely associated with the development of various diseases, which necessitates the development of practical and sensitive assays for monitoring protein kinase activities as well as for screening of potential kinase-targeted drugs. We demonstrate here a robust luminescence resonance energy transfer (LRET)-based protein kinase assay by using NaYF4:Yb,Er, one of the most efficient upconversion nanophosphors (UCNPs), as an autofluorescence-free LRET donor and a tetramethylrhodamine (TAMRA)-labeled substrate peptide as the acceptor. Fascinatingly, besides acting as the LRET donor, NaYF4:Yb,Er UCNPs also serve as the phosphopeptide-recognizing matrix because the intrinsic rare earth ions of UCNPs can specifically capture the fluorescent phosphopeptides catalyzed by protein kinases over the unphosphorylated ones. Therefore, a sensitive and generic protein kinase assay is developed in an extremely simple mix-and-read format without any requirement of surface modification, substrate immobilization, separation, or washing steps, showing great potential in protein kinases-related clinical diagnosis and drug discovery. To the best of our knowledge, this is the first report by use of rare earth-doped UCNPs as both the phospho-recognizing and signal reporting elements for protein kinase analysis. PMID:24871878

  5. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.;

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... that these conditions bypassed the requirement for the meiotic activator Mei3. Since Mei3 is normally needed for inactivation of the meiosis-repressing protein kinase Pat1, this finding suggests that the strong Byr2 signal causes inactivation of Pat1 by an alternative mechanism. Consistent with this possibility, we...

  6. Regulation of EGF-induced ERK/MAPK Activation and EGFR Internalization by G Protein-coupled Receptor Kinase 2

    Institute of Scientific and Technical Information of China (English)

    Jingxia GAO; Jiali LI; Lan MA

    2005-01-01

    G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5-fold (P<0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ opioid receptor internalization by approximately 40% (P<0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.

  7. Extracellular Microvesicles from Astrocytes Contain Functional Glutamate Transporters: Regulation by Protein Kinase C and Cell Activation

    Directory of Open Access Journals (Sweden)

    Romain-Daniel eGosselin

    2013-12-01

    Full Text Available Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes and because the Protein Kinase C (PKC family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.

  8. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.L.; Sato, Mitsuhiro; Cao, Boliang; Richie, J.P. [Harvard Medical School, Boston, MA (United States)

    1996-08-20

    UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirements for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-{alpha}-and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis. 40 refs., 5 figs.

  9. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle...... from wild-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P < 0.001). Basal IL-6 release from...

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  11. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  12. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  13. An Expanded Role for AMP-activated Protein Kinase-Regulator of Myocardial Protein Degradation

    OpenAIRE

    Baskin, Kedryn K.; Taegtmeyer, Heinrich

    2011-01-01

    Rudolph Schoenheimer’s concept of the “dynamic state of body constituents” has existed since the 1940s, but the idea that heart muscle cells renew themselves from within is relatively new. Many studies have elucidated the interaction of metabolic pathways for energy provision and contraction of the heart, and work in the field has uncovered novel metabolic regulators of enzyme action. However, the impact of myocardial energy metabolism on myocardial protein turnover has received little attent...

  14. Protein kinase C{eta} activates NF-{kappa}B in response to camptothecin-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Raveh-Amit, Hadas; Hai, Naama; Rotem-Dai, Noa; Shahaf, Galit [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel); Gopas, Jacob [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel); The Department of Oncology, Soroka University Medical Center, Beer-Sheva 84105 (Israel); Livneh, Etta, E-mail: etta@bgu.ac.il [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel)

    2011-08-26

    Highlights: {yields} Protein kinase C-eta (PKC{eta}) is an upstream regulator of the NF-{kappa}B signaling pathway. {yields} PKC{eta} activates NF-{kappa}B in non-stressed conditions and in response to DNA damage. {yields} PKC{eta} regulates NF-{kappa}B by activating I{kappa}B kinase (IKK) and inducing I{kappa}B degradation. -- Abstract: The nuclear factor {kappa}B (NF-{kappa}B) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-{kappa}B in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-{kappa}B regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKC{eta}) regulates NF-{kappa}B upstream signaling by activating the I{kappa}B kinase (IKK) and the degradation of I{kappa}B. Furthermore, PKC{eta} enhances the nuclear translocation and transactivation of NF-{kappa}B under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKC{eta} confers protection against DNA damage-induced apoptosis. Our present study suggests that PKC{eta} is involved in NF-{kappa}B signaling leading to drug resistance.

  15. Mechanism of activation and functional role of protein kinase Ceta in human platelets.

    Science.gov (United States)

    Bynagari, Yamini S; Nagy, Bela; Tuluc, Florin; Bhavaraju, Kamala; Kim, Soochong; Vijayan, K Vinod; Kunapuli, Satya P

    2009-05-15

    The novel class of protein kinase C (nPKC) isoform eta is expressed in platelets, but not much is known about its activation and function. In this study, we investigated the mechanism of activation and functional implications of nPKCeta using pharmacological and gene knock-out approaches. nPKCeta was phosphorylated (at Thr-512) in a time- and concentration-dependent manner by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1 receptor antagonist, or YM-254890, a G(q) blocker, abolished 2MeSADP-induced phosphorylation of nPKCeta. Similarly, ADP failed to activate nPKCeta in platelets isolated from P2Y1 and G(q) knock-out mice. However, pretreatment of platelets with P2Y12 receptor antagonist, AR-C69331MX did not interfere with ADP-induced nPKCeta phosphorylation. In addition, when platelets were activated with 2MeSADP under stirring conditions, although nPKCeta was phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by activated integrin alpha(IIb)beta3 mediated outside-in signaling. Moreover, in the presence of SC-57101, a alpha(IIb)beta3 receptor antagonist, nPKCeta dephosphorylation was inhibited. Furthermore, in murine platelets lacking PP1cgamma, a catalytic subunit of serine/threonine phosphatase, alpha(IIb)beta3 failed to dephosphorylate nPKCeta. Thus, we conclude that ADP activates nPKCeta via P2Y1 receptor and is subsequently dephosphorylated by PP1gamma phosphatase activated by alpha(IIb)beta3 integrin. In addition, pretreatment of platelets with eta-RACK antagonistic peptides, a specific inhibitor of nPKCeta, inhibited ADP-induced thromboxane generation. However, these peptides had no affect on ADP-induced aggregation when thromboxane generation was blocked. In summary, nPKCeta positively regulates agonist-induced thromboxane generation with no effects on platelet aggregation. PMID:19286657

  16. Mitogen-activated protein kinases with distinct requirements for Ste5 scaffolding influence signaling specificity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Flatauer, Laura J; Zadeh, Sheena F; Bardwell, Lee

    2005-03-01

    Scaffold proteins are believed to enhance specificity in cell signaling when different pathways share common components. The prototype scaffold Ste5 binds to multiple components of the Saccharomyces cerevisiae mating pheromone response pathway, thereby conducting the mating signal to the Fus3 mitogen-activated protein kinase (MAPK). Some of the kinases that Ste5 binds to, however, are also shared with other pathways. Thus, it has been presumed that Ste5 prevents its bound kinases from transgressing into other pathways and protects them from intrusions from those pathways. Here we found that Fus3MAPK required Ste5 scaffolding to receive legitimate signals from the mating pathway as well as misdirected signals leaking from other pathways. Furthermore, increasing the cellular concentration of active Ste5 enhanced the channeling of inappropriate stimuli to Fus3. This aberrant signal crossover resulted in the erroneous induction of cell cycle arrest and mating. In contrast to Fus3, the Kss1 MAPK did not require Ste5 scaffolding to receive either authentic or leaking signals. Furthermore, the Ste11 kinase, once activated via Ste5, was able to signal to Kss1 independently of Ste5 scaffolding. These results argue that Ste5 does not act as a barrier that actively prevents signal crossover to Fus3 and that Ste5 may not effectively sequester its activated kinases away from other pathways. Rather, we suggest that specificity in this network is promoted by the selective activation of Ste5 and the distinct requirements of the MAPKs for Ste5 scaffolding. PMID:15713635

  17. FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental colitis in mice

    Institute of Scientific and Technical Information of China (English)

    Takashi Nishimura; Akira Andoh; Atsushi Nishida; Makoto Shioya; Yuhsuke Koizumi; Tomoyuki Tsujikawa; Yoshihide Fujiyama

    2008-01-01

    AIM: To investigate the effects of FR167653 on the development of dextran sulfate sodium (DSS)-induced colitis in mice.METHODS: BALB/c mice were fed rodent chow containing 3.5% (wt/wt) DSS. The recipient mice underwent intra-peritoneal injection of vehicles or FR167653 (30 mg/kg per day). The mice were sacrificed on day 14, and the degree of colitis was assessed. Immunohistochemical analyses for CD4+ T cell and F4/80+ macrophage infiltration were also performed. Mucosal o/tokine expression was analyzed by RT-PCR.RESULTS: The body weight loss was more apparent in the FR167653-treated DSS mice than in the vehicle-treated DSS mice. The colon length was shorter in the FR167653-treated DSS mice than in the vehicle-treated DSS mice. Disease activity index and histological colitis score were significantly higher in FR167653- than in vehicle-treated DSS animals. Microscopically, mucosal edema, cellular infiltration (CD4 T cells and F4/80 macrophages), and the disruption of the epithelium were much more severe in FR167653-treated mice than in controls. Mucosal mRNA expression for interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were found to be markedly reduced in FR167653-treated DSS mice.CONCLUSION: Treatment with FR167653 aggravated DSS colitis in mice. This effect was accompanied by a reduction of mucosal IL-1β and TNF-α expression, suggesting a role of p38 mitogen-activated protein kinase (MAPK)-mediated proinflammatory cytokine induction in host defense mechanisms.

  18. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase.

    Science.gov (United States)

    Yamashita, Yoko; Wang, Liuqing; Wang, Lihua; Tanaka, Yuki; Zhang, Tianshun; Ashida, Hitoshi

    2014-10-01

    It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT.

  19. Primate Torpor:Regulation of Stress-activated Protein Kinases During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    Institute of Scientific and Technical Information of China (English)

    Kyle K Biggar; Cheng-Wei Wu; Shannon N Tessier; Jing Zhang; Fabien Pifferi; Martine Perret; Kenneth B Storey

    2015-01-01

    Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs), c-jun NH2-terminal kinases (JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected down-stream cellular processes. In response to torpor, each MAPK subfamily responded differently dur-ing torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.

  20. Primate Torpor: Regulation of Stress-activated Protein Kinases During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    Directory of Open Access Journals (Sweden)

    Kyle K. Biggar

    2015-04-01

    Full Text Available Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK family members to primate torpor were compared in six organs of control (aroused versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs, c-jun NH2-terminal kinases (JNKs, MAPK kinase (MEK, and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27. The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.

  1. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  2. Activation of AMP-Activated Protein Kinase Is Required for Berberine-Induced Reduction of Atherosclerosis in Mice: The Role of Uncoupling Protein 2

    OpenAIRE

    Qilong Wang; Miao Zhang; Bin Liang; Najeeb Shirwany; Yi Zhu; Ming-Hui Zou

    2011-01-01

    AIMS: Berberine, a botanical alkaloid purified from Coptidis rhizoma, is reported to activate the AMP-activated protein kinase (AMPK). Whether AMPK is required for the protective effects of berberine in cardiovascular diseases remains unknown. This study was designed to determine whether AMPK is required for berberine-induced reduction of oxidative stress and atherosclerosis in vivo. METHODS: ApoE (ApoE⁻/⁻) mice and ApoE⁻/⁻/AMPK alpha 2⁻/⁻ mice that were fed Western diets were treated with be...

  3. Salinomycin activates AMP-activated protein kinase-dependent autophagy in cultured osteoblastoma cells: a negative regulator against cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Lun-qing Zhu

    Full Text Available BACKGROUND: The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both in vivo and in vitro, however, its role in osteoblastoma is still not clear. KEY FINDINGS: Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibition of autophagy by 3-methyladenine (3-MA, or by RNA interference (RNAi of light chain 3B (LC3B, enhanced salinomycin-induced cytotoxicity and apoptosis. Salinomycin induced a profound AMP-activated protein kinase (AMPK activation, which was required for autophagy induction. AMPK inhibition by compound C, or by AMPKα RNAi prevented salinomycin-induced autophagy activation, while facilitating cancer cell death and apoptosis. On the other hand, the AMPK agonist AICAR promoted autophagy activation in U2OS cells. Salinomycin-induced AMPK activation was dependent on reactive oxygen species (ROS production in osteoblastoma cells. Antioxidant n-acetyl cysteine (NAC significantly inhibited salinomycin-induced AMPK activation and autophagy induction. CONCLUSIONS: Salinomycin activates AMPK-dependent autophagy in osteoblastoma cells, which serves as a negative regulator against cell apoptosis. AMPK-autophagy inhibition might be a novel strategy to sensitize salinomycin's effect in cancer cells.

  4. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy.

    Science.gov (United States)

    Sopontammarak, Somkiat; Aliharoob, Assad; Ocampo, Catherina; Arcilla, Rene A; Gupta, Mahesh P; Gupta, Madhu

    2005-01-01

    Chronic pressure overload (PO) and volume overload (VO) result in morphologically and functionally distinct forms of myocardial hypertrophy. However, the molecular mechanism initiating these two types of hypertrophy is not yet understood. Data obtained from different cell types have indicated that the mitogen-activated protein kinases (MAPKs) comprising c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 play an important role in transmitting signals of stress stimuli to elicit the cellular response. We tested the hypothesis that early induction of MAPKs differs in two types of overload on the heart and associates with distinct expression of hypertrophic marker genes, namely ANF, alpha-myosin heavy chain (alpha-MHC), and beta-MHC. In rats, VO was induced by aortocaval shunt and PO by constriction of the abdominal aorta. The PO animals were further divided into two groups depending on the severity of the constriction, mild (MPO) and severe pressure overload (SPO), having 35 and 85% aortic constriction, respectively. Early changes in MAPK activity (2-120 min and 1 to 2 d) were analyzed by the in vitro kinase assay using kinase-specific antibodies for p38, JNK, and ERK2. The change in expression of hypertrophy marker genes was examined by Northern blot analysis. In VO hypertrophy, the activity of p38 was markedly increased (10-fold), without changing the activity of ERK and JNK. However, during PO hypertrophy, the activity of JNK was significantly increased (two- to sixfold) and depended on the severity of the load. The activity of p38 was not changed in MPO hypertrophy, whereas it was slightly elevated (50%) in hearts with SPO. Similarly, ERK activity was not changed in hearts with MPO, but a transient rise in activity was observed in hearts with SPO. The expression of ANF and beta-MHC genes was elevated in both PO and VO hypertrophy; however, this change was much greater in hearts subjected to PO than VO hypertrophy. Alpha

  5. Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates

    DEFF Research Database (Denmark)

    Jers, Carsten; Pedersen, Malene Mejer; Paspaliari, Dafni Katerina;

    2010-01-01

    P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine-phosphorylated prote......A was dramatically altered in Delta ptkA background. Our results confirm that PtkA can control enzyme activity of its substrates in some cases, but also reveal a new mode of action for PtkA, namely ensuring correct cellular localization of its targets.......-phosphorylated proteins in B. subtilis. We found that the majority of these proteins could be phosphorylated by PtkA in vitro. Among these new substrates, single-stranded DNA exonuclease YorK, and aspartate semialdehyde dehydrogenase Asd were activated by PtkA-dependent phosphorylation. Because enzyme activity...

  6. Immunomodulatory effects of therapeutic gold compounds. Gold sodium thiomalate inhibits the activity of T cell protein kinase C.

    OpenAIRE

    Hashimoto, K; Whitehurst, C. E.; Matsubara, T.; Hirohata, K; Lipsky, P E

    1992-01-01

    Previous studies have shown that the gold compounds, gold sodium thiomalate (GST) and auranofin (AUR), which are effective in the treatment of rheumatoid arthritis, inhibit functional activities of a variety of cells, but the biochemical basis of their effect is unknown. In the current studies, human T cell proliferation and interleukin 2 production by Jurkat cells were inhibited by GST or AUR at pharmacologically relevant concentrations. Because it has been documented that protein kinase C (...

  7. Aspergillus nidulans Natural Product Biosynthesis Is Regulated by MpkB, a Putative Pheromone Response Mitogen-Activated Protein Kinase

    International Nuclear Information System (INIS)

    The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters. (author)

  8. Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo*

    OpenAIRE

    Lee-Young, Robert S; Griffee, Susan R.; Lynes, Sara E.; Bracy, Deanna P.; Julio E Ayala; McGuinness, Owen P.; Wasserman, David H.

    2009-01-01

    AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, w...

  9. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis

    OpenAIRE

    Karima, M; Kantarci, A.; Ohira, T; Hasturk, H.; Jones, V. L.; Nam, B-H.; Malabanan, A.; Trackman, P.C.; Badwey, J A; Van Dyke, T. E.

    2005-01-01

    Inflammation and oxidative stress are important factors in the pathogenesis of diabetes and contribute to the pathogenesis of diabetic complications. Periodontitis is an inflammatory disease that is characterized by increased oxidative stress, and the risk for periodontitis is increased significantly in diabetic subjects. In this study, we examined the superoxide (O2−)-generating reduced nicotinamide adenine dinucleotide phosphate-oxidase complex and protein kinase C (PKC) activity in neutrop...

  10. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    OpenAIRE

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent e...

  11. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.; Lees-Miller, S.P.; Lintott, L.G. [Univ. of Calgary, Alberta (Canada). Dept. of Biological Sciences; Sakaguchi, Kazuyasu; Appella, E. [National Institutes of Health, Bethesda, MD (United States). Lab. of Cell Biology

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  12. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases.

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Jeong, Jinsu; Lee, Hye-Youn; Park, Kyoung-Chel; Koo, Bon Soon; Kim, Byung-Jin; Kim, Tae-Hyeon; Lee, Seung Ho; Hwang, Sung-Yeon; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2011-07-01

    Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.

  13. Protein Crystals of Raf Kinase

    Science.gov (United States)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  14. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A.; Schechtman, Deborah

    2016-01-01

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules. PMID:26911897

  15. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes.

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A; Schechtman, Deborah

    2016-02-25

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules.

  16. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  17. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange.

    OpenAIRE

    Pettit, F H; Humphreys, J; Reed, L J

    1982-01-01

    Endogenous kinase activity of highly purified pyruvate dehydrogenase complex from bovine kidney is markedly inhibited by N-ethylmaleimide and by certain disulfides. Inhibition by disulfides is highly specific and is reversed by thiols. 5,5'-Dithiobis(2-nitrobenzoate) is the most potent inhibitor, showing significant inhibition at a concentration as low as 1 microM. Cystamine, oxidized glutathione, pantethine, lipoic acid, lipoamide, ergothionine, insulin, oxytocin, and vasopressin were ineffe...

  18. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica.

    Science.gov (United States)

    Rider, Mark H; Hussain, Nusrat; Horman, Sandrine; Dilworth, Stephen M; Storey, Kenneth B

    2006-12-01

    Survival in the frozen state depends on biochemical adaptations that deal with multiple stresses on cells including long-term ischaemia and tissue dehydration. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the metabolic re-sculpting that occurs during freezing. AMPK activity and the phosphorylation state of translation factors were measured in liver and skeletal muscle of wood frogs (Rana sylvatica) subjected to anoxia, dehydration, freezing, and thawing after freezing. AMPK activity was increased 2-fold in livers of frozen frogs compared with the controls whereas in skeletal muscle, AMPK activity increased 2.5-, 4.5- and 3-fold in dehydrated, frozen and frozen/thawed animals, respectively. Immunoblotting with phospho-specific antibodies revealed an increase in the phosphorylation state of eukaryotic elongation factor-2 at the inactivating Thr56 site in livers from frozen frogs and in skeletal muscles of anoxic frogs. No change in phosphorylation state of eukaryotic initiation factor-2alpha at the inactivating Ser51 site was seen in the tissues under any of the stress conditions. Surprisingly, ribosomal protein S6 phosphorylation was increased 2-fold in livers from frozen frogs and 10-fold in skeletal muscle from frozen/thawed animals. However, no change in translation capacity was detected in cell-free translation assays with skeletal muscle extracts under any of the experimental conditions. The changes in phosphorylation state of translation factors are discussed in relation to the control of protein synthesis and stress-induced AMPK activation. PMID:16973146

  19. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-pil [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Chung, Sung Woon [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Hong, Ki Whan; Kim, Chi Dae [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  20. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation

    International Nuclear Information System (INIS)

    Research highlights: → Elevated cAMP activates both PKA and Epac. → PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. → Akt modulates PPAR-γ transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-γ (PPAR-γ) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-γ is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-γ. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-γ was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-γ transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-γ transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-γ, suggesting post-translational activation of PPAR-γ might be critical step for adipogenic gene expression.

  1. Effect of protein kinase C inhibitor (PKCI) on radiation sensitivity and c-fos transcription activity

    International Nuclear Information System (INIS)

    The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Normal (LM217) and AT (AT58IVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Our results demonstrate for the first time a role of PKCI on. the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells. Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a

  2. Protein kinase C activity is not involved in N-formylmethionyl-leucyl-phenylalanine-induced phospholipase D activation in human neutrophils, but is essential for concomitant NADPH oxidase activation: studies with a staurosporine analogue with improved selectivity for protein kinase C.

    Science.gov (United States)

    Kessels, G C; Krause, K H; Verhoeven, A J

    1993-06-15

    Stimulation of human neutrophils by the receptor agonist N-formylmethionyl-leucyl-phenylalanine (fMLP) results in a respiratory burst, catalysed by an NADPH oxidase. Concomitantly, phospholipase D (PLD) is activated. To investigate the role of protein kinase C (PKC) in these neutrophil responses, we have compared the effects of staurosporine and a structural analogue of staurosporine (cgp41251), that reflects a higher selectivity towards PKC [Meyer, Regenass, Fabbro, Alteri, Rösel, Müller, Caravatti and Matter (1989) Int. J. Cancer 43, 851-856]. Both staurosporine and cgp41251 dose-dependently inhibited the production of superoxide induced by phorbol 12-myristate 13-acetate (PMA). Both compounds also caused inhibition of the fMLP-induced respiratory burst, but with a lower efficacy during the initiation phase of this response. This latter observation cannot be taken as evidence against PKC involvement in the activation of the respiratory burst, because pretreatment of neutrophils with ionomycin before PMA stimulation also results in a lower efficacy of inhibition. Activation of PLD by fMLP was enhanced in the presence of staurosporine, but not in the presence of cgp41251. Enhancement of PLD activation was also observed in the presence of H-89, an inhibitor of cyclic-AMP-dependent protein kinase (PKA). Both staurosporine and H-89 reversed the dibutyryl-cyclic-AMP-induced inhibition of PLD activation, whereas cgp41251 was without effect. These results indicate that the potentiating effect of staurosporine on PLD activation induced by fMLP does not reflect a feedback inhibition by PKC activation, but instead a feedback inhibition by PKC activation. Taken together, our results indicate that in human neutrophils: (i) PKC activity is not essential for fMLP-induced activation of PLD; (ii) PKC activity does play an essential role in the activation of the respiratory burst by fMLP, other than mediating or modulating PLD activation; (iii) there exists a negative

  3. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  4. p38gamma and p38delta mitogen activated protein kinases (MAPKs, new stars in the MAPK galaxy

    Directory of Open Access Journals (Sweden)

    Alejandra eEscós

    2016-04-01

    Full Text Available The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK family. p38MAPK signalling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer

  5. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E;

    1995-01-01

    converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  6. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel.

    Directory of Open Access Journals (Sweden)

    Miguel A Lanaspa

    Full Text Available Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2 (summer and activation of AMP-activated protein kinase (AMPK (winter. Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2, as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation. Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC and decreased enoyl CoA hydratase (ECH1 and carnitine palmitoyltransferase 1A (CPT1A, rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel.

  7. Effect of high tidal volume ventilation and lipopolysaccharide on mitogen-activated protein kinase in rat lung tissue

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Mechanical ventilation, a crucial therapy to acute respiratory distress syndrome (ARDS), could exacerbate lung injury, and even result in ventilator-induced lung injury (VILI) if misused in some condition1. Over-activating inflammatory cells and expanding inflammatory responses, which are induced by infection, are fundamental reasons for ARDS. Among them, mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways are key processes. This study aimed to investigate the time course of MAPK activation in rat lung tissue after high tidal volume (VT) ventilation and the role of lipopolysaccharide (LPS) in high-sensitivity, and to elucidate the effect of the pathway on VILI.

  8. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment.

  9. Variation in genes coding for AMP-activated protein kinase (AMPK) and breast cancer risk in the European Prospective Investigation on Cancer (EPIC)

    NARCIS (Netherlands)

    Campa, Daniele; Claus, Rainer; Dostal, Lucie; Stein, Angelika; Chang-Claude, Jenny; Meidtner, Karina; Boeing, Heiner; Olsen, Anja; Tjonneland, Anne; Overvad, Kim; Rodriguez, Laudina; Bonet, Catalina; Sanchez, Maria-Jose; Amiano, Pilar; Huerta, Jose Maria; Barricarte, Aurelio; Khaw, Kay-Tee; Wareham, Nicholas; Travis, Ruth C.; Allen, Naomi E.; Trichopoulou, Antonia; Bamia, Christina; Benetou, Vassiliki; Palli, Domenico; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; van Kranen, Henk; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; van Gils, Carla H.; Lenner, Per; Sund, Malin; Lund, Eiliv; Gram, Inger Torhild; Rinaldi, Sabina; Chajes, Veronique; Romieu, Isabelle; Engel, Pierre; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Francoise; Siddiq, Afshan; Riboli, Elio; Canzian, Federico; Kaaks, Rudolf

    2011-01-01

    AMP-activated protein kinase (AMPK) is an energy sensing/signalling intracellular protein which is activated by an increase in the cellular AMP:ATP ratio after ATP depletion. Once activated, AMPK inhibits fatty acid synthesis and the Akt-mTOR pathway, and activates the p53-p21 axis. All these molecu

  10. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  11. Protein kinase Cζ regulates phospholipase D activity in rat-1 fibroblasts expressing the α1A adrenergic receptor

    Directory of Open Access Journals (Sweden)

    Bourgoin Sylvain G

    2004-01-01

    Full Text Available Abstract Background Phenylephrine (PHE, an α1 adrenergic receptor agonist, increases phospholipase D (PLD activity, independent of classical and novel protein kinase C (PKC isoforms, in rat-1 fibroblasts expressing α1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCζ to PLD activation in response to PHE in these cells. Results PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCζ translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCζ activity was reduced at 2 and 5 min and returned to a sub-basal level within 10–15 min. Ectopic expression of kinase-dead PKCζ, but not constitutively active PKCζ, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCζ reduced basal PKCζ activity and abolished PHE-induced PLD activation. Conclusion α1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCζ; Our data also suggest that catalytic activation of PKCζ is not required for PLD stimulation.

  12. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Siersbaek, Majken S; Chen, Li;

    2015-01-01

    Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...... for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo...... functional screening of known H-8 targets, we demonstrated that inhibition of protein kinase G1 (PRKG1) and consequent activation of RhoA-Akt signaling is the main mechanism through which H-8 enhances osteogenesis. Our studies revealed PRKG1 as a novel negative regulator of OB differentiation and suggest...

  13. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    Science.gov (United States)

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J

    2016-06-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  14. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways

    DEFF Research Database (Denmark)

    Xu, C.B.; Zheng, J.P.; Zhang, W.;

    2008-01-01

    ), elevated levels of ET(B) receptor mRNA (quantitative real-time PCR), and protein expressions (immunohistochemistry and Western blotting). Intracellular signaling was studied with Western blotting and phosphoELISA; this revealed that DSP induced extracellular-regulated protein kinases 1 and 2 (ERK1/2), p38......, and nuclear factor-kappaB (NF-kappaB) phosphorylation within 3 h. Blocking ERK1/2, p38, or NF-kappaB activation by their specific inhibitors significantly attenuated the DSP-induced upregulation of ET(B) receptor-mediated contraction and both ET(B) receptor mRNA and protein expression. In addition......, dexamethasone abolished the DSP-induced upregulation of ET(B) receptor-mediated contraction. In conclusion, upregulation of ET(B) receptors by DSP in arterial smooth muscle cells involves activation of mitogen-activating protein kinases (ERK1/2 and p38) and the downstream transcriptional factor NF...

  15. BRF1 Protein Turnover and mRNA Decay Activity Are Regulated by Protein Kinase B at the Same Phosphorylation Sites▿

    OpenAIRE

    Benjamin, Don; Schmidlin, Martin; Min, Lu; Gross, Brigitte; Moroni, Christoph

    2006-01-01

    BRF1 posttranscriptionally regulates mRNA levels by targeting ARE-bearing transcripts to the decay machinery. We previously showed that protein kinase B (PKB) phosphorylates BRF1 at Ser92, resulting in binding to 14-3-3 and impairment of mRNA decay activity. Here we identify an additional regulatory site at Ser203 that cooperates in vivo with Ser92. In vitro kinase labeling and wortmannin sensitivity indicate that Ser203 phosphorylation is also performed by PKB. Mutation of both serines to al...

  16. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2

    OpenAIRE

    Saharinen, Pipsa; Kerkelä, Katja; Ekman, Niklas; Marron, Marie; Brindle, Nicholas; Lee, Gyun Min; Augustin, Hellmut; Koh, Gou Young; Alitalo, Kari

    2005-01-01

    The Tie1 receptor tyrosine kinase was isolated over a decade ago, but so far no ligand has been found to activate this receptor. Here, we have examined the potential of angiopoietins, ligands for the related Tie2 receptor, to mediate Tie1 activation. We show that a soluble Ang1 chimeric protein, COMP-Ang1, stimulates Tie1 phosphorylation in endothelial cells with similar kinetics and angiopoietin dose dependence when compared with Tie2. The phosphorylation of overexpressed Tie1 was weakly ind...

  17. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase.

    Science.gov (United States)

    Akman, Hasan O; Sampayo, James N; Ross, Fiona A; Scott, John W; Wilson, Gregory; Benson, Lee; Bruno, Claudio; Shanske, Sara; Hardie, D Grahame; Dimauro, Salvatore

    2007-10-01

    A 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK). The report of a pathogenic mutation (R531Q) in the gene (PRKAG2) encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) in three infants with congenital hypertrophic cardiomyopathy, glycogen storage, and "pseudo PHK deficiency" prompted us to screen this gene in our patient. We found a novel (R384T) heterozygous mutation in PRKAG2, affecting an arginine residue in the N-terminal AMP-binding domain. Like R531Q, this mutation reduces the binding of AMP and ATP to the isolated nucleotide-binding domains, and prevents activation of the heterotrimer by metabolic stress in intact cells. The mutation was not found in DNA from the patient's father, the only available parent, and is likely to have arisen de novo. Our studies confirm that mutations in PRKAG2 can cause fatal infantile cardiomyopathy, often associated with apparent PHK deficiency.

  18. The Extract of Herbal Medicines Activates AMP-Activated Protein Kinase in Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Shin

    2013-01-01

    Full Text Available Our study investigated whether the extract of six herbal medicines (OB-1 has an inhibitory effect on obesity. High-fat diet-(HFD- induced rats and controls were treated with 40 mg/100 g body weight of OB-1 or saline once a day for 5 weeks. After significant changes in body weight were induced, OB-1 and saline were administered to each subgroup of HFD and control groups for additional 5 weeks. No statistically significant decrease of body weight in OB-1-treated rats was found compared to controls. However, OB-1-treated rats were found to be more active in an open-field test and have a reduction in the size of adipocytes compared to controls. We observed no changes in the mRNA expressions of leptin and adiponectin from adipocytes between OB-1- and saline-treated rats with HFD-induced obesity group. However, OB-1 treatments were shown to be inversely correlated with accumulation of lipid droplets in liver tissue, suggesting that OB-1 could inhibit a lipid accumulation by blocking the pathway related to lipid metabolism. Moreover, the phosphorylation of AMP-activated protein kinase (AMPK was significantly increased in OB-1-treated rats with HFD compared to controls. These results suggest that OB-1 has no direct antiobesity effect and, however, could be a regulator of cellular metabolism.

  19. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    Science.gov (United States)

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P Cucumaria-PC exhibited significant anti-hyperglycemic activities through up-regulating PI3K/PKB signal pathway mediated by insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus. PMID:24168893

  20. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  1. Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma.

    Science.gov (United States)

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various vascular, pulmonary, and cerebral disease states. Yet, the signaling mechanisms by which cells respond and adapt to changes in oxygen levels are not clearly established. The effects of hypoxia on the stress- and mitogen-activated protein kinase (SAPK and MAPK) signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O2) was found to progressively stimulate phosphorylation and activation of p38 gamma in particular, and also p38 alpha, two isoforms of the p38 family of stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38 beta, p38 beta 2, p38 delta, or on JNK, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 MAPK, although this activation was modest when compared to NGF and UV-induced activation. We further showed that activation of p38 gamma and MAPK during hypoxia requires calcium, as treatment with Ca(2+)-free media or the calmodulin antagonist, W13, blocked the activation of p38 gamma and MAPK, respectively. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific elements of the SAPKs and MAPKs, and identifies Ca+2/CaM as a critical upstream activator. PMID:10849670

  2. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian;

    2005-01-01

    Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  3. Coptidis Rhizoma Water Extract Stimulates 5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle%Coptidis Rhizoma Water Extract Stimulates5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Xiao Ma; Tatsuro Egawa; Rieko Oshima; Eriko Kurogi; Hiroko Tanabe; Satoshi Tsuda; Tatsuya Hayashi

    2011-01-01

    AIM: Coptidis Rhizoma (CR), the dried rhizomes of Asian herbs (including Coptis chinensis French), has been used to treat diabetes mellitus for thousands of years. We explored the possibility that CR acts directly on skeletal muscle, the major organ responsible for glucose homeostasis, and activates 5'-AMP-activated protein kinase (AMPK), a signaling intermediary leading to metabolic enhancement of skeletal muscle. METHODS: Isolated rat epitrochlearis and soleus muscles were incubated in a buffer containing a CR water extract (CE), and activation of AMPK and related events were examined. RESULTS: In response to CE treatment, phosphorylation of Thr172 at the catalytic α subunit of AMPK, an essential step for full kinase activation, increased in both muscles. Phosphorylation of Ser79 of acetyl CoA carboxylase (ACC), an endogenous substrate of AMPK, increased concotnitantly. Analysis of isoform-specific AMPK activity revealed that CE activated both the α1 and α2 isoforms of the catalytic subunit. Importantly, the maximal effect of CE on AMPK phosphorylation was significantly greater than that of berberine (BBR), indicating that the action of CE is not totally ascribed to BBR. CONCLUSION: We propose that CE is an acute activator of AMPK in both fast- and slow-twitch skeletal muscles.

  4. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    Directory of Open Access Journals (Sweden)

    Yuan-Ching Chang

    Full Text Available Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2 activity and induced activation of p38 mitogen-activated protein kinase (MAPK and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer.

  5. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Chang, Yuan-Ching; Hsu, Yi-Chiung; Liu, Chien-Liang; Huang, Shih-Yuan; Hu, Meng-Chun; Cheng, Shih-Ping

    2014-01-01

    Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer. PMID:24586874

  6. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  7. Non-degradative Ubiquitination of Protein Kinases.

    Science.gov (United States)

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  8. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    OpenAIRE

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  9. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    International Nuclear Information System (INIS)

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not interferon-γ and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1β and TNF-α correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1β and TNF-α, and downstream by MAP kinase signaling pathways and metalloproteinases.

  10. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Menschikowski, Mario, E-mail: Mario.Menschikowski@uniklinikum-dresden.de [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany); Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany)

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  11. Cyclosporin A does not block the phorbol ester - protein kinase C regulated pathway of T cell activation

    International Nuclear Information System (INIS)

    The T cell line Jurkat can be induced to produce interleukin-2 (IL-2) in vitro by a combination of two stimuli: (1) A stimulus that increases cytoplasmic free Ca++ concentration plus (2) phorbol ester (PMA). No. IL-2 production is induced with either stimulus alone. The T cell line HUT 78 responds to the same combination of stimuli, however also produces low amounts of IL-2 in response to PMA only. After HUT 78 cells were pretreated with the nucleoside analog 5-azacytidine (AZA) they produced maximal amounts of IL-2 in response to PMA alone. Cyclosporin A (CsA) has been shown to completely block the two stimulus-induced IL-2 production in Jurkat at a pretranslational level. In contrast, the low level of IL-2 production in HUT 78 and the high level of IL-2 production in AZA-treated HUT 78 induced by PMA only is not inhibited by CsA. Additionally we demonstrated that CsA did not inhibit activation of protein kinase C, the primary target enzyme in PMA induced cell activation. The presented data suggest that CsA does not globally block lymphokine expression but rather interferes with signaling events in T cell activation. It appears that CsA blocks the pathway controlled by either Ca++ alone or Ca++ in combination with PMA, but not activation signaling regulated by PMA induced activation of protein kinase C alone

  12. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  13. Involvement of extracellular signal-regulated kinase/mitogen activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jian Guan; Xiao-Ping Chen; Hong Zhu; Shun-Feng Luo; Bin Cao; Lei Ding

    2004-01-01

    AIM: To investigate the molecular mechanism of the influence of HBx protein on multidrug resistance associated genes:multidrug resistance 1 (MDR-1), multidrug related protein (MRP-1), lung resistance related protein (LRP) in hepatoma cells and the potential role of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in this process.METHODS: A cell model stably expressing the HBx protein was established by liposome-mediated transfection of HBx gene into HepG2 cell line. The expression of multidrug resistance associated genes and proteins was detected by RT-PCR and Western blot. AnnexinV-FITC/PI assay was used to confirm the multidrug resistance (MDR) phenotype of transfected cells by fluorescence cytometry (FACS). The ERK/MAPK pathway activation was measured by Western blot through comparing the ratio of phosphorylation of ERK/MAPK to total ERK/MAPK protein. After treated with the ERK/MAPK pathway inhibitor U0126, the HBx-expressing cells were harvested. Then RT-PCR, Western blot and FACS were used to analyze the alterations in the expression of multidrug resistance associated genes and the MDR phenotype after exposure.RESULTS: Compared with the control group, the transfected cells showed a higher expression of MDR associated genes and proteins. Marked elevations in MDR-1 (64.3%), MRP-1 (87.5%) and LRP (90.8%) were observed in the transfected cells (P<0.05). RT-PCR revealed that the over-expression of MDR associated proteins was due to amplification of such genes (MDR1 2.9 fold, MRP1 1.67 fold, LRP1.95 fold).Furthermore, we found that the ERK/MAPK activity was remarkably high in the HBx-expressing cells. The activation of ERK/MAPK, as measured by the ratio of phosphorylated ERK bands normalized to the total ERK bands, was increased by 2.3-fold in HBx-transfected cells compared with cells transfected with the empty vector. After treated with the ERK/MAPK pathway inhibitor, the level of MDR associated genes and proteins in the

  14. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle

    OpenAIRE

    Fillmore, Natasha; Jacobs, Daniel L.; Mills, David B.; Winder, William W.; Hancock, Chad R.

    2010-01-01

    Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMP-activated protein kinase (AMPK), calcium, and circulating free fatty acids (FFAs). Chronic treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR), a chemical activator of AMPK, or increasing circulating FFAs with a high-fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high-fat feeding ...

  15. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  16. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation

    Science.gov (United States)

    Li, L.; Huang, Z.; Gillespie, M.; Mroz, P.M.; Maier, L.A.

    2014-01-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (pBeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  17. Distinct Mechanisms of Receptor and Nonreceptor Tyrosine Kinase Activation by Reactive Oxygen Species in Vascular Smooth Muscle Cells: Role of Metalloprotease and Protein Kinase C-δ

    OpenAIRE

    Frank, Gerald D.; Mifune, Mizuo; Inagami, Tadashi; Ohba, Motoi; Sasaki, Terukatsu; Higashiyama, Shigeki; Dempsey, Peter J; Eguchi, Satoru

    2003-01-01

    Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor...

  18. Function and interaction of maturation-promoting factor and mitogen-activated protein kinase during meiotic maturation and fertilization of oocyte

    Institute of Scientific and Technical Information of China (English)

    HUO Lijun; FAN Hengyu; CHEN Dayuan; SUN Qingyuan

    2004-01-01

    Mitogen-activated protein kinase (MAP kinase) cascade and maturation-promoting factor (MPF) play very important roles during meiotic maturation and fertilization of oocyte. Interaction between MAP kinase and MPF influences meiotic maturation and fertilization of oocyte throughout the animal kingdom, including stimulation of germinal vesicle breakdown (GVBD), suppression of DNA replication, control of meiotic chromosome segregation, maintenance of metaphase II arrest, and resumption and completion of second meiosis. This review focuses on the function and interaction of MAP kinase and MPF during meiotic maturation and fertilization of oocyte.

  19. Structure-Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells.

    Science.gov (United States)

    Cherian, Joseph; Nacro, Kassoum; Poh, Zhi Ying; Guo, Samantha; Jeyaraj, Duraiswamy A; Wong, Yun Xuan; Ho, Melvyn; Yang, Hai Yan; Joy, Joma Kanikadu; Kwek, Zekui Perlyn; Liu, Boping; Wee, John Liang Kuan; Ong, Esther H Q; Choong, Meng Ling; Poulsen, Anders; Lee, May Ann; Pendharkar, Vishal; Ding, Li Jun; Manoharan, Vithya; Chew, Yun Shan; Sangthongpitag, Kanda; Lim, Sharon; Ong, S Tiong; Hill, Jeffrey; Keller, Thomas H

    2016-04-14

    Clinically used BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia do not eliminate leukemic stem cells (LSC). It has been shown that MNK1 and 2 inhibitors prevent phosphorylation of eIF4E and eliminate the self-renewal capacity of LSCs. Herein, we describe the identification of novel dual MNK1 and 2 and BCR-ABL1 inhibitors, starting from the known kinase inhibitor 2. Initial structure-activity relationship studies resulted in compound 27 with loss of BCR-ABL1 inhibition. Further modification led to orally bioavailable dual MNK1 and 2 and BCR-ABL1 inhibitors 53 and 54, which are efficacious in a mouse xenograft model and also reduce the level of phosphorylated eukaryotic translation initiation factor 4E in the tumor tissues. Kinase selectivity of these compounds is also presented. PMID:27011159

  20. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...... critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP...

  1. AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid

    OpenAIRE

    Zhou, Xihong; Wu, Weiche; Chen, Jingqing; Wang, Xinxia; Wang, Yizhen

    2015-01-01

    Background n-3 long chain polyunsaturated fatty acid (n-3 LC PUFA) increases β-oxidation and limits lipid accumulation in adipocytes. The current study was conducted to determine whether their precursor alpha-linolenic acid (ALA) could also exert the above effects and how AMP-activated protein kinase (AMPK) was involved. Methods AMPKα1−/−, AMPKα2−/− mice and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD with ALA. Body weight was recorded weekly and serum was collected. Adipocytes ...

  2. DEVELOPMENTAL REGULATION OF PROTEIN KINASE B ACTIVATION IS ISOFORM SPECIFIC IN SKELETAL MUSCLE OF NEONATAL PIGS

    Science.gov (United States)

    The postprandial activation of the insulin signaling pathway that leads to translation initiation is enhanced in skeletal muscle of the neonate and decreases with development in parallel with the developmental decline in muscle protein synthesis. Our previous study showed that the activity of protei...

  3. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease.

    Science.gov (United States)

    Grahame Hardie, D

    2014-12-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that regulates cellular and whole-body energy balance. A recently reported crystal structure has illuminated the complex regulatory mechanisms by which AMP and ADP cause activation of AMPK, involving phosphorylation by the upstream kinase LKB1. Once activated by falling cellular energy status, AMPK activates catabolic pathways that generate ATP whilst inhibiting anabolic pathways and other cellular processes that consume ATP. A role of AMPK is implicated in many human diseases. Mutations in the γ2 subunit cause heart disease due to excessive glycogen storage in cardiac myocytes, leading to ventricular pre-excitation. AMPK-activating drugs reverse many of the metabolic defects associated with insulin resistance, and recent findings suggest that the insulin-sensitizing effects of the widely used antidiabetic drug metformin are mediated by AMPK. The upstream kinase LKB1 is a tumour suppressor, and AMPK may exert many of its antitumour effects. AMPK activation promotes the oxidative metabolism typical of quiescent cells, rather than the aerobic glycolysis observed in tumour cells and cells involved in inflammation, explaining in part why AMPK activators have both antitumour and anti-inflammatory effects. Salicylate (the major in vivo metabolite of aspirin) activates AMPK, and this could be responsible for at least some of the anticancer and anti-inflammatory effects of aspirin. In addition to metformin and salicylates, novel drugs that modulate AMPK are likely to enter clinical trials soon. Finally, AMPK may be involved in viral infection: downregulation of AMPK during hepatitis C virus infection appears to be essential for efficient viral replication. PMID:24824502

  4. Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; Yi-Tao Jia; De-Kai Qiu

    2007-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology.The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition,DNA binding activities of nuclear factor kappa B (NF-κB)were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-γ, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-κB was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-κB and the expression of proinflammatory cytokines.Moreover, hepatic injuries were improved significantly after SB203580 administration.CONCLUSION: p38 MAPK and NF-κB play an important role in an animal model of autoimmune hepatitis (AIH)induced by autoantigens.

  5. Cytotoxic Synergy Between Cytokines and NSAIDs Associated With Idiosyncratic Hepatotoxicity Is Driven by Mitogen-Activated Protein Kinases.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Gora, Lukas F J; Parkins, Robert V; Ganey, Patricia E; Roth, Robert A

    2015-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most frequent causes of idiosyncratic, drug-induced liver injury (IDILI). Mechanisms of IDILI are unknown, but immune responses are suspected to underlie them. In animal models of IDILI, the cytokines tumor necrosis factor-alpha (TNFα) and interferon-gamma (IFNγ) are essential to the pathogenesis. Some drugs associated with IDILI interact with cytokines to kill hepatocytes in vitro, and mitogen-activated protein kinases (MAPKs) might play a role. We tested the hypothesis that caspases and MAPKs are involved in NSAID/cytokine-induced cytotoxicity. NSAIDs that are acetic acid (AA) derivatives and associated with IDILI synergized with TNFα in causing cytotoxicity in HepG2 cells, and IFNγ enhanced this interaction. NSAIDs that are propionic acid (PA) derivatives and cause IDILI that is of less clinical concern also synergized with TNFα, but IFNγ was without effect. Caspase inhibition prevented cytotoxicity from AA and PA derivative/cytokine treatment. Treatment with a representative AA or PA derivative induced activation of the MAPKs c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. Inhibition of either JNK or ERK reduced cytotoxicity from cytokine interactions with AA derivatives. In contrast, an ERK inhibitor potentiated cytotoxicity from cytokine interactions with PA derivatives. An AA derivative but not a PA derivative enhanced IFNγ-mediated activation of STAT-1, and this enhancement was ERK-dependent. These findings raise the possibility that some IDILI reactions result from drug/cytokine synergy involving caspases and MAPKs and suggest that, even for drugs within the same pharmacologic class, synergy with cytokines occurs by different kinase signaling mechanisms.

  6. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure

    Institute of Scientific and Technical Information of China (English)

    Katie; A; Mc; Crink; Ava; Brill; Anastasios; Lymperopoulos

    2015-01-01

    Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  7. Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatogenic function in mouse testes

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ping Xia; Xin-Min Zheng; Hang Zheng; Xiao-Jun Liu; Gui-Yong Liu; Xing-Huan Wang

    2012-01-01

    Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism,varicocele or environmental temperatures.The purpose of this study was to investigate the functions of CIRP in the testes.We employed RNAi technique to knock down the expression of CIRP in the testes,and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown.Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay,and mitogen-activated protein kinase (MAPK)signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis.We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes.Compared to controls,the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment,whereas the percentage of apoptotic seminiferous tubules increased.The p44/p42,p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP.In conclusion,we discovered that downregulation of CIRP resulted in increased germ cell apoptosis,possibly viathe activation of the p44/p42,p38 and SAPK/JNK MAPK pathways.

  8. The Mitogen-Activated Protein Kinase Kinase VdPbs2 of Verticillium dahliae Regulates Microsclerotia Formation, Stress Response, and Plant Infection

    Science.gov (United States)

    Tian, Longyan; Wang, Yonglin; Yu, Jun; Xiong, Dianguang; Zhao, Hengjun; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a ubiquitous phytopathogenic fungus, forms resting structures, known as microsclerotia that play crucial roles in Verticillium wilt diseases. VdHog1, a mitogen-activated protein kinase (MAPK), controls microsclerotia formation, virulence, and stress response in V. dahliae. In this study, we present detailed evidence that the conserved upstream component of VdHog1, VdPbs2, is a key regulator of microsclerotia formation, oxidative stress and fungicide response and plant virulence in V. dahliae. We identified VdPbs2, homologous to the yeast MAPK kinase Pbs2. Similar to the VdHog1 deletion mutant, VdPbs2 deletion strains exhibited delayed melanin synthesis and reduced formation of microsclerotia. When exposed to stresses, VdPbs2 mutants were more sensitive than the wild type to osmotic agents and peroxide, but more resistant to inhibitors of cell wall synthesis and some fungicides. Finally, VdPbs2 deletion mutants exhibited reduced virulence on smoke tree and tobacco seedlings. When taken together, we implicate that VdPbs2 and VdHog1 function in a cascade that regulates microsclerotia formation and virulence, but not all VdHog1 dependent functions are VdPbs2 regulated. This study thus provides novel insights into the signal transduction mechanisms that regulate microsclerotia formation and pathogenesis in this fungus. PMID:27729908

  9. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi.

    Science.gov (United States)

    Lew, Roger R; Levina, Natalia N; Shabala, Lana; Anderca, Marinela I; Shabala, Sergey N

    2006-03-01

    Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca(2+) influx and the sustained hyperpolarization is due to H(+) efflux by activation of the plasma membrane H(+)-ATPase. Protein synthesis is not required for H(+)-ATPase activation. Net K(+) and Cl(-) uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl(-) uptake increases, but net K(+) flux barely changes and net H(+) efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H(+)-ATPase, and net K(+) and Cl(-) uptake during turgor regulation. Other pathways regulating turgor must also exist. PMID:16524903

  10. Role of a Mitogen-Activated Protein Kinase Cascade in Ion Flux-Mediated Turgor Regulation in Fungi

    Science.gov (United States)

    Lew, Roger R.; Levina, Natalia N.; Shabala, Lana; Anderca, Marinela I.; Shabala, Sergey N.

    2006-01-01

    Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca2+ influx and the sustained hyperpolarization is due to H+ efflux by activation of the plasma membrane H+-ATPase. Protein synthesis is not required for H+-ATPase activation. Net K+ and Cl− uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl− uptake increases, but net K+ flux barely changes and net H+ efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H+-ATPase, and net K+ and Cl− uptake during turgor regulation. Other pathways regulating turgor must also exist. PMID:16524903

  11. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogenactivated protein kinase/extracellular signal-regulated kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Li Na; Zhang Qian; Qian Haiyan; Jin Chen; Yang Yuejin; Gao Runlin

    2014-01-01

    Background The survival ratio of implanted mesenchymal stem cells (MSCs) in the infarcted myocardium is low.Autophagy is a complex "self-eating" process and can be utilized for cell survival.We have found that atorvastatin (ATV) can effectively activate autophagy to enhance MSCs survival during hypoxia and serum deprivation (H/SD).The mitogenactivated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway is a non-canonical autophagy pathway.We hypothesized that the MEK/ERK pathway mediated ATV-induced autophagy of MSCs under H/SD.Methods MSCs were pretreated with ATV (0.01-10 μmol/L) under H/SD for three hours.For inhibitor studies,the cells were pre-incubated with the MEK1/2 inhibitor U0126.Cell autophagy was assessed by acidic vesicular organelles (AVO)-positive cells using flow cytometry,autophagy related protein using Western blotting and autophagosome using transmission electron microscopy.Results Autophagy was elevated in the H/SD group compared with the normal group.ATV further enhanced the autophagic activity as well as the phosphorylation of ERK1/2 evidenced by more AVO-positive cells ((8.63±0.63)% vs.(5.77±0.44)%,P <0.05),higher LC3-Ⅱ/LC3-Ⅰ ratio (4.36±0.31 vs.2.52±0.18,P <0.05) and more autophagosomes.And treatment with U0126 downregulated the phosphorylation of ERK1/2 and attenuated ATV-induced autophagy.Conclusion The MEK/ERK pathway participates in ATV-induced autophagy in MSCs under H/SD,and modulation of the pathway could be a novel strategy to improve MSCs survival.

  12. Induction of Macrophage Function in Human THP-1 Cells is Associated with MAPK Signaling and Activation of MAP3K7 (TAK1 Protein Kinase

    Directory of Open Access Journals (Sweden)

    Erik eRichter

    2016-03-01

    Full Text Available Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cycline-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1 acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease.

  13. p38 Mitogen-Activated Protein Kinase Is Required for Central Nervous System Myelination

    Institute of Scientific and Technical Information of China (English)

    GABRIELA FRAGOSO; JEFFERY D. HAINES; JANICE ROBERSTON; LILIANA PEDRAZA; WALTER E. MUSHYNSKI; GUILLERMINA ALMAZAN

    2008-01-01

    p38MAPKs是一个激酶家族,负责调节包括细胞迁移、增生和分化在内的多种细胞功能.本文主要介绍p38对少突胶质细胞分化的调节作用.采用PD169316和SB203580抑制p38后,不同分化阶段少突胶质细胞特异性标志物的蛋白和mRNA的聚集减少,包括髓鞘碱性蛋白、髓鞘相关糖蛋白、鞘糖脂、半乳糖酰基鞘氨醇和硫脂.同时,细胞周期调节因子p27kip1和转录因子Sox10的表达也有显著的下降.最为重要的是,p38抑制剂能够通过少突胶质细胞完全和不可逆地阻断背根神经节神经元的髓鞘形成,并阻止轴-胶粘附分子Caspr的轴膜组装.本实验结果提示p38MAPKs在OLGs成熟和启动髓鞘形成的关键调控步骤中扮演了重要角色.%The p38 MAPKs are a family of kinases that regulate a number of cellular functions including cell migration, proliferation, and differentiation. Here, we report that p38 regulates oligodendrocyte differentiation. Inhibition of p38 with PD169316 and SB203580 prevented accumulation of protein and mRNA of cell-stage specific markers characteristic of differentiated oligodendrocytes, including myelin basic protein, myelin-associated glycoprotein, and the glycosphingolipids, galactosylceramide and sulfatide. In addition, the cell cycle regulator p27kip1 and the transcription factor Sox10 were also significantly reduced. Most significantly, p38 inhibitors completely and irreversibly blocked myelination of dorsal root ganglion neurons by oligodendrocytes and prevented the axolemmal organization of the axo-glial adhesion molecule Caspr. Our results suggest a role(s) for this kinase in key regulatory steps in the maturation of OLGs and initiation of myelination.

  14. Activation of protein kinase A alters subnuclear distribution pattern of human steroidogenic factor 1 in living cells

    Institute of Scientific and Technical Information of China (English)

    LIU Wei刘伟; FAN Wu-qiang范吴强; Toshihiko Yanase; Masayuki Saitoh; WU Yin吴茵

    2004-01-01

    Background The aim of this study was to identify the subnuclear distribution pattern of human orphan nuclear receptor steroidogenic factor 1 (SF-1) in living cells with and without the activation of protein kinase A (PKA) signal pathway, and thus try to explain the unknown mechanism by which PKA potentiates SF-1 transactivation. Methods Full-length cDNAs of wild type and a naturally occurring mutant (G35E) human SF-1 were cloned and fused with green fluorescent protein (GFP). Subcellular distribution pattern of human SF-1 in living cells, whose PKA signaling was either activated or not, was studied by laser confocal microscopy after the validity of the gene sequence was confirmed.Results The transactivation ability of the GFP-SF-1 chimeric protein was highly conserved. Wild type human SF-1 diffused homogeneously within the nuclei of cells when PKA was not active, and converged to clear foci when PKA was activated. Mutant SF-1 diffused within the nuclei even in the presence of PKA activation, surprisingly aggregating as fluorescent dots inside the nucleoli, a phenomenon not altered by PKA.Conclusions Activation of PKA causes wild type, but not mutant SF-1 to alter its subnuclear distribution pattern to a transactivationally active form (foci formation). This finding may throw new light on the mechanism by which PKA activates the orphan nuclear receptor.

  15. A direct protein kinase B-targeted anti inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Ju Young Yoon

    2015-01-01

    Full Text Available Background: Cordyceps militaris is one of well-known medicinal mushrooms with anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity activities. Objective: The objective of the following study is to isolate chemical components from the ethanol extract (Cm-EE from Cordyceps militaris and to evaluate their anti-inflammatory activities. Materials and Methods: Column chromatographic separation was performed and anti-inflammatory roles of these compounds were also examined by using NO production and protein kinase B (AKT activity assays. Results: From Cm-EE, 13 constituents, including trehalose (1, cordycepin (2, 6-hydroxyethyladenosine (3, nicotinic amide (4, butyric acid (5, β-dimorphecolic acid (6, α-dimorphecolic acid (7, palmitic acid (8, linoleic acid (9, cordycepeptide A (10, 4-(2-hydroxy-3-((9E,12E-octadeca-9,12-dienoyloxypropoxy-2-(trimethylammoniobutanoate (11, 4-(2-hydroxy-3-(palmitoyloxypropoxy-2-(trimethylammoniobutanoate (12, and linoleic acid methyl ester (13 were isolated. Of these components, compound 2 displayed a significant inhibitory effect on NO production in lipopolysaccharide (LPS-activated RAW264.7 cells. Furthermore, this compound strongly and directly suppressed the kinase activity of AKT, an essential signalling enzyme in LPS-induced NO production, by interacting with its ATP binding site. Conclusion: C. militaris could have anti-inflammatory activity mediated by cordycepin-induced suppression of AKT.

  16. INHIBITION OF MELATONIN BIOSYNTHESIS ACTIVATES PROTEIN KINASE A AND INDUCES ALZHEIMER-LIKE TAU HYPERPHOSPHORYLATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    Ling-qiang Zhu; Shao-hui Wang; Zhi-qun Ling; Qun Wang; Mao-qiong Hu; Jian-zhi Wang

    2005-01-01

    Objective To investigate effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase. Methods Brain ventricular and intraperitoneal injections were used for haloperidol administration, Western blots for tau phosphorylation, 32p-labeling for PKA and GSK-3 activity, and high performance liquid chromatograph for detection of serum melatonin levels.Results Haloperidol injection through the lateral ventricle and intraperitoneal reinforcement significantly stimulated PKA activity with a concurrent hyperphosphorylation of tau at M4 (Thr231/Ser235) and PS214 (Ser214) sites. Prior treatment of the rats using melatonin supplement for one week and reinforcement during the haloperidol administration arrested PKA activity and attenuated tau hyperphosphorylation. GSK-3 activity showed no obvious change after haloperidol injection, however, melatonin supplements and reinforcements during haloperidol infusion inactivated basal activity of GSK-3. Conclusion Decreased melatonin may be involved in Alzheimer-like tau hyperphosphorylation, and overactivation of PKA may play a crucial role in this process.

  17. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK

    Directory of Open Access Journals (Sweden)

    Kaplan David

    2006-01-01

    Full Text Available Abstract Background Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain. Results Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 – 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls. Conclusion Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia.

  18. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Bingbing Jia

    Full Text Available Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA and exchange protein directly activated by cAMP (Epac in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS. We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I(2 (PGI(2 may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX. Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARγ agonist. However, prolonged treatment with the synthetic PPARδ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells.

  19. Measuring MAP kinase activity in immune complex assays.

    Science.gov (United States)

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  20. All-trans retinoic acid modulates mitogen-activated protein kinase pathway activation in human scleral fibroblasts through retinoic acid receptor beta

    OpenAIRE

    Huo, Lijun; Cui, Dongmei; Yang, Xiao; Gao, Zhenya; Trier, Klaus; Zeng, Junwen

    2013-01-01

    Purpose All-trans retinoic acid (ATRA) is known to inhibit the proliferation of human scleral fibroblasts (HSFs) and to modulate the scleral intercellular matrix composition, and may therefore serve as a mediator for controlling eye growth. Cell proliferation is regulated by the mitogen-activated protein kinase (MAPK) pathway. The aim of the current study was to investigate whether changed activation of the MAPK pathway could be involved in the response of HSFs exposed to ATRA. Methods HSFs w...

  1. Development of a sensitive non-radioactive protein kinase assay and its application for detecting DYRK activity in Xenopus laevis oocytes

    Directory of Open Access Journals (Sweden)

    Becker Walter

    2010-05-01

    Full Text Available Abstract Background Although numerous non-radioactive methods are in use to measure the catalytic activity of protein kinases, most require specialized equipment and reagents and are not sufficiently sensitive for the detection of endogenous kinase activity in biological samples. Kinases of the DYRK family have important functions in developmental and pathophysiological processes in eukaryotic organisms including mammals. We aimed to develop a highly sensitive, low-tech assay suitable to determine the activity of DYRK family kinases in tissues or cells from diverse sources. Results Phosphorylation-site specific antibodies can be used to monitor the accumulation of the phosphorylated product in kinase assays. We present a modified configuration of an enzyme-linked immunosorbent assay (ELISA-based kinase assay by using the phosphospecific antibody as the capture antibody. This assay format allowed the detection of small amounts of phosphopeptide in mixtures with an excess of the unphosphorylated substrate peptide (10 fmol phosphorylated peptide over a background of 50 pmol unphosphorylated peptide. Consequently, low substrate turnover rates can be determined. We applied this method to the measurement of endogenous DYRK1A activity in mouse heart tissue by immunocomplex kinase assay. Furthermore, we detected DYRK1-like kinase activity in Xenopus laevis oocytes and identified this kinase as a DYRK1 isoform distinct from the Xenopus DYRK1A ortholog. Conclusion We present a non-radioactive and highly sensitive method for the measurement of endogenous activities of DYRKs in biological samples. Xenopus laevis oocytes contain an active DYRK1-related protein kinase more similar to mammalian DYRK1B than DYRK1A.

  2. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus;

    2007-01-01

    -20 was rapidly induced by proinflammatory stimuli, in particular IL-1beta, IL-6, and UVB irradiation. Using kinase inhibitors and small-interfering RNA, we discovered that the p38 mitogen-activated protein kinase (MAPK) as well as inhibitory kappaB kinase-NF-kappaB signaling pathways are crucial...... activation of the downstream kinase mitogen- and stress-activated kinase 1 (MSK1), indicating transactivation of NF-kappaB driven IL-20 messenger RNA transcription as an important mechanism of action. IL-20 is assumed to be a key cytokine in the pathogenesis of psoriasis and possibly cancer, and therefore...... for IL-20 expression. By electrophoretic mobility shift assay two kappaB-binding sites were identified upstream from the start codon in the IL-20 gene. Supershift analysis revealed binding of the p50/p65 heterodimer. Furthermore, the p38 MAPK was shown to exert its effects on IL-20 expression through...

  3. Rice Mitogen-activated Protein Kinase Gene Family and Its Role in Biotic and Abiotic Stress Response

    Institute of Scientific and Technical Information of China (English)

    Jai S. Rohila; Yinong Yang

    2007-01-01

    The mitogen-activated protein kinase (MARK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MARK genes have been identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MARK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MARK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MARK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MARK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MARK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MARK signaling pathway in rice crops for the improvement of agronomically important traits.

  4. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens.

    Science.gov (United States)

    Lev, S; Sharon, A; Hadar, R; Ma, H; Horwitz, B A

    1999-11-01

    Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Deltachk1 mutants is attempted. The ability of Deltachk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets. PMID:10557357

  5. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    Science.gov (United States)

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P < 0.05 and P < 0.01). These findings suggested that Cucumaria-PC exhibited significant anti-hyperglycemic activities through up-regulating PI3K/PKB signal pathway mediated by insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus.

  6. PKC and Ca2+Effect of Protein kinase C and Ca2+ on p42/p44 MAPK, Pyk2, and Src Activation in Rat Conjunctival Goblet Cells

    OpenAIRE

    Hodges, Robin R.; Horikawa, Yoshitaka; Rios, Jose D.; Shatos, Marie A.; Dartt, Darlene A.

    2007-01-01

    Conjunctival goblet cells synthesize and secrete mucins onto the ocular surface to lubricate it and protect it from bacterial infections. Mucin secretion is under neural control, and cholinergic agonists released from parasympathetic nerves are major stimuli of this secretion. The signal transduction pathways these agonists use to stimulate secretion involve activating protein kinase C (PKC) and increasing intracellular [Ca2+] to activate the non-receptor kinases Pyk2 and p60Src (Src) to tran...

  7. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells.

    Science.gov (United States)

    Müller, Martin; Schröer, Jana; Azoitei, Ninel; Eiseler, Tim; Bergmann, Wendy; Köhntop, Ralf; Lin, Qiong; Costa, Ivan G; Zenke, Martin; Genze, Felicitas; Weidgang, Clair; Seufferlein, Thomas; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination. PMID:26148697

  8. Analysis of the c-src gene product structure, abundance, and protein kinase activity in human neuroblastoma and glioblastoma cells.

    Science.gov (United States)

    O'Shaughnessy, J; Deseau, V; Amini, S; Rosen, N; Bolen, J B

    1987-01-01

    We have compared in different human neuroblastoma cell lines and human glioblastoma cells the expression level, structure, and tyrosine-specific protein kinase activity of pp60c-src. Our results show that not all human neuroblastoma cell lines express pp60c-src molecules with amino-terminal structural alterations. In neuroblastoma cells which possess pp60c-src with altered gel migration, the diminished polyacrylamide gel mobility of pp60c-src was found not to be dependent upon amino-terminal phosphorylations since extensive treatment of these molecules with phosphatase did not significantly change their gel migration properties. Similar differences in gel migration were observed when RNA from the various neuroblastoma and glioblastoma cells was translated in vitro using either rabbit reticulocyte or wheat germ lysates. White the level of c-src mRNA in the different cells analyzed was found to be similar, the abundance of pp60c-src in these same cells was found to vary by as much as 12-fold. This suggests that the abundance of pp60c-src in human neuroendocrine tumors is regulated through post-transcriptional and/or post-translational events which may be related to the stage of neuronal differentiation of the cells. Based upon determination of pp60c-src abundance by immunoblot analysis, we demonstrate that pp60c-src molecules derived from human neuroblastoma and glioblastoma cells have very similar in vitro protein kinase activities.

  9. Activation of protein tyrosine kinase p72syk by Fc epsilon RI aggregation in rat basophilic leukemia cells. p72syk is a minor component but the major protein tyrosine kinase of pp72.

    Science.gov (United States)

    Minoguchi, K; Benhamou, M; Swaim, W D; Kawakami, Y; Kawakami, T; Siraganian, R P

    1994-06-17

    Aggregation of the high affinity IgE receptors (Fc epsilon RI) on rat basophilic leukemia RBL-2H3 cells results in protein tyrosine phosphorylations. Previously we reported that there is prominent tyrosine phosphorylation of approximately 72-kDa proteins (pp72) and that the tyrosine kinase p72syk is one component of pp72. Here we studied further the relationship of p72syk to pp72. The aggregation of Fc epsilon RI induced the activation of p72syk which was parallel to its tyrosine phosphorylation. By in vitro kinase assay of immune complexes purified with anti-phosphotyrosine antibodies, p72syk was the major pp72 tyrosine kinase. However, by immunoblotting with anti-phosphotyrosine antibodies, p72syk was a minor component of pp72. The heterogeneous nature of pp72 was indicated by different studies. Under optimum conditions of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, pp72 consisted of a heterogeneous group of 69-, 71-, and 72-kDa tyrosine-phosphorylated proteins. There were differences in the tyrosine phosphorylation of these proteins in cells activated in the absence of extracellular calcium or when stimulation was with the calcium ionophore A23187 or with phorbol myristate acetate. One of the proteins migrating at 69 kDa was p72syk. By two-dimensional gel electrophoresis pp72 was found to consist of multiple tyrosine-phosphorylated protens including 71-80-kDa proteins that associate with p53/56lyn. A 75-kDa tyrosine-phosphorylated protein, different from pp72, was identified as p75HS1 (SPY75). These results demonstrate the heterogeneous nature of the pp72 and that p72syk is activated after Fc epsilon RI aggregation. PMID:7515887

  10. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells

    OpenAIRE

    Müller, Martin; Schröer, Jana; Azoitei, Ninel; Eiseler, Tim; Bergmann, Wendy; Köhntop, Ralf; Lin, Qiong; Costa, Ivan G; Zenke, Martin; Genze, Felicitas; Weidgang, Clair; Seufferlein, Thomas; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the rol...

  11. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of LmnaH222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in LmnaH222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male LmnaH222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of LmnaH222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  12. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  13. Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early G₁ phase in CHO cells.

    Science.gov (United States)

    van Opstal, Angélique; Bijvelt, José; van Donselaar, Elly; Humbel, Bruno M; Boonstra, Johannes

    2012-04-01

    Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase. PMID:22251027

  14. Ca2+/Calmodulin-dependent Protein Kinase IV-mediated LIM Kinase Activation Is Critical for Calcium Signal-induced Neurite Outgrowth*

    OpenAIRE

    Takemura, Miyohiko; Mishima, Toshiaki; Wang, Yan; Kasahara, Jiro; Fukunaga, Kohji; Ohashi, Kazumasa; Mizuno, Kensaku

    2009-01-01

    Actin cytoskeletal remodeling is essential for neurite outgrowth. LIM kinase 1 (LIMK1) regulates actin cytoskeletal remodeling by phosphorylating and inactivating cofilin, an actin filament-disassembling factor. In this study, we investigated the role of LIMK1 in calcium signal-induced neurite outgrowth. The calcium ionophore ionomycin induced LIMK1 activation and cofilin phosphorylation in Neuro-2a neuroblastoma cells. Knockdown of LIMK1 or expression of a kinase-dead mutant of LIMK1 suppres...

  15. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

    Science.gov (United States)

    Huang, J. F.; Teyton, L.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Ca(2+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant delta NC-26H) can be activated by exogenous calmodulin or an isolated CaM-LD (Kact approximately 2 microM). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca(2+)-dependent fashion with a dissociation constant (KD) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding. This mutation, in the context of a full-length enzyme (mutant KJM46H), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation mechanism. CDPKs provide the first example of a member of the calmodulin superfamily where a target binding sequence is located within the same polypeptide.

  16. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat.

    Science.gov (United States)

    John, Evan; Lopez-Ruiz, Francisco; Rybak, Kasia; Mousley, Carl J; Oliver, Richard P; Tan, Kar-Chun

    2016-06-01

    The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity. PMID:26978567

  17. Insulin Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase B (Akt) Pathway Reduces Lipopolysaccharide-Induced Inflammation in Mice

    OpenAIRE

    Kidd, Linda B.; Schabbauer, Gernot A.; Luyendyk, James P.; Holscher, Todd D.; Tilley, Rachel E.; Tencati, Michael; Mackman, Nigel

    2008-01-01

    Insulin is used to control pro-inflammatory hyperglycemia in critically ill patients. However, recent studies suggest that insulin-induced hypoglycemia may negate its beneficial effects in these patients. It is noteworthy that recent evidence indicates that insulin has anti-inflammatory effects that are independent of controlling hyperglycemia. To date, the mechanism by which insulin directly reduces inflammation has not been elucidated. It is well established that insulin activates phosphati...

  18. The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells

    DEFF Research Database (Denmark)

    Petersen, Stine Helene Falsig; Rasmussen, Maria; Darborg, Barbara Vasek;

    2007-01-01

    Osmotic stress modulates mitogen activated protein kinase (MAPK) activities, leading to altered gene transcription and cell death/survival balance, however, the mechanisms involved are incompletely elucidated. Here, we show, using a combination of biochemical and molecular biology approaches......, that three MAPKs exhibit unique interrelationships with the Na(+)/H(+) exchanger, NHE1, after osmotic cell shrinkage: Extracellular Signal Regulated Kinase (ERK1/2) is inhibited in an NHE1-dependent, pH(i)-independent manner, c-Jun N-terminal kinase (JNK1/2) is stimulated, in part through NHE1-mediated...

  19. Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase α1 following overload in LKB1 knockout mice

    Science.gov (United States)

    McGee, Sean L; Mustard, Kirsty J; Hardie, D Grahame; Baar, Keith

    2008-01-01

    The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1−/− mice (1 week: wt, 38.8 ± 7.75%; LKB1−/−, 27.8 ± 12.98%; 4 week: wt, 75.8 ± 15.2%; LKB1−/−, 85.0 ± 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the α1 isoform of AMPK were markedly increased in both the wt and the LKB1−/− mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca2+–calmodulin-dependent protein kinase kinase α(CaMKKα) (5.05 ± 0.86-fold) and CaMKKβ (10.1 ± 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the α1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the α1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the α1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism. PMID:18202101

  20. A new set of regulatory molecules in plants: A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles.

    Science.gov (United States)

    Scherer, G F; Martiny-Baron, G; Stoffel, B

    1988-08-01

    1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, an ether phospholipid from mammals known as platelet-activating factor (PAF), specifically stimulates proton transport in zucchini (Cucurbita pepo L.) microsomes (G.F.E. Scherer, 1985, Biochem. Biophys. Res. Commm. 133, 1160-1167). When plant lipids were analyzed by two-dimensional thin-layer chromatography a lipid was found with chromatographic properties very similar to the PAF (G.F.E. Scherer and B. Stoffel, 1987, Planta, 172, 127-130). This lipid was isolated from zucchini hypocotyls, red beet root, lupin root, maize seedlings and crude soybean phospholipids. It had biological activity similar to that of the PAF, based on phosphorus content, and stimulated the steady-state ΔpH in zucchini hypocotyl microsomes about twofold. Other phospholipids, monoglyceride, diglyceride, triglyceride, oleic acid, phorbol ester, and 1-O-alkylglycerol did not stimulate proton transport. When microsomes were washed the PAF was ineffective but when soluble protein was added the PAF stimulation of H(+) transport was reconstituted. The soluble protein responsible for the PAF-dependent stimulation of transport activity could be partially purified by diethylaminoethyl Sephacel column chromatography. In the same fractions where the PAF-dependent transport-stimulatory protien was found, a protein kinase was active. This protein kinase was stimulated twofold either by the PAF or by Ca(2+). When Ca(2+) was present the PAF did not stimulate protein-kinase activity. When either the PAF, protein kinase, or both were added to membranes isolated on a linear sucrose gradient, ATPase activity was stimulated up to 30%. Comparison with marker enzymes indicated the possibility that tonoplast and plasma-membrane H(+)-ATPase might be stimulated by the PAF and protein kinase. We speculate that a PAF-dependent protein kinase is involved in the regulation of proton transport in plants in vitro and in vivo.

  1. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially

    Directory of Open Access Journals (Sweden)

    Bonini Chiara

    2006-06-01

    Full Text Available Abstract Background The mitogen-activated protein (MAP kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus. Results Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3 cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and colony formation. These phenotypes are independent of the kinase activity of ERK1, as expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in nude mice. Conclusion These results reveal an unexpected interplay between ERK1 and ERK2 in transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects the overall signaling output of the cell by antagonizing ERK2 activity.

  2. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  3. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava.

    Science.gov (United States)

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  4. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    Science.gov (United States)

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  5. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates

    DEFF Research Database (Denmark)

    Krintel, Christian; Osmark, Peter; Larsen, Martin Rask;

    2008-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well...

  6. The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Sciortino, Maria Teresa; Parisi, Tiziana; Siracusano, Gabriel; Mastino, Antonio; Taddeo, Brunella; Roizman, Bernard

    2013-03-01

    Earlier studies have shown that active MEK blocks the activation of protein kinase R (PKR), a component of antiviral innate immune responses. In this report we show that the herpes simplex virus 1 virion host shutoff (VHS) RNase protein and MEK (mitogen-activated protein kinase kinase) act cooperatively in blocking the activation of PKR. This conclusion is based on the following. (i) In contrast to viral gene expression in the parental cell line or a cell line expressing a constitutively active MEK, the replication of a VHS mutant is particularly impaired in cells expressing dominant negative MEK. In this cell line PKR is activated by phosphorylation, and the accumulation of several viral proteins is delayed. (ii) In transfected cells, wild-type VHS blocked the activation of PKR, whereas PKR was activated in cells transfected with a mutant VHS or with plasmids encoding the VHS RNase and VP16 and VP22, the two viral proteins that neutralize the RNase activity of VHS. The results suggest that early in infection the VHS RNase degrades RNAs that activate PKR. Coupled with published data, the results suggest that inhibition of activation of PKR or its effect on viral replication is staged early in infection by VHS, postsynthesis of VP16 and VP22 by the γ(1)34.5 protein, and very late in infection by the U(S)11 protein.

  7. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    OpenAIRE

    Mahajan, S.; Fargnoli, J.; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-01-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk a...

  8. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  9. Functional study of p38 mitogen-activated protein kinase based on cell-penetrating peptide delivery system

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Yongming Yao; Zhiyong Sheng; Xiaomei Zhu; Yong Jiang

    2009-01-01

    Objective p38 Mitogen-activated protein kinase (MAPK) is a crossing center of various pathways. In this study, protein transduction system based on human immunodeficiency virus (HIV)-1 transactivator of transcription (TAT), which is an efficient delivery peptide of the foreign proteins into cells, was employed to study p38 MAPK functions in eukaryotic cells. Methods p38 And its dominant negative form, p38AF, were constructed into pET-His-TAT vector correctly to verify that the recombinant plasmids were well-founded through restriction enzyme digestion and DNA sequencing. The two proteins, His-TAT-p38 and His-TAT-p38AF, were expressed and purified in Escherichia coli by SDS-PAGE. Then they were incubated with ECV304 cells respectively and readily transduced into cells in a time-dependent and dose-dependent manner. The cells were stimulated by sorbitol. Activating transcription factor (ATF) 2 phosphorylation level was checked using Western blot to assess the activity of endogenous p38. Results Compared with controls, it was found that His-TAT-p38 increased the level ofATF2 phosphorylation in sorbitol-stimulated ECV304 cells, while His-TAT-p38AF inhibited it, indicating p38 MAPK protein delivery system based on TAT was constructed successfully. TAT-p38 and its dominant negative form possessed high biological activity after transduction into ECV304 cells by TAT protein delivery system. The results showed that p38AF fused with TAT could inhibit the transduction of endogenous p38 signal pathway in part, and other pathway might regulate p38 phosphorylation. Conclusions Our study provides a novel pathway to inhibit p38 signal pathway and establish a new method to study p38 function.

  10. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    Directory of Open Access Journals (Sweden)

    Josef eBrandauer

    2015-03-01

    Full Text Available The mitochondrial protein deacetylase sirtuin (SIRT 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS handling. We determined the requirement of AMP-activated protein kinase (AMPK for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p<0.01 and superoxide dismutase 2 (MnSOD; p<0.05 protein abundance in quadriceps muscle of wild-type (WT; n=13-15, but not AMPK α2 kinase dead (KD; n=12-13 mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p=0.051; n=6. To further elucidate a role for AMPK in mediating these effects, we treated WT (n=7-8 and AMPK α2 KD (n=7-9 mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR. Four weeks of daily AICAR injections (500 mg/kg resulted in AMPK-dependent increases in SIRT3 (p<0.05 and MnSOD (p<0.01 in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n=9-10. Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p<0.01 and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p<0.05. Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122 or oligomycin-sensitivity conferring protein (OSCP; K139 was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

  11. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Larsen, Carl Christian; Povlsen, Gro Klitgaard; Rasmussen, Marianne Nelly Paola;

    2011-01-01

    )) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors has been demonstrated in cerebral artery smooth muscles in the delayed ischemic phase after experimental SAH, and intracellular signaling via the mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase 1/2 pathway has been shown......Delayed cerebral ischemia after subarachnoid hemorrhage (SAH) remains a major cause of death and disability. It has been hypothesized that cerebrovascular upregulation of vasoconstrictor receptors is a key step in the development of delayed cerebral ischemia. Upregulation of endothelin-B (ET(B...

  12. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Larsen, Carl Christian; Povlsen, Gro Klitgaard; Rasmussen, Marianne Nelly Paola;

    2011-01-01

    Delayed cerebral ischemia after subarachnoid hemorrhage (SAH) remains a major cause of death and disability. It has been hypothesized that cerebrovascular upregulation of vasoconstrictor receptors is a key step in the development of delayed cerebral ischemia. Upregulation of endothelin-B (ET......(B)) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors has been demonstrated in cerebral artery smooth muscles in the delayed ischemic phase after experimental SAH, and intracellular signaling via the mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase 1/2 pathway has been shown...

  13. Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway.

    Science.gov (United States)

    Mak, H H L; Peschard, P; Lin, T; Naujokas, M A; Zuo, D; Park, M

    2007-11-01

    Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.

  14. Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Min ZHANG; Ying-ying QIAN; Zhe-yuan DING; Jun-huiLV; Hua-hao SHEN

    2011-01-01

    Objective:Mitogen-activated protein kinases (MAPKs) are correlated with a more malignant phenotype in many cancers.This study was designed to evaluate the predictive value of the expression of MAPK phosphatase-1 (MKP-1) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2),as the key regulatory mechanism of the MAPKs,in lung squamous cell carcinoma (SCC).Methods:We assessed the expressions of MKP-1 and p-ERK1/2in twenty subjects at different differentiation degree of SCC and five normal lungs by immunohistochemistry and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis.Results:Immunohistochemistry and real-time RT-PCR assay showed that the expression of MKP-1 was gradually decreased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma,and it was negatively correlated with tumor differentiation (P<0.01).However,the expression of p-ERK1/2 or ERK1/2 was gradually increased as tissue type went from normal lung tissues to increasingly undifferentiated carcinoma,and it was positively correlated with tumor differentiation (P<0.01).Conclusions:Our data indicates the relevance of MKP-1 and p-ERK1/2 in SCC as a potential positive and negative prognostic factor.The imbalanced expression of MKP-1 and p-ERK1/2 may play a role in the development of SCC and these two molecules may be new targets for the therapy and prognosis of SCC.

  15. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint.

    OpenAIRE

    Osmani, A H; O'Donnell, K; Pu, R T; Osmani, S A

    1991-01-01

    Mutation of nimA reversibly arrests cells in late G2 and nimA overexpression promotes premature mitosis. Here we demonstrate that the product of nimA (designated NIMA) has protein kinase activity that can phosphorylate beta-casein but not histone proteins. NIMA kinase activity is cell cycle regulated being 20-fold higher at mitosis when compared to S-phase arrested cells. NIMA activation is normally required in G2 to initiate chromosome condensation, to nucleate spindle pole body microtubules...

  16. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    OpenAIRE

    Keast Janet R; Cheng Ying

    2009-01-01

    Abstract Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. The...

  17. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    International Nuclear Information System (INIS)

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  18. Perturbing microtubule integrity blocks AMP-activated protein kinase-induced meiotic resumption in cultured mouse oocytes.

    Science.gov (United States)

    Ya, Ru; Downs, Stephen M

    2014-02-01

    The oocyte meiotic spindle is comprised of microtubules (MT) that bind chromatin and regulate both metaphase plate formation and karyokinesis during meiotic maturation; however, little information is known about their role in meiosis reinitiation. This study was conducted to determine if microtubule integrity is required for meiotic induction and to ascertain how it affects activation of AMP-activated protein kinase (AMPK), an important participant in the meiotic induction process. Treatment with microtubule-disrupting agents nocodazole and vinblastine suppressed meiotic resumption in a dose-dependent manner in both arrested cumulus cell-enclosed oocytes (CEO) stimulated with follicle-stimulating hormone (FSH) and arrested denuded oocytes (DO) stimulated with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR). This effect coincided with suppression of AMPK activation as determined by western blotting and germinal vesicle immunostaining. Treatment with the MT stabilizer paclitaxel also suppressed meiotic induction. Targeting actin filament polymerization had only a marginal effect on meiotic induction. Immunolocalization experiments revealed that active AMPK colocalized with γ-tubulin during metaphase I and II stages, while it localized at the spindle midzone during anaphase. This discrete localization pattern was dependent on MT integrity. Treatment with nocodazole led to disruption of proper spindle pole localization of active AMPK, while paclitaxel induced excessive polymerization of spindle MT and formation of ectopic asters with accentuated AMPK colocalization. Although stimulation of AMPK increased the rate of germinal vesicle breakdown (GVB), spindle formation and polar body (PB) extrusion, the kinase had no effect on peripheral movement of the spindle. These data suggest that the meiosis-inducing action and localization of AMPK are regulated by MT spindle integrity during mouse oocyte maturation. PMID:23199370

  19. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  20. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  1. INVOLVEMENT OF p38 MITOGEN-ACTIVATED PROTEIN KINASE IN E.Coli-INDUCED U937 APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    Jia-he Wang; Yi-jun Zhou; Ping He; Bai-yi Chen

    2007-01-01

    Objective To investigate whether the effect of E. coli on U937 cell lines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation.Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry. p38 activities were detected by Western blotting.Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells.Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.

  2. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.

    Science.gov (United States)

    Xie, Shan-Bu; He, Xing-Xing; Yao, Shu-Kun

    2015-08-01

    Matrine, one of the main extract components of Sophora flavescens, has been shown to exhibit inhibitory effects on some tumors through autophagy. However, the mechanism underlying the effect of matrine remains unclear. The cultured human hepatocellular carcinoma cell line HepG2 and SMMC‑7721 were treated with matrine. Signal transduction and gene expression profile were determined. Matrine stimulated autophagy in SMMC‑7721 cells in a mammalian target of rapamycin (mTOR)-dependent manner, but in an mTOR-independent manner in HepG2 cells. Next, in HepG2 cells, autophagy induced by matrine was regulated by p53 inactivation through AMP-activated protein kinase (AMPK) signaling transduction, then AMPK suppression switched autophagy to apoptosis. Furthermore, the interferon (IFN)-inducible genes, including interferon α-inducible protein 27 (IFI27) and interferon induced transmembrane protein 1 (IFITM1), which are downstream effector of p53, might be modulated by matrine-induced autophagy. In addition, we found that the p53 protein isoforms, p53β, p53γ, ∆133p53, and ∆133p53γ, due to alternative splicing of intron 9, might be regulated by the p53-mediated autophagy. These results show that matrine induces autophagy in human hepatoma cells through a novel mechanism, which is p53/AMPK signaling pathway involvement in matrine-promoted autophagy.

  3. Postextinction Infusion of a Mitogen-Activated Protein Kinase Inhibitor into the Medial Prefrontal Cortex Impairs Memory of the Extinction of Conditioned Fear

    Science.gov (United States)

    Hugues, Sandrine; Deschaux, Olivier; Garcia, Rene

    2004-01-01

    We investigated whether postextinction training infusion of PD098059, a selective inhibitor of mitogen-activated protein kinase (MAPK) activation, into the medial prefrontal cortex, would impair retention of extinction learning in rats. We found that immediate, but not late (2 or 4 h), postextinction infusion of PD098059 provoked a full return of…

  4. Rac1/p21-activated kinase pathway controls retinoblastoma protein phosphorylation and E2F transcription factor activation in B lymphocytes.

    Science.gov (United States)

    Zaldua, Natalia; Llavero, Francisco; Artaso, Alain; Gálvez, Patricia; Lacerda, Hadriano M; Parada, Luis A; Zugaza, José L

    2016-02-01

    Small GTPases of the Ras superfamily are capable of activating E2F-dependent transcription leading to cell proliferation, but the molecular mechanisms are poorly understood. In this study, using immortalized chicken DT40 B cell lines to investigate the role of the Vav/Rac signalling cascade on B cell proliferation, it is shown that the proliferative response triggered by B cell receptor activation is dramatically reduced in the absence of Vav3 expression. Analysis of this proliferative defect shows that in the absence of Vav3 expression, retinoblastoma protein (RB) phosphorylation and the subsequent E2F activation do not take place. By combining pharmacological and genetic approaches, phosphatidylinositol-3-kinase and phospholipase Cγ2 (PLCγ2) were identified as the key regulatory signalling molecules upstream of the Vav3/Rac pathway leading to RB phosphorylation and E2F transcription factor activation. Additionally, vav3(-/-) and plcγ2(-/-) DT40 B cells were not able to activate the RB-E2F complex wild-type phenotype when these genetically modified cells were transfected with constitutively active forms of RhoA or Cdc42. However, when these knockout cells were transfected with different constitutively active versions of PLCγ, Vav or Rac1, not only activation of the RB-E2F complex wild-type phenotype was recovered but also the cellular proliferation. Furthermore, by evaluating the effect of two known effector mutants of Rac1 (Rac1(Q61L/F37A) and Rac1(Q61L/Y40C) ), the RB-E2F complex activation dependency on p21-activated kinase (PAK) and protein kinase Cε (PKCε) activities was established, being independent of both actin cytoskeleton reorganization and Ras activity. These results suggest that PAK1 and PKCε may be potential therapeutic targets to stop uncontrolled B cell proliferation mediated by the Vav/Rac pathway.

  5. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway

    OpenAIRE

    Scott, Pamela H; Brunn, Gregory J.; Kohn, Aimee D; Roth, Richard A.; Lawrence, John C.

    1998-01-01

    The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP...

  6. Dexamethasone Causes Sustained Expression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase 1 and Phosphatase-Mediated Inhibition of MAPK p38

    OpenAIRE

    Lasa, Marina; Abraham, Sonya M.; Boucheron, Christine; Saklatvala, Jeremy; Clark, Andrew R.

    2002-01-01

    The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibiti...

  7. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of protein kinase D1.

    Directory of Open Access Journals (Sweden)

    Vasudha Sundram

    Full Text Available Prostate cancer is the most commonly diagnosed cancer affecting 1 in 6 males in the US. Understanding the molecular basis of prostate cancer progression can serve as a tool for early diagnosis and development of novel treatment strategies for this disease. Protein Kinase D1 (PKD1 is a multifunctional kinase that is highly expressed in normal prostate. The decreased expression of PKD1 has been associated with the progression of prostate cancer. Therefore, synthetic or natural products that regulate this signaling pathway can serve as novel therapeutic modalities for prostate cancer prevention and treatment. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of different molecular pathways. Herein, we have demonstrated that curcumin activates PKD1, resulting in changes in β-catenin signaling by inhibiting nuclear β-catenin transcription activity and enhancing the levels of membrane β-catenin in prostate cancer cells. Modulation of these cellular events by curcumin correlated with decreased cell proliferation, colony formation and cell motility and enhanced cell-cell aggregation in prostate cancer cells. In addition, we have also revealed that inhibition of cell motility by curcumin is mediated by decreasing the levels of active cofilin, a downstream target of PKD1. The potent anti-cancer effects of curcumin in vitro were also reflected in a prostate cancer xenograft mouse model. The in vivo inhibition of tumor growth also correlated with enhanced membrane localization of β-catenin. Overall, our findings herein have revealed a novel molecular mechanism of curcumin action via the activation of PKD1 in prostate cancer cells.

  8. The Changes of Protein Kinase C Activity in Peripheral Blood Lymphocytes in the Patients with Obstructive Jaundice and the Implication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The roles of protein kinase C (PKC) signal pathway in the pathogenesis of obstructive jaundice were studied. PKC from cytosolic and membrane fractions of peripheral blood lymphocytes (PBL) in 51 patients with obstructive jaundice and 16 cases of normal controls was isolated and purified. The activities of PKC were determined by radioactive isotope γ-32P-ATP-catalyzing assay. The results showed that the total PKC activities in PBL in the patients with obstructive jaundice were significantly increased as compared with those in the normal controls (P<0.01). Moreover, the membrane PKC activities and their percentages of the total PKC activities were higher in obstructive jaundice group than in those in the normal controls (P<0.05). The total PKC activities in PBL in the patients with obstructive jaundice were significantly positively correlated with the levels of soluble IL-2 receptor (sIL-2R) (r=0.58, P<0.01) and the degree of jaundice (T-BIL) (r=0.67, P<0.01) in serum. It was concluded that the activities of PKC signal pathway was related with the degree of T-BIL. PKC signal pathway might took part in the activation of T-lymphocytes in the patients with obstructive jaundice and play an important role in the immune regulation and the assessment of pathosis in the patients with obstructive jaundice.

  9. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  10. Structural evolution of the protein kinase-like superfamily.

    Directory of Open Access Journals (Sweden)

    Eric D Scheeff

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  11. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  12. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour.

    Science.gov (United States)

    Hurtado-Carneiro, Verónica; Sanz, Carmen; Roncero, Isabel; Vazquez, Patricia; Blazquez, Enrique; Alvarez, Elvira

    2012-04-01

    The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the