WorldWideScience

Sample records for activated hepatic stellate

  1. Roles of the Lipid Metabolism in Hepatic Stellate Cells Activation

    Institute of Scientific and Technical Information of China (English)

    Xin-yan Jing; Xue-feng Yang; Kai Qing; Yan Ou-Yang

    2013-01-01

    The lipids present in hepatic stellate cells (HSCs) lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Activation of HSCs is crucial to the development of fibrosis in liver disease. During activation, HSCs transform into myofibroblasts with concomitant loss of their lipid droplets and production of excessive extracellular matrix. Release of lipid droplets containing retinyl esters and triglyceride is a defining feature of activated HSCs. Accumulating evidence supports the proposal that recovering the accumulation of lipids would inhibit the activation of HSCs. In healthy liver, quiescent HSCs store 80%of total liver retinols and release them depending on the extracellular retinol status. However, in injured liver activated HSCs lose their retinols and produce a considerable amount of extracellular matrix, subsequently leading to liver fibrosis. Further findings prove that lipid metabolism of HSCs is closely associated with its activation, yet relationship between activated HSCs and the lipid metabolism has remained mysterious.

  2. Relationship between somatostatin receptors and activation of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 陆良勇; 尤汉宁; 徐芹芳

    2004-01-01

    Background Somafostatin receptors (SSTRs) have been suggested to involve in mediating the effect of somatostatin on hepatic stellate cells (HSCs) in an activation-dependent way. We, therefore, try to investigate the relationship between expression of SSTRs and activation of rat HSCs.Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation.SSTR1-5 mRNA levels in the differentiated first passage HSCs were detected by means of a reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1-5 in normal as well as fibrotic livers was measured by immunohistochemical staining.Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs or normal rat liver. However, SSTR1-3 mRNA appeared as HSCs became wholly activated, and could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc.Conclusion The expression of SSTR1-3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  3. RELATIONSHIP BETWEEN SOMATOSTATIN RECEPTORS AND ACTIVATION OF HEPATIC STELLATE CELL

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 尤汉宁; 徐芹芳; 陆良勇

    2004-01-01

    Objective To investigate the relationship between expression of somatostatin receptors (SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation, and then SSTR1 ~5 mRNA levels in the differentiated first passage HSCs were detected by means of reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1 ~5 in normal as well as fibrotic liver was measured by immunohistochemical staining. Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs and normal rat liver. But SSTR1~3 mRNA appeared as HSCs became wholly activated, and SSTR1 ~3 could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc Conclusion The expression of SSTR1~3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  4. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells.

    Science.gov (United States)

    Feng, Yi; Ying, Hai-Yan; Qu, Ying; Cai, Xiao-Bo; Xu, Ming-Yi; Lu, Lun-Gen

    2016-09-01

    Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.

  5. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  6. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.

    Science.gov (United States)

    Shin, Eunjin; Lee, Chul; Sung, Sang Hyun; Kim, Young Choong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-04-01

    The CHCl(3) fraction of Cnidium monnieri fruits significantly inhibited the proliferation of hepatic stellate cells in an in-vitro assay system employing HSC-T6 hepatic stellate cell lines. Activity-guided fractionation of the CHCl(3) fraction of C. monnieri led to the isolation of ten coumarins: osthol (1), meranzin (2), auraptenol (3), meranzin hydrate (4), 7-hydroxy-8-methoxy coumarin (5), imperatorin (6), xanthotoxol (7), xanthotoxin (8), bergapten (9) and isopimpinellin (10). Of these, compounds 1 and 6 significantly inhibited proliferation of HSCs in a time- and concentration-dependent manner. In addition, compounds 1 and 6 significantly reduced collagen content in HSC-T6 cells. PMID:21082271

  7. RETARDING EFFECT OF SAL IANOLIIC ACID B ON ACTIVATION OF RAT HEPATIC STELLATE CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    王晓玲; 刘平; 王海南; 谭英姿

    2001-01-01

    To investigate the anti-fibrosis mechanism of salvianolic acid B in liver.Methods Hepatic stellate cells (HSCs) were isolated from liver of normal rats by in situ perfusion and density-gradient centrifugation with Nycodenz. Total RNA was extracted from cells to detect type Ⅰ collagen and smooth muscle α-actin mRNA expression using reverse transcription-polymerase chain reaction (RT-PCR). Smooth muscle α-actin protein was assayed with immunoblotting analysis. Secretion of type Ⅰ collagen in the medium was determined by ELISA.Results Both 1 μmol/L and 10μmol/L SAB suppressed type Ⅰ collagen mRNA expression and its protein secretion. 10μmol/l SAB affected the expression of smooth muscle α-actin protein.Conclusion Retarding activation of stellate cells and inhibiting type Ⅰ collagen secretion were the main mechanism of SAB on anti-fibrosis of liver.

  8. Differential Lipotoxic Effects of Palmitate and Oleate in Activated Human Hepatic Stellate Cells and Epithelial Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Alexandra M. Hetherington

    2016-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD progression to fibrosis, cirrhosis and hepatocellular carcinoma, alters the cellular composition of this organ. During late-stage NAFLD, fibrotic and possibly cancerous cells can proliferate and, like normal hepatocytes, are exposed to high concentrations of fatty acids from both surrounding tissue and circulating lipid sources. We hypothesized that primary human activated hepatic stellate cells and epithelial hepatoma (HepG2 cells respond differently to lipotoxic conditions, and investigated the mechanisms involved. Methods: Primary activated hepatic stellate cells and HepG2 cells were exposed to pathophysiological concentrations of fatty acids and comparative studies of lipid metabolic and stress response pathways were performed. Results: Both cell types remained proliferative during exposure to a combination of palmitate plus oleate reflective of the general saturated versus unsaturated fatty acid composition of western diets. However, exposure to either high palmitate or high oleate alone induced cytotoxicity in activated stellate cells, while only palmitate caused cytotoxicity in HepG2 cells. mRNA microarray and biochemical comparisons revealed that stellate cells stored markedly less fatty acids as neutral lipids, and had reduced capacity for beta-oxidation. Similar to previous observations in HepG2 cells, palmitate, but not oleate, induced ER stress and actin stress fiber formation in activated stellate cells. In contrast, oleate, but not palmitate, induced the inflammatory signal TXNIP, decreased cytoskeleton proteins, and decreased cell polarity preceding cell death in activated stellate cells. Conclusions: Palmitate-induced lipotoxicity was associated with ER stress pathways in both primary activated hepatic stellate cells and epithelial hepatoma cells, whereas high oleate caused lipotoxicity only in activated stellate cells, possibly through a distinct mechanism involving

  9. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion

    OpenAIRE

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and tran...

  10. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Science.gov (United States)

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  11. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Hella Wobser; Christoph Dorn; Thomas S Weiss; Thomas Amann; Cornelius Bollheimer; Roland Büttner; Jürgen Sc(o)lmerich; Claus Hellerbrand

    2009-01-01

    Despite the initial belief that non-alcoholic fatty liver disease is a benign disorder, it is now recognized that fbrosis progression occurs in a significant number of patients. Furthermore, hepatic steatosis has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of other liver diseases. Here, we established an in vitro model to study the effect of hepatic lipid accumulation on hepatic stellate cells (HSCs), the central mediators of liver fibrogenesis. Primary human hepatocytes were incubated with the saturated fatty acid palmitate to induce intracellular lipid accumulation. Subsequently, human HSCs were incubated with conditioned media (CM) from steatotic or control hepatocytes. Lipid accumulation in hepatocytes induced the release of factors that accelerated the activation and proliferation of HSC, and enhanced their resistance to apoptosis, largely mediated via activation of the PI-3-kinase pathway. Furthermore, CM from steatotic hepatocytes induced the expression of the profibrogenic genes TGF-β, tissue inhibitor of metallo-proteinase-1 (TIMP-1), TIMP-2 and matrix-metallo-proteinase-2, as well as nuclear-factor Κb-dependent MCP-1 expression in HSC. In summary, our in vitro data indicate a potential mechanism for the pathophysiological link between hepatic steatosis and fibrogenesis in vivo. Herewith, this study provides an attractive in vitro model to study the molecular mechanisms of steatosis-induced fibrogenesis, and to identify and test novel targets for antifibrotic therapies in fatty liver disease.

  12. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death

    NARCIS (Netherlands)

    Dunning, Sandra; Rehman, Atta Ur; Tiebosch, Marjolein H.; Hannivoort, Rebekka A.; Haijer, Floris W.; Woudenberg, Jannes; van den Heuvel, Fiona A. J.; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-01-01

    Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated i

  13. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  14. Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    James Pritchett

    Full Text Available BACKGROUND AND AIMS: Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM deposition from activated hepatic stellate cells (HSCs. Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs, in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9. METHODS: Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP. RESULTS: During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1, and α-Smooth muscle actin (α-SMA. Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN, while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13. Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. CONCLUSION: These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.

  15. Inhibitory effects of prostaglandin E1 on activation of hepatic stellate cells in rabbits with schistosomiasis

    Institute of Scientific and Technical Information of China (English)

    Wei-Long Zou; Zhen Yang; Yun-Jin Zang; Dong-Jian Li; Zhi-Peng Liang; Zhong-Yang Shen

    2007-01-01

    BACKGROUND:Liver ifbrosis is the result of an imbalance between synthesis and degradation of extracellular matrix proteins of the liver. At the cellular and molecular levels, this progressive process is mainly characterized by activation of hepatic stellate cells (HSCs). Schistosoma japonica is one of the most prevalent causes of liver ifbrosis in China. It is characterized by hepatocyte damage, inlfammation, and chronic parasite egg-induced granuloma formation leading to ifbrosis. This study aimed to investigate the inhibitory effects of prostaglandin E1 (PGE1) on activation of HSCs and the alteration of type Ⅰ and Ⅲ collagen in rabbits with schistosomiasis. The study may promote the clinical application of praziquantel and PGE1 as a combined therapy to reverse hepatic ifbrosis caused by schistosomiasis. METHODS: Rabbits were percutaneously infected with cercaria of S. japonicum. Seven rabbits were subjected to intravenous injections of PGE1 (2.5 μg/kg daily) from days 60 to 120 after infection. The ultrastructural changes in activated HSCs were observed under transmission electron microscopy. The expression ofα-smooth muscle actin (α-SMA) was detected by immunohistochemistry. Fibril-forming collagens were detected by picrosirius staining. RESULTS: Activation of HSCs was a characteristic alteration in schistosome-induced hepatic ifbrosis. The expression of contraction-related α-SMA and the content of collagens were increased. Exogenous PGE1 markedly inhibited the activation of HSCs and reduced the expression of α-SMA around the hepatic sinusoids (P CONCLUSIONS:Activation of HSCs may play a key role in the progress of schistosome-induced hepatic ifbrosis. PGE1 effectively protects rabbit liver from ifbrosis, at least in part by inhibiting the activation of HSCs.

  16. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Science.gov (United States)

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  17. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Ridolfi, F; Hannivoort, R; Saccomanno, S; Homan, M; De Minicis, S; Jansen, PLM; Candelaresi, C; Benedetti, A; Moshage, H

    2005-01-01

    Background B Aims: Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to prom

  18. Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-01-01

    Full Text Available Background and Aim. Tetramethylpyrazine (TMP, a major alkaloid isolated from Ligusticum chuanxiong, has been reported in hepatic fibrosis models. However, the action mechanism remains unclear. In the present study, effects of tetramethylpyrazine (TMP against hepatic stellate cell (HSC activation as well as the possible mechanisms were evaluated. Methods. Western blot assay was used to detect TMP effects on protein expression of Smo, Patched, Hhip, and Gli and to investigate the effects of TMP on Cyclin D1, Cyclin E1, CDK2, Bcl-2, Bax, and caspase expression with cyclopamine supplementation. Results. Our results showed that TMP significantly inhibits the expression of Cyclin D1, Cyclin E1, and Cyclin-dependent kinase CDK2 and changes the HSC cycle by inhibiting the proliferation of HSC. Moreover, TMP has also been shown to decrease the expression of Bcl-2 and increase the expression of Bax in HSC-T6 cells. Furthermore, TMP can inhibit the expression of connective tissue growth factor (CTGF, and the inhibitory effect was intensified after the application of joint treatment with TMP and cyclopamine. Conclusion. TMP may be an effective Hh signaling pathway inhibitor for hepatic fibrosis treatment.

  19. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun, E-mail: hunkahmu@126.com

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  20. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  1. Antiproliferative and proapoptotic effects of somatostatin on activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Qin Pan; Ding-Guo Li; Han-Ming Lu; Liang-Yong Lu; Yu-Qin Wang; Qin-Fang Xu

    2004-01-01

    AIM: To assess the effects of somatostatin on proliferation and apoptosis of activated rat hepatic stellate cells (HSCs).METHODS: HSCs isolated from the livers of adult SpragueDawley rats (weighing 400-500 g) by in situ perfusion and purified by single-step density gradient centrifugation with Nycodenz, became activated after 10 days' cultivation. Then the apoptotic rate of HSCs treated with different doses of somatostatin for 72 h, was assayed by acridine orange/ethidium bromide fluorescent staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, transmission electron microscopy and flow cytometry, while the proliferation of HSCs was measured by MTT assay. Furthermore, the mechanisms of somatostatin were investigated by cytodynamic analysis.RESULTS: Somatostatin at the concentration of 10-6-10-9 mol/L could decrease the proliferative rate, and promote the apoptosis of activated rat HSCs in a dose-dependent way.Its action was most significant when the concentration reached 10-6 mol/L or 10-7 mol/L (P<0.05-0.01). An obvious cell-cycle arrest (G0/G1 arrest) was the important way for somatostatin to exert its action.CONCLUSION: Antiproliferative and proapoptotic effects of low-dose somatostatin on activated rat HSCs can be obtained.These findings reveal its potential antifibrotic action.

  2. Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-β/Smad activity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigated if paclitaxel can attenuate hepatic fi brosis in rat hepatic stellate cells (RHSCs). METHODS: RHSCs were cultured in vitro and randomly assigned to four groups: normal control group (treated only with Dulbecco's Modified Eagle's Medium), Taxol group (200 nmol/L paclitaxel was added to the cell culture), transforming growth factor (TGF)-β group (5 ng/mL recombinant human TGF-β1 was added to the cell culture), and TGF-β + Taxol group. TGF-β signaling cascade and status of various extracel...

  3. Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Tai-Long Pan

    2012-01-01

    Full Text Available Since the activated hepatic stellate cell (HSC is the predominant event in the progression of liver fibrosis, selective clearance of HSC should be a potential strategy in therapy. Salvia miltiorrhiza roots ethanol extract (SMEE remarkably ameliorates liver fibrogenesis in DMN-administrated rat model. Next, tanshinone IIA (Tan IIA, the major compound of SMEE, significantly inhibited rat HSC viability and led to cell apoptosis. Proteome tools elucidated that increased prohibitin is involved in cell cycle arrest under Tan IIA is the treatment while knockdown of prohibitin could attenuate Tan IIA-induced apoptosis. In addition, Tan IIA mediated translocation of C-Raf which interacted with prohibitin activating MAPK and inhibiting AKT signaling in HSC. MAPK antagonist suppressed ERK phosphorylation which was necessary for Tan IIA-induced expression of Bax and cytochrome c. PD98059 also abolished Tan IIA-modulated cleavage of PARP. Our findings suggested that Tan IIA could contribute to apoptosis of HSC by promoting ERK-Bax-caspase pathways through C-Raf/prohibitin complex.

  4. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress

    Science.gov (United States)

    Wang, Chen; Zhang, Feng; Cao, Yu; Zhang, Mingming; Wang, Aixiu; Xu, Mingcui; Su, Min; Zhang, Ming; Zhuge, Yuzheng

    2016-01-01

    The activation of hepatic stellate cells (HSCs) plays a vital role in the progression of liver fibrosis, and the induction of HSCs apoptosis may attenuate or reverse fibrogenesis. The therapeutic effects of etoposide(VP-16), a widely used anticancer agent, on HSCs apoptosis and liver fibrosis resolution are still unclear. Here, we report that VP-16 reduced the proliferation of LX-2 cells and led to significantly high levels of apoptosis, as indicated by Annexin V staining and the proteolytic cleavage of the executioner caspase-3 and PARP. Additionally, the unfolded protein response regulators CHOP, BIP, caspase-12, p-eIF2α and IRE1α, which are considered endoplasmic reticulum (ER) stress markers, were upregulated by VP-16. The strong inhibitory effect of VP-16 on LX-2 cells was mainly dependent on ER stress, which activated JNK signaling pathway. Remarkably, VP-16 treatment decreased the expression of α-SMA and type I collagen and simultaneously increased the ratio of matrix metalloproteinases (MMPs) to tissue inhibitor of matrix metalloproteinases (TIMPs). In contrast, VP-16 induced significantly more apoptosis in HSCs than in normal hepatocytes. Taken together, our findings demonstrate that VP-16 exerts a proapoptotic effect on LX-2 cells and has an antifibrogenic effect on collagen deposition, suggesting a new strategy for the treatment of liver fibrosis. PMID:27680712

  5. miRNA studies in in vitro and in vivo activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Gunter Maubach; Michelle Chin Chia Lim; Jinmiao Chen; Henry Yang; Lang Zhuo

    2011-01-01

    AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation.METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated.RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs.Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type Ⅰ transcription.CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA.

  6. Association of Interleukin-15–Induced Peripheral Immune Activation with Hepatic Stellate Cell Activation in Persons Coinfected with Hepatitis C Virus and HIV

    Science.gov (United States)

    Allison, Robert D.; Katsounas, Antonios; Koziol, Deloris E.; Kleiner, David E.; Alter, Harvey J.; Lempicki, Richard A.; Wood, Brad; Yang, Jun; Fullmer, Brandie; Cortez, Karoll J.; Polis, Michael A.; Kottilil, Shyam

    2009-01-01

    Hepatic stellate cells (HSCs) mediate hepatitis C virus (HCV)–related liver fibrosis, and increased HSC activation in human immunodeficiency virus (HIV)/HCV coinfection may be associated with accelerated fibrosis. We examined the level of HSC activation in HIV/HCV-coinfected and HCV-monoinfected subjects and its relationship to the level of activation and gene expression of peripheral immune cells in coinfected subjects. HSC activation levels positively correlated with peripheral CD4+ and CD8+ T cell immune activation and were associated with enhanced interleukin-15 (IL-15) gene expression, suggesting a pathogenic role for IL-15–driven immunomediated hepatic fibrosis. Future strategies that reduce immune activation and HSC activation may delay progression of liver fibrosis. PMID:19594300

  7. Gallic acid induces necroptosis via TNF-α signaling pathway in activated hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya Ju Chang

    Full Text Available Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA, a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs, the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF-α-mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH. Elevated oxidative stress triggered the production of TNF-α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3, and the inactivation of caspase-8. Calmodulin and calpain-1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP. The TNF-α antagonist (SPD-304 and the RIP1 inhibitor (necrostatin-1, Nec-1 confirmed GA-induced TNFR1-mediated necroptosis. The inhibition of RIP1 by Nec-1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling-triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis.

  8. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Fen-Fen Liang

    Full Text Available BACKGROUND & AIMS: After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1, which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC and LX-2 cell lines. METHODS: TGF-β1, alpha-smooth muscle actin (α-SMA, matrix metalloproteinase 2 (MMP-2, and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR after HSCs or LX-2 cells were treated with PTHrP(1-36 or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA of HSC cell culture media. RESULTS: In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. CONCLUSIONS: PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  9. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1.

    Science.gov (United States)

    Kang, Qiaohua; Chen, Anping

    2009-12-01

    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.

  10. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu

    NARCIS (Netherlands)

    van de Bovenkamp, M; Groothuis, GMM; Draaisma, AL; Merema, M.T.; Bezuijen, JI; van Gils, MJ; Meijer, DKF; Friedman, SL; Olinga, P

    2005-01-01

    Hepatic stellate cell (HSC) activation is a key event in the natural process of wound healing as well as in fibrosis development in liver. Current in vitro models for HSC activation contribute significantly to the understanding of HSC biology and fibrogenesis but still fall far short of recapitulati

  11. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    International Nuclear Information System (INIS)

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β1-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21

  12. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China); Wu, Chao-Qun [Genetics Institute, Fudan University, No. 220 Handan Road, Shanghai 200433 (China); Zhang, Zong-Qi [Department of Cardiology, No. 3 Hospital, Shanghai Jiao Tong University Medical school, No.280 Mohe Road, Shanghai 201900 (China); Yao, Ding-Kang; Zhu, Liang, E-mail: 15900611429@163.com [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China)

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  13. Effects of herbal compound 861 on human hepatic stellate cell proliferation and activation

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Jian Wang; Bao-En Wang; Pei-Gen Xiao; Yan-Jiang Qiao; Xue-Hai Tan

    2004-01-01

    AIM: To investigate the effects of herbal compound 861(Cpd 861) on cell proliferation in human hepatic stellate cells (LX-2) and human hepatocellular liver carcinoma cells(HepG2), and expression of α-smooth muscle actin (α-SMA)in LX-2 cells.METHODS: LX-2 and HepG2 cells were incubated withvarious concentrations of Cpd 861 (0.1-0.003 mg/mL)for 1,2, 3, 5 and 7 d. Cell proliferation was analyzed by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Effects of Cpd861on the expression of α-SMA mRNA in LX-2 cells were measured by real-time quantitative PCR method using SYBR Green I technology.RESULTS: Cpd 861, at 0.1 mg/mL, significantly inhibited LX-2 cell proliferation (15% decrease relative to control,P<0.05) after 3 d of incubation. The inhibitory effects seemed to increase with the treatment time (25% decrease after 5 d of incubation and 35% decrease after 7 d of incubation,P<0.01). However, Cpd 861 did not affect HepG2 cell proliferation at the same concentration used for LX-2 cells.The expression levels of α-SMA mRNA decreased significantly when LX-2 cells were exposed to Cpd 861 for 48 h (59%decrease relative to control, P<0.05) or 72 h (60% decrease relative to control, P<0.01).CONCLUSION: Cpd 861 can significantly inhibit LX-2 cell proliferation in a dose-dependant manner, and reduce the expression levels of α-SMA mRNA in LX-2 cells. Since hepatic cell proliferation and high level of α-SMA are associated with liver fibrosis, the results suggest that Cpd 861 may be useful in the treatment of this disease.

  14. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  15. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  16. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade. PMID:26089141

  17. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fujun [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Zheng, Jianjian [Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Dong, Peihong [Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Li, Guojun [Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, 315000 (China); Lu, Zhongqiu [Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Guo, Chuanyong; Liu, Zhanju [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072 (China); Fan, Xiaoming, E-mail: ktsqdph@163.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China)

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  18. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation.

    Science.gov (United States)

    Harvey, Wendy A; Jurgensen, Kimberly; Pu, Xinzhu; Lamb, Cheri L; Cornell, Kenneth A; Clark, Reilly J; Klocke, Carolyn; Mitchell, Kristen A

    2016-02-17

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism. PMID:26860701

  19. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2

    Science.gov (United States)

    Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-01-01

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  20. Study on Effect of IH764-3, an Active Principle of Salviae miltiorrhizae, in Inducing Hepatic Stellate Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵东强; 姜慧卿; 修贺明; 张晓岚

    2002-01-01

    Objective: To explore the anti-fibrotic mechanism of Salviae miltiorrhizae from the view of proliferation and apoptosis of hepatic stellate cells (HSC).Methods: IH764-3, an active principle of Salviae miltiorrhizae, was used to intervene in the cultured HSC in vitro. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) method, and the cell apoptosis was examined by electron microscopy, flow cytometer and terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling method (TUNEL).Results: MTT showed that IH764-3 has obvious inhibition on the proliferation of HSC. Specific cell apoptosis figures of HSC, such as chromatin agglutination, were seen under electron microscopy in the IH764-3 treated group. By flow cytometer, it was shown that the HSC apoptosis rate in the IH764-3 treated group was higher than that in the control group, and the apoptosis inducing effect of IH764-3 was dose- and time-dependent. TUNEL analysis showed that the HSC apoptotsis rate was 28.3±1.5% after being incubated for 48 hrs with IH764-3, which was significantly higher than that in the control group (6.7±0.6%, P<0.05).Conclusion: IH764-3 could inhibit the proliferation of HSC and induce its apoptosis. These effects may be one of the anti-fibrotic mechanisms of Salviae miltiorrhizae.

  1. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    Directory of Open Access Journals (Sweden)

    Yuh-Ching Twu

    2016-07-01

    Full Text Available In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2 protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1-induced collagen type 1 α1 (Col1a1, α-smooth muscle actin (α-SMA expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.

  2. Dietary Flavonoid Hyperoside Induces Apoptosis of Activated Human LX-2 Hepatic Stellate Cell by Suppressing Canonical NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Liwen Wang

    2016-01-01

    Full Text Available Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA, type I collagen, and intracellular reactive oxygen species (ROS. Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-XL, and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis.

  3. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays

    Institute of Scientific and Technical Information of China (English)

    Wu-Jun Xiong; Li-Juan Hu; Yi-Cheng Jian; Li-Jing Wang; Ming Jiang; Wei Li; Yi He

    2012-01-01

    AIM:To identify differentially expressed genes in quiescent and activated hepatic stellate cells (HSCs) and explore their functions.METHODS:HSCs were isolated from the normal Sprague Dawley rats by in suit perfusion of collagenase and pronase and density Nycodenz gradient centrifugation.Total RNA and mRNA of quiescent HSCs,and cultureactivated HSCs were extracted,quantified and reversely transcripted into cDNA.The global gene expression profile was analyzed by microarray with Affymetrix rat genechip.Differentially expressed genes were annotated with Gene Ontology (GO) and analyzed with Kyoto encyclopedia of genes and genomes (KEGG) pathway using the Database for Annotation,Visualization and Integrated Discovery.Microarray data were validated by quantitative real-time polymerase chain reaction (qRTPCR).The function of Wnt5a on human HSCs line LX-2was assessed with lentivirus-mediated Wnt5a RNAi.The expression of Wnt5a in fibrotic liver of a carbon tetrachloride (CCl4)-induced fibrosis rat model was also analyzed with Western blotting.RESULTS:Of the 28 700 genes represented on this chip,2566 genes displayed at least a 2-fold increase or decrease in expression at a P < 0.01 level with a false discovery rate.Of these,1396 genes were upregulated,while 1170 genes were downregulated in culture-activated HSCs.These differentially expressed transcripts were grouped into 545 GO based on biological process GO terms.The most enriched GO terms included response to wounding,wound healing,regulation of cell growth,vasculature development and actin cytoskeleton organization.KEGG pathway analysis revealed that Wnt5a signaling pathway participated in the activation of HSCs.Wnt5a was significantly increased in cultureactivated HSCs as compared with quiescent HSCs.qRTPCR validated the microarray data.Lentivirus-mediated suppression of Wnt5a expression in activated LX-2 resulted in significantly impaired proliferation,downregulated expressions of type I collagen and transforming

  4. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory cytokine

  5. Hepatic Stellate Cell–Targeted Delivery of Hepatocyte Growth Factor Transgene via Bile Duct Infusion Enhances Its Expression at Fibrotic Foci to Regress Dimethylnitrosamine-Induced Liver Fibrosis

    OpenAIRE

    Narmada, Balakrishnan Chakrapani; Kang,Yuzhan; Venkatraman, Lakshmi; Peng, Qiwen; Sakban, Rashidah Binte; Nugraha, Bramasta; Jiang, Xuan; Bunte, Ralph M.; So, Peter T. C.; Tucker-Kellogg, Lisa; Mao, Hai-Quan; Yu, Hanry

    2013-01-01

    Liver fibrosis generates fibrotic foci with abundant activated hepatic stellate cells and excessive collagen deposition juxtaposed with healthy regions. Targeted delivery of antifibrotic therapeutics to hepatic stellate cells (HSCs) might improve treatment outcomes and reduce adverse effects on healthy tissue. We delivered the hepatocyte growth factor (HGF) gene specifically to activated hepatic stellate cells in fibrotic liver using vitamin A–coupled liposomes by retrograde intrabiliary infu...

  6. Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation

    Institute of Scientific and Technical Information of China (English)

    Mao-chuan ZHEN; Xiao-hui HUANG; Qian WANG; Kai SUN; Yun-jian LIU; Wen LI; Long-Juan ZHANG; Liang-qi CAO; Xi-ling CHEN

    2006-01-01

    Aim: Epigallocatechin-3-gallate (EGCG) is the major component of green tea polyphenols, whose wide range of biological properties includes anti-fibrogenic activity. Matrix metalloproteinases (MMP) that participate in extracellular matrix degradation are involved in the development of hepatic fibrosis. The present study investigates whether EGCG inhibits activation of the major gelatinase matrix metalloproteinase-2 (MMP-2) in rat hepatic stellate cells (HSC). Methods: The expression of MMP-2, tissue inhibitors of metalloproteinases-2 (TIMP-2), and membrane-type 1-MMP (MT1-MMP) was assessed by RT-PCR and Western blot analyses. MMP-2 activity was evaluated by zymography and MT1-MMP activity was assessed by an enzymatic assay. HSC migration was measured by a wound healing assay and cell invasion was performed using Transwell cell culture chambers. Results: The expression of MMP-2 mRNA and protein in HSC was substantially reduced by EGCG treatment. EGCG treatment also reduced con-canavalin A (ConA)-induced activation of secreted MMP-2 and reduced MT1-MMP activity in a dose-dependent manner. In addition, EGCG inhibited either HSC migration or invasion. Conclusion: The abilities of EGCG to suppress MMP-2 activation and HSC invasiveness suggest that EGCG may be useful in the treatment and prevention of hepatic fibrosis.

  7. Tetrandrine inhibits activation of rat hepatic stellate cells in vitro via transforming growth factor-β signaling

    Institute of Scientific and Technical Information of China (English)

    Yuan-Wen Chen; Jian-Xin Wu; Ying-Wei Chen; Ding-Guo Li; Han-Ming Lu

    2005-01-01

    AIM: To investigate the effect of various concentrations of tetrandrine on activation of quiescent rat hepatic stellate cells (HSCs) and transforming growth factor-β (TGF-β) signaling in vitro.METHODS: HSCs were isolated from rats by in situperfusion of liver and 18% Nycodenz gradient centrifugation, and primarily cultured on uncoated plastic plates for 24 hwith DMEM containing 20% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, the HSCs were cultured in 2% FBS/DMEM with tetrandrine (0.25, 0.5, 1,2 mg/L, respectively). Cell morphological features were observed under an inverted microscope, smooth muscleα-actin (α-SMA) was detected by immunocytochemistry and image analysis system, laminin (LN) and type Ⅲprocollagen (PCⅢ) in supernatants were determined byradioimmunoassay. TGF-β1 mRNA, Smad 7 mRNA and Smad 7 protein were analyzed with RT-PCR and Western blotting, respectively.RESULTS: Tetrandrine at the concentrations of 0.25-2 mg/L prevented morphological transformation of HSC from the quiescent state to the activated one, while α-SMA, LN and PCⅢ expressions were inhibited. As estimated by gray values, the expression of α-SMA in tetrandrine groups (0.25, 0.5, 1, 2 mg/L) was reduced from 21.3% to 42.2%(control: 0.67, tetrandrine groups: 0.82, 0.85, 0.96, or 0.96, respectively, which were statistically different from the control, P<0.01), and the difference was more significant in tetrandrine at 1 and 2 mg/L. The content of LN in supernatants was significantly decreased in tetrandrine groups to 58.5%, 69.1%, 65.8% or 60.0% that of the control respectively, and that of PCⅢ to 84.6%, 81.5%,75.7% or 80.7% respectively (P<0.05 vs control), with no significant difference among tetrandrine groups. RTPCR showed that TGF-β1 mRNA expression was reduced by tetrandrine treatments from 56.56% to 87.90% in comparison with the control, while Smad 7 mRNA was increased 1.4-4.8 times. The TGF-β1 m

  8. Targeted TFO delivery to hepatic stellate cells.

    Science.gov (United States)

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I

    2011-10-30

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy. PMID:21763370

  9. File list: DNS.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  10. File list: Oth.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  11. File list: His.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  12. File list: ALL.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  13. File list: His.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  14. File list: His.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  15. File list: ALL.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  16. File list: Pol.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  17. File list: Oth.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  18. File list: Unc.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  19. File list: Unc.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  20. File list: Oth.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  1. File list: DNS.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  2. File list: ALL.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  3. File list: Oth.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  4. File list: ALL.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  5. File list: His.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  6. File list: Pol.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  7. File list: Unc.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  8. File list: Unc.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  9. File list: Pol.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  10. File list: DNS.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  11. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya-Wei Liu

    Full Text Available Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.The cell line of rat hepatic stellate cells (HSC-T6 was stimulated with lipopolysaccharide (LPS (100 ng/ml. Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM, then induced by LPS (100 ng/ml. NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38. Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.

  12. Expression of AT1amRNA in rat hepatic stellate cells and its effects on cell growth collagen production

    Institute of Scientific and Technical Information of China (English)

    张艺军; 杨希山; 吴平生; 廖贵清; 杨国平; 张晓峰; 陈晓清

    2004-01-01

    @@ Activated hepatic stellate cells (HSCs) play important roles in hepatic fibrosis. Studies on HSCs activation in vitro have shown that this process is regulated by a wide variety of growth factors and cytokines.1 Recent data indicate that AngⅡ is responsible for the mechanisms of myocardial fibrosis and kidney fibrosis; but there are only few reports on hepatic fibrosis.2-8

  13. Chloroquine improved carbon tetrachloride-induced liver fibrosis through its inhibition of the activation of hepatic stellate cells: role of autophagy.

    Science.gov (United States)

    He, Wei; Wang, Bin; Yang, Jing; Zhuang, Yun; Wang, Liangzhi; Huang, Xiaodan; Chen, Jianping

    2014-01-01

    Autophagy is involved in the activation of hepatic stellate cells (HSCs), which is the key process of liver fibrosis. We reasoned that chloroquine, based on its ability to inhibit autophagy, might exert beneficial effects in liver fibrosis. Liver fibrosis in rats was induced by carbon tetrachloride (CCl4). Rats were divided into three groups, a normal control group (N group), model group (M group), and chloroquine group (CQ group). Liver fibrosis in the rats was evaluated by hematoxyline-eosin (H&E) and Masson staining. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TB) were determined using an automated biochemistry analyzer. Total hepatic hydroxyproline levels were determined with a kit. The expressions of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) were detected by immunofluorescence staining, and the expressions of LC3-II and p62 were determined by Western blotting. Compared with N group, M group showed impaired liver function, liver fibrosis, increased hydroxyproline content, up-regulated expressions of α-SMA and TGF-β1, which have been reported to be pro-fibrogenic genes in vivo, and increased autophagy flux as indicated by the accumulation of LC3-II and degradation of p62. These changes were attenuated by chloroquine treatment. Chloroquine exerts beneficial effects in CCl4-induced liver fibrosis. The mechanism of action includes inhibition of autophagy pathways and inhibition of activation of HSCs. PMID:25177034

  14. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  15. Effects of curcumin on peroxisome proliferator-activated receptor γ expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    CHENG Yang; PING Jian; XU Lie-ming

    2007-01-01

    Background The function of peroxisome proliferator-activated receptor γ (PPARγ) in hepatic fibrogenesis remains largely unknown. Curcumin is a natural substance extracted form Curcuma Longa Linn and has a variety of pharmacological effects. In this study, the effects of curcumin on the proliferation, activation and apoptosis of rat hepatic stellate cells (HSCs) through PPARγ signaling were investigated.Methods HSCs were isolated from the normal Sprague Dawley rats through in situ perfusion of the liver with Pronase E and density-gradient centrifugation with Nycodenz. Cells were treated with curcumin, troglitazone, salvianolic acid B or GW9662. The effect on HSCs proliferation was determined by MTT colorimetry. Total RNA was extracted by TRizol reagent and gene levels were determined by semi-quantitative RT-PCR. Total cellular and nuclear protein were isolated and separated by 10% sodium dodecy Isulfate polyacrylamide gel electrophoresis. Protein levels were determined by Western blot. Cell apoptosis was detected by Hoechst 33258 staining. PPARγ subcellular distribution was detected by immunofluorescent staining. The activities of MMP-2 and 9 were measured by Gelatin zymograph assay.Results Curcumin suppressed HSCs proliferation in a dose-dependent manner. As HSCs underwent gradual activation with culture prolongation the PPARγ nuclear expression level decreased. Curcumin up-regulated PPARγ expression and significantly inhibited the production of α-SMA and collagen I. PPARγ is expressed in the cytoplasm and nucleus and is evenly distributed in HSCs, but accumulated in the nucleus of HSCs and disappeared from cytoplasm after curcumin treatment. Hoechst 33258 staining showed that curcumin induced the apoptosis of culture-activated HSCs and significantly increased pro-apoptotic Bax expression and reduced anti-apoptotic Bcl-2 expression. Cyclin D1 gene, activated NFκB p65 protein and TGFβR-I protein expression were down-regulated significantly by curcumin. The

  16. Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDGF-βR/ERK signaling pathway.

    Science.gov (United States)

    Chen, Qin; Chen, Lianyun; Kong, Desong; Shao, Jiangjuan; Wu, Li; Zheng, Shizhong

    2016-05-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor β receptor (PDGF-βR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-βR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis. PMID:27038258

  17. Integrative analysis of the transcriptome and targetome identifies the regulatory network of miR-16: an inhibitory role against the activation of hepatic stellate cells.

    Science.gov (United States)

    Pan, Qin; Guo, Canjie; Sun, Chao; Fan, Jiangao; Fang, Chunhua

    2014-01-01

    Hepatic stellate cell (HSC) activation is the critical event of liver fibrosis. Abnormality of miR-16 expression induces their activation. However, the action model of miR-16 remains to be elucidated because of its multiple-targeted manner. Here, we report that miR-16 restoration exerted a wide-range impact on transcriptome (2,082 differentially expressed transcripts) of activated HSCs. Integrative analysis of both targetome (1,195 targets) and transcriptome uncovered the miR-16 regulatory network based upon bio-molecular interaction databases (BIND, BioGrid, Tranfac, and KEGG), cross database searching with iterative algorithm, Dijkstra's algorithm with greedy method, etc. Eight targets in the targetome (Map2k1, Bmpr1b, Nf1, Pik3r3, Ppp2r1a, Prkca, Smad2, and Sos2) served as key regulatory network nodes that mediate miR-16 action. A set of TFs (Sp1, Jun, Crebl, Arnt, Fos, and Nf1) was recognized to be the functional layer of key nodes, which mapped the signal of miR-16 to transcriptome. In result, the comprehensive action of miR-16 abrogated transcriptomic characteristics that determined the phenotypes of activated HSCs, including active proliferation, ECM deposition, and apoptosis resistance. Therefore, a multi-layer regulatory network based upon the integration of targetome and transcriptome may underlie the global action of miR-16, which suggesting it plays an inhibitory role in HSC activation. PMID:25227104

  18. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    Directory of Open Access Journals (Sweden)

    Zhang C

    2016-03-01

    Full Text Available Caiyuan Zhang,1,* Huanhuan Liu,1,* Yanfen Cui,1,* Xiaoming Li,1 Zhongyang Zhang,1 Yong Zhang,2 Dengbin Wang1 1Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs at different stages of liver fibrosis induced by carbon tetrachloride (CCl4 in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI with arginine-glycine-aspartic acid (RGD peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO specifically targeting integrin αvβ3.Materials and methods: All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10 received pure olive oil. The change in T2* relaxation rate (ΔR2* pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation.Results: Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively. After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001. The accumulation of iron particles in fibrotic liver specimen is

  19. Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Ning-Li Chai; Qiang Fu; Hui Shi; Chang-Hao Cai; Jun Wan; Shi-Ping Xu; Ben-Yan Wu

    2012-01-01

    AIM:To investigate the potential mechanism of ArgGly-Asp (RGD) peptide-labeled liposome loading oxymatrine (OM) therapy in CCl4-induced hepatic fibrosis in METHODS:We constructed a rat model of CCl4-induced hepatic fibrosis and treated the rats with different formulations of OM.To evaluate the antifibrotic effect of OM,we detected levels of alkaline phosphatase,hepatic histopathology (hematoxylin and eosin stain and Masson staining) and fibrosis-related gene expression of matrix metallopeptidase (MMP)-2,tissue inhibitor of metalloproteinase (TIMP)-1 as well as type Ⅰ procollagen via quantitative real-time polymerase chain reaction.To detect cell viability and apoptosis of hepatic stellate cells (HSCs),we performed 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay and flow cytometry.To reinforce the combination of oxymatrine with HSCs,we constructed fluorescein-isothiocyanate-conjugated Arg-Gly-Asp peptide-labeled liposomes loading OM,and its targeting of HSCs was examined by fluorescent microscopy.RESULTS:OM attenuated CCl4-induced hepatic fibrosis,as defined by reducing serum alkaline phosphatase (344.47 ± 27.52 U/L vs 550.69 ± 43.78 U/L,P < 0.05),attenuating liver injury and improving collagen deposits (2.36% ± 0.09% vs 7.70% ± 0.60%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).OM inhibited cell viability and induced apoptosis of HSCs in vitro.RGD promoted OM targeting of HSCs and enhanced the therapeutic effect of OM in terms of serum alkaline phosphatase (272.51 ± 19.55 U/L vs 344.47 ± 27.52 U/L,P < 0.05),liver injury,collagen deposits (0.26% ± 0.09% vs 2.36% ± 0.09%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).Moreover,in vitro assay demonstrated that RGD enhanced the effect of OM on HSC viability and apoptosis.CONCLUSION:OM attenuated hepatic fibrosis by

  20. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2015-01-01

    Full Text Available Activation of hepatic stellate cells (HSCs is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F, which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50 of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50 and 34 μM (half IC50. The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways.

  1. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Ni, Chunyan [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); The First People' s Hospital of Changzhou, Changzhou 213003 (China); Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Lu, Yin [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China)

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  2. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300.

    Science.gov (United States)

    Lim, Joong-Yeon; Oh, Min-A; Kim, Won Ho; Sohn, Hee-Young; Park, Sang Ick

    2012-03-01

    Liver fibrosis is a common consequence of various chronic liver injuries, including virus infection and ethanol. Activated hepatic stellate cells (HSCs) contribute to liver fibrosis through the accumulation of extracellular matrix proteins, including type I alpha collagen (COL1A). The activation of adenosine monophosphate-activated protein kinase (AMPK) modulates HSCs activation, but its underlying mechanism remains unclear. Here, we report that AMPK inhibits transforming growth factor (TGF)-β-induced fibrogenic property of HSCs by regulating transcriptional coactivator p300. We treated human (LX-2) and rat (CFSC-2G) HSC lines with TGF-β to induce fibrogenic activation of HSCs. Pharmacological activation of AMPK by treatment with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), metformin, or adiponectin lowered TGF-β-induced expression of COL1A and myofibroblast marker alpha-smooth muscle actin (α-SMA). Transient transduction of constitutively active AMPKα (caAMPKα) was sufficient to attenuate COL1A and α-SMA expression, whereas an AMPK inhibitor considerably abrogated the inhibitory effect of AICAR on fibrogenic gene expression. Although AMPK significantly suppressed Smad-dependent transcription, it did not affect TGF-β-stimulated phosphorylation, nuclear localization, or DNA-binding activity of Smad2/3. AICAR rather attenuated TGF-β-induced Smad3 interaction with transcriptional coactivator p300 accompanying with reduction of Smad3 acetylation. Moreover, AICAR induced not only physical interaction between AMPK and p300 but also proteasomal degradation of p300 protein. Our data provide substantial evidence that AMPK could be a novel therapeutic target for treatment of liver fibrosis, by demonstrating the underlying mechanism of AMPK-induced antifibrotic function in HSCs.

  3. Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices.

    Science.gov (United States)

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Xia, Zheng-Yuan; Wang, Hui

    2010-12-01

    1. Indole-3-carbinol (I3C), a major indole compound found in high levels in cruciferous vegetables, shows a broad spectrum of biological activities. However, few studies have reported the effect of I3C on alcoholic liver injury. In the present study, we investigated the protective effect of I3C on acute ethanol-induced hepatotoxicity and acetaldehyde-stimulated hepatic stellate cells (HSC) activation using precision-cut liver slices (PCLS). 2. Rat PCLS were incubated with 50 mmol/L ethanol or 350 μmol/L acetaldehyde, and different concentrations (100-400 μmol/L) of I3C were added into the culture system of these two liver injury models, respectively. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde (MDA) content in tissue. Activities of alcoholic enzymes were also determined. α-Smooth muscle actin (α-SMA), transforming growth factor (TGF-β(1) ) and hydroxyproline (HYP) were used as indices to evaluate the activation of HSC. In addition, matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase (TIMP-1) were observed to estimate collagen degradation. 3. I3C significantly reduced the enzyme leakage in ethanol-treated slices. In I3C groups, cytochrome P450 (CYP) 2E1 activities were inhibited by 40.9-51.8%, whereas alcohol dehydrogenase (ADH) activity was enhanced 1.6-fold compared with the ethanol-treated group. I3C also showed an inhibitory effect against HSC activation and collagen production stimulated by acetaldehyde. After being incubated with I3C (400 μmol/L), the expression of MMP-1 was markedly enhanced, whereas TIMP-1 was decreased. 4. These results showed that I3C protected PCLS against alcoholic liver injury, which might be associated with the regulation of ethanol metabolic enzymes, attenuation of oxidative injury and acceleration of collagen degradation. PMID:20880187

  4. Effects of octreotide on expression of L-type voltage-operated calcium channels and on intracellular Ca2+ in activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    丁惠国; 王宝恩; 贾继东; 夏华向; 王振宇; 赵春惠; 徐燕琳

    2004-01-01

    Background The contractility of hepatic stellate cells (HSCs) may play an important role in the pathogenesis of cirrhosis with portal hypertension. The aim of this study was to research the effects of octreotide, an analogue of somatostatin, on intracellular Ca2+ and on the expression of L-type voltage-operated calcium channels (L-VOCCs) in activated HSCs, and to try to survey the use of octreotide in treatment and prevention of cirrhosis with portal hypertension complications. Methods HSC-T6, an activated HSCs line, was plated on small glass coverslips in 35-mm culture dishes at a density of 1×105/ml, and incubated in DMEM media for 24 hours. After the cells were loaded with Fluo-3/AM, intracellular Ca2+ was measured by Laser Scanning Confocal Microscopy (LSCM). The dynamic changes in activated HSCs of intracellular Ca2+, stimulated by octreotide, endothelin-1, and KCl, respectively, were also determined by LSCM. Each experiment was repeated six times. L-VOCC expression in HSCs was estimated by immunocytochemistry. Results After octreotide stimulation, a signifcant decrease in the intracellular Ca2+ of activated HSCs was observed. However, octreotide did not inhibit the increases in intracellular Ca2+ after stimulation by KCl and endothelin-1. Moreover, octreotide did not significantly affect L-VOCC expression. These results suggest that neither L-VOCC nor endothelin-1 receptors in activated HSCs are inhibited by octreotide. Conclusions Octreotide may decrease portal hypertension and intrahepatic vascular tension by inhibiting activated HSCs contractility through decreases in intracellular Ca2+. The somatostatin receptors in activated HSCs may be inhibited by octreotide.

  5. Expression of subtypes of somatostatin receptors in hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Sheng-Han Song; Xi-Sheng Leng; Tao Li; Zhi-Zhong Qin; Ji-Run Peng; Li Zhao; Yu-Hua Wei; Xin Yu

    2004-01-01

    AIM: To elucidate the mechanism by which somatostatin and its analogue exert the influence on liver fibrosis, and to investigate the mRNA expression of somatostatin receptors subtypes (SSTRs) and the distribution of somatostatin analogue octreotide in rat hepatic stellate cells (HSCs).METHODS: HSCs were isolated from Sprague Dawley (SD)rats byin situ perfusion and density gradient centrifugation.After several passages, the mRNA expression of 5 subtypes of SSTRs were assessed by reverse transcription-polymerase chain reaction (RT-PCR). HSCs were planted on coverslip and co-cultured with octreotide tagged by FITC. Then the distribution of FITC fluorescence was observed under laser scanning confocal microscope (LSCM) in 12-24 h.RESULTS: There were mRNA expression of SSTR2, SSTR3and SSTR5 but not SSTR1 and SSTR4 in SD rat HSCs. The mRNA expression level of SSTR2 was significantly higher than that of other subtypes (P<0.01). FITC fluorescence of octreotide was clearly observed on the surface and in the cytoplasm, but not in the nuclei of HSCs under LSCM.CONCLUSION: The effect exerted by somatostatin and its analogues on HSCs may mainly depend on the expression of SSTR2, SSTR3 and SSTR5. Octreotide can perfectly combine with HSCs, and thereby exerts its biological activity on regulating the characters of active HSCs. This provides a potential prevention and management against liver fibrosis.

  6. Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand

    OpenAIRE

    Jiang Li; Ramalinga Kuruba; Annette Wilson; Xiang Gao; Yifei Zhang; Song Li

    2010-01-01

    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen ...

  7. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    Science.gov (United States)

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  8. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  9. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2.

    Directory of Open Access Journals (Sweden)

    Barbara Renga

    Full Text Available BACKGROUND: The human immunodeficiency virus type 1 (HIV-1 p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs, a key cell type involved in matrix deposition in liver fibrotic disorders. AIM: In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS: LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS: Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS: The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.

  10. File list: InP.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  11. File list: InP.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  12. File list: NoD.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  13. File list: InP.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  14. File list: InP.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  15. File list: NoD.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  16. File list: NoD.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  17. File list: NoD.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  18. Inhibition on the production of collagen type Ⅰ, Ⅲ of activated hepatic stellate cells by antisense TIMP-1 recombinant plasmid

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin Liu; Chang-Qing Yang; Wei Jiang; Yi-Qing Wang; Jing-Sheng Guo; Bo-Ming He; Ji-Yao Wang

    2003-01-01

    AIM: To investigate the inhibition effects on the productionof collagen type I, Ⅲ secreted by activated rat hepatic stellatecells (rHSCs) by antisense tissue inhibitors of metalloproteinase1 (TIMP-1) recombinant plasmid through elevating interstitialcollagenase activity.METHODS: rHSCs were extracted from normal rat liverby pronase and collagenase digestion and purified bycentrifugal elutriation, and were cultured on plastic dishesuntil they were activated to a myofibroblastic phenotypeafter 7-10 days. RT-Nest-PCR and gene recombinanttechniques were used to construct the rat antisense TIMP-1 recombinant plasmids which can express in eucaryoticcells. The recombinant plasmid and the pcDNA3 emptyplasmid were transfected in rHSCs by Effectene (QIAGEN)separately. Cells were selected after growing in DMEMcontaining 400 μg/ml G418 for 2-3 weeks. Expression ofexogenous gene was assessed by Northern blot, andexpression oflIMP-1 in rHSCs was determined by Northernblot and Western blot. We tested the interstitial collagenaseactivity with FITC-labled type I collagen as substrate.Ultimately, we quantified the type Ⅰ, Ⅲ collagen byWestern blot.RESULTS: The exogenous antisense TIMP-1 recombinantplasmid could be expressed in rHSCs well, which couldblock the expression of TIMP-1 greatly, the ratio of TIMP-1/GAPDH was 0.67, 2.41, and 2.97 separately at mRNAlevel (P<0.05); the ratio of TIMP-1/β-actin was 0.31, 0.98and 1.32 separately at protein level (P<0.05); It mightelevate active and latent interstitial collagenase activity,the collagenase activity was 0.3049, 0.1411 and 0.1196respectively. (P<0.05), which led to promotion thedegradation of type Ⅰ, Ⅲ collagen, the ratio of collagen I/β-actin was 0.63, 1.78 and 1.92 separately (P<0.05); andthe ratio of collagen Ⅲ/β-actin was 0.59, 1.81 and 1.98separately (P<0.05).CONCLUSION: These data shows that the antisense TIMP-1 recombinant plasmid has the inhibitory effects on theproduction of type Ⅰ, Ⅲ collagens

  19. Daily genetic profiling indicates JAK/STAT signaling promotes early hepatic stellate cell transdifferentiation

    Institute of Scientific and Technical Information of China (English)

    Ashley; M; Lakner; Cathy; C; Moore; Alyssa; A; Gulledge; Laura; W; Schrum

    2010-01-01

    AIM: To identify signaling pathways and genes that initiate and commit hepatic stellate cells (HSCs) to transdifferentiation. METHODS: Primary HSCs were isolated from male Sprague-Dawley rats and cultured on plastic for 0-10 d. Gene expression was assessed daily (quiescent to day 10 culture-activation) by real time polymerase chain reaction and data clustered using AMADA software. The significance of JAK/STAT signaling to HSC transdifferentiation was determined by treating cells with a JAK2 inhibitor. RESUL...

  20. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    OpenAIRE

    Deng, Xin; Liang, Jian; Lin, Zhi-Xiu; Wu, Fa-Sheng; Zhang, Ya-Ping; Zhang, Zhi-Wei

    2010-01-01

    AIM: To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.

  1. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3.

    Science.gov (United States)

    Liang, Chunli; Bu, Shurui; Fan, Xiaoming

    2016-07-01

    The microRNA (miR)-29 family is closely associated with fibrotic processes by virtue of its low expression in many tissues during organ fibrosis. The present study investigated whether miR-29b overexpression suppressed hepatic stellate cell (HSC) activation and its interactions with transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog 3 (Smad3), a classical signal transduction pathway contributing to the activation of HSCs. The results showed that transfection of LX-2 (human HSC) cells with miR-29b mimic or pSUPER-Smad3 silencing (si)RNA resulted in significantly increased expression of miR-29b and decreased expression of Smad3. miR-29b overexpression inhibited proliferation of LX-2 cells 24 h after transfection. Both miR-29b overexpression and Smad3 silencing antagonized the effects of TGF-β1 on the expression of α-smooth muscle actin (α-SMA) and collagen type I (col-1). Furthermore, infection with miR-29b mimics suppressed Smad3 and TGF-β1 expression, suggesting that miR-29b inhibited LX-2 activation mediated by both Smad3 and TGF-β1. Nevertheless, primary miR-29a/b1, miR-29b2/c and mature miR-29b were downregulated by TGF-β1 and stimulated by Smad3 silencing, suggesting that TGF-β1/Smad3 signalling pathway regulate not just mature miR-29b but also its transcription. In summary, our results show overwhelming evidence corroborating the suppressive effect of miR-29b on TGF-β1-induced LX-2 cell activation. The results also revealed the existence of crosstalk between miR-29b and TGF-β1/Smad3 during LX-2 activation, suggesting a feedback loop between miR-29b and TGF-β1/Smad3 signalling that promotes liver fibrosis. Copyright © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd. PMID:27273381

  2. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3.

    Science.gov (United States)

    Liang, Chunli; Bu, Shurui; Fan, Xiaoming

    2016-07-01

    The microRNA (miR)-29 family is closely associated with fibrotic processes by virtue of its low expression in many tissues during organ fibrosis. The present study investigated whether miR-29b overexpression suppressed hepatic stellate cell (HSC) activation and its interactions with transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog 3 (Smad3), a classical signal transduction pathway contributing to the activation of HSCs. The results showed that transfection of LX-2 (human HSC) cells with miR-29b mimic or pSUPER-Smad3 silencing (si)RNA resulted in significantly increased expression of miR-29b and decreased expression of Smad3. miR-29b overexpression inhibited proliferation of LX-2 cells 24 h after transfection. Both miR-29b overexpression and Smad3 silencing antagonized the effects of TGF-β1 on the expression of α-smooth muscle actin (α-SMA) and collagen type I (col-1). Furthermore, infection with miR-29b mimics suppressed Smad3 and TGF-β1 expression, suggesting that miR-29b inhibited LX-2 activation mediated by both Smad3 and TGF-β1. Nevertheless, primary miR-29a/b1, miR-29b2/c and mature miR-29b were downregulated by TGF-β1 and stimulated by Smad3 silencing, suggesting that TGF-β1/Smad3 signalling pathway regulate not just mature miR-29b but also its transcription. In summary, our results show overwhelming evidence corroborating the suppressive effect of miR-29b on TGF-β1-induced LX-2 cell activation. The results also revealed the existence of crosstalk between miR-29b and TGF-β1/Smad3 during LX-2 activation, suggesting a feedback loop between miR-29b and TGF-β1/Smad3 signalling that promotes liver fibrosis. Copyright © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.

  3. Assessing activation of hepatic stellate cells by 99mTc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study

    International Nuclear Information System (INIS)

    Objective: Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. 99mTc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the 99mTc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of 99mTc-3PRGD2 scintigraphy for this purpose. Methods: We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered 99mTc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with 99mTc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. Results: The fibrotic livers showed enhanced 99mTc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98 ± 0.08 vs. control, 1.50 ± 0.12, p < 0.01). The liver t1/2 was longer than in the controls (TAA, 27.07 ± 10.69 min vs. control, 12.67 ± 4.10 min, p < 0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13 ± 0.63 min vs. control, 3.41 ± 0.77 min, p = 0.94). Conclusions: 99mTc-3PRGD2 molecular

  4. Mass Spectrometry-based Quantitative Proteomic Profiling of Human Pancreatic and Hepatic Stellate Cell Lines

    OpenAIRE

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A; Conwell, Darwin L; Steen, Hanno

    2013-01-01

    The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immorta...

  5. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Le; Wang, Jinlong; Lu, Hongwei [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Zhang, Guoyu [West Hospital Ward 1, Shaanxi Provincial People' s Hospital, No.256, Youyi Road(west), Xi' an, Shaanxi 710068 (China); Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Li, Yiming, E-mail: yiminngli@163.com [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China)

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  6. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    Science.gov (United States)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  7. Curcumin, the main active constituent of turmeric (Curcuma longa L.), induces apoptosis in hepatic stellate cells by modulating the abundance of apoptosis-related growth factors.

    Science.gov (United States)

    He, Ya-Jun; Kuchta, Kenny; Lv, Xia; Lin, Yu; Ye, Guo-Rong; Liu, Xu-You; Song, Hui-Dong; Wang, Le-Xin; Kobayashi, Yuta; Shu, Jian-Chang

    2015-11-01

    In order to elucidate the mechanism of action of curcumin against hepatic fibrosis, cultured rat hepatic stellate cells (HSC) (HSC-T6) were incubated with curcumin for 24 h, after which apoptosis was measured by flow-cytometry. The protein levels of the pro-apoptotic factors Fas and p53b as well as of the anti-apoptotic factor Bcl-2 were monitored by immunocytochemical ABC staining after incubation with curcumin for 24 h. In the case of 20 μM curcumin, not only was the respective apoptosis index increased, but also the abundance of the pro-apoptotic factors Fas and p53 were amplified, whereas that of the anti-apoptotic factor Bcl-2 decreased. All these effects were highly reproducible (P<0.05). Consequently, curcumin has an up-regulating effect on pro-apoptotic factors like Fas and p53 as well as a down-regulating effect of the anti-apoptotic factor Bcl-2, thus inducing apoptosis in HSC.

  8. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  9. Influence of serum collected from rat perfused with compound Biejiaruangan drug on hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Shun-Gen Guo; Wei Zhang; Tao Jiang; Min Dai; Lu-Fen Zhang; Yi-Chun Meng; Li-Yun Zhao; Jian-Zhao Niu

    2004-01-01

    AIM: To observe the effect of compound Biejiaruangan decoction (CBJRGC) (composite prescription of Carapax trionycis for softening the liver) on proliferation, activation,excretion of collagen and cytokine of hepatic stellate cells (HSCs) and to find the mechanism of prevention and treatment of hepatic fibrosis by CBJRGC.METHODS: Using MTT, immunohistochemistry and image analysis technology, the related indexes for proliferation,activation, excretion of collagen and cytokine of hepatic stellate cells were detected in 24 h, 48 h, and 72 h after adminstration of different dosages of CBJRGC.RESULTS: Statistical analysis showed that serum collected from rat perfused with CBJRGC could restrain the proliferation of HSC in 48 h and 72 h especially in high and medium dosage groups, markedly decrease the expression of desmin, synapsin and platelet derived growth factor (PDGF) in HSC in 24 h, 48 h and 72 h, as well as the expression of α-SMA, collagen Ⅲ, TIMP and TGFβ1 in 48 h and 72 h, decrease the excretion of collagen Ⅰ in 72 h.CBJRGC serum had no significant effect on collagens Ⅰ, Ⅲ and TIMP in 24 h.CONCLUSION: CBJRGC serum has a good curative effect on hepatic fibrosis. Its main mechanism may be related to the following factors. The drug serum can restrain the proliferation and activation of HSC, decrease the number of activated HSC and the total number of HSC, the excretion of collagens Ⅰ, Ⅲ, enhance the degradation of collagen and restore the balance of synthesis and degradation of collagen,inhibit the expression of transforming growth factor β1 (TGFβ1) and platelet derived growth factor (PDGF) in HSC,block and delay the process of hepatic fibrosis. Synapsin is a new marker of activation of HSC, which provides a theoretical and testing basis for neural regulation in the developing process of hepatic fibrosis.

  10. Relationship between focal adhesion kinase and hepatic stellate cell proliferation during rat hepatic fibrogenesis

    Institute of Scientific and Technical Information of China (English)

    Hui-Qing Jiang; Xiao-Lan Zhang; Li Liu; Chang-Chun Yang

    2004-01-01

    AIM: To investigate the dynamic expression of focal adhesion kinase (FAK) protein and FAK mRNA in fibrotic rat liver tissue,and the relationship between FAK and hepatic stellate cell (HSC) proliferation.METHODS: Rat hepatic fibrosis was induced by bile duct ligation (BDL). Histopathological changes were evaluated by hematoxylin and eosin staining, and by Masson′s trichrome method. FAK mRNA in the rat livers was determined by reverse transcription-polymerase chain reaction (RT-PCR), and the distributions of FAK were assessed immunohistochemistrically.The number of activated HSCs was quantified after alpha smooth muscle actin (α-SMA) staining.RESULTS: With the development of hepatic fibrosis, the positively stained cells of α-SMA increased obviously, which were mainly resided in the portal ducts, fiber septa and perisinuses accompanied with proliferating bile ducts. The positively stained areas of the rat livers in model groups 1 to 4 wk after ligation of common bile duct (12.88±2.63%,22.65±2.16%, 27.45±1.86%, 35.25±2.34%, respectively)were significantly larger than those in the control group (5.88±1.46%) (P<0.01). The positive staining for FAK significantly increased, which was mainly situated in portal ducts, fiber septa and around the bile ducts, vascular endothelial cells and perisinusoidal cells. The expression of FAK was positively correlated with α-SMA expression (r = 0.963, P<0.05). FAK mRNA expression was obviously up-regulated in the model groups compared to the control group.CONCLUSION: These data suggest that expressions of FAK protein and mRNA are greatly increased in fibrotic rat livers,which may play an important role in HSC proliferation and hepatic fibrogenesis.

  11. The possible role of NS3 protease activity of hepatitis C virus on fibrogenesis and miR-122 expression in hepatic stellate cells.

    Science.gov (United States)

    Khanizadeh, S; Ravanshad, M; Hosseini, S Y; Davoodian, P; Zadeh, A N; Sabahi, F; Sarvari, J; Khanlari, Z; Hasani-Azad, M

    2016-01-01

    The various roles of hepatitis C virus (HCV) NS3 protein in viral pathogenesis are emphasized, especially in the progression of fibrosis and tumors. The levels of miR-122 have been widely accepted as a critical factor in viral pathogenesis and disease progression. However, the possible correlation between miR-122 levels and fibrosis state has been less investigated. Therefore, in this study, plasmids expressing protease competent and protease mutated non-structural proteins 3 (NS3) were transfected into LX-2 cell line. Subsequently, the total RNA was extracted and real-time PCR was performed to measure the expression level of miR-122, collagen type 1 alpha 1 (COL1A1), alpha smooth muscle actin (α-SMA), and tissue inhibitor of metaloproteinase 1 (TIMP-1). Moreover, the transforming growth factor beta (TGF-β) levels in the supernatants of transfected cells were evaluated by ELISA. The gene expression analysis of fibrotic genes and TGF-β cytokine in LX-2 cells showed that protease competent NS3 had a significant fibrogenic impact when compared to protease defective NS3 or GFP control plasmids (P protease function. These results suggested that the protease function of NS3 protein is a crucial factor for the induction of hepatic fibrosis but it doesn't play a complete role in the expression of miR-122. PMID:27640434

  12. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    Science.gov (United States)

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  13. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation

    Institute of Scientific and Technical Information of China (English)

    Hong Shen; Guo-Jiang Huang; Yue-Wen Gong

    2003-01-01

    AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.

  14. Distribution of hepatic stellate cells and their role in the development of parasitic fibrosis and liver cirrhosis in domestic animals

    OpenAIRE

    Kukolj Vladimir; Nešić Slađan; Vučićević Ivana

    2015-01-01

    Increasing of the extracellular matrix in rats, as well as in humans, occurs as a consequence of hepatic stellate cells (HSCs) activity. The objective of this work was to investigation the role of these cells in the development of fibrosis and liver cirrhosis which occurs as a consequence of infection of sheep and goats with large (Fasciola hepatica) and small (Dicrocoelium dendriticum) fluke. Liver samples taken from 12 cattle and 10 sheep infected under n...

  15. The activation of rat hepatic stellate cells stimulated with hepatitis B virus in vitro%乙型肝炎病毒对大鼠肝星状细胞活化的影响

    Institute of Scientific and Technical Information of China (English)

    袁建国; 王新国; 崔霞; 刘凤华; 王凤华; 宋吉奎; 赵洪奎

    2011-01-01

    目的 观察乙型肝炎病毒(HBV)对大鼠肝星状细胞(HSC)是否有作用. 方法 用Friedman方法分离大鼠HSC,蔗糖梯度浓度法纯化HBV.用不同浓度HBV刺激HSC 24h,检测上清液中的前胶原蛋白Ⅲ.选前胶原蛋白Ⅲ分泌增加的细胞作为研究对象,检测其细胞内C/EBPs、PPAR7、RAR表达情况,了解HBV是否影响HSC活化通路. 结果 HBV可以呈浓度依赖方式刺激大鼠HSCs分泌前胶原蛋白Ⅲ,在浓度为3.0×105拷贝/ml时可以使前胶原蛋白Ⅲ分泌明显增加.C/EBPs的表达明显减少,而RAR受体表达明显增加、PPAR7表达无变化. 结论 HBV对大鼠HSC具有直接激活作用,促其合成Ⅲ型前胶原蛋白.这可能与其刺激C/EBP表达减少和RAR表达增加有关.%Objective To observe the effects of HBV on rat hepatic stellate cells(HSC).Methods HSC were isolated by the method of Friedman and HBV was purified by concentrated sucrose gradient.HSC were stimulated with different concentrations of HBV for 24 hrs and the supernatant procollagen Ⅲ was found to be detected.Cells with increased procollagen Ⅲ secretion were selected to check for the intracellular C/EBPs, PPARγ, RAR expression to investigate if HBV had affected the HSC activation pathway.Results Secretion of procollagen Ⅲ by HBV stimulated rat HSC was concentration dependent.At the concentration of 3.0× 105 copies/ml, secretion of procollagen Ⅲ increased significantly.The expression of C/EBPs decreased significantly, while the RAR receptor expression was increased and PPARγ remained unchange.Conclusion HBV has a direct stimulus on HSC to promote the synthesis of procollagen Ⅲ, which may be associated with C/EBP decrease and RAR increase.

  16. Variable expression of cystatin C in cultured trans-differentiating rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Axel M Gressner; Birgit Lahme; Steffen K Meurer; Olav Gressner; Ralf Weiskirchen

    2006-01-01

    AIM: To study the expression of cystatin C (CysC), its regulation by transforming growth factor-β1 (TGF-β1)and platelet-derived growth factor (PDGF) and the potential interference of CysC with TGF-β1 signaling in this special cell type.METHODS: We evaluated the CysC expression in cultured, profibrogenic hepatic stellate cells and transdifferentiated myofibroblasts by Northern and Western blotting and confocal laser scanning microscopy.RESULTS: CysC was increased significantly in the course of trans-differentiation. Both TGF-β1 and PDGFBB suppressed CysC expression. Furthermore, CysC secretion was induced by the treatment with TGF-β1.Although CysC induced an increased binding affinity of TGF-β receptor type Ⅲ (beta-glycan) as assessed by chemical cross-linking with [125I]-TGF-β1, it did not modulate TGF-β1 signal transduction as shown by evaluating the Smad2/3 phosphorylation status and [CAGA]-MLP-luciferase reporter gene assay. Interestingly,the shedding of type Ⅲ TGF-β receptor beta-glycan was reduced in CysC-treated cells. Our data indicated that CysC expression was upregulated during transdifferentiation.CONCLUSION: Increased CysC levels in the serum of patients suffering from liver diseases are at least partially due to a higher expression in activated hepatic stellate cells. Furthermore, TGF-β1 influences the secretion of CysC, highlighting a potentially important role of cysteine proteases in the progression of hepatic fibrogenesis.

  17. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway.

    Directory of Open Access Journals (Sweden)

    He Wang

    Full Text Available Hepatic stellate cell (HSC activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR. Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine's inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway.Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III.

  18. Role of ethanol in the regulation of hepatic stellate cell function

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Wang; Robert G Batey; Jacob George

    2006-01-01

    Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on hepatic stellate cells (HSCs) are discussed. In brief,ethanol interferes with retinoid metabolism and its signaling, induces the release of fibrogenic cytokines such as transforming growth factor β-1 (TGFβ-1) from HSCs, up-regulates the gene expression of collagen I and enhances type Ⅰ collagen protein production by HSCs.Ethanol further perpetuates an activated HSC phenotype through extracellular matrix remodeling. The underlying pathophysiologic mechanisms by which ethanol exerts these pro-fibrogenic effects on HSCs are reviewed.

  19. Hop bitter acids exhibit anti-fibrogenic effects on hepatic stellate cells in vitro.

    Science.gov (United States)

    Saugspier, Michael; Dorn, Christoph; Thasler, Wolfgang E; Gehrig, Manfred; Heilmann, Jörg; Hellerbrand, Claus

    2012-04-01

    Female inflorescences of the hop plant Humulus lupulus L. contain a variety of secondary metabolites with bitter acids (BA) as quantitatively dominating secondary metabolites. The use of hops in beer brewing has a long history due to the antibacterial effects of the BA and their typical bitter taste. Furthermore, hop cones are used in traditional medicine and for pharmaceutical purposes. Recent studies indicate that BA may affect activity of the transcription factor NFκB. NFκB plays a key role in the activation process of hepatic stellate cells (HSC), which is the key event of hepatic fibrosis. The aim of this study was to investigate the effect of BA on HSC (activation) and their potential to inhibit molecular processes involved in the pathogenesis of hepatic fibrosis. HSC were isolated from murine and human liver tissue and incubated with a characterized fraction of bitter acids purified from a CO(2) hop extract. At a concentration of 25μg/ml BA started to induce LDH leakage. Already at lower concentrations BA lead to a dose dependent inhibition of HSC proliferation and inhibited IκB-α-phosphorylation, nuclear p65 translocation and binding activity in a dose dependent way (up to 10μg/ml). Accordingly, the same BA-doses inhibited the expression of pro-inflammatory and NFκB regulated genes as MCP-1 and RANTES, but did not affect expression of genes not related to NFκB signaling. In addition to the effect on activated HSC, BA inhibited the in vitro activation process of freshly isolated HSC as evidenced by delayed expression of collagen I and α-SMA mRNA and protein. Together, these findings indicate that BA inhibit NFκB activation, and herewith the activation and development of profibrogenic phenotype of HSC. Thus, bitter acids appear as potential functional nutrients for the prevention or treatment hepatic fibrosis in chronic liver disease.

  20. Albumin modified with mannose 6-phosphate : A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells

    NARCIS (Netherlands)

    Beljaars, Leonie; Molema, Ingrid; Weert, B; Olinga, Peter; Groothuis, Geny; Meijer, D.K F; Poelstra, Klaas

    1999-01-01

    The hallmark of liver fibrosis is an increased extracellular matrix deposition, caused by an activation of hepatic stellate cells (HSC). Therefore, this cell type is an important target for pharmacotherapeutic intervention. Antifibrotic drugs are not efficiently taken up by HSC or may produce unwant

  1. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the re...

  2. The role of Hedgehog pathway in hepatic fibrosis and hepatic stellate cell activation%Hedgehog通路与肝纤维化及肝星状细胞活化的关系研究

    Institute of Scientific and Technical Information of China (English)

    刘珺; 徐选福; 王兴鹏; 牛培勤; 杨文娟; 郭传勇

    2009-01-01

    目的:探讨Hedgehog通路与肝纤维化及肝星状细胞(HSC)活化的关系.方法:清洁级SD雄性大鼠20只,均分为模型组和对照组.模型组采用腹腔注射四氯化碳(CCl4)和高脂饮食诱导肝纤维化,对照组予以正常饮食.第8周末取模型组存活大鼠与对照组中大鼠各5只处死,取左叶肝脏组织.HE、Masson染色观察两组肝组织病理变化;逆转录-多聚酶链反应(RT-PCR)检测纤维化大鼠肝脏中表达Hedgehog通路成员超音速Hedgehog信号通路(Shh)、膜受体patched(Ptc)、smoothened(Smo)和核转录因子Gli表达;实时荧光定量PCR法检测Hedgehog通路成员及HSC活化标志基因α-平滑肌肌动蛋白(α-SMA)mRNA在两组大鼠肝脏中的表达差异.体外培养HSC-T6细胞,RT-PCR检测HSC-T6细胞株中Hedgehog通路成员的表达;四甲基偶氮唑盐比色分析(MTT)法检测不同浓度环耙明(Cyclopamine,Cyc)对HSC-T6增殖的影响;分别用0、100/μmol/L的Cye干预HSC-T6,实时荧光定量PCR法检测Shh、Smo、Ptc、Gli-1及αSMA mRNA表达差异.结果:模型组大鼠肝脏有大量脂质及胶原沉积,且肝脏组织中均有Shh、Smo、Ptc、Gli-1表达.荧光定量PCR结果示模型组大鼠Shh、Smo、Gli-1及αSMA mRNA表达均较对照大鼠升高(20.45±3.31、12.78±0.53、10.88±2.41、4.91±2.59比1;P值均<0.05).Cyc在体外对HSC-T6有明显的抑制作用,且抑制作用呈剂量依赖性(F=636.81,P<0.01).荧光定量PCR结果示,用Cyc 100 μmol/L干预的HSC-T6中,Ptc、Smo、Gli-1和αSMA表达量分别为0.20±0.11、0.21±0.08、0.28±0.05和0.27±0.10,与Cyc 0μmol/L干预比较差异均有统计学意义(P值均<0.01).结论:肝纤维化过程中Hedgehog通路成员表达增高,抑制Hedgehog通路可抑制HSC活化,推测Hedgehog通路通过活化HSC促进肝纤维化的发生.%Objective To investigate the role of Hedgehog pathway in hepatic fibrosis and its association with activation of hepatic stellate cells. Methods Twenty male Spragur

  3. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-01-01

    Full Text Available Aim. To examine the effect of berberine (BBR on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC. Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL- induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5′ AMP-activated protein kinase (AMPK signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation.

  4. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells.

    Science.gov (United States)

    Wang, Ning; Xu, Qihe; Tan, Hor Yue; Hong, Ming; Li, Sha; Yuen, Man-Fung; Feng, Yibin

    2016-01-01

    Aim. To examine the effect of berberine (BBR) on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC). Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL-) induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA) expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5' AMP-activated protein kinase (AMPK) signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation. PMID:27239214

  5. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. PMID:25498792

  6. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation.

  7. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen.

    Science.gov (United States)

    Ma, Jian-Cang; Huang, Xin; Shen, Ya-Wei; Zheng, Chen; Su, Qing-Hua; Xu, Jin-Kai; Zhao, Jun

    2016-08-01

    Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis. PMID:27031437

  8. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2016-01-01

    Full Text Available Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis.

  9. Differentially expressed genes identified by microarray analysis following leptin treatment of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    ZHONG Li-hua; CHENG Jun; ZHU Li-ying

    2010-01-01

    Background Liver fibrosis is the process through which numerous chronic liver diseases develop into liver cirrhosis. Leptin can activate hepatic stellate cells (HSCs) and play an important role in the formation of liver fibrosis. However, the process by which leptin activates HSCs is complicated, and research on this process is limited. The aim of this study was to explore the related changes in gene expression and the control mechanisms involved in leptin activated HSCs to understand the overall mechanism of liver fibrosis development. Methods We cultivate rat HSCs, with and without stimulation by leptin, and extracted mRNA. Differentially expressed genes were detected by microarray analysis. Results The differentially expressed genes identified included six upregulated genes and six downregulated genes. The representative upregulated genes included short chain dehydrogenase (CY5/CY3=2.265) and pulmonary surfactant protein A1 (CY5/CY3=2.036). The significant downregulated gene encoded hepatic stearoyl coenzyme A desaturase 1 (SCD-1) (CY5/CY3=0.351).Conclusion Leptin might mediate the molecular biological mechanisms of liver fibrosis.

  10. Effects of vitamin E on the proliferation and collagen synthesis of rat hepatic stellate cells treated with IL-2 or TNF-α

    Institute of Scientific and Technical Information of China (English)

    展玉涛; 王宇; 魏来; 陈红松

    2003-01-01

    Objective To study the effects of vitamin E on the proliferation and collagen synthesis of rat hepatic stellate cells treated with interleukin-2 (IL-2 ) or tumor necrosis factor-α (TNF-α).Methods Hepatic stellate cells were isolated from male Sprague-Dawley rats by using modified Friedman's method. Using the isolated cells cultured and treated with IL-2 or TNF-α, we studied the effects of vitamin E on their proliferation and collagen synthesis through an 3 H-thymidine and 3 H-proline incorporation assay, as well as through observation of these cells under a contrary phase microscope. Results Adding IL-2 increased the both proliferation and collagen synthesis of hepatic stellate cells. Their proliferation was also increased by the addition of TNF-α, although it decreased collagen synthesis. Vitamin E had marked inhibitory effects on the ability of cells treated with IL-2 or TNF-α to reproduce or synthesize collagen.Conclusion Vitamin E can inhibit the proliferation and collagen synthesis of hepatic stellate cells. It is possible that vitamin E affects liver fibrosis through these activities.

  11. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  12. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts

    Directory of Open Access Journals (Sweden)

    Norifumi eKawada

    2015-11-01

    Full Text Available Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are a source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts.

  13. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Florian P., E-mail: florian.reiter@med.uni-muenchen.de [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany); Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany); Makeschin, Marie-Christine; Mayr, Doris [Institute of Pathology, University of Munich, Thalkirchner Str. 36, D-80337 Munich (Germany); Rust, Christian [Department of Medicine I, Krankenhaus Barmherzige Brüder, Romanstr. 93, D-80639 Munich (Germany); Trauner, Michael [Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna (Austria); Denk, Gerald U. [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany)

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  14. 1,25-(OH)2-vitamin D3 prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4−/− model

    International Nuclear Information System (INIS)

    Background/Purpose of the study: Vitamin D3-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D3-administration has thus been proposed as a therapeutic approach. Vitamin D3 has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH)2-vitamin D3 inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen®-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4−/− (Abcb4−/−)-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4−/−-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4−/−-mice, administration of calcitriol ameliorates inflammatory liver-damage but has no effect on biliary fibrosis after 4 weeks of treatment

  15. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  16. HPMA Polymer-based Site-specific Delivery of Oligonucleotides to Hepatic Stellate Cells

    OpenAIRE

    Yang, Ningning; Ye, Zhaoyang; Li, Feng; Mahato, Ram I.

    2009-01-01

    The objective was to determine whether bioconjugation of type I collagen specific triplex forming oligonucleotide (TFO) to N-(2-hydroxypropyl) methacrylamide (HPMA) containing tetrapeptide Gly-Phe-Leu-Gly (GFLG) and mannose 6-phosphate (M6P) can provide their targeted delivery to hepatic stellate cells (HSCs). Following bioconjugation, M6P-GFLG-HPMA-GFLG-32P-TFO was characterized by PAGE, HPLC and GPC, and then its biodistribution was determined. TFO was dissociated from the conjugate when in...

  17. Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand.

    Directory of Open Access Journals (Sweden)

    Jiang Li

    Full Text Available Activation of hepatic stellate cells (HSCs plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1. The farnesoid X receptor (FXR is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.

  18. Intracellular Glutathione Depletion by Oridonin Leads to Apoptosis in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Liang-Mou Kuo

    2014-03-01

    Full Text Available Proliferation of hepatic stellate cells (HSCs plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin, a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS, which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase (MAPK. NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production.

  19. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  1. Localization of Xenobiotic Transporter OCTN1/SLC22A4 in Hepatic Stellate Cells and Its Protective Role in Liver Fibrosis.

    Science.gov (United States)

    Tang, Yaliang; Masuo, Yusuke; Sakai, Yoshio; Wakayama, Tomohiko; Sugiura, Tomoko; Harada, Ryuichi; Futatsugi, Azusa; Komura, Takuya; Nakamichi, Noritaka; Sekiguchi, Hirotaka; Sutoh, Keita; Usumi, Koji; Iseki, Shoichi; Kaneko, Shuichi; Kato, Yukio

    2016-05-01

    Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1(-/-)) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1(-/-), but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis. PMID:27020986

  2. GFAP promoter directs lacZ expression specifically in a rat hepatic stellate cell line

    Institute of Scientific and Technical Information of China (English)

    Gunter Maubach; Michelle Chin Chia Lim; Chun-Yan Zhang; Lang Zhuo

    2006-01-01

    AIM: The GFAP was traditionally considered to be a biomarker for neural glia (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project,possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated.METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression.RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a dose- and time-dependent manner, similar to the endogenous GFAP.CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.

  3. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    Science.gov (United States)

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  4. Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiu-Hua Shen; Wu-Feng Cheng; Xuan-Hai Li; Jian-Qin Sun; Feng Li; Ling Ma; Liang-Min Xie

    2005-01-01

    AIM: To evaluate the effects of dietary supplementation with vitamin E and selenium on proliferation and apoptosis of hepatic stellate cells (HSCs), in acute liver injury induced by CCl4, and to explore their role in the recovery from hepatic fibrosis phase.METHODS: An acute liver damage model of rats was established by intraperitoneal injection of carbon tetrachloride (0.3 mL/100 g body weight) twice a week,then the rats were killed at 6, 24, 48, and 72 h after the first and third injection, respectively. A liver fibrosis model was established by the same injection for 8 wk. Then three rats were killed at 3, 7, 14, and 28 d after the last injection,respectively. The rats from the intervention group were fed with chow supplemented with vitamin E (250 mg/kg)and selenium (0.2 mg/kg), and the rats in the normal control group and pathological group were given standard chow.Livers were harvested and stained with hematoxylin and eosin, Sirius red. Activated HSCs were determined by α-smooth muscle actin immunohistochemistry staining.Apoptotic HSCs were determined by dual staining with the terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL) and α-smooth muscle actin immunohistochemistry. Serum alanine aminotransferase and aspartate aminotransferase were also analyzed.RESULTS: In the acute liver damage model, the degree of liver injury was more serious in the pathological group than in the intervention group. At each time point, the number of activated HSCs was less in the intervention group than in the pathological group, while the number of apoptotic HSCs was more in the intervention group than in the pathological group. In the liver fibrosis model,the degree of liver fibrosis was more serious in the pathological group than in the intervention group. At each time point, the number of activated HSCs was less in the intervention group than in the pathological group, and the number of apoptotic HSCs was more in the intervention group than in the

  5. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    OpenAIRE

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  6. Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Robert; Barrett

    2010-01-01

    AIM:To investigate the effects and mechanism of disruption of focal adhesion kinase(FAK) expression on collagen metabolism in rat hepatic stellate cells(HSC).METHODS:The plasmids expressing FAK short hairpin RNA(shRNA) were transfected into HSC-T6 cells,and the level of FAK expression was determined by both real-time quantitative polymerase chain reaction(QPCR) and Western blotting analysis.The production of type collagen and type collagen in FAK-disrupted cells was analyzed by real-time Q-PCR.The level of ...

  7. 结缔组织生长因子对Kupffer细胞诱导的肝星状细胞激活的影响%Effects of CTGF on Kupffer cells induced activation of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    李涛; 宋盛晗; 冷希圣; 朱继业; 彭吉润; 魏玉华

    2009-01-01

    Objective To investigate the effect of RNA interference connective tissue growth factor (CTGF)expression on Kulclffer cells(KC)induced activation of hepatic stellate cells(HSC).Methods Rat CTGF RNA interference vector Psilencer 3.1H1-Neo-CTGF was constructed and identified.HSC cell line rHSC-99 cells were divided into three groups,group A served as control,group B transfected with vector without CTGF interference.group C was RNA interferenee CTGF expression of HSC.RT-PCR was used to measure the expression of CTGF in HSC.Rat Kur)ffer cells were isolated and identified.and cocultured with HSC in the 3 groups respectively.MTT assay was used to evaluate the proliferation of HSC.RT-PCR was used to measure the expression of TGF-β1 and precollagen type I in HSC.Western blot was used to measure the expression of TGF-β1 in HSC.ELISA was used to detect the production of precollagen type I protein.Immunofluorescence was used to detect the expression of ot-smooth muscle actin(α-SMA)in HSC.Resuits After CTGF RNA interference vector transfection.CTGF expression of HSC decreased by 22%(P<0.01).The yield rate of Kupffer cell was 5×107 and the cell viability exceeded 98%.In the HSC and KC co-culture system.the proliferation and activation of HSC were inhibited while RNA interferenee CTGF of HSC.As compared with control,HSC proliferation decreased by 29%(P<0.01).Precollagen type I and ot-SMA expression decreased by 38%(P<0.01).Production of precollagen type I protein in culture medium decreased bv 48%(P<0.01).Conclusions Blockade CTGF expression of HSC inhibits KC induced activation of HSC.%目的 探讨肝星状细胞(hepatic stellate cell,HSC)结缔组织生长因子(connective tissue growth factor,CTGF)表达对Kupffer细胞(Kc)诱导的HSC激活的影响.方法 构建含CTGF的RNA干扰载体.将肝星状细胞系rHSC-99分为3组:对照组、空载体组和RNA干扰组.采用RT-PCR方法 检测HSC的CTGF表达.分离培养KC,建立各组HSC与KC的共培养体

  8. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism.

    Science.gov (United States)

    Dangi, Anil; Huang, Chao; Tandon, Ashish; Stolz, Donna; Wu, Tong; Gandhi, Chandrashekhar R

    2016-01-01

    Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.

  9. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Science.gov (United States)

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  10. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Science.gov (United States)

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis.

  11. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Xiao-Yu Jiang; Li Liu; Hui-Qing Jiang

    2008-01-01

    AIM:To investigate the role of phosphatidylinositol 3-kinase(PI 3-K)/Akt signaling pathway in the balance of HSC activation and apoptosis in rat hepatic stellate cells(HSC).METHODS:An activated HSC cell line was used in this study.LY 294002,the PI 3-K/Akt signal pathway blocker was used to investigate the molecular events on apoptosis in HSC and to interpret the role of this pathway in HSC apoptosis.Immunocytochemistry,Western blot and reverse transcription polymerase chain reaction(RT-PCR)analysis were applied to detect the expression of PI 3-K,and simultaneously phosphorylated-Akt(p-Akt)and total-Akt were determined by Western blot.The HSC apoptosis was examined by annexin-V/propidium iodide double-labelled flow cytometry and transmission electron microscopy.RESULTS:The apoptosis rates in LY 294002(30.82% ±2.90%)and LY 294002+PDGF-BB(28.16%±2.58%)groups were significantly increased compared with those of control(9.02%±1.81%)and PDGF-BB(4.35%±1.18%).PDGF-BB augmented PI 3-K and p-Akt expression.LY 294002 significantly reduced the contents of PI 3-K and p-Akt.mRNA transcription evaluated by RT-PCR showed similar tendencies as protein expression.CONCLUSION:Inhibition of PI 3-K/Akt signaling pathway Induces apoptosis in HSC.(C)2008 The WJG Press.All rights reserved.

  12. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    Science.gov (United States)

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  13. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  14. RNA Interference Targeting Leptin Gene Effect on Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    XUE Xiulan; LIN Jusheng; SONG Yuhu; SUN Xuemei; ZHOU Hejun

    2005-01-01

    To construct the specific siRNA expression vectors and investigate their effect on leptin and collagen I in HSC, which provide a new approach to the prevent and treat hepatic fibrosis. The five siRNAs against leptin gene were transcript synthesized intracellularly by expression templates of plasmid vector psiRNA-hH1neo. The recombinant leptin siRNA plasmid vectors could express in eukaryocyte , and then to evaluate them by using enzyme cutting and sequencing. The recombinant plasmids were transfected into HSCs using Lipofectamine methods respectively. The cells were selected after growing in DMEM containing 300 μg/mL G418 for about 4 weeks. Gene expression of leptin and collagen I were showed by Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Identification by enzyme cutting and sequencing showed that the leptin siRNA expression vectors were constructed successfully, and leptin siRNA could inhibit the leptin and collagen I gene expression effectively. It was concluded that RNA interference-mediated silencing of leptin gene diminished leptin and collagen I gene expression in HSCs. Furthermore, attenuated the extracellular matrix over-deposition at the same time. Leptin gene is ideal targets of gene therapy for liver fibrosis.

  15. Activation of Pancreatic Stellate Cells in Human and Experimental Pancreatic Fibrosis

    OpenAIRE

    Haber, Paul S; Keogh, Gregory W.; Apte, Minoti V.; Moran, Corey S.; Stewart, Nancy L.; Crawford, Darrell H.G.; Pirola, Romano C.; McCaughan, Geoffrey W.; Ramm, Grant A; Wilson, Jeremy S.

    1999-01-01

    The mechanisms of pancreatic fibrosis are poorly understood. In the liver, stellate cells play an important role in fibrogenesis. Similar cells have recently been isolated from the pancreas and are termed pancreatic stellate cells. The aim of this study was to determine whether pancreatic stellate cell activation occurs during experimental and human pancreatic fibrosis. Pancreatic fibrosis was induced in rats (n = 24) by infusion of trinitrobenzene sulfonic acid (TNBS) into the pancreatic duc...

  16. Clonorchis sinensis ferritin heavy chain triggers free radicals and mediates inflammation signaling in human hepatic stellate cells.

    Science.gov (United States)

    Mao, Qiang; Xie, Zhizhi; Wang, Xiaoyun; Chen, Wenjun; Ren, Mengyu; Shang, Mei; Lei, Huali; Tian, Yanli; Li, Shan; Liang, Pei; Chen, Tingjin; Liang, Chi; Xu, Jin; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2015-02-01

    Clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis, is associated with hepatobiliary damage, inflammation, periductal fibrosis, and the development of cholangiocarcinoma. Hepatic stellate cells respond to liver injury through production of proinflammatory mediators which drive fibrogenesis; however, their endogenous sources and pathophysiological roles in host cells were not determined. C. sinensis ferritin heavy chain (CsFHC) was previously confirmed as a component of excretory/secretory products and exhibited a number of extrahepatic immunomodulatory properties in various diseases. In this study, we investigated the expression pattern and biological role of CsFHC in C. sinensis. CsFHC was expressed throughout life stages of C. sinensis. More importantly, we found that treatment of human hepatic stellate cell line LX-2 with CsFHC triggered the production of free radicals via time-dependent activation of NADPH oxidase, xanthine oxidase, and inducible nitric oxide synthase. The increase in free radicals substantially promoted the degradation of cytosolic IκBα and nuclear translocation of NF-κB subunits (p65 and p50). CsFHC-induced NF-κB activation was markedly attenuated by preincubation with specific inhibitors of corresponding free radical-producing enzyme or the antioxidant. In addition, CsFHC induced an increased expression level of proinflammatory cytokines, IL-1β and IL-6, in NF-κB-dependent manner. Our results indicate that CsFHC-triggered free radical-mediated NF-κB signaling is an important factor in the chronic inflammation caused by C. sinensis infection.

  17. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    Science.gov (United States)

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  18. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  19. Establishment of a New Procedure for Isolating Rat Hepatic Stellate Cells%建立一种改良方法分离大鼠肝星状细胞

    Institute of Scientific and Technical Information of China (English)

    李玉莲; 宋正己; 范红; 彭伟; 陈艳敏; 万苹

    2012-01-01

    Objective To build an efficient procedure for isolating rat hepatic stellate cells. Methods Primary hepatic stellate cells ( HSC) were isolated from normal Sprague-Dawley ( SD) rats by infusion and combined digestion of pronase E and collagenase Ⅳ ex situ. Hepatic stellate cells were purified by density centrifugation with 12% Nycodenz. Autofluorescenes, desmin and smooth muscle actin ( α -SMA) immunofluorescence staining identified and assayed purity of HSC. HSC were activated by culture on uncoated plastic tissue culture dish and culture in a higher glucose Dulbecco s modified eagles medium ( DMEM) supplemented with 10% fetal calf serum under 37℃ contained 5% CO2 95% air incubater. Results The harvest rate of hepatic stellate cells was about 3.7 0.6 107 per rat, and the viability was more than 90%. Hepatic stellate cells could be activated by culture for more than 7 days. Conclusion This reformed method is more efficient to isolate hepatic stellate cell and by culture the hepatic stellate cells can be activated.%目的 建立一种经济、稳定可靠的HSC分离方法,为体外研究提供细胞模型.方法 Hanks液在体灌洗大鼠肝脏,离体后用Ⅳ胶原酶、链蛋白酶、DNaseI消化肝脏,12% Nycodenz连续梯度液分离大鼠HSC,计数细胞得率,0.2%台盼蓝染色计算细胞活率.自发荧光、Desmin、α-SMA免疫荧光染色对HSC进行鉴定和纯度分析.结果 分离HSC得率(3.7±0.6)×107/只大鼠,细胞活率>90%,分离第1天自发荧光和第3天desmin 染色阳性细胞>90%.HSC随着体外培养形态明显改变,分离培养7 d后α-SMA阳性细胞>90%,培养14 d或传代后>95%.结论 肝脏离体后消化能达到在体消化同样的效果,应用Nycodenz密度分离介质可获得满意的HSC得率和纯度.

  20. Biological effects of extract from newborn porcine liver on hepatocytes, hepatic stellate cells, and hepatoma cell line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: Porcine liver extract has been shown to be effective in the clinical treatment of severe hepatitis. The aim of the present study was to study its antifibrotic as well as immune regulatory effect in vitro. Methods: Hepatocytes, hepatic stellate cells (HSCs), hepatoma cell line (HepG2) and human peripheral blood mononuclear cells (PMNCs) were studied with respect to proliferation, extracellular matrix production and apoptotic activities by proliferation assay, radioimmunoassay, gene transfection, reporter gene analysis and flow cytometry, respectively. Results: A strong stimulatory proliferation effect was observed in hepatocytes, and an inhibitory effect was found in HSCs. Hyaluronic acid (HA) production and reporter gene activities driven by various α1(Ⅰ) procollagen gene promoters in HSC-T6 were significantly decreased after treatment with the extract. Fluo-Anexin V binding apoptotic HepG2 cells were more prominent in the presence of 60 μg/ml extract. More CD4+/CD69+ positive T lymphocytes existed in the presence of the extract. Conclusion: Porcine liver extract is effective for antifibrogenesis via hepatocyte regeneration, HSC and hepatoma cell inhibition in vitro. The elevation of active T lymphocytes is helpful for immune surveillance. Fine mapping of the extract is necessary in order to get definite molecules which are essential in all described functions.

  1. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model

    Institute of Scientific and Technical Information of China (English)

    Ming-Fu Yin; Li-Hua Lian; Dong-Ming Piao; Ji-Xing Nan

    2007-01-01

    AIM: To investigate the therapeutic effect of tetrandrine on liver fibrosis induced by thioacetamide in rats in vivo and in vitro.METHODS: In vitro study: we investigated the effect of tetrandrine on the apoptosis of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated cells. In vivo study:hepatic fibrosis was induced in rats by thioacetamide.Tetrandrine was given orally to rats at doses of 5, 10 or 20 mg/kg for 4 wk compared with intraperitoneal injection of interferon-r.RESULTS: In vitro study: 5, 10 or 25 μg/mL of tetrandrine-induced activation of caspase-3 in t-HSC/Cl-6 cells occurred dose-depenclently. In vivo study: tetrandrine treatment as well as interferon-r significantly ameliorated the development of fibrosis as determined by lowered serum levels of aspartate aminotransferase (AST),alanine aminotransferase (ALT), total bilirubin (T-Bil)and the levels of liver hydroxyproline (Hyp), hyaluronic acid (HA), laminin (LN) and also improved histological findings. The effects of tetrandrine at the concentration of 20 mg/kg were better than the other concentration groups.CONCLUSION: Tetrandrine promotes the apoptosis of activated HSCs in vitro. Tetrandrine administration can prevent liver fibrosis and liver damage induced by thioacetamide in rats in vivo, indicating that it might exert a direct effect on rat HSCs.

  2. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com; Zhan, Shuxiang; Huang, Cheng; Cheng, Xi; Lv, Xiongwen; Si, Hongfang; Li, Jun, E-mail: lj@ahmu.edu.cn

    2013-11-01

    TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl{sub 4}-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 mRNA and protein in the fibrotic livers from CCl{sub 4}-treated rats. • Increasing expression of TRPM7 mRNA and protein during HSC activation. • Blockade of TRPM7 inhibited the PDGF-BB induced proliferation of HSC-T6 cells. • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells. • TRPM7 up-regulation contributes to the activation of ERK and AKT pathways.

  3. Hedgehog信号通路对肝星状细胞激活和增殖的影响%Regulation of hepatic stellate cell activation and proliferation by Hedgehog signal pathway

    Institute of Scientific and Technical Information of China (English)

    王刚; 李涛; 封益飞; 冷希圣

    2009-01-01

    Objective To study the expression of Hedgehog signal pathway in rat hepatic stellate cell (HSC) line rHSC-99. The method of RNAi was adopted to inhibit Hedgehog signal pathway,and estimate the regulation role of Hedgehog signal pathway in activation and proliferation of HSC. Methods RTPCR was used to detect the expression of Hedgehog signal pathway in rat HSC line rHSC-99. Transcripts of siRNA sequence of the genes Ihh,Smo,and Gli2 were designed,and transfected into HSC respectively. Then the expression of these mRNAs were detected by SYBR green flurogenic quantitative PCR. The expression of α-SMA was detected by Western blot. The variation of type I collagen in culture supernatant of HSC was detected by ELISA. The proliferation of HSC was measured by MTT assay. Results HSC expressed mRNAs of Ihh,Smo,Ptc,Gli2,Gli3. The expression of these mRNAs could be reduced by trans-fecting plasmids encoded siRNA of Ihh,Smo or Gli2 (0. 254 ±0.130,0.221 ±0. 150,0. 235 ±0. 110 vs 1 ,P<0.01). Transfection experiment demonstrated the reduction of the expression of α-SMA (0. 191 ± 0.014,0. 357 ± 0. 021,0. 086 ± 0. 016 vs 1. 143 ± 0. 017, P<0. 01) and secretion of collagen I (22.9±2.0,16.4±1.4,17.6±1.8 vs 40.7 ±4.3,P<0.01) in HSC,and HSC proliferation was decreased (0.204 ±0.019,0. 226 ±0. 014,0. 228 ±0.015 vs 0. 412 ±0. 016,P<0.05). Conclusion This study showed the expression of Hedgehog signal pathway in HSC. Down-regulation of Hedgehog signal pathway may inhibit HSC activation and proliferation.%目的 观察Hedgehog信号通路在肝星状细胞(HSC)中的表达情况及Hedgehog信号通路对HSC激活和增殖的调控作用.方法 采用逆转录-聚合酶链反应(RT-PCR)的方法检测大鼠HSC细胞株rHSC-99中Hedgehog信号通路各成分的表达.构建含Ihh、Smo、Gli2的干扰片段的质粒,分别转染HSC,用SYBR Green荧光定量PCR的方法检测转染后Ihh、Smo、Gli2的表达,Western blot方法检测HSC中α-SMA表达,酶联免疫吸附试

  4. Septum Transversum-Derived Mesothelium Gives Rise to Hepatic Stellate Cells and Perivascular Mesenchymal Cells in Developing Mouse Liver

    OpenAIRE

    Asahina, Kinji; Zhou, Bin; William T Pu; Tsukamoto, Hidekazu

    2011-01-01

    The septum transversum mesenchyme (STM) signals to induce hepatogenesis from the foregut endoderm. Hepatic stellate cells (HSCs) are sinusoidal pericytes assumed to originate from the STM and participate in mesenchymal-epithelial interaction in embryonic and adult livers. However, the developmental origin of HSCs remains elusive due to the lack of markers for STM and HSCs. We previously identified submesothelial cells (SubMCs) beneath mesothelial cells (MCs) as a potential precursor for HSCs ...

  5. Effects of sinusoidal endothelial cell conditioned medium on the expressionof connective tissue growth factor in rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing Liu; Fang Liu; Wen Jun Xiao; Ming Hui Huang; Song Min Huang; Yi Ping Wang

    2000-01-01

    AIM To investigate the effects of sinusoidal endothelial cell (SEC) conditioned medium on the expression ofconnective tissue growth factor (CTGF) in rat hepatic stellate cells (HSC).METHODS By in situ collagenase perfusion and two-step Percoll gradient centrifugation, SECs wereisolated and cultured from normally and CCl4-treated Wistar rats, and the SEC conditioned media werecollected. HSCs were prepared from Wistar rats by in situ perfusion and single-step Nycodenz gradient, andwere cultured with SEC conditioned media. Expression of CTGF in HSC was assessed using reversetranscription-polymerase chain reaction (RT-PCR).RESULTS Expression of CTGF was not found in freshly isolated HSC and in primary culture of HSC onday 4 with SEC conditioned media from normal rats, but was present in primary culture of HSC on day 4 withSEC conditioned media from CCl4-induced liver fibrosis rats. Expression of CTGF was observed in culture-activated HSCs, and the effect of SEC conditioned media from CCl4-induced liver fibrosis rats on theexpression of CTGF gene in activated HSCs was not significant.CONCLUSION Expression of CTGF might be relative to the activation of HSC and the liver fibrogenesis,and damaged SECs play a very important role in the early stage of activation of HSC.

  6. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1.

    Science.gov (United States)

    Hong, Li; Shejiao, Dai; Fenrong, Chen; Gang, Zhao; Lei, Dong

    2015-10-01

    Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)-β1-induced HSC activation remains unclear. We used RT-PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, p-Smad2 and p-Smad3 were determined by western blot. Our study found that periostin was up-regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA-periostin suppressed TGF-β1-induced HSC proliferation. The HSC transfected with siRNA-periostin significantly inhibited TGF-β1-induced expression levels of α-SMA and collagen I. Furthermore, TGF-β1 stimulated the expression of periostin, and siRNA-periostin attenuated TGF-β1-induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF-β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.

  7. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  8. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis. PMID:23525364

  9. Effects of endothelin- 1 on hepatic stellate cell proliferation, collagen synthesis and secretion, intracellular free calcium concentration

    Institute of Scientific and Technical Information of China (English)

    Chuan-Yong Guo; Jian-Ye Wu; Yun-Bin Wu; Min-Zhang Zhong; Han-Ming Lu

    2004-01-01

    AIM: To explore the effects of endothelin-1(ET-1) on hepatic stellate cells (HSCs) DNA uptake, DNA synthesis, collagen synthesis and secretion, inward whole-cell calcium concentration ([Ca2+]i) as well as the blocking effect of verapamil on ET-1-stimulated release of inward calcium (Ca2+) of HSC in vitro.METHODS: Rat hepatic stellate cells (HSCs) were isolated and cultivated. 3H-TdR and 3H-proline incorporation used for testing DNA uptake and synthesis, collagen synthesis and secretion of HSCs cultured in vitro; Fluorescent calciumindicator Fura-2/AM was used to measure [Ca2+]i inward HSCs.RESULTS: ET-1 at the concentration of 5×10-8 mol/L,caused significant increase both in HSC DNA synthesis(2 247±344 cpm, P<0.05) and DNA uptake (P<0.05) whencompared with the control group. ET-1 could also increase collagen synthesis (P<0.05 vs control group) and collagen secretion (P<0.05 vs control group). Besides, inward HSC [Ca2+]i reached a peak concentration (422±98 mol/L, P<0.001)at 2 min and then went down slowly to165±51 mol/L(P<0.01) at 25 min from resting state (39±4 mol/L)aftertreated with ET-1. Verapamil (5 mol/L) blocked ET-1activated [Ca2+]i inward HSCs compared with control group(P<0.05). Fura-2/AM loaded HSC was suspended in no Ca2+ buffer containing 1 mol/L EGTA, 5 min later, 10-8 mol/Lof ET-1 was added, [Ca2+]i inward HSCs rose from restingstate to peak 399±123 mol/L, then began to come downby the time of 20 min. It could also raise [Ca2+]i inwardHSCs even without Ca2+ in extracellular fluid, and had a remarkable dose-effect relationship(P<0.05). Meanwhile, verapamil could restrain the action of ET-1(P<0.05). CONCLUSION: Actions of ET-1 on collagen metabolism of HSCs may depend on the transportation of inward wholecell calcium.

  10. The Role of Lipin-1 in the Regulation of Fibrogenesis and TGF-β Signaling in Hepatic Stellate Cells.

    Science.gov (United States)

    Jang, Chang Ho; Kim, Kyu Min; Yang, Ji Hye; Cho, Sam Seok; Kim, Seung Jung; Shin, Sang Mi; Cho, Il Je; Ki, Sung Hwan

    2016-09-01

    The adipogenic transcriptional regulation was reported to inhibit transdifferentiation of hepatic stellate cells (HSCs), which constitute the main fibrogenic cell type in the liver. Lipin-1 exhibits a dual function: an enzyme that catalyzes the conversion of phosphatidate to diacylglycerol and a transcriptional regulator. However, the involvement of Lipin-1 in the regulation of transforming growth factor-β (TGF-β) signaling and fibrogenesis in HSCs is not fully understood. Here, we showed that Lipin-1 was downregulated in activated primary HSCs and TGF-β-treated LX-2 cells, immortalized human HSC cell lines. The downregulation of Lipin-1 by TGF-β was not dependent on altered mRNA stability but rather on protein stability. Treatment of LX-2 cells with the proteasome inhibitor led to the accumulation of Lipin-1. Moreover, we observed a significant increase in Lipin-1 polyubiquitination. Overexpression of Lipin-1 attenuated TGF-β-induced fibrogenic gene expression. In addition, Lipin-1 inhibited TGF-β-mediated activation of Sma and Mad-related family (SMAD), a major transcription factor that transduces intracellular signals from TGF-β. Resveratrol, a well-known natural polyphenolic antioxidant, is known to inhibit liver fibrosis, although its mechanism of action remains unknown. Our data showed that resveratrol significantly increased the levels of Lipin-1 protein and mRNA in HSCs. Further investigation revealed that resveratrol blocked the polyubiquitination of Lipin-1. Resveratrol inhibited TGF-β-induced fibrogenic gene expression. TGF-β-induced SMAD binding element-luciferase reporter activity was significantly diminished by resveratrol with a simultaneous decrease in SMAD3 phosphorylation. Consistently, knockdown of the Lipin-1 gene using siRNA abolished the inhibitory effect of resveratrol. We conclude that Lipin-1 can antagonize HSC activation through the inhibition of TGF-β/SMAD signaling and that resveratrol may affect Lipin-1 gene induction and

  11. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Directory of Open Access Journals (Sweden)

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  12. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

    Science.gov (United States)

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-03-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  13. Distribution of hepatic stellate cells and their role in the development of parasitic fibrosis and liver cirrhosis in domestic animals

    Directory of Open Access Journals (Sweden)

    Kukolj Vladimir

    2015-01-01

    Full Text Available Increasing of the extracellular matrix in rats, as well as in humans, occurs as a consequence of hepatic stellate cells (HSCs activity. The objective of this work was to investigation the role of these cells in the development of fibrosis and liver cirrhosis which occurs as a consequence of infection of sheep and goats with large (Fasciola hepatica and small (Dicrocoelium dendriticum fluke. Liver samples taken from 12 cattle and 10 sheep infected under natural conditions with large and small fluke were fixed in formalin and embedded in paraffin. Paraffin clips were stained with hematoxylin- eosin and masson trichrome method, and immunohistochemical method for α-smooth muscle actin (α-SMA. All tested samples were divided into three groups according to histological criteria: livers of infected animals with the first degree of fibrosis, livers of infected animals with the second degree of fibrosis, and livers of infected animals with cirrhosis. Distribution of HSCs depended on the degree of liver fibrosis. Immunohistochemically reactive HSCs were predominantly placed in perisinusoidal space. In liver samples with cirrhosis, HSCs were placed on the periphery of pseudolobulus. Cells of a different shape and size were positive to α-SMA. HSCs play an important role in synthesis of components of extracellular matrix during the development of parasitic fibrosis and liver cirrhosis in domestic animals.

  14. In vivo effects of Chinese herbal recipe, Danshaohuaxian, on apoptosis and proliferation of hepatic stellate cells in hepatic fibrotic rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xia Geng; Qin Yang; Ru-Jia Xie; Xin-Hua Luo; Bing Han; Li Ma; Cheng-Xiu Li; Ming-Liang Cheng

    2005-01-01

    AIM: To investigate the effects of Danshaohuaxian (DSHX),a Chinese herbal recipe, on the apoptosis and cell cycles of hepatic stellate cells (HSCs) in rat hepatic fibrosis and its possible mechanisms. METHODS: Seventy-six male Wistar rats were randomly divided into normal control group, hepatic fibrosis group,non-DSHX-treated group and DSHX-treated group. Except for the normal control group, rat hepatic fibrotic models were induced by subcutaneous injection of carbon tetrachloride (CCl4), drinking alcohol, giving diet of hyperlipid and hypoprotein for 8 wk. When the hepatic fibrotic models were produced, 12 rats of hepatic fibrosis group (15 rats survived, others died during the 8 wk) were sacrificed to collect blood and livers. HSCs were isolated from the other 3 rats to detect the apoptotic index (AI) and cell cycles by flow cytometry. DSHX was then given to the DSHX-treated group (1.0 g/kg, PO daily) for 8 wk. At the same time, normal control group and non-DSHX-treated group were given normal saline for 8 wk. At end of the experiment, some rats in these three groups were sacrificed to collect blood and livers, the other rats were used for HSC isolation to detect the apoptotic index (AI) and cell cycles. Then the liver index, serum hyaluronic acid (HA) and alanine aminotransferase (ALT),degree of hepatic fibrosis, urinary excretion of hydroxyproline (Hyp) and expression of collagen types Ⅰ and Ⅲ (COL Ⅰ and Ⅲ) in these four groups were detected respectively.RESULTS: Compared with the indexes of the hepatic fibrosis group and non-DSHX-treated group, the DSHX-treated group revealed a liver index of (0.0267±0.0017 vs 0.0423±0.0044, 0.0295±0.0019, P<0.05), levels of serum HA (200.78±31.71 vs316.17±78.48, 300.86±72.73, P<0.05)and ALT(93.13±5.79 vs 174.5±6.02, 104.75±6.54, P<0.01),and stage of hepatic fibrosis (1.30 vs 4.25, 2.60, P<0.01)all reduced. The urinary excretion of Hyp increased (541.09±73.39 vs 62.00±6.40, 182.44±30.83, P<0

  15. Role of methionine adenosyltransferase α2 and β phosphorylation and stabilization in human hepatic stellate cell trans-differentiation.

    Science.gov (United States)

    Ramani, Komal; Donoyan, Shant; Tomasi, Maria Lauda; Park, Sunhee

    2015-05-01

    Myofibroblastic trans-differentiation of hepatic stellate cells (HSCs) is an essential event in the development of liver fibrogenesis. These changes involve modulation of key regulators of the genome and the proteome. Methionine adenosyltransferases (MAT) catalyze the biosynthesis of the methyl donor, S-adenosylmethionine (SAMe) from methionine. We have previously shown that two MAT genes, MAT2A and MAT2B (encoding MATα2 and MATβ proteins respectively), are required for HSC activation and loss of MAT2A transcriptional control favors its up-regulation during trans-differentiation. Hence MAT genes are intrinsically linked to the HSC machinery during activation. In the current study, we have identified for the first time, post-translational modifications in the MATα2 and MATβ proteins that stabilize them and favor human HSC trans-differentiation. Culture-activation of human HSCs induced the MATα2 and MATβ proteins. Using mass spectrometry, we identified phosphorylation sites in MATα2 and MATβ predicted to be phosphorylated by mitogen-activated protein kinase (MAPK) family members (ERK1/2, V-Raf Murine Sarcoma Viral Oncogene Homolog B1 [B-Raf], MEK). Phosphorylation of both proteins was enhanced during HSC activation. Blocking MEK activation lowered the phosphorylation and stability of MAT proteins without influencing their mRNA levels. Silencing ERK1/2 or B-Raf lowered the phosphorylation and stability of MATβ but not MATα2. Reversal of the activated human HSC cell line, LX2 to quiescence lowered phosphorylation and destabilized MAT proteins. Mutagenesis of MATα2 and MATβ phospho-sites destabilized them and prevented HSC trans-differentiation. The data reveal that phosphorylation of MAT proteins during HSC activation stabilizes them thereby positively regulating trans-differentiation.

  16. Characterization and sub-cellular localization of GalNAc-binding proteins isolated from human hepatic stellate cells.

    Science.gov (United States)

    Zhong, Yaogang; Zhang, Jing; Yu, Hanjie; Zhang, Jiaxu; Sun, Xiu-Xuan; Chen, Wentian; Bian, Huijie; Li, Zheng

    2015-12-25

    Although the expression levels of total GalNAc-binding proteins (GNBPs) were up-regulated significantly in human hepatic stellate cells (HSCs) activated with transforming growth factor-β1(TGF-β1), yet little is known about the precise types, distribution and sub-cellular localization of the GNBPs in HSCs. Here, 264 GNBPs from the activated HSCs and 257 GNBPs from the quiescent HSCs were identified and annotated. A total of 46 GNBPs were estimated to be significantly up-regulated and 40 GNBPs were estimated to be significantly down-regulated in the activated HSCs. For example, the GNBPs (i.e. BTF3, COX17, and ATP5A1) responsible for the regulation of protein binding were up-regulated, and those (i.e. FAM114A1, ENO3, and TKT) responsible for the regulation of protein binding were down-regulated in the activated HSCs. The motifs of the isolated GNBPs showed that Proline residue had the maximum preference in consensus sequences. The western blotting showed the expression levels of COX17, and PRMT1 were significantly up-regulated, while, the expression level of CLIC1(B5) was down-regulated in the activated HSCs and liver cirrhosis tissues. Moreover, the GNBPs were sub-localized in the Golgi apparatus of HSCs. In conclusion, the precision alteration of the GNBPs referred to pathological changes in liver fibrosis/cirrhosis may provide useful information to find new molecular mechanism of HSC activation and discover the biomarkers for diagnosis of liver fibrosis/cirrhosis as well as development of new anti-fibrotic strategies.

  17. KN-93, a specific inhibitor of CaMK Ⅱ inhibits human hepatic stellate cell proliferation in vitro

    Institute of Scientific and Technical Information of China (English)

    Ping An; Jun-Yong Zhu; Yan Yang; Peng Lv; Yi-Hao Tian; Ming-Kai Chen; He-Sheng Luo

    2007-01-01

    AIM: To investigate the effects of KN-93, a CaMKⅡ selective inhibitor on cell proliferation and the expression of p53 or p21 protein in human hepatic stellate ceils.METHODS: Human hepatic stellate cells (LX-2) were incubated with various concentrations (0-50 μmol/L) of KN-93 or its inactive derivative, KN-92. Cell proliferation was measured by CCK-8 assay, and the expression of two cell cycle regulators, p53 and p21, was determined by SDS-PAGE and Western blotting.RESULTS: KN-93 (5-50 μmol/L) decreased the proliferation of human hepatic stellate cells in a dosedependent manner from 81.76% (81.76% + 2.58% vs 96.63% + 2.69%, P < 0.05) to 27.15% (27.15% + 2.86% vs 96.59% + 2.44%, P < 0.01) after 24 h treatment.Incubation of 10 μmol/L KN-93 induced the cell growth reduction in a time-dependent manner from 78.27% at 8 h to 11.48% at 48 h. However, KN-92, an inactive derivative of KN-93, did not inhibit cell proliferation effectively. Moreover, analysis of cell cycle regulator expression revealed that KN-93 rather than KN-92 reduced the expression of p53 and p21.CONCLUSION: KN-93 has potent inhibitory effect on proliferation of LX-2 cells by modulating the expression of two special cell cycle regulators, p53 and p21.

  18. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    Institute of Scientific and Technical Information of China (English)

    Run-Ping Gao; David R Brigstock

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-b1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen Ⅰ, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen Ⅰ, and an increase in produced and secreted CCN2 or extracellular collagen Ⅰ protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen Ⅰ protein. Furthermore, the TGF-b1-induced increase in mRNA or protein for CCN2 or collagen Ⅰ was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-b1-induced collagen Ⅰ production in human HSCs and regulates entry of the cells into Sphase.

  19. Liver cirrhosis and hepatic stellate cells Cirrose hepática e células estreladas do figado

    Directory of Open Access Journals (Sweden)

    Daniel Ferracioli Brandão

    2006-01-01

    Full Text Available The cirrhosis represents the final stage of several chronic hepatic diseases and it is characterized by the presence of fibrosis and morphologic conversion from the normal hepatic architecture into structurally abnormal nodules. In the evolution of the disease there is loss of the normal vascular relationship and portal hypertension. There are also regenerative hepatocelular alterations that become more prominent with the progression of the disease. The liver transplantation continues to be the only therapeutic option in cases of disease in terminal phase. The hepatic stellate cells (HSC are perisinusoidal cells that store vitamin A and produce growth factors, citocins, prostaglandins and other bioactive substances. They can suffer an activation process that convert them to cells with a phenotype similar to myofibroblasts. When activated, they present increased capacity of proliferation, mobility, contractility and synthesis of collagen and other components of extracelular matrix. They possess cytoplasmic processes adhered to sinusoids and can affect the sinusoidal blood flow. HSC are important in pathogenesis of fibrosis and portal hypertension.A cirrose representa o estágio final de diversas doenças hepáticas crônicas e é caracterizada pela presença de fibrose e conversão da arquitetura hepática normal em nódulos estruturalmente anormais. Na evolução da doença ocorre perda da relação vascular normal e hipertensão portal. Há também alterações regenerativas hepatocelulares que se tornam mais proeminentes com a progressão da doença. O transplante hepático permanece como a única opção terapêutica nos casos de doença em fase terminal. As células estreladas hepáticas (CEH são células perisinusoidais que armazenam vitamina A e produzem fatores de crescimento, citocinas, prostaglandinas e outras substâncias bioativas. Podem sofrer um processo de ativação para um fenótipo semelhante a miofibroblastos. Quando ativadas

  20. HIV and HCV Co-Culture Promotes Profibrogenic Gene Expression through an Epimorphin-Mediated ERK Signaling Pathway in Hepatic Stellate Cells

    Science.gov (United States)

    Shi, Lei; Qin, Enqiang; Zhou, Junnian; Zhao, Juanjuan; Nie, Weimin; Jiang, Tianjun; Chen, Weiwei; Wu, Dan; Huang, Lei; Liu, Liying; Lv, Liping; Zhao, Min; Zhang, Zheng; Wang, Fusheng

    2016-01-01

    Accelerated fibrosis in patients co-infected with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) has been a major cause of mortality in the highly active anti-retroviral therapy (HAART) era. However, the role of co-infection in accelerating the progression of liver fibrosis, particularly with regard to the effects of co-infection on hepatic stellate cells (HSCs), remains unclear. We hypothesized that HIV and HCV induce liver fibrosis synergistically by altering the regulation of epimorphin production, and thereby indirectly alter HSC function. Here, we examined the effects of epimorphin on HSC proliferation and invasion, and the changes in fibrogenesis-related gene activity in HSCs (LX2) in the presence of inactivated CXCR4-tropic HIV and HCV (JFH1). The combination of HIV and HCV significantly increased epimorphin expression, which increased the proliferation and invasion capabilities of HSCs. Epimorphin also induced the expression of profibrogenic tissue inhibitor of metalloproteinase 1 (TIMP1) in an extracellular signal-regulated kinase (ERK)-dependent manner. These data indicated that the effects of HIV/HCV co-infection on hepatic fibrosis might be mediated in part by EPM. Strategies to limit the expression of EPM might represent a novel therapeutic approach to prevent the progression of hepatic fibrosis during HIV/HCV co-infection. PMID:27362846

  1. HIV and HCV Co-Culture Promotes Profibrogenic Gene Expression through an Epimorphin-Mediated ERK Signaling Pathway in Hepatic Stellate Cells.

    Directory of Open Access Journals (Sweden)

    Lei Shi

    Full Text Available Accelerated fibrosis in patients co-infected with hepatitis C virus (HCV and human immunodeficiency virus (HIV has been a major cause of mortality in the highly active anti-retroviral therapy (HAART era. However, the role of co-infection in accelerating the progression of liver fibrosis, particularly with regard to the effects of co-infection on hepatic stellate cells (HSCs, remains unclear. We hypothesized that HIV and HCV induce liver fibrosis synergistically by altering the regulation of epimorphin production, and thereby indirectly alter HSC function. Here, we examined the effects of epimorphin on HSC proliferation and invasion, and the changes in fibrogenesis-related gene activity in HSCs (LX2 in the presence of inactivated CXCR4-tropic HIV and HCV (JFH1. The combination of HIV and HCV significantly increased epimorphin expression, which increased the proliferation and invasion capabilities of HSCs. Epimorphin also induced the expression of profibrogenic tissue inhibitor of metalloproteinase 1 (TIMP1 in an extracellular signal-regulated kinase (ERK-dependent manner. These data indicated that the effects of HIV/HCV co-infection on hepatic fibrosis might be mediated in part by EPM. Strategies to limit the expression of EPM might represent a novel therapeutic approach to prevent the progression of hepatic fibrosis during HIV/HCV co-infection.

  2. Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation.

    Science.gov (United States)

    Tung, Yu-Tang; Tang, Ting-Yu; Chen, Hsiao-Ling; Yang, Shang-Hsun; Chong, Kowit-Yu; Cheng, Winston T K; Chen, Chuan-Mu

    2014-01-01

    Liver diseases, which can be caused by alcohol abuse, chemical intoxication, viral hepatitis infection, and autoimmune disorders, are a significant health issue because they can develop into liver fibrosis and cirrhosis. Lactoferrin (LF), a siderophilic protein with 2 iron-binding sites, has been demonstrated to possess a multitude of biological functions, including antiinflammation, anticancer, and antimicrobial effects, as well as immunomodulatory-enhancing functions. In the current study, we induced hepatotoxicity in rats with dimethylnitrosamine (DMN) to establish a situation that would enable us to evaluate the hepatoprotective effects of LF against hepatic injury. Our results showed that DMN-induced hepatic pathological damage significantly decreased the body weight and liver index, increased the mRNA and protein levels of collagen α-1(I) (ColIα-1) and α-smooth muscle actin, and increased the hydroxyproline content. However, treatment with LF significantly increased body weight and liver index, decreased the mRNA and protein levels of ColIα-1 and α-smooth muscle actin, and suppressed the hydroxyproline content when compared with the DMN-treated group. Liver histopathology also showed that low-dose LF (100mg/kg of body weight) or high-dose LF (300 mg/kg of body weight) could significantly reduce the incidences of liver lesions induced by DMN. These results suggest that the LF exhibits potent hepatoprotection against DMN-induced liver damage in rats and that the hepatoprotective effects of LF may be due to the inhibition of collagen production and to stellate cell activation. PMID:24731632

  3. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2

    Directory of Open Access Journals (Sweden)

    Renwei Huang

    2016-01-01

    Full Text Available Hepatic stellate cells (HSCs, previously described for liver-specific mesenchymal stem cells (MSCs, appear to contribute to liver regeneration. Microvesicles (MVs are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH in culture medium were also assessed. Results showed that (1 HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2 HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3 HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury.

  4. Role of RhoA in platelet-derived growth factor-BB-induced migration of rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    LI Lei; LI Jing; WANG Ji-yao; YANG Chang-qing; JIA Ming-lei; JIANG Wei

    2010-01-01

    Background Although the migration of hepatic stellate cells (HSCs) is essential for hepatic fibrotic response, the detailed mechanisms involved are poorly understood. The aim of this study was to examine the role of Rho GTPases (especially RhoA) in platelet-derived growth factor (PDGF)-BB-induced migration of HSCs.Methods The migration of primary rat HSCs was evaluated using transwell Boyden chamber, while cytoskeletal changes were visualized by immunofluorescence staining of intracellular actins and vinculin. Quantitative real-time PCR and Western blotting analysis were used to detect the expression of Rho GTPases (RhoA, Rac1 and Cdc42) within HSCs and their activation was determined by glutathione S-transferase pull-down assay. Finally, the effects of RhoA on PDGF-BB-induced cell migration and cytoskeletal remodeling were analyzed using HSC-T6 cells stably transfected with constitutively active (CA, Q63L) or dominant negative (DN, T19N) RhoA mutants. Data were analyzed using SPSS 16.0 software. Student's t test was used to analyze differences between two groups and one-way analysis of variance (ANOVA) was used among multiple groups.Results Rapid cytoskeletal remodeling led to a significant increase in the motility of primary rat HSCs after haptotactic (direct) and chemotactic (indirect) stimulation by PDGF-BB. PDGF-BB caused a dramatic elevation in the levels of both total and active RhoA protein. However, the levels of mRNA for Rho GTPases, including RhoA, Rac1 and Cdc42, were unaffected. Furthermore, PDGF-BB induced increased formation of stress fibers and focal adhesions in HSC-T6 cells transfected with CA-RhoA, but not in HSC-T6 transfected with DN-RhoA. Surprisingly, both CA- and DN-RhoA-transfected HSC-T6 cells showed decreased migratory potential in the absence or presence of PDGF-BB compared with controls.Conclusions PDGF-BB induced cytoskeletal remodeling in rat HSCs and promoted their migration via regulation of intracellular RhoA. RhoA may be one of

  5. Expression of Basic Fibroblast Growth Factor in Rat Liver Fibrosis and Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The expression of basic fibroblast growth factor (bFGF) in rat liver fibrosis and hepatic stellate cells (HSCs) and the relationship between the expression of bFGF and rat liver fibrogenesis were studied. Sixty male SD rats (230-260 g) were divided into 4 groups randomly (the 0 week group, 1 week group, 4 week group and 8 week group). Liver fibrosis was induced by subcutaneous injection of carbon tetrachloride. The sections of rats' liver in each group were tested by VanGieson (V-G) staining and immunohistochemistry. The expression of bFGF mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). HSCs were isolated by the combined methods of collagenase Ⅳ perfusion and density gradient centrifugation. The expression of bFGF protein in cultured HSCs was detected by Western blot. Images of immunohistochemistry detec tion, agarose gel electrophoresis of RT-PCR and SDS-polyacrylamide gel electrophoresis of Western blot were analyzed semiquantitatively by image-analyzing system. The results were analyzed by statistics. The results showed that the fibers were gradually increased in the sections of rat liver with the prolongation of the model induction. At the end of the 8th weeks, liver fibrosis was formed.The expression of bFGF detected by immunohistochemistry showed a similar tendency of gradual increase. At the end of the 8th weeks, the bFGF expression could be observed in many regions in sections and the strongest expression was in interstitial cells including HSCs and some hepatocytes in regions around the portal area and central veins. Also there was moderate expression widely in extracellular matrix (ECM). In RT-PCR detection and Western blot detection of HSCs cultured in vitro, the similar tendency of gradual increase was evident either. It is suggested that bFGF is related with liver fibrosis of rats closely and may be a fibrogenesis factor of liver. bFGF possibly regulates liver fibrogenesis through regulating metabolism of extracellular

  6. Human pancreatic cancer-associated stellate cells remain activated after in vivo chemoradiation

    Directory of Open Access Journals (Sweden)

    Marina Carla Cabrera

    2014-05-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by an extensive fibrotic reaction or desmoplasia and complex involvement of the surrounding tumor microenvironment. Pancreatic stellate cells are a key mediator of the pancreatic matrix and they promote progression and invasion of pancreatic cancer by increasing cell proliferation and offering protection against therapeutic interventions. Our study utilizes human tumor-derived pancreatic stellate cells (HTPSCs isolated from fine needle aspirates of pancreatic cancer tissue from patients with locally advanced, unresectable pancreatic adenocarcinoma before and after treatment with full dose gemcitabine plus concurrent hypo-fractionated stereotactic radiosurgery. We show that HTPSCs survive in vivo chemotherapy and radiotherapy treatment and display a more activated phenotype post therapy. These data support the idea that stellate cells play an essential role in supporting and promoting pancreatic cancer and further research is needed to develop novel treatments targeting the pancreatic tumor microenvironment.

  7. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    International Nuclear Information System (INIS)

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  8. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  9. Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; L'Helgoualc'h, Annie; Coutant, Alexandre;

    2005-01-01

    In chronic liver injury, quiescent hepatic stellate cells change into proliferative myofibroblast-like cells, which are a main source of fibrosis. We have recently reported that these cells synthesize ADAM12, a disintegrin and metalloprotease whose expression is up-regulated by TGF-beta1 in liver...... cancers. Here, we studied the role of the serine/threonine p70S6 kinase (p70S6K) in regulating TGF-beta1-induced ADAM12 expression....

  10. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    Science.gov (United States)

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  11. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells.

    Science.gov (United States)

    Pan, Qin; Wang, Yu-Qin; Li, Guang-Ming; Duan, Xiao-Yan; Fan, Jian-Gao

    2015-01-01

    Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β 1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β 1 at both transcription and translation levels. Restoration of TGF-β 1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs. PMID:26881209

  12. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Qin Pan

    2015-01-01

    Full Text Available Activation of hepatic stellate cells (HSCs depending on epithelial-to-mesenchymal transition (EMT reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1 at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT to mesenchymal-to-epithelial transition (MET as characterized by the abolishment of EMT markers (α-SMA and desmin and reoccurrence of MET marker (E-cadherin. In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4- induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.

  13. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Directory of Open Access Journals (Sweden)

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  14. Study on Effects of Extracts from Salvia Miltiorrhiza and Curcuma Longa in Inhibiting Phosphorylated Extracellular Signal Regulated Kinase Expression in Rat's Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    CHENG Yang; PING Jian; LIU Cheng; TAN Ying-zi; CHEN Gao-feng

    2006-01-01

    Objective: To study the effect of salvianolic acid B (SAB) and curcumin, the extracts of Salvia Miltiorrhiza and Curcuma Longa, on the proliferation and activation of hepatic stellate cell (HSC), and the extracellular signal regulated kinase (ERK) expression in it. Methods: Rat's HSC-T6 were cultured and treated by SAB or curcumin. The inhibitory effect on cell proliferation was determined by 3-(4,5-dimthyl-2-2thiazoly)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetry, and the expression levels of α smooth actin (α-SMA), collagen type Ⅰ , and ERK were determined by Western blot. Results: SAB and curcumin inhibited the proliferation and activation of rat's HSC-T6 in dose-dependent fashion and significantly reduced the expression level of α-SMA ( P<0.01 ). Curcumin significantly reduced the expression of collagen type Ⅰ( P<0.05). Both SAB and curcumin showed insignificant effect on the ERK expression level, but they could significantly reduce the level of phosphorylated-ERK expression, showing significant difference as compared with that in the control group ( P<0.01 and P<0.05 respectively). Conclusion: SAB and curcumin could significantly inhibit the proliferation, activation of HSC, and the production of type Ⅰ collagen in HSC, the mechanism may be associated with their inhibition on ERK phosphorylation.

  15. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    Science.gov (United States)

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  16. Pancreatic Stellate Cells and Chronic Alcoholic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Raffaele Pezzilli

    2007-03-01

    fibrillary acidic protein, neural cell adhesion molecule and neurotrophin nerve growth factor just as hepatic stellate cells do. Pancreatic stellate cells contain the enzyme alcohol dehydrogenase [11] and, when activated, they assume a myofibroblastlike phenotype [12]. Activated pancreatic stellate cells are characterized by the disappearance of fat globules and the expression of alpha-smooth muscle actin. These cells have proliferative and migratory [13, 14, 15] functions and they also synthesize and secrete extracellular fibrous tissue matrix proteins, matrix metalloproteinases and their inhibitors [16]; it has also been demonstrated that pancreatic stellate cells have phagocytic activity [17]. Thus, the ability of pancreatic stellate cells to synthesize as well as to degrade extracellular matrix proteins suggests their role in maintaining a normal pancreatic architecture which can shift towards fibrogenesis if the balance is altered. Ethanol, acetaldehyde and oxidant stress are capable of activating activate pancreatic stellate cells via three mitogen-activated protein kinase pathways [18], namely extracellular signal kinase, p38 kinase and c-jun amino terminal kinase [19, 20, 21], and ethanol and acetaldehyde are also capable of activating phosphatidylinositol 3-kinase and protein kinase C [22]. On the other hand, extracellular signal kinase activation occurs via a signal transduction pathway which involves Gprotein Ras and serine threonine protein kinase Raf-1 [23, 24]. The Ras superfamily G proteins undergo post-translational modification involving isoprenylation, a process which requires intermediate substrates of cholesterol biosynthesis [25, 26] which is regulated by HMG CoA reductase [27]. The paracrine pro-fibrogenic effect of TGF-beta on pancreatic stellate cells is mediated via smad while the autocrine effect is mediated through the extracellular signal kinase pathway [28]; furthermore, the role of the peroxisome proliferator-activated receptor-gamma seems to be

  17. Herbal compound 861 regulates mRNA expression of collagen synthesis- and degradation-related genes in human hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Bao-En Wang; Jian Wang; Pei-Gen Xiao; Xue-Hai Tan

    2008-01-01

    AIM: To identify the role of herbal compound 861 (Cpd 861) in the regulation of mRNA expression of collagen synthesis- and degradation-related genes in human hepatic stellate cells (HSCs).METHODS: mRNA levels of collagen types I and III, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 2 (MMP-2), membrane type-1 matrix metalloproteinase (MT1-MMP), tissue inhibitor of metalloproteinase 1 (TIMP-1), and transforming growth factor β1 (TGF-βi) in cultured-activated HSCs treated with Cpd 861 or interferon-γ (IFN-γ) were determined by real-time PCR.RESULTS: Both Cpd 861 and IFN-γ reduced the mRNA levels of collagen type Ⅲ, MMP-2 and TGF-βl. Moreover, Cpd 861 significantly enhanced the MMP-1 mRNA levels while down-regulated the TIMP-1 mRNA expression, increasing the ratio of MMP-1 to TIMP-1 to (6.3 + 0.3)-fold compared to the control group.CONCLUSION: The anti-fibrosis function of Cpd 861 may be mediated by both decreased interstitial collagen sythesis by inhibiting the transcription of collagen type in and TGF-pi and increased degradation of these collagens by up-regulating MMP-1 and down-regulating TIMP-1 mRNA levels.

  18. Apoptotic and survival signals in hepatic stellate cells%肝星状细胞中细胞凋亡和存活的信号调控

    Institute of Scientific and Technical Information of China (English)

    Hong Shen; Jianghong Fan; Geraid Minuk; Yuewen Gong

    2007-01-01

    肝星状细胞(hepatic stellate cells,HSCs)在肝脏纤维化发生过程中起着关键作用.当正常肝脏受到损伤时,HSCs由静息状态转分化为类肌成纤维细胞,并保持这种处于激活状态的表型,它们接收到的凋亡和存活的生物信号将决定激活态HSCs的最终细胞寿命.HSCs凋亡的发生与一系列复杂而又相互关联的生物信号传导和调控有关,HSCs凋亡信号来自于细胞膜受体,如死亡受体、神经生长因子受体和外周型苯甲二氮卓受体(peripheral-type benzodiazepine receptor);以及胞浆蛋白,如Bcl-2家族蛋白和细胞周期蛋白等.HSCs存活信号受到多种激酶和细胞因子的诱导,如金属蛋白酶组织抑制剂-1(tissue jnhibitors of metalloproteinase-1)、Rho/Rho激酶、血小板源生长因子(platelet-derived growth factor)、转化生长因子-β1(transforming growth factor-β1)和胰岛素样生长因子(insulin-like growth factor-1)等.特异性地诱导HSCs发生凋亡是治疗肝脏纤维化的直接和有效手段,虽然目前对HSCs由激活态到静息状态的转归尚需进一步研究,但诱导HSCs凋亡将是治疗肝脏纤维化和肝硬化的研究热点和主要发展方向.%Hepatic stellate cells (HSCs) play an important role in hepatic fibrogenesis.In response to liver injury, HSCs undergo a process called activation, which involves 2 stepsinitiation from quiescent phenotype to myofibroblast-like phenotype, and perpetuation that maintains the activated phenotype of HSCs. The fate of the activated HSCs depends on the apoptotic and survival signals that they receive. The apoptosis of HSCs results from a series of complex and interrelated signaling events. Apoptotic signals for the activated HSCs include proteins from membrane receptors, such as death receptors, nerve growth factor receptor and peripheral-type benzodiazepine receptor, as well as proteins from cytoplasm such as Bcl-2 family members. The survival signals for the activated HSCs are

  19. The endocannabinoid N-arachidonoyl dopamine (NADA) selectively induces oxidative stress-mediated cell death in hepatic stellate cells but not in hepatocytes.

    Science.gov (United States)

    Wojtalla, Alexandra; Herweck, Frank; Granzow, Michaela; Klein, Sabine; Trebicka, Jonel; Huss, Sebastian; Lerner, Raissa; Lutz, Beat; Schildberg, Frank Alexander; Knolle, Percy Alexander; Sauerbruch, Tilman; Singer, Manfred Vincenz; Zimmer, Andreas; Siegmund, Sören Volker

    2012-04-15

    The endocannabinoid system is a crucial regulator of hepatic fibrogenesis. We have previously shown that the endocannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces death in hepatic stellate cells (HSCs), the main fibrogenic cell type in the liver, but not in hepatocytes. However, the effects of other endocannabinoids such as N-arachidonoyl dopamine (NADA) have not yet been investigated. The NADA-synthesizing enzyme tyrosine hydroxylase was mainly expressed in sympathetic neurons in portal tracts. Its expression pattern stayed unchanged in normal or fibrotic liver. NADA dose dependently induced cell death in culture-activated primary murine or human HSCs after 2-4 h, starting from 5 μM. Despite caspase 3 cleavage, NADA-mediated cell death showed typical features of necrosis, including ATP depletion. Although the cannabinoid receptors CB1, CB2, or transient receptor potential cation channel subfamily V, member 1 were expressed in HSCs, their pharmacological or genetic blockade failed to inhibit NADA-mediated death, indicating a cannabinoid-receptor-independent mechanism. Interestingly, membrane cholesterol depletion with methyl-β-cyclodextrin inhibited AEA- but not NADA-induced death. NADA significantly induced reactive oxygen species formation in HSCs. The antioxidant glutathione (GSH) significantly decreased NADA-induced cell death. Similar to AEA, primary hepatocytes were highly resistant against NADA-induced death. Resistance to NADA in hepatocytes was due to high levels of GSH, since GSH depletion significantly increased NADA-induced death. Moreover, high expression of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in hepatocytes also conferred resistance towards NADA-induced death, since pharmacological or genetic FAAH inhibition significantly augmented hepatocyte death. Thus the selective induction of cell death in HSCs proposes NADA as a novel antifibrogenic mediator.

  20. The effect of down-regulation of Smad3 by RNAi on hepatic stellate cells and a carbon tetrachloride-induced rat model of hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Z.R. Wang

    2011-02-01

    Full Text Available Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs. The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30 and the treated group (N = 20 were injected subcutaneously with 40% (v/v carbon tetrachloride (CCl4-olive oil (3 mL/kg, and the normal control group (N = 30 was injected with olive oil (3 mL/kg. In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS, and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid. The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05 and the serum indices were greatly improved (P < 0.01. These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.

  1. Adenoviral transduction of PTEN induces apoptosis of cultured hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    HAO Li-sen; ZHANG Xiao-lan; AN Jun-yan; YAO Dong-mei; Justin Karlin; FANG Shu-ming; JIANG Hui-qing; BAI Wen-yuan; CHEN Shuang

    2009-01-01

    @@ Hepatic fibrosis is the liver's wound healing response to virtually all forms of chronic liver injury: toxic insult, viral infection, immunological conditions and metabolic diseases. Uncontrolled liver fibrosis eventually results in cirrhosis and associated complications, such as cancer and liver failure.

  2. The hepatic stellate cell in sight : targeting antiproliferative drugs to the fibrotic liver

    NARCIS (Netherlands)

    Greupink, Albert Hendrikus

    2006-01-01

    Liver fibrosis is characterized by the accumulation of excessive amounts of scar tissue in response to chronic liver injury. Important causes of chronic liver injury are viral hepatitis, metabolic disorders such as Wilson’s disease, autoimmune diseases and chronic exposure to certain chemicals, alco

  3. Effects of drug serum of anti-fibrosis I herbal compound on calcium in hepatic stellate cell and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong Xiao; Dian-Wu Liu; Qing Li

    2005-01-01

    AIM: To investigate the effects of anti-fibrosis I herbal compound on intracellular Ca2+ in activated hepatic stellate cell (HSC) and to try to survey its molecular mechanism in treatment and prevention of hepatic fibrosis and portal hypertension.METHODS: The activated HSC line was plated on small glass cover slips in 24 wells culture dishes at a density of 5x106/mL, and incubated in RPMI-1640 media for 24 h.After the cells were loaded with Fluo-3/AM, intracellular Ca2+ was measured with laser scanning confocal microscopy (LSCM). The dynamic changes of intracellular Ca2+,stimulated by carbon tetrachloride, TGF-β1 antibody and the drug serum of anti-fibrosis I herbal compound and under orthogonal design were determined by LSCM. The effect of anti-fibrosis I herbal compound on intracellular Ca2+ was observed before and after the addition of TGF-β1antibody.RESULTS: The intracellular Ca2+ were significantly different in different dosage of carbon tetrachloride anti-fibrosis Iformula drug serum, TGF-β1 antibody and different turn of these substance, but their interval time between CCl4and TGF-β1 antibody, CCl4 and anti-fibrosis I drug serum had no influence on intracellular Ca2+. The result showed intracellular Ca2+ wasn't significantly different between rat serum without anti-fibrosis I and untreated group.After carbon tetrachloride stimulation, intracellular Ca2+ of activated HSC increased significantly when the dosage of CCl4 from 5 to 15 mmol/L, however, decreased significantly after stimulation by 5-20 μg/mL TGF-β1antibody or 5-20 mL/L drug serum. Moreover, before and after the addition of TGF-β1 antibody, intracellular Ca2+was significantly different. These results suggested that the molecular mechanism was independent of blocking TGF-β1 effects.CONCLUSION: Anti-fibrosis I herbal compound may treat hepatic fibrosis and decrease portal hypertension by inhibiting activated HSC contractility through decrease of intracellular Ca2+.

  4. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  5. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    International Nuclear Information System (INIS)

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  6. 法尼酯衍生物X受体活化对肝星状细胞TIMP-1、TIMP-2及MMP-2表达的调节作用%Regulatory effeots of FXR activation on expression of TIMP-1, TIMP-2 and MMP-2 in hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    陈科全; 周碧瑶; 陈雅莹; 邹原方; 周宇

    2013-01-01

    Objective To determine whether the regulator of bile acid and carbohydrate metabolism in hepatic stellate cells ( HSCs) , Far-nesoid X receptor ( FXR) , mediates the expression of fibrosis - related genes tissue inhibitor of matrix metalloproteinase ( TIMP) - 1 , TIMP - 2, and matrix metalloproteinase - 2 ( MMP - 2). Methods An in vitro cell culture system with the rat HSC - T6 line was used to evaluate the effects of FXR by treating with the synthetic FXR agonist GW4064 at various concentrations (0. 01 , 0. 1 and 1 μmol/L) for 18 h. Untreated cells served as controls. The mRNA levels of FXR, TIMP - 1 , TIMP - 2, and MMP - 2 were measured by real - time reverse transcription PCR. The protein levels of TIMP - 1 , TIMP - 2, and MMP - 2 were determined by western blotting. The significance of intergroup differences was assessed by single - factor one - way ANOVA statistical analysis. Results Treatment with GW4064 led to significantly increased mRNA expression of FXR (0.01 μmol/L vs. control, P 0. 05 ) . Unlike the 0.01 μmol/L concentration of GW4064, the 0. 1 and 1 μmol/L concentrations reduced the TIMP - 1 and TIMP - 2 mRNA and protein expressions to levels significantly lower than that in the controls ( all P < 0. 05). GW4064 treatment increased MMP - 2 mRNA and protein expressions and the 1 μmol/L mediated increase was significantly higher than that of the control (P <0. 01). Conclusion Activation of FXR on HSCs may contribute to fibrosis by down - regulating TIMP - 1 and TIMP - 2 and up - regulating MMP - 2 , which mediate the balance of extracellular matrix synthesis and degradation; thus, FXR ligands may represent useful therapeutic targets of liver fibrosis.%目的 研究法尼酯衍生物X受体(FXR)对肝星状细胞基质金属蛋白酶组织抑制因子-1(TIMP-1)和基质金属蛋白酶组织抑制因子-2(TIMP-2)及基质金属蛋白酶-2(MMP-2)表达的影响.方法 应用FXR人工合成配体GW4064(0.01、0.1、1μmol/L)处理大

  7. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Hua Chen; Tian Lan; Jing Li; Chun-Hui Qiu; Teng Wu; Hong-Ju Gou; Min-Qiang Lu

    2012-01-01

    AIM:To investigate the anti-hepatofibrotic effects of Gardenia jasminoides in liver fibrosis.METHODS:Male Sprague-Dawley rats underwent common bile duct ligation (BDL) for 14 d and were treated with Gardenia jasminoides by gavage.The effects of Gardenia jasminoides on liver fibrosis and the detailed molecular mechanisms were also assessed in human hepatic stellate cells (LX-2) in vitro.RESULTS:Treatment with Gardenia jasminoides decreased serum alanine aminotransferase (BDL vs BDL +100 mg/kg Gardenia jasminoides,146.6 ± 15 U/L vs 77± 6.5 U/L,P =0.0007) and aspartate aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides,188 ± 35.2 U/L vs 128 ± 19 U/L,P =0.005) as well as hydroxyproline (BDL vs BDL + 100 mg/kg Gardenia jasminoides,438 ± 40.2 μg/g vs 228 ± 10.3 μg/g liver tissue,P =0.004) after BDL.Furthermore,Gardenia jasminoides significantly reduced liver mRNA and/or protein expression of transforming growth factor β1(TGF-β1),collagen type Ⅰ (Col Ⅰ) and α-smooth muscle actin (α-SMA).Gardenia jasminoides significantly suppressed the upregulation of TGF-β1,Col Ⅰ and α-SMA in LX-2 exposed to recombinant TGF-β1.Moreover,Gardenia jasminoides inhibited TGF-β1-induced Smad2 phosphorylation in LX-2 cells.CONCLUSION:Gardeniajasminoides exerts antifibrotic effects in the liver fibrosis and may represent a novel antifibrotic agent.

  8. Genetic characteristics of the human hepatic stellate cell line LX-2.

    Directory of Open Access Journals (Sweden)

    Ralf Weiskirchen

    Full Text Available The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40 transforming (T antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.

  9. Effects of ribozyme targeting platelet-derived growth factor receptor β subunit gene on the proliferation and apoptosis of hepatic stellate cells in vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-xiang; LU Cui-hua; XIE Wei-fen; ZHANG Xing-rong; ZHANG Zhong-bing; WEI Li-xin; JIN You-xin; GUO Ya-jun

    2005-01-01

    Background Activation and proliferation of hepatic stellate cells (HSC) is essentially involved in the development and progression of hepatic fibrosis. The most potent growth factor for HSC is platelet-derived growth factor receptor (PDGF) and PDGF receptor β subunit (PDGFR-β) is the predominant signal transduction pathyway of PDGF which is overexpressed in activated HSC. This study investigated the cleavage activity of hammerhead ribozyme targeting PDGFR-β mRNA in HSC and the effect on biological characteristics of HSC.Methods Expression vector of anti-PDGFR-β ribozyme was constructed and transfected into rat activated HSC with lipofectamin. The positive cell clones were gained by G418 selection. The expression of PDGFR-β, α-smooth muscle actin, and typeⅠand type Ⅲ collagen were detected by using Northern blot, Western blot and immunocytochemical staining, respectively. The cell proliferation was determined with MTT colorimetric assay. The cell apoptosis was analyzed by using flow cytometry, acridine orange fluorescence vital staining and transmission electron microscopy.Results The expression of PDGFR-β at mRNA and protein level was markedly reduced in ribozyme-transfected HSC by 49%-57% (P<0.05-0.01). The proliferation and α-smooth muscle actin expression of ribozyme-transfected HSC were significantly decreased (P<0.05-0.01), and the type Ⅰ and type Ⅲ collagen synthesis were also reduced (P<0.01). In addition, the proliferative response of ribozyme-transfected HSC to PDGF BB was significantly inhibited. Otherwise, the apoptotic cells were significantly increased in ribozyme-transfected HSC (P<0.01), and typical apoptotic cells could be found under transmission electron microscopy.Conclusions The anti-PDGFR-β ribozyme effectively cleaved the target RNA and significantly inhibited its expression, which blocked the signal transduction of PDGF at receptor level, inhibited HSC proliferation and collagen synthesis, and induced HSC apoptosis. These

  10. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  11. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells.

    Directory of Open Access Journals (Sweden)

    Raimundo Fernandes de Araújo Júnior

    Full Text Available To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV in rats with ethanol-induced liver injury.Liver injury was induced by gavage administration of alcohol (7 g/kg for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL-1β, IL-10, and tumor necrosis factor (TNF-α level as well as for myeloperoxidase (MPO activity and malonyldialdehyde (MDA and glutathione (GSH levels. Serum aspartate aminotransferase (AST activity and liver triglyceride (TG levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2, receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL, suppressor of cytokine signalling (SOCS1, the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1, intercellular adhesion molecule 1 (ICAM-1, superoxide dismutase (SOD-1, and glutathione peroxidase (GPx-1 expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed.CARV treatment (5 mg/kg during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01, ALT (p < 0.01, TG (p < 0.001, MPO (p < 0.001, MDA (p < 0.05, and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05, and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001 and GSH (p < 0.05, compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05, while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05 and decreasing expression of IL-1β and NF-κB (both, p < 0.05. Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI, procollagen

  12. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    KAUST Repository

    Zenger, Katharina

    2015-07-19

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  13. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    International Nuclear Information System (INIS)

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones

  14. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells.

    Science.gov (United States)

    Zenger, Katharina; Dutta, Subhajit; Wolff, Horst; Genton, Marc G; Kraus, Birgit

    2015-10-01

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones. PMID:26201061

  15. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  16. Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells.

    Science.gov (United States)

    Liu, Tianhui; Wang, Ping; Cong, Min; Zhang, Dong; Liu, Lin; Li, Hongyi; Zhai, Qingling; Li, Zhuo; Jia, Jidong; You, Hong

    2016-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment.

  17. Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells.

    Science.gov (United States)

    Liu, Tianhui; Wang, Ping; Cong, Min; Zhang, Dong; Liu, Lin; Li, Hongyi; Zhai, Qingling; Li, Zhuo; Jia, Jidong; You, Hong

    2016-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment. PMID:27412967

  18. miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients

    International Nuclear Information System (INIS)

    Highlights: ► miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-β1) in hepatic stellate cells. ► miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. ► miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because of the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-β1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-β1 pathway by a currently unknown mechanism.

  19. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  20. Effect of angiotensin Ⅱ and angiotensin Ⅱ type 1 receptor antagonist on the proliferation,contraction and collagen synthesis in rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; GONG Hao; ZHANG Zhong-tao; WANG Yu

    2008-01-01

    Background Angiotensin Ⅱ(Ang Ⅱ)is a very important vasoactive peptide that acts upon hepatic stellate cells(HSCs),which are major effector cells in hepatic cirrhosis and portal hypertension.The present study was aimed to investigate the effects of Ang Ⅱ and angiotensin Ⅱ type 1 receptor antagonist(AT1RA)on the proliferation,contraction and collagen synthesis in HSCs.Methods HSC-T6 rat hepatic stellate cell Iine was studied.The proliferation of the HSC cells was evaluated by MTT colorimetric assay while HSC DNA synthesis was measured by3 H-thymidine incorporation.The effects of angiotensin Ⅱ and AT1 RA on HSCs contraction were studied by analVSIs of the contraction of the collagen Iattice.CelI culture media were analyzed by RT-PCR to detect secretion of collagen Ⅰ(Col Ⅰ),collagen Ⅲ(Col Ⅲ)and transforming growth factor β1 (TGF-β1)by enzyme Iinked Immunosorbent assay.HSC was harvested to measure collagen Ⅰ,collagen Ⅲ and tissue inhibitor of metalloproteinase-1(TIMP-1)mRNA expression.Results Ang Ⅱ((1 x10-10-1×10-4)mol/L)stimulated DNA synthesis and proliferation in HSCs compared with untreated control cells.AT1 RA inhibited angiotensin Ⅱ induced proliferation of HSCs.A Iinear increase in the contractive area of collagen lattice correlated with the concentration of angiotensin Ⅱ(1×10-9-1×10-5mol/L)and with time over 48 hours.ATlRA blocks angiotensin Ⅱ induced contraction of collagen Iattice.Coll,Col Ⅲ and TGF-β1 levels of the Ang Ⅱ group were higher than those of control group and this increase was downregulated by AT1RA.The mRNA expressions of ColⅠ,CoI Ⅲ and TIMP-1 were higher in HSCs from the Ang Ⅱ group than the control group and downregulated by AT1RA.Conclusions Angiotensin Ⅱ increased DNA synthesis and proliferation of HSCs in a dose-dependent manner,stimulated the contraction of HSCs dose-and time-dependently.Angiotensin also promoted excretion of Col Ⅰ,ColⅢand TGF-β1 Ievels and stimulated Col Ⅰ,Col Ⅲ and

  1. Stellate Cell Activation in Tropical Calcific Pancreatitis Compared to Alcoholic Pancreatitis, Adenocarcinoma of Pancreas and Normal Pancreas

    Directory of Open Access Journals (Sweden)

    Johny Cyriac

    2012-07-01

    Full Text Available ContextPancreatic stellate cell (PSC is known to be the source of fibrosis in pancreatic pathology of various etiologies. However, there is no published data on activation of PSCs in tropical calcific pancreatitis. ObjectivesThe present study was undertaken to estimate the proportion of activated stellate cells, in a semi-quantitative manner, in normal pancreas and pancreatic fibrosis due to, tropical calcific pancreatitis, alcoholic chronic pancreatitis and pancreatic adenocarcinoma. PatientsSurgically resected specimen from patients with tropical calcific pancreatitis (n=22, alcoholic chronic pancreatitis(n=16, adenocarcinoma of pancreas (n=20 and normal pancreas (n=20 were included. Main outcome measuresExpression of CD34, and alpha-smooth muscle actin (α-SMA was assessed by immunohistochemistry. Morphometry was performed by a pointcounting procedure and CD34 positive areas were excluded from α-SMA positive areas for estimating activated PSCs. StatisticsThe one-way ANOVA and the Tukey multiple comparison test were used to compare the proportion ofactivated stellate cells among the four categories. ResultsIn all the disease conditions studied, namely, tropical calcific pancreatitis (16.7±14.5%, mean±SD, alcoholic chronic pancreatitis (13.6±12.4% and pancreatic adenocarcinoma (22.8±14.4%, there was highly significant (P<0.001 increased percentage of activated PSCs compared to normal pancreas (-0.9±6.4%. Proportion of activated PSCs in tropical calcific pancreatitis was similar to that in cases of alcoholic chronic pancreatitis and pancreatic adenocarcinoma. Such activation is documented for the first time in tropical calcific pancreatitis while it is known for the other causes. ConclusionsThe present study suggests that a final common pathway of PSC activation leads to fibrogenesis in tropical calcific pancreatitis just as in other pancreatic pathologies.

  2. Inhibition of pancreatic stellate cell activity by adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    Fu-Xiang Yu; Long-Feng Su; Chun-Lei Dai; Yang Wang; Yin-Yan Teng; Jun-Hui Fu; Qi-Yu Zhang; Yin-He Tang

    2015-01-01

    BACKGROUND: Pancreatic stellate cells (PSCs) play a critical role in the development of pancreatic ifbrosis. In this study we used a novel method to isolate and culture rat PSCs and then investigated the inhibitory effects of adipose-derived stem cells (ADSCs) on activation and proliferation of PSCs. METHODS: Pancreatic tissue was obtained from Sprague-Dawley rats for PSCs isolation. Transwell cell cultures were adopted for co-culture of ADSCs and PSCs. PSCs prolifera-tion and apoptosis were determined using CCK-8 and lfow cytometry, respectively.α-SMA expressions were analyzed using Western blotting. The levels of cytokines [nerve growth factor (NGF), interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1)] in conditioned medium were detected by ELISA. Gene expression (MMP-2, MMP-9 and TIMP-1) was analyzed using qRT-PCR. RESULTS: This method produced 17.6±6.5×103 cells per gram of the body weight with a purity of 90%-95% and a viability of 92%-97%. Co-culture of PSCs with ADSCs signiifcantly inhib-ited PSCs proliferation and induced PSCs apoptosis. Moreover,α-SMA expression was signiifcantly reduced in PSCs+ADSCs compared with that in PSC-only cultures, while expression of ifbrinolytic proteins (e.g., MMP-2 and MMP-9) was up-regulated and anti-ifbrinolytic protein (TIMP-1) was down-regulated. In addition, NGF expression was up-regulated, but IL-10 and TGF-β1 expressions were down-regulated in the co-culture conditioned medium compared with those in the PSC-only culture medium. CONCLUSIONS: This study provided an easy and reliable technique to isolate PSCs. The data demonstrated the inhibi-tory effects of ADSCs on the activation and proliferation of PSCsin vitro.

  3. Molecular regulation of pancreatic stellate cell function

    Directory of Open Access Journals (Sweden)

    Jaster Robert

    2004-10-01

    Full Text Available Abstract Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs are the predominant source of extracellular matrix (ECM proteins in the diseased organ. PSCs are vitamin A-storing, fibroblast-like cells with close morphological and biochemical similarities to hepatic stellate cells (also known as Ito-cells. In response to profibrogenic mediators such as various cytokines, PSCs undergo an activation process that involves proliferation, exhibition of a myofibroblastic phenotype and enhanced production of ECM proteins. The intracellular mediators of activation signals, and their antagonists, are only partially known so far. Recent data suggest an important role of enzymes of the mitogen-activated protein kinase family in PSC activation. On the other hand, ligands of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ stimulate maintenance of a quiescent PSC phenotype. In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.

  4. Effect of quercetin on expression of matrix metallo-proteinases and tissue inhibitor of matalloproteinase-1 in cultured rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    康鲁平; 齐荔红; 张俊平; 周斌

    2003-01-01

    Objective: To study the effects of quercetin (QU) on matrix metallo-proteinases (MMPs), the tissue inhibitor of matalloproteinase-1 (TIMP-1), procollagen I and 2 proteoglycans (decorin and biglycan) mRNA expression in cultured rat hepatic stellate cell line HSC-T6 cells.Methods: Cells were treated with different concentrations of QU (12.5, 25, 50 μmol/L) or drug solvent (0.1 % Me2SO) for 24 h.mRNA expression was determined by reverse transcription polymerase chain reaction (RT-PCR).Results: QU (12.5 - 50 μmol/L) enhanced collagenase (rat MMP-13) and membrane type1-MMP (MMP-14) mRNA expression, decreased procollagen I mRNA expression in a concentration-dependent manner, but did not affect gelatinase-A (MMP-2), TIMP-1, decorin and biglycan expression.Conclusion: QU may decrease matrix deposition and increase matrix degradation, which might be beneficial to liver fibrosis.

  5. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells.

    Science.gov (United States)

    Resheq, Yazid J; Li, Ka-Kit; Ward, Stephen T; Wilhelm, Annika; Garg, Abhilok; Curbishley, Stuart M; Blahova, Miroslava; Zimmermann, Henning W; Jitschin, Regina; Mougiakakos, Dimitrios; Mackensen, Andreas; Weston, Chris J; Adams, David H

    2015-03-15

    Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy.

  6. Construction of a hepatic stellate cells subtracted cDNA library of differentially expressed genes in normal mice and mice with Schistosomiasis japonica

    Institute of Scientific and Technical Information of China (English)

    Zheng Min; Wu Yi-jun; Cai Wei-min; Weng Hong-lei; Liu Rong-hua

    2005-01-01

    To construct a hepatic stellate cells (HSCs) subtracted cDNA library to find differentially expressed genes in normal mice and mice infected with Schistosomajaponicum (S. japonicum). Suppression subtractive hybridization (SSH) was used. The cDNA fragments of normal mouse were compared to those of schistosoma-infected mice to find differentially expressed genes.Then differentially expressed cDNA fragments were directly inserted into T/A cloning vector to set up the subtractive library.Amplification of the library was carried out with transformation of DH5α. The amplified library contained more than 400 positive bacterial clones, which were then hybridized with forward and backward subtracted probes for differential screening. One hundred positive bacterial clones were randomly selected for sequencing and BLAST analysis. Finally, virtual Northern Blot confirmed such differential expression. The subtracted cDNA library of differentially expressed genes of HSCs was constructed successfully,the library is efficient and lays foundation for screening and cloning new and specific genes of schistosomiasis.

  7. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    Science.gov (United States)

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  8. Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway.

    Science.gov (United States)

    de Galarreta, Marina Ruiz; Navarro, Amaia; Ansorena, Eduardo; Garzón, Antonia García; Mòdol, Teresa; López-Zabalza, María J; Martínez-Irujo, Juan J; Iraburu, María J

    2016-08-01

    Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC. PMID:27155082

  9. Influence of β-elemene on the secretion of angiotensin Ⅱ and expression of AT1R in hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Ling YANG; Rui ZHU; Qingjing ZHU; Dan DAN; Jin YE; Keshu XU; Xiaohua HOU

    2009-01-01

    This study aims to investigate the influence of β-elemene on the secretion of angiotensin Ⅱ (ANG Ⅱ) and the expression of angiotensin receptor type 1 (AT1R) in hepatic stellate cells (HSCs). In vitro, HSC-T6 were cultured for 24 hours and then treated with different doses of β-elemene (2.5, 5 and 10 mg/L). A control group was also set up. The secretion of ANG Ⅱ in the supematant was detected by radioimmunoassay. The mRNA expression of AT1R at 4, 12 and 24 h after treatment was detected by reverse transcription-polymerase chain reaction (RT-PCR), respectively. The protein expression of AT 1R was detected by western blot. At the 4th h, the ANG Ⅱ secretion in the supematant was significantly inhibited by 10mg/L β-elemene compared with the control group (P0.05). At the time point of the 12thh, the secretion of ANG Ⅱ in the supematant treated with 10 mg/L and 5.0 mg/L β-elemene was significantly lower than the control (P<0.01, P< 0.05). Following the treatment with 5.0mg/L and 2.5 mg/L β-elemene for 24h, significant inhibition of ANG Ⅱ secretion was observed (P <0.05), but 10 mg/L β-elemene had no such effect. β-elemene significantly reduced the amount of AT1R mRNA in HSCs after the treatment for 4, 12, and 24 h in a dose-dependent manner. The expression of AT1R protein also decreased after the treatment with β-elemene for 24 h. β-elemene can inhibit the secretion of ANG Ⅱ and the gene and protein expression of AT1R, which may be the mechanism by which β-elemene prevents the progress of hepatic fibrosis.

  10. 小鼠肝星状细胞分离与鉴定%Isolation and identification of the hepatic stellate cells from ICR mice

    Institute of Scientific and Technical Information of China (English)

    顾锡娟; 万维琴; 朱丹丹; 何兴新; 杨亚楠; 何雪; 徐费凡; 郑科; 段义农

    2013-01-01

    OBJECTIVE To establish an economic method for the isolation and identification of hepatic stellate cells (HSCs)from mice.METHODS HSCs were isolated from the liver of ICR mice weighted about 30g by Type Ⅳ collagenase and Dnase Ⅰ digestion.To isolate HSCs of mice,we used the method of noncontinuous density gradient centrifugation by Percoll solution.The viability of the isolated cells was determined by trypan blue staining assay.HSCs were identified by Oil Red 0 staining and immunocytochemical staining of desmin.RESULTS The average number of the HSCs from a single mouse liver was 6.5×105.The viability of the cells was over 91% and the purify was over 92%.CONCLUSION This study establishes a convenient and effective scheme for the isolation and identification of the HSCs from the ICR mice.%目的 探讨小鼠肝星状细胞的分离、培养方法,提高其分离效率.方法 取体重约30 g的雄性ICR小鼠,用Ⅳ型胶原酶、Dnase Ⅰ进行体内门静脉灌注消化小鼠肝脏细胞,经过Percoll不连续密度梯度离心法分离小鼠肝星状细胞.台盼蓝拒染方法鉴定细胞存活率,紫外激发下观察自发荧光,油红O染色和结蛋白细胞免疫荧光染色鉴定细胞.结果 小鼠肝星状细胞得率为6.5×105/只,存活率在91%以上,纯度大于92%.结论 该实验建立了简便而有效的小鼠肝星状细胞分离与鉴定方法.

  11. Inhibition of pancreatic stellate cell activation by the vitamin A and vitamin E as a therapy for prevention fibrogenesis in experimental chronic alcoholic pancreatitis

    Directory of Open Access Journals (Sweden)

    Nichitaylo M. E.

    2012-01-01

    Full Text Available The aim of the study was to investigate the effects of Vitamin A and Vitamin E on activity of pancreatic stellate cells and fibrosis changes in pancreas after distal pancreatectomy in rats with experimental alcohol-induced chronic pancreatitis. Simultaneously Vitamin A and Vitamin E were administered after distal pancreatectomy in rats with experimental alcohol-induced chronic pancreatitis. The animals were treated withVitamin A at the dose of 33000 IU/kg body weight per day and Vitamin E at the dose of 100 mg/kg body weight per day for three weeks (21 days after operation. To estimate the efficacy of the treatment on activity and numbersof pancreatic stellate cells the immunohistochemicalinvestigation was made with alpha-smooth muscle actin, desmin, vimentin, glial fibrillary acidic protein (GFAP, matrix metalloproteinase 1 (MMP1, tissue inhibitor of metalloproteinase 2 (TIMP2 using. The treatment of rats after operation with vitamin A and vitamin E inhibited activity of pancreatic stellate cells and characterized by significant decreasing of the alpha-smooth muscle actin, Desmin, Vimentin, MMP1 and TIMP2 expression. The ratio of MMP1/TIMP2 was greater in the group with treatment then in the control group. This therapy had a trend to decrease the expression of GFAPand alleviate the fibrotic changes in pancreas.

  12. 脂筏在CB2受体介导的内源性大麻素AEA抑制大鼠肝星状细胞增殖活性中的作用%Lipid Rafts and Cannabinoid 2 Receptors-mediated Inhibitory Effects of Endogenous AEA on Proliferation of Hepatic Stellate Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 王密; 刘萍; 阳乔; 唐望先

    2012-01-01

    -treated hepatic stellate cells. Subcellular localization of lipid rafts and CB2 were examined by using laser confocal microscopy. The amount of CB2 in lipid-raft microdomains was detected after isolating lipid-rafts from hepatic stellate cells by Western blot. Results MTT assay showed either Cnr2-shRNA-trans-fected cells or MCD-treated cells had a noticeably higher ratio of cell proliferation than controls. No obvious difference in the ratio of cell proliferation was observed between Cnr2-shRNA-transfected cells and controls after MCD treatment. Meanwhile, the levels of P38 mitogen-activated protein kinases(p-P38MAPK)and c-Jun N-terminal kinases/stress-activated protein kinases(p-JNK)were significantly decreased after the hepatic stellate cells were treated with MCD. Laser confocal microscopy revealed the presence of lipid rafts and CB2 on the membranes of hepatic stellate cells. The lipid rafts isolated from hepatic stellate cells before AEA stimulation had little CB2. Conclusion Lipid rafts are required for the process of inhibition in the proliferation of HSC caused by AEA through CB2. This process was associated with the p-P38MAPK and p-JNK signaling pathway,suggesting that it is possible to be an effective treatment for liver fibrosis by controlling lipid rafts , CB2, and related signal.

  13. Autophagy in Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yang Song

    2014-01-01

    Full Text Available Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  14. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    International Nuclear Information System (INIS)

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumindomainIII (R-III) and albumindomainI-RBP-albuminIII (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  15. Hepatitis B virus replication in acute glomerulonephritis with chronic active hepatitis.

    OpenAIRE

    Cadrobbi, P; Bortolotti, F; Zacchello, G.; Rinaldi, R; Armigliato, M; Realdi, G

    1985-01-01

    A 3 year old boy who had chronic active hepatitis type B with features of ongoing liver damage and active virus replication, developed acute membranous glomerulonephritis two years after the clinical onset of liver disease, when both hepatitis B e antigen and antibody were detectable in serum. After withdrawal of short term steroid treatment and resolution of hepatitis B virus replication, both glomerulonephritis and chronic hepatitis went into remission. Some months later hepatitis B surface...

  16. Stellate Ganglion Block Reduces the Radicular Pain and Salivary Alpha-Amylase Activity in Patients with Cervical Spondylosis

    Directory of Open Access Journals (Sweden)

    Takashi Egashira

    2015-03-01

    Full Text Available Background The effects of stellate ganglion block (SGB on radicular pain associated with cervical spondylosis remain to be clarified. So we measured salivary alpha-amylase which reflects sympathetic nerve activity under psychological stress after SGB block or trigger points injection (TPI. Study Design A randomized, prospective, controlled trial Setting After institutional approval and informed consent, 40 patients who was suffered from neck-shoulder pain associated with cervical radiculopathy were randomly divided into two groups according to nerve block treatment. Group A (n=20, male 10 patients, female 10 patients, 50±8yr, mean±SD received SGB and group B (n=20, male 10 patients, female 10 patients, 52±6yr received TPI. SGB or TPI was produced by 6 ml of 1% mepivacaine a total of 5 times (twice per week. Visual analogue scale (VAS and the concentration of salivary alpha-amylase were measured before (T0 each nerve block and 3 days (T1, 6 days (T2, 9 days (T3, 12 days (T4 and 15days (T5 after each nerve block. The consumption of non-steroidal anti-inflammatory drug (NSAID was measured at T0 and T5 in each group. Results In group A, VAS was median 74 (range 60, 78 at T0 and showed a significant decrease at T3 [53 (48, 65, p<0.05], T4 [50 (42, 66, p<0.05] and T5 [48 (26,57, p<0.05]. The concentration of salivary alpha-amylase was median 116 (range 96, 144 KU/ml at T0 and showed a significant decrease at T3 [86 (79, 105, p<0.05], T4 [79 (68, 88] and T5 [70 (55, 84, p<0.05]. In group B, VAS and the concentration of salivary alpha-amylase showed no change throughout the time course. VAS in group A was significant lower than that in group B at T3, T4 and T5. The concentration of salivary alpha-amylase was significant lower than that in group B at T4 and T5. The consumption of NSAID in group A was significantly lower than that in group B at T5. Limitations Subjects are out patients. Patients include radicular pain due to different pathogenesis, e

  17. Isolation of rat hepatic stellate cells by nonperfusion method and identification of isolated cells%非灌流法分离大鼠肝星形细胞及其鉴定

    Institute of Scientific and Technical Information of China (English)

    刘朋飞; 周余来; 冯业童; 吴昊昱; 刘迪; 董超; 吴璇; 石毅

    2012-01-01

    目的 采用非灌流法分离大鼠肝星形细胞(Hepatic stellate cell,HSC),并进行鉴定.方法 采用非灌流法结合酶消化法分离大鼠肝脏细胞,密度梯度离心进一步分离HSC,油红染色检测HSC胞质中的脂滴,免疫组化法检测细胞中α-平滑肌肌动蛋白(α-Smooth muscle actin,α-SMA)、结蛋白(Desmin)及神经胶质酸性蛋白(Glial fibrillary acidic protein,GFAP)的表达.结果 非灌流法结合酶消化法可成功分离大鼠HSC;密度梯度离心纯化的HSC经油红染色,细胞核周围可见红色脂滴;该细胞中α-SMA、结蛋白及GFAP的免疫组化染色结果均呈阳性,细胞着色率可达90%以上.结论 成功建立了大鼠HSC的非灌流分离模式,所获得的HSC纯度较高,该方法稳定简便,具有一定的推广应用价值.%Objective To isolate rat hepatic stellate cells (HSCs) by nonperfusion method and identify the isolated cells. Methods Rat liver cells were isolated by nonperfusion method combined with enzyme digestion method, from which HSCs were further isolated by density gradient centrifugation. The lipid droplets in cytoplasm of HSCs were determined by oil red staining, while the expressions of a-smooth muscle actin (a-SMA), desmin and neuroglia acid protein (GFAP) by immunohistochemical staining. Results Rat HSCs were successfully isolated by nonperfusion method combined with enzyme digestion method. After oil red staining, red lipid droplets were found around the nucleus in HSCs purified by density gradient centrifugation. All the positive rates of a-SMA, desmin and GFAP were more than 90% in immunohistochemical staining. Conclusion The nonperfusion isolating mode of rat HSC was established successfully, by which highly purified HSCs were obtained. The method was stable, simple, and worthy of popularization.

  18. [Plasma cholinesterase activity in hepatic diseases].

    Science.gov (United States)

    Araoud, Manel; Mhenni, Hamida; Hellara, Ilhem; Hellara, Olfa; Neffati, Fadoua; Douki, Wahiba; Mili, Marwa; Saffar, Hammouda; Najjar, Mohamed Fadhel

    2013-01-01

    Plasma cholinesterase activity (ChE) may vary in some pathological circumstances. We studied the changes in activity of this enzyme according to the type of liver injury, to assess the interest of this parameter in the diagnosis of liver diseases. Our study was performed on 102 patients with different liver diseases and 53 healthy controls. The ChE activity was lower in patients compared to control group (p < 0.0001), and more pronounced in cirrhotic patients compared to those suffering from hepatitis. Elevated activities of AST, ALT, GGT and ALP and bilirubinemia, and decreased albuminemia were noted in patients compared to controls (p < 0.001). Hypoalbuminemia was significantly important in cirrhotic patients compared to those suffering from cholestasis or hepatitis. A correlation between ChE and bilirubin, albumin and serum protein was found in patients with cirrhosis or those with chronic hepatitis. A significantly lower activity of ChE was found in patients with hepatic insufficiency (HI). In case of suspicion of HI, the prescription of ChE activity could guide or confirm the diagnosis of the impairment. PMID:23747666

  19. The pancreatic stellate cell: a star on the rise in pancreatic diseases

    OpenAIRE

    Omary, M. Bishr; Lugea, Aurelia; Lowe, Anson W.; Pandol, Stephen J.

    2007-01-01

    Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Su...

  20. 姜黄素对肝星状细胞株CTGF表达的影响%Effect of curcumin on expression of CTGF in the hepatic stellate cell line HSC-T6

    Institute of Scientific and Technical Information of China (English)

    谢明; 廖晓宏; 杨元胜; 戴绍军; 汤绍迁; 王静

    2006-01-01

    目的:研究姜黄素(curcumin)体外对肝星状细胞(hepatic stellate cell,HSC)的作用,以研究curcumin抗肝纤维化作用的可能机制.方法:MTT法测定curcumin对肝细胞株HSC-T6的抑制率,用RT-PCR检测curcumin对肝细胞株结缔组织生长因子(connectivetissue growth factor,CTGF)mRNA表达的影响,用Western blot法检测对其蛋白质表达的影响.结果:Curcumin对肝细胞株HSC-T6的增殖有抑制作用,且呈时效和量效关系,以10 μmol/L的效果最佳;通过RT-PCR和Western blot法的检测发现curcumin能抑制CTGF的mRNA和蛋白质的表达.结论:Curcumin能在体外抑制HSC的生长,而且可以抑制细胞的CTGF的表达,可能这就是curcumin抗肝纤维化的一个作用机制.

  1. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction.

    Directory of Open Access Journals (Sweden)

    Christopher J Scarlett

    Full Text Available BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA. Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that

  2. An interesting case of Lucio phenomenon triggered by activation of hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Jacob Mareen

    2016-01-01

    Full Text Available Lucio phenomenon (LP or erythema necroticans is a rare type of reaction pattern found in untreated patients with diffuse non-nodular leprosy. It is important to distinguish this from vasculonecrotic erythema nodosum because thalidomide with high-dose steroids is the mainstay of treatment for the latter, whereas LP shows no response to thalidomide. We report a case of a 60-year-old man who presented with purpuric patches, hemorrhagic blisters, and ulcers over extremities of 15 days duration. On cutaneous examination, there were multiple stellate purpuric patches, hemorrhagic bullae, and deep necrotic ulcers, mainly over extremities. Slit-skin smear examination from six sites revealed bacteriological index 6+ with globi, and morphological index 5%. Histopathology revealed diffuse infiltration of bacilli in epidermis, dermis, and endothelial cells along with neutrophilic and lymphocytic infiltrate. Fibrinoid necrosis and thrombosis of blood vessels was also noted. The above clinicohistopathological features helped in making the diagnosis of LP. Concomitantly he was found to be infected with hepatitis C virus. Many triggering factors have been described in literature; however, activation of hepatitis C as a trigger for Lucio phenomenon has not been reported. In addition, IgM and IgG anticardiolipin antibodies were found to be positive. The patient was started on high-dose steroids along with multibacillary antileprosy therapy and improved within 2 weeks.

  3. Arming drug carriers to disable the Hepatic Stellate Cell : the targeted delivery of apoptosis-inducing drugs to the fibrotic liver

    NARCIS (Netherlands)

    Hagens, Werner Ivo

    2006-01-01

    Chronic liver damage of various origins (e.g. viral hepatitis; chronic intoxication by alcohol, chemicals or drugs; Wilson’s disease) can eventually lead to liver cirrhosis, the end stage of liver fibrosis. This process is characterized by the accumulation of excessive amounts of scar tissue within

  4. The relationship between the morphous changes of hepatic stellate cells and liver microcirculatory disturbance in patients with chronic hepatitis B%慢性乙型肝炎肝星状细胞形态改变与肝脏微循环障碍的关系

    Institute of Scientific and Technical Information of China (English)

    汪念; 丁体龙; 马勇; 沈烈; 张文学; 于莉

    2012-01-01

    Objective To study the relationship between the morphous changes of hepatic stellate cells (HSCs) and liver microcirculatory disturbance in patients with chronic hepatitis B. Methods The number of lipid droplets and the changes of bulk density in hepatic stellate cells were observed by light microscope. Ultrastructure of HSCs and the changes of microcir-culation of sinus hepaticus were observed by transmission electron microscope (TEM). Results In patients with chronic hepatitis fl, the number of lipid droplets in hepatic stellate cells and typical HSCs reduced, while transitional HSCs increased. The surface of nuclear envelop showed anomalism; Rough endoplasmic reticulum intracytoplasm increased obviously, most of which expanded, and middling electron density floccule could be observed. Golgi complex became prosperous. Collagenous fibril a-round the HSCs turned more notably. Decreased sizes and reduced numbers of sinusoidal endothelial cells'(SECs) penestrate and collagen deposited in Disse space. Basal lamina could be found on SECs and WP ( Weibel-Palade) bodies were found in SECs. Conclusion The morphous changes of HSCs after being stimulated is an important promoting agent to liver microcircu-lation disturbance in patients with chronic hepatitis B.%目的 研究慢性乙型肝炎肝星状细胞形态改变与肝脏微循环障碍的关系.方法 采用光镜观察肝星状细胞内脂滴数和体密度的变化,同时采用透射电镜观察肝星状细胞超微结构的变化和肝窦微循环结构的改变.结果 慢性乙型肝炎肝星状内脂滴数减少,典型肝星状细胞数量减少,过渡型肝星状细胞数量增多,超微结构显示核被膜表面不规则,胞质内粗面内质网明显增多,多扩张,内有中等电子密度的絮状物质,高尔基复合体发达,细胞周围胶原原纤维量明显增多.肝窦内皮细胞窗孔减少变小,有的肝窦内皮细胞内出现WP( Weibel-Palade body)小体,狄氏腔中胶原纤维沉积增多,

  5. 小鼠肝星状细胞的分离纯化新方法的建立与应用%Construction and application of a new method for isolation and purification of mouse hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    李亚琳

    2012-01-01

    Objective To develop a simple,economic and efficient method for isolation of mouse hepatic stellate cells(HSC)and to construct cell model for research on hepatic fibrosis. Methods Single cell suspension was prepared by predigestion, using enzyme perfusion, adequate digestion by vibrating and utilization of medimachine system. HSC were isolated by monolayer gradient centrifu-gation with lymphocytic cell separating medium directly. Results The harvested cell number was about 1×106 for each two mice, with cell motility rate of 92% ,determined by trypan blue exclusion staining. Originally isolated HSC issued blue fluorescent under exciting light of 328 nm. Oil red staining and Desmin immune fluorescent chemical showed the purity of HSC was 90%. Conclusion A method for the isolation of mouse HSC,could be used for the research of hepatic fibrosis and biological characteristics of primary HSC,was successfully constructed,which was simple,efficient and easy to operate and apply.%目的 介绍一种简便、经济、高产的小鼠肝星状细胞(HSC)分离方法,为肝纤维化的研究提供细胞模型.方法 参照国内外方法并加以改良,采用酶灌注预消化及随后的震荡充分消化,合并Medimachine系统制成单细胞悬液.用人淋巴细胞分离液直接铺梯度,采用单层梯度离心法一步分离HSC.结果 两只小鼠HSC得率可达1×106个,台盼蓝染色显示细胞活率达92%.初分离的HSC在328 nm激发光下自发蓝绿色荧光,油红染色及结蛋白免疫细胞化学染色鉴定纯度达90%.结论 建立了一种实用的小鼠HSC分离方法,可用于肝纤维化和原代HSC的生物学行为研究.该方法简便、实用、高产,不需特殊设备,便于推广应用.

  6. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  7. Mechanisms of action of acetaldehyde in the up-regulation of the human α2(I) collagen gene in hepatic stellate cells: key roles of Ski, SMAD3, SMAD4, and SMAD7.

    Science.gov (United States)

    Reyes-Gordillo, Karina; Shah, Ruchi; Arellanes-Robledo, Jaime; Hernández-Nazara, Zamira; Rincón-Sánchez, Ana Rosa; Inagaki, Yutaka; Rojkind, Marcos; Lakshman, M Raj

    2014-05-01

    Alcohol-induced liver fibrosis and eventually cirrhosis is a leading cause of death. Acetaldehyde, the first metabolite of ethanol, up-regulates expression of the human α2(I) collagen gene (COL1A2). Early acetaldehyde-mediated effects involve phosphorylation and nuclear translocation of SMAD3/4-containing complexes that bind to COL1A2 promoter to induce fibrogenesis. We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively. It also caused a 60% decrease in SMAD7 expression. Ski, a member of the Ski/Sno oncogene family, is colocalized in the nucleus with SMAD4. Acetaldehyde induces translocation of Ski and SMAD4 to the cytoplasm, where Ski undergoes proteasomal degradation, as confirmed by the ability of the proteasomal inhibitor lactacystin to blunt up-regulation of acetaldehyde-dependent COL1A2, but not of the nonspecific fibronectin gene (FN1). We conclude that acetaldehyde up-regulates COL1A2 by enhancing expression of the transactivators SMAD3 and SMAD4 while inhibiting the repressor SMAD7, along with promoting Ski translocation from the nucleus to cytoplasm. We speculate that drugs that prevent proteasomal degradation of repressors targeting COL1A2 may have antifibrogenic properties.

  8. Correlation of Tc-99m GSA hepatic studies with biopsies in patients with chronic active hepatitis.

    Science.gov (United States)

    Tomiguchi, S; Kira, T; Oyama, Y; Nabeshima, M; Nakashima, R; Tsuji, A; Kojima, A; Takahashi, M; Yoshimatsu, S; Sagara, K

    1995-08-01

    To determine whether scintigraphic findings of Tc-99m DTPA-galactosyl-HSA (GSA) correspond to histopathologic findings, Tc-99m GSA hepatic scintigraphy and biopsy were compared in 65 patients with chronic active hepatitis. After injecting 185 MBq of Tc-99m GSA, anterior images were obtained at 5 minutes and 15 minutes. Scintigrams were classified into three grades according to the extent of visualization of the cardiac blood pool on 5 minute and 15 minute images. Biopsies were subjectively graded for findings of necrosis and fibrosis. Scintigraphic grades on 5 minute images were correlated with hepatic necrosis and fibrosis and those on 15-minute images with hepatic fibrosis. Scintigraphic abnormalities of Tc-99m GSA correlated well with histopathologic abnormalities, especially with hepatic fibrosis and necrosis in patients with chronic active hepatitis. PMID:7586877

  9. Influence of Ruangan Huajian granule on transforming signaling in hepatic stellate cells%软肝化坚颗粒药物血清对肝星状细胞信号传导通路的调节作用

    Institute of Scientific and Technical Information of China (English)

    杨莉; 刘莲; 赵连英; 叶立红; 侯军良; 戴二黑

    2013-01-01

    Objective:To study the influence of Ruangan Huajian granule on transforming signaling in the activation of hepatic stellate cells.Methods:Mouse medicated serum was prepared with Ruangan Huajian granule by gastrogavage.HSC-6 were divided into five groups:control group incubated with normal mouse serum (10%) ; Ruangan Huajian granule group incubated with Ruangan Huajian granule mouse medicated serum (5%,10%,20%) ; colchicine group incubated with colchicine mouse medicated serum (10%).Cells of each group were cultured for 24 hours,and cells were collected.The mRNA levels of CB1,FAK and ERK were determined by quantitative RT-PCR.Results:The levels of CB1 mRNA in colchicine group and Ruangan Huajian granule group (5%,10%,20%) were notably lower than those in control group,P value was 0.000,0.000,0.000 and 0.0000,respectively.The levels of CB1 mRNA in Ruangan Huajian granule group (10%,20%) were notably lower than those in colchicine group,P value was 0.000 and 0.000,respectively.The levels of CB1 mRNA in Ruangan Huajian granule group (10%,20%) were notably lower than those in Ruangan Huajian granule group (5%),P value was 0.000 and 0.000,respectively.The levels of CB1 mRNA in Ruangan Huajian granule group (20%) were notably lower than those in Ruangan Huajian granule group (10%),P value was 0.000.The levels of ERK mRNA in colchicine group and Ruangan Huajian granule group (5%,10%,20%) were notably lower than those in control group,P value was 0.000,0.002,0.000 and 0.000,respectively.The levels of ERK mRNA in Ruangan Huajian granule group (20%) were notably lower than those in Ruangan Huajian Particle group (5%),P value was 0.014.The levels of FAK mRNA in colchicine group and Ruangan Huajian granule group (5%,10%,20%) were notably lower than those in control group,P value was 0.001,0.000,0.000 and 0.000,respectively.Conclusion:Ruangan Huajian granule can inhibit the activation of HSC-T6 by ERK signal transduction and P13K

  10. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008312 Impact of hepatitis B virus infection on the activity of hematopoietic stem cell.SHI Yanmei(石雁梅),et al.Dept Infect Dis,1st Clin Coll,Harbin Med Univ,Harbin 150001.Chin J Infect Dis 2008;26(4):197-201.Objective To study the impact of hepatitis B virus (HBV)infection on the activity of cord hematopoieticstem cells.Methods CD34+cells were isolated from healthy human cord blood by mini MACS.Cells were

  11. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    Directory of Open Access Journals (Sweden)

    Qian-Quan eSun

    2014-11-01

    Full Text Available Brain derived neurotrophic factor (BDNF plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However it is uncealr how specific BDNF’s effects are on diffeerent circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV, we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e. feed-forward inhibition; whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

  12. Effect of caffeine on signaling transduction of TGF-β1 and CTGF in hepatic stellate cell-T6 stimulated by acetaldehyde%咖啡因对乙醛诱导的HSC-T6中TGF-β1,CTGF信号转导通路的影响

    Institute of Scientific and Technical Information of China (English)

    管文婕; 吕雄文; 杨万枝; 李俊

    2012-01-01

    Objective To explore the effect of caffeine on proliferation in hepatic stellate cell stimulated by acetaldehyde and its signaling pathway of TGF-β and CTGF. Methods Trials are divided into normal group( regular training ), model group, adenosine receptor group,which were given caffeine( 4 mmol · L-1 ),adenosine A2A receptor antagonist ZM241385( 1 μmol · L-1 ),adenosine A2A receptor agonists CGS21680( 1 μmol · L-1 ),caffeine + CGS21680,ZM241385 + CGS21680 and HSC-T6 respectively,stimulated by acetaldehyde after 1 h,before continueing to cultivate 48 h. The protein expression of a-SMA was analyzed by immunocytochemistry methods. The mR-NA expressions of TGF-β1 and CTGF were measured by RT-PCR. The protein expression of CTGF was analyzed by western blot methods. Results Caffeine or ZM241385 treatment inhibited the increase expressions of TGF-β1, CTGF, α-SMA in the HSC-T6,likewise,as with CGS21680 plus caffeine or ZM241385 groups, caffeine or ZM241385 prevented the adenosine A2A receptor agonist from stimulating an increase in hepatic stellate cell. Conclusion Caffeine can suppress the activation of α-SMA in HSC-T6 stimulated by acetaldehyde. Caffeine treatment inhibited the increase expressions of TGF-βl and CTGF in the HSC-T6,the mechanisms of which may be related to the expression of adenosine A2A receptor.%目的 探讨咖啡因(caffeine)对乙醛诱导的大鼠肝星状细胞系(Hepatic Stellate Cell-T6,HSC-T6)中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1),结缔组织生长因子(Connective Tissue Growth Factor,CTGF)信号转导通路的影响.方法 实验设正常组(常规培养),模型组及腺苷受体(Adenosine Receptor,AR)调节剂干预组.分别给予caffeine(4 mmol·L-1)[1-2],腺苷A2A受体拮抗剂ZM241385(1 μmol·L-1)[3],腺苷A2A受体激动剂CGS21680(1 μmol·L-1)[3],caffeine+CGS21680,ZM241385+CGS21680 与HSC-T6共同培养,1 h后加入终浓度200 μmol·L-1的乙醛刺激(每12 h补充1次),继续培养48 h.采

  13. Phenotypic changes in mouse pancreatic stellate cell Ca2+ signaling events following activation in culture and in a disease model of pancreatitis.

    Science.gov (United States)

    Won, Jong Hak; Zhang, Yu; Ji, Baoan; Logsdon, Craig D; Yule, David I

    2011-02-01

    The specific characteristics of intracellular Ca 2+ signaling and the downstream consequences of these events were investigated in mouse pancreatic stellate cells (PSC) in culture and in situ using multiphoton microscopy in pancreatic lobules. PSC undergo a phenotypic transformation from a quiescent state to a myofibroblast-like phenotype in culture. This is believed to parallel the induction of an activated state observed in pancreatic disease such as chronic pancreatitis and pancreatic cancer. By day 7 in culture, the complement of cell surface receptors coupled to intracellular Ca 2+ signaling was shown to be markedly altered. Specifically, protease-activated receptors (PAR) 1 and 2, responsive to thrombin and trypsin, respectively, and platelet-derived growth factor (PDGF) receptors were expressed only in activated PSC (aPSC). PAR-1, ATP, and PDGF receptor activation resulted in prominent nuclear Ca 2+ signals. Nuclear Ca 2+ signals and aPSC proliferation were abolished by expression of parvalbumin targeted to the nucleus. In pancreatic lobules, PSC responded to agonists consistent with the presence of only quiescent PSC. aPSC were observed following induction of experimental pancreatitis. In contrast, in a mouse model of pancreatic disease harboring elevated K-Ras activity in acinar cells, aPSC were present under control conditions and their number greatly increased following induction of pancreatitis. These data are consistent with nuclear Ca 2+ signaling generated by agents such as trypsin and thrombin, likely present in the pancreas in disease states, resulting in proliferation of "primed" aPSC to contribute to the severity of pancreatic disease.

  14. Diagnosis of chronic active hepatitis in a miniature schnauzer

    OpenAIRE

    Hendrix, Alana D.

    2004-01-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  15. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    International Nuclear Information System (INIS)

    Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction

  16. The Role of IκBα in TNF-α-induced Apoptosis in Hepatic Stellate Cell Line HSC-T6

    Institute of Scientific and Technical Information of China (English)

    QU Zhijun; LOU Duande; PAN Yanfeng

    2007-01-01

    To investigate the role of NF-κB in TNF-α induced apoptosis in HSC-T6, a mutant IκBα was transfected into HSC-T6 cells by lipofectin transfection technique and its transient effect was examined 48 h after the transfection. The activation of NF-κB was detected by immune fluorescence cytochemistry and Western blotting with anti-p65 antibody. The apoptosis and the rate of inhibition by TNF-α in both transfected and untransfected HSC-T6 cells were measured respectively by FAC-Scan side scatter analysis and MTT methods. Our results showed that TNF-α could activate NF-κB in untransfected cells but not in transfected HSC-T6 cells. The percentage of apoptosis in transfected cells were significantly higher than that in the untransfected ones (P<0.01) and it was also true of the inhibition rate (P<0.01). It is concluded that the resistance of HSC-T6 towards apoptosis induced by TNF-α can be mediated by NF-κB activation. The inhibition of NF-κB activation by mutant Iκ Bα can attenuate the resistance of HSC-T6 cells and increase its sensitivity to TNF-α.

  17. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

    Directory of Open Access Journals (Sweden)

    Weibo Chen

    2014-01-01

    Full Text Available Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture.

  18. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Directory of Open Access Journals (Sweden)

    Tilman Kispersky

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  19. Effects of Artesunate on Proliferation and Apoptosis of Hepatic Stellate Cells%青蒿琥酯对大鼠肝星状细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    张洪; 詹慧; 沈瑶; 齐倩

    2013-01-01

    Objective: To study the effects of artesunate ( Art ) on the proliferation and apoptosis of rat hepatic stellate cells T6 ( HSC-T6 ). Method: HSC-T6 was cultured in vitro. Morphological changes of HSC-T6 after the drug treatment were observed by an inverted microscope. The effects of Art with different concentrations on the proliferation of HSC-T6 were detected at different times by CCK-8. A flow cytometry with double staining of Annexin and PI was used to detect the apoptosis rate of HSC-T6. Result: The results shown by the inverted microscope suggested the number decrease of the adherent cells with shorter and thinner synapses, and the cell surface wrinkled and the shape changed from star to round. Art with the concentration of 12. 5-200 μg · ml-1 during 0-72 h exhibited notable anti-proliferative effect on HSC-T6( P<0.01 ) with time- and dose-dependence. The results of flow cytometry showed that the apoptosis rate of HSC-T6 was significantly enhanced with the increase of the Art dose and the acting time( P < 0.05 ). Conclusion: Art can inhibit the proliferation and promote the apoptosis of HSC-T6.%目的:探讨青蒿琥酯(Artesunate,Art)对大鼠肝星状细胞(HSC-T6)增殖和凋亡的影响.方法:选用活性良好的HSC-T6细胞进行体外培养,应用倒置显微镜观察药物作用后的细胞形态改变;用CCK-8测定不同浓度、不同时间Art对该细胞增殖的抑制作用的影响;用Annexin Ⅴ和PI双染的流式细胞术检测HSC-T6的细胞凋亡率的影响.结果:①倒置显微镜结果显示,Art作用过的贴壁细胞数目变少、突触变短变细、细胞表面变皱、由星形变成圆形.②12.5~200 μg·ml-1的Art在0~72 h范围内对HSC的增殖有明显的抑制作用(P<0.01),抑制率有时间和剂量依赖性.③流式细胞仪结果显示随着剂量、时间的增加,凋亡率显著增加(P<0.05).结论:Art能抑制HSC-T6细胞的增殖,并可促进细胞凋亡.

  20. Targeted TFO Delivery to Hepatic Stellate Cells

    OpenAIRE

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I.

    2011-01-01

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA)...

  1. Colchicine Inhibited the Expression of Tissue Inhibitor of Metalloprotenase-1 and Interleukin-6 in Cultured Activated Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    LI Zesong; CAI Shaoxi; JIANG Yuan; GUO RuiJun; ZHANG Wen

    2006-01-01

    Cultured HSCs were treated colchicine with different concentrations for 12 h, respectively. The effects of colchicine on HSCs growth were measured by MTT assay. Effects of colchicine on gene expression of HSCs were analysed by using a self-made oligonucleotide microarray. Colchicine inhibited HSCs growth in a dose-dependent manner. After 12 h of treatment with 6.25 mg/L of colchicine, the expression of tissue inhibitor of metalloprotenase1 (TIMP-1) and the expression of interleukin-6 (IL-6) in HSCs were downregulated by 2.3 folds and 2.1 folds, respectively. These results suggest that colchicine's beneficial effects may, at least in part, owe to the inhibitory to the proliferation of HSCs and down-regulation of the expression of both TIMP1 and IL-6 in HSCs.

  2. The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells

    OpenAIRE

    Kispersky, Tilman; White, John A.; Rotstein, Horacio G.

    2010-01-01

    Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fa...

  3. [Gallbladder motor activity in patients with virus hepatitis B].

    Science.gov (United States)

    Mamos, Arkadiusz; Wichan, Paweł; Chojnacki, Jan; Grzegorczyk, Krzysztof

    2003-12-01

    In acute stage of virus hepatitis B patients often complain of dyspeptic discomfort. They may be a consequence of alimentary tract motor activity disorders including these of gallbladder. Routine ultrasonography in an early phase of virus hepatitis often reveals gallbladder wall thickening what may confirm the above thesis. Thus, a group of 15 patients in an acute phase of virus hepatitis B was subjected to examinations. Gallbladder motor activity was assessed by ultrasonographic method determining its total volume and ejection fraction and volume after test meal stimulus. First examination was performed in the first week since the appearance of yellowing of the walls, successive in 4 and 8 week of the disease. Obtained results were compared to the values obtained in the group of 25 healthy volunteers. It was found out that gallbladder volume was significantly decreased and ejection fraction increased in the acute phase of virus hepatitis B than in the controls. This may speak for gallbladder hyperreactivity in patients in the course of virus hepatitis B. These disorders decreased during two-month observation but even in the 8 week the investigated parameters differed from those found in the control group. PMID:15058248

  4. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    2010349 Relationships between serum hepatitis B virus load in mothers,free maternal DNA in peripheral blood of newborns and hepatitis B virus infection of newborns. WEI Junni(魏俊妮),et al. Dept Epidemiol,Shanxi Med Univ,Taiyuan 030001. Chin J Infect Dis 2010;28(5):297-300. Objective To study the relationships between serum hepatitis B virus (HBV) DNA level

  5. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930140 Hepatocyte stimulator peptide and itsclinical significance in viral hepatitis.ZHOUWeiping(周卫平),et al.Instit Viral Hepatitis,Chongqing Med Univ,630010.Chin J InternMed 1992;31(10):626-628.Hepatocyte stimulator peptide(HSP)is anewly developed hepatic stimulator substance.Its monoclonal antibodies have been obtained inour laboratory.In this study,HSP was deter-mined in the sera of 315 subjects including pa-

  6. Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis.

    Science.gov (United States)

    Fu, Na; Niu, Xuemin; Wang, Yang; Du, Huijuan; Wang, Baoyu; Du, Jinghua; Li, Ya; Wang, Rongqi; Zhang, Yuguo; Zhao, Suxian; Sun, Dianxing; Qiao, Liang; Nan, Yuemin

    2016-08-01

    Long non-coding RNA (LncRNA)-activated by transforming growth factor-beta (LncRNA-ATB) is a key regulator of transforming growth factor-beta (TGF-β) signaling pathway, and is positively correlated with the development of liver cirrhosis and vascular invasion of hepatocellular carcinoma (HCC). However, the role of LncRNA-ATB in hepatitis C virus (HCV)-related liver fibrosis remains largely unknown. In the present study, we confirmed a high expression level of LncRNA-ATB in the liver tissues and plasma samples of patients with HCV-related hepatic fibrosis, and the plasma level of LncRNA-ATB was significantly correlated with liver fibrosis stages. Furthermore, increased expression level of LncRNA-ATB was also present in activated hepatic stellate cells (HSCs), and knockdown of LncRNA-ATB inhibited the expression of alpha-smooth muscle actin (α-SMA) and alpha-1 type I collagen (Col1A1). LncRNA-ATB was found to share the common miRNA responsive element of miR-425-5p with TGF-β type II receptor (TGF-βRII) and SMAD2. Ectopic expression of LncRNA-ATB in HSCs could upregulate the protein expression of TGF-βRII and SMAD2 by inhibiting the endogenous miR-425-5p. Moreover, overexpression of miR-425-5p could partly abrogate the expression of TGF-βRII and SMAD2 induced by LncRNA-ATB. Hence, we conclude that LncRNA-ATB promotes HCV-induced liver fibrogenesis by activating HSCs and increasing collagen I production through competitively binding to miR-425-5p. LncRNA-ATB may be a novel diagnostic biomarker and a potential therapeutic target for HCV-related hepatic fibrosis. PMID:27585228

  7. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  8. Metformin Inhibits Glutaminase Activity and Protects against Hepatic Encephalopathy

    Science.gov (United States)

    Ampuero, Javier; Ranchal, Isidora; Nuñez, David; Díaz-Herrero, María del Mar; Maraver, Marta; del Campo, José Antonio; Rojas, Ángela; Camacho, Inés; Figueruela, Blanca; Bautista, Juan D.; Romero-Gómez, Manuel

    2012-01-01

    Aim To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. Methods Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin) and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment). Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. Results Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82): 4.9% (2/41) in patients receiving metformin and 41.5% (17/41) in patients without metformin treatment (logRank 9.81; p = 0.002). In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2–108.8); p = 0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04–1.2); p = 0.002], female sex [H.R.10.4 (95% CI: 1.5–71.6); p = 0.017] and HE risk [H.R.21.3 (95% CI: 2.8–163.4); p = 0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM) decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05). Conclusions Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin

  9. Successful Interferon Therapy Reverses Enhanced Hepatic Progenitor Cell Activation in Patients with Chronic Hepatitis C.

    Science.gov (United States)

    Noritake, Hidenao; Kobayashi, Yoshimasa; Ooba, Yukimasa; Matsunaga, Erika; Ohta, Kazuyoshi; Shimoyama, Shin; Yamazaki, Satoru; Chida, Takeshi; Kawata, Kazuhito; Sakaguchi, Takanori; Suda, Takafumi

    2015-12-01

    The enhanced accumulation of hepatic progenitor cells (HPCs) is related to the risk of progression to hepatocellular carcinoma (HCC). Interferon (IFN) treatment reduces HCC risk in patients with chronic hepatitis C virus (HCV) infection. However, the underlying mechanisms remain unclear. The aim of this study was to examine the effects of IFN treatment on HPC activation in HCV patients. Immunohistochemical detection and computer-assisted quantitative image analyses of cytokeratin 7 (CK7) were performed to evaluate HPC activation in paired pre- and post-treatment liver biopsies from 18 HCV patients with sustained virological response (SVR) to IFN-based therapy and from 23 patients without SVR, as well as normal liver tissues obtained from surgical resection specimens of 10 patients. Pretreatment HCV livers showed increased CK7 immunoreactivity, compared with normal livers (HCV: median, 1.38%; normal: median, 0.69%, P=0.006). IFN treatment reduced hepatic CK7 immunoreactivity (median, 1.57% pre-IFN vs. 0.69% post-IFN, P=0.006) in SVR patients, but not in non-SVR patients. The development of HCC following IFN treatment was encountered in 3 non-SVR patients who showed high post-IFN treatment CK7 immunoreactivity (>4%). Successful IFN therapy can reverse enhanced HPC activation in HCV patients, which may contribute to the reduced risk of HCC development in these patients.

  10. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920691 The determination of serum hepa-titis B virus DNA by polymerase chain rea-ction in hepatitis B patients treated withalpha-interferon. XU. Jianye(徐建业), et al.Centr Lab, Chongqing Cancer Instit, 630030.Chin J Intern Med, 1992; 31(5): 278-280. To clarify the status of HBV in serum of

  11. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970349 Primary structure and variability of partialsequences in nonstructural gene 5 region of hepatitis Gvirus, CHANG Jinhong(常锦红), et al. Hepatol Instis,People’s Hosp, Beijing Med Univ, Beijing, 100044. NatlMed J China 1997; 77(3): 178-182. Objective: To sequence partial genome of hepatitis G

  12. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    2009209 Effects of chronic hepatitis B virus infection on human hepatic cytochrome P450 2C9.ZHO Fuping(周福平),et al.Dept Infect Dis,Shanghai Changzheng Hosp,Shanghai 200003.Chin J Infect Dis,2009;27(2):94-98.

  13. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis.

    Directory of Open Access Journals (Sweden)

    Raj Vuppalanchi

    Full Text Available BACKGROUND AND AIM: Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA are associated with decreased hepatic CYP3A activity in cirrhosis. METHODS: Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28 and normal (n=12 liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. RESULTS: Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min(-1*mg protein(-1 (mean ± SEM, P=0.02. Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500 had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05. Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08 and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017. The relative expression (2(-ΔΔCt mean ± SEM of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07 but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08. CONCLUSION: The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.

  14. Hepatic ERK activity plays a role in energy metabolism.

    Science.gov (United States)

    Jiao, Ping; Feng, Bin; Li, Yujie; He, Qin; Xu, Haiyan

    2013-08-15

    Mitogen activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and P38, have been reported to play important roles in energy homeostasis. In this study, we show that the activity of extracellular signal-regulated kinase (ERK) is increased in the livers of diet induced and genetically obese mice. Activation of ERK in the livers of lean mice by over-expressing the constitutively active MAPK kinase 1 (MEK CA) results in decreased energy expenditure, lowered expression of genes involved in fatty acid oxidation, increases fasting hyperglycemia and causes systemic insulin resistance. Interestingly, hepatic glycogen content is markedly increased and expression of G6Pase gene is decreased in mice over-expressing MEK CA compared to control mice expressing green fluorescent protein (GFP), therefore hepatic glucose output is not likely the major contributor of hyperglycemia. One potential mechanism of decreased expression of G6Pase gene by MEK CA is likely due to ERK mediated phosphorylation and cytosolic retention of FOXO1. Adipocytes isolated from MEK CA mice display increased lipolysis. Circulating levels of free fatty acids (FFAs) in these mice are also increased, which possibly contribute to systemic insulin resistance and subsequent hyperglycemia. Consistent with these results, knocking down ERK expression in the liver of diet induced obese (DIO) mice improves systemic insulin and glucose tolerance. These results indicate that increased hepatic ERK activity in DIO mice may contribute to increased liver glycogen content and decreased energy expenditure in obesity. PMID:23732116

  15. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005226 Characteristics of peripheral blood T lymphocyte subsets in hepatitis B patients. FAN Zhen-ping(范振平),et al. Center Bio Ther, Instit Infect Dis, 302 Hosp Chin PLA, Beijing 100039. World Chin J Digestol, 2005;13(2): 194-197. Objective: To characterize the T-lymphocyte subsets in peripheral blood of patients with acute and chronic hepatitis B, and to explore their relations with the disease state. Methods: Peripheral blood

  16. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer

    OpenAIRE

    McCarroll, Joshua A.; Naim, Stephanie; Sharbeen, George; Russia, Nelson; Lee, Julia; Kavallaris, Maria; Goldstein, David; Phillips, Phoebe A.

    2014-01-01

    Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistanc...

  17. Role of Rho-Rock pathways induced by angiotensin Ⅱ in hepatic stellate cell contraction%Rho-Rock通路在血管紧张素Ⅱ诱导肝星状细胞收缩中的作用

    Institute of Scientific and Technical Information of China (English)

    张小兰; 肖冰; 李旭; 黄茂梁; 孟莹; 李鹰飞; 王媛媛; 宋卫兵

    2008-01-01

    Objective To investigate the mechanism of Ca2+-independent pathways mediated by Rho-kinase in contraction of hepatic steLlate cells (HSCs) induced by angiotonin Ⅱ (Ang )Ⅱ. Methods Human HSCs of the line HSC-T6 were cultured and randomly divided into 6 groups: negative control group, AngⅡ group treated by Ang Ⅱ 10 μmol/L for 15 min, Ang Ⅱ + irbesantan (Ang Ⅱ receptor inhibitor) group, exposed to irbesantan for 60 rain prior to Ang Ⅱ treatment, Ang Ⅱ + Y27632 (Rho kinase specific inhibitor) exposed to Y27632 for 60 min prior to Ang Ⅱ treatment, Ang Ⅱ + ML-7 (myosin fight chain kinase specific inhibitor) + saturo (protein kinase C specific inhibitor) group exposed to stauro for 60 min prior to Ang Ⅱ treatment, and Ang Ⅱ + Y27632 + ML-7 + stauro group, exposed to Y27632 and stauro for 60 min prior to Ang Ⅱ treatment. The cell contraction was detected by sillcone-tubber-membrane cultivation directly. The protein levels of MLC and phosphorylated MLC were detected by Western blotting 5, 15, 30, 60, and 120 min after Ang Ⅱ treatment. RT-PCR was used to detect the expression of Rock?., RhoAGTP, and RhoGEF in Ca2+- independent pathways mediated by Rho-kinage. Results The silicone-rubber- membrane covered by Ang Ⅱ treated HSCs showed obvious wrinkles indicating the contraction of HSCs. The ratios of phosphorylated MLC protein at the time pints 5, 15, 30, 60, and120 min of the Ang Ⅱ group to the control group (0 min)were 11.7±0. 1, 26.9±0.1, 11.2 ±0.1, 4.1 ±0. 1, and 1.0±0.1, showing that Ang Ⅱ increased the phosphorylated MLC protein level time-dependently with the peak level at the time point of 15 minutes. The levels of phosphorylated MLC protein of the Ang Ⅱ + irbesartan and Ang Ⅱ + Y27632 groups were (1.12±0.09)and (1.22±0.10) respectively, both significantly lower than that of the Ang Ⅱ group (1.33±0.06, both P<0.01). The level of phosphorylated MLC protein of the Ang Ⅱ + ML-7 + stauro group was (1.43 ± 0

  18. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  19. Effect of antihypertensive agents on stellate cells during liver regeneration in rats Efeito de agentes anti-hipertensivos sobre as células estreladas durante a regeneração hepática em ratos

    Directory of Open Access Journals (Sweden)

    Leandra N. Z. Ramalho

    2003-03-01

    Full Text Available BACKGROUND: Although most studies have focused on the hepatocytes, all the hepatic cells participate in the regenerative process, among them the stellate cells. The stellate cells are mesenchymal cells involved in local neurotransmission and paracrine regulation of several liver functions. Acute hepatic tissue loss promotes the proliferation and activation of stellate cells from a quiescent state to myofibroblast-like cells. AIM: Investigate the effects of antihypertensive agents on the stellate cell population during the liver regenerative phenomenon in rats. METHODS: Adult male Wistar rats received lisinopril, losartan, bradykinin, or saline solution in a proportional volume, intraperitoneally, before and after 70% partial hepatectomy. Animals from the experimental and saline groups were sacrificed at 36 hours after partial hepatectomy. The alpha-smooth muscle actin labelled stellate cells population was counted in the periportal and pericentral zones of the liver specimen. RESULTS: The labelled stellate cells were more numerous in the control group both in the periportal and pericentral zones at 36 hours after partial hepatectomy than at the other times. The population of stellate cells was significantly lower in the losartan group and higher in the bradykinin and lisinopril groups than in the control group. CONCLUSIONS: These results suggest that losartan can inhibit and bradykinin and lisinopril can stimulate the stellate cell population during liver regeneration in rats. These cells synthesize several substances to stimulate liver regeneration.RACIONAL: Embora a maioria dos estudos focalize os hepatócitos, todas as células hepáticas participam do processo regenerativo, entre elas as células estreladas, que são células mesenquimais envolvidas na regulação de uma série de funções hepáticas. A perda aguda de parênquima hepático induz proliferação e ativação destas células, a partir de estado de quiescência para fen

  20. New therapies for hepatic fibrosis.

    Science.gov (United States)

    Koyama, Yukinori; Brenner, David A

    2015-09-01

    Liver fibrosis is an outcome of many chronic diseases, and often results in cirrhosis, liver failure, and portal hypertension. Liver transplantation is the only treatment available for patients with advanced stages of liver cirrhosis. Therefore, alternative methods are required to develop new strategies for anti-fibrotic therapy. Various kinds of hepatocyte injuries cause inflammatory reactions, which lead to activation of hepatic stellate cells (HSCs). Continuous liver injuries maintain these activated HSCs, and they are called as myofibroblasts. Myofibroblasts proliferate in response to various kinds of cytokines and produce extracellular matrix proteins (ECMs). Myofibroblasts undergo apoptosis and inactivation when the underlying causative etiologies are cleared. Here, we describe the current knowledge of targeting the activated HSCs as a therapeutic target for liver fibrosis. PMID:26206573

  1. Serum arylesterase and paraoxonase activity in patients with chronic hepatitis

    Institute of Scientific and Technical Information of China (English)

    Suleyman Sirri Kilic; Suleyman Aydin; Nermin Kilic; Fazilet Erman; Suna Aydin; (I)lhami Celik

    2005-01-01

    AIM: To investigate the relationship between serum paraoxonase (PON1), AST, ALT, GGT, and arylesterase (AE) activity alterations and the degree of liver damage in patients with chronic hepatitis.METHODS: We studied 34 chronic hepatitis patients and 32 control subjects, aged between 35 and 65 years,in the Department of Infection and Clinical Microbiology at the Firat University School of Medicine. Blood samples were collected from subjects between 8:00 and 10:00 a.m. following a 12-h fast. Baseline and salt-stimulated PON1 activities were measured by the hydrolysis of paraoxon. Phenyl acetate was used as the substrate and formed phenol was measured spectrophotometrically at 270 nm after the addition of a 10-fold diluted serum sample in AE activity measurements.RESULTS: The results of this investigation revealed that the levels of AE activity decreased from 132±52 to 94±36 (29%), baseline PON1 activity from 452±112 to 164±67 (64%), salt-stimulated PON1 activity from 746±394 to 294±220 (61%), HDL from 58.4±5.1 to 47.2±5.6(20%), triglyceride from 133±51.2 to 86±34.0 (35%),while a slight increase in the level of LDL (from 163±54.1 to 177.3±56.0; 9%) and significant increases in the levels of AST (from 29±9.3 to 98±44), ALP (from 57.2±13.1 to 91±38.1), ALT (from 27.9±3.32 to 89±19.1), GGT (from 24.3±2.10 to 94±48.2), total bilirubin (from 0.74±0.02 to 1.36±0.06; 84%) and direct bilirubin (from 0.18±0.01 to 0.42±0.04; 133%) were detected.However, the levels of albumin, total protein, cholesterol,and uric acid were almost the same in chronic hepatitis and the control subjects.CONCLUSION: Low PON1 and AE activity may contribute to the increased liver dysfunction in chronic hepatitis patients by reducing the ability of HDL to retard LDL oxidation and might be clinically useful for monitoring the disease of chronic hepatitis.

  2. HCV virological response during treatment of chronic hepatitis C is associated with liver histological Improvement in patients with HCV/HIV co-infection

    Directory of Open Access Journals (Sweden)

    Gleusa Castro

    2008-06-01

    Full Text Available Liver histological improvement after treatment for chronic hepatitis C in patients co-infected with human immunodeficiency virus-1 (HIV-1 has been described. Paired liver biopsies in twenty six HCV/HIV co-infected patients were compared to determine factors possibly associated with histological improvement. The patients were submitted to a liver biopsy before treatment for hepatitis C and 25 months after the end of treatment. Fragments of the liver biopsy obtained before and after treatment were compared regarding the following parameters: histological activity index (HAI and degree of fibrosis (Knodell; intensity of collagen deposits (Sirius Red staining and degree of stellate cell activation (alpha-smooth muscle actin labeling. The ratios of the post and pre-treatment variables were related through logistic regression to body mass index (BMI, alcohol ingestion, HCV genotype, HCV viremia, presence of hepatic iron and pre-treatment hepatic steatosis. A negative RNA test in the 24th week of treatment was associated with improvement in fibrosis, collagen deposits and stellate cell numbers. The other variables analyzed did not correlate to an improvement in hepatic histology after hepatitis C treatment. Reduction in HCV viremia during treatment may result in reduced hepatic fibrosis even in patients without a sustained virological response.

  3. Inhibition of SIRT2 suppresses hepatic fibrosis.

    Science.gov (United States)

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei

    2016-06-01

    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis. PMID:27125275

  4. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008449 A cross-sectional survey of occult hepatitis B virus infection in HIV-infected patients. MA Jianxin(马建新), et al.Dept Infect Dis, Shanghai Public Health Clin Center, Shanghai 201508. Chin J Intern Med 2008;47(7):574-577. Objective To assess the prevalence of occult HBV infection in HIV-infected patients.

  5. 血吸虫病肝纤维化小鼠中肝星状细胞迁移功能改变的实验研究%Alterations of hepatic stellate cells on movement abilities in mice infected with Schistosoma ;japonicum

    Institute of Scientific and Technical Information of China (English)

    李兰; 王亚琦; 王洪武; 孙颖; 黄加权; 范翔雪; 宁琴

    2014-01-01

    目的:探讨影响日本血吸虫病肝纤维化小鼠肝组织中肝星状细胞(HSCs)迁移运动功能变化的相关因素。方法 SPF级6~8周龄Balb/c小鼠16只,随机分为模型组(8只)和对照组(8只),以血吸虫尾蚴腹部贴附法建立感染模型,正常组予以生理盐水代替。于感染后8周末处理小鼠,取部分肝组织石蜡包埋,进行病理学评估,免疫荧光染色检测HSCs(α-SMA,红光)运动蛋白Fascin(绿光)的表达;另取部分肝组织,采用Real-time PCR方法检测迁移诱导因子转化生长因子β1(TGF-β1)、血小板源性生长因子(PDGF)以及单核细胞趋化因子1(MCP-1)的表达以及HSCs运动蛋白α-SMA、Fascin的表达。结果8周末时,模型组小鼠肝组织中已形成明显肝纤维化。模型组小鼠肝组织中TGF-β1、PDGF 以及MCP-1的基因表达水平分别是对照组的30倍、14倍及14倍,差异具有统计学意义(P=0.033、P=0.039以及P=0.037);同时,模型组中HSCs运动相关蛋白α-SMA和Fascin的基因表达水平分别是对照组的9倍和5倍,差异具有统计学意义(P=0.004、P=0.018);荧光共聚焦结果提示,模型组小鼠肝组织中α-SMA(红色)和Fascin(绿色)表达部位一致,集中在虫卵周围肝纤维化区域,较对照组二者表达明显增加,且红绿光分布多重叠。结论诱导HSCs运动迁移的因子表达增加和HSCs自身的运动相关蛋白表达增加均有利于HSCs运动迁移能力增强。%Objective To analyze the relevant changes of hepatic stellate cells (HSCs) migration in mice with Schistosoma japonicum infection. Methods A total of 16 SPF balb/c mice aged 6-8 weeks, were randomly divided into two groups, namely, control group (n=8) and infected group (n=8). The mice from the infected group were suffered from skin infection by schistosome cercariae, while the mice in control group were given an equal volume of saline

  6. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008079 Relationship of HBV genotype and bcp and pc mutations with HBV DNA rebound after lamivudine therapy. SU Minghua(苏明华), et al. Dept Infect Dis Clin Hosp, Guangxi Med Univ, Nanning 530027. World Chin J Digestol 2007;15(33):3507-3513. Objective To investigate the relationship of HBV gene mutations with HBV DNA rebound after lamivudine therapy. Methods Twenty-seven hepatitis B patients with HBV DNA rebound after

  7. A study on differentially expressed genes in hepatic stellate cells treated with transforming growth factor beta 1 using cDNA microarray technique%筛选转化生长因子β1刺激肝星状细胞差异表达基因的研究

    Institute of Scientific and Technical Information of China (English)

    肖琳; 成军; 郭江; 洪源; 张黎颖; 张跃新; 张建龙; 李燕

    2008-01-01

    目的 筛选转化生长因子β 1(TGF β 1)刺激大鼠肝星状细胞(Hsc)的差异表达基因,以揭示TGF β1介导肝纤维化的分子发病机制. 方法分别用Trizol法抽提TGF β1刺激的HSC及磷酸盐缓冲液刺激为对照的HSC总RNA,逆转录合成双链cDNA,制备掺入生物素标记的cDNA探针,与人基因表达谱芯片杂交,用Agilent扫描仪对芯片结果进行扫描,利用软件对差异表达基因进行生物信息学分析. 结果 从13824条目的 基因中筛选出177条差异表达基因,其中123条基因表达上调,其中包括:结缔组织生长因子,微管蛋白ε 1,V型胶原α2,连环蛋白6 2,钙粘蛋白6,2型,Smad3,丝裂源活化蛋白激酶4,生长因子受体结合蛋白7,丝裂原活化蛋白激酶相互作用/丝氨酸/苏氨酸激酶1等;54条基因表达下调,包括:肿瘤坏死因子受体相关因子4,干扰素调节因子7,干扰素诱生蛋白p78,骨形态发生蛋白7,基质gLa蛋白,人类丝氨酸蛋白酶抑制剂进化支B成员8,干扰素刺激基因2.0×104,死亡相关蛋白6,金属硫蛋白1H,超氧化物歧化酶2等;同时筛选到8个未知功能蛋白. 结论 应用基因表达谱芯片技术成功筛选了TGF β 1刺激HSC的差异表达基因,初步揭示了TGF β1致肝纤维化的分子机制是诸多因素共同作用的结果,为进一步寻找新的基因治疗靶点奠定了基础.%Objectives To screen the differentially expressed genes in hepatic stellate cells (HSC)treated with transforming growth factor beta 1 (TGF β1) by cDNA microarray technique, and to elucidate the molecular pathogenesis of liver fibrosis involving TGF β 1. Methods Total RNA was extracted from HSC treated with TGF β1 and PBS by trizol and reverse-transcribed to double strand cDNA templates. Transcrip-tion of cDNA probe with biotin-labeling was performed, and then the obtained cDNA was hybridized with human cDNA mieroarray. The results were imaged by an Agilent scanner, and the differentially expressed genes

  8. Effects of salvianolic acid-A on rat hepatic stellate cell proliferation and collagen production in culture%丹酚酸A对培养的大鼠肝星状细胞增殖与胶原生成的作用

    Institute of Scientific and Technical Information of China (English)

    刘成海; 刘平; 胡义扬; 徐列明; 谭英姿; 王臻楠; 刘成

    2000-01-01

    目的:研究丹酚酸A对培养的大鼠肝星状细胞增殖与胶原生成的影响.方法:用链酶蛋白酶与胶原酶对肝脏进行原位灌流消化,Nycodenz密度梯度离心分离大鼠肝星状细胞,传一代培养.MTT法与[3H]TdR掺人法测定细胞增殖.丽春红染色、图象分析法半定量细胞胶原沉积量,ELISA法测定细胞培养上清中I型胶原分泌量,检测细胞层总蛋白量校正细胞数.RT-PCR法分析前胶原α2(I)基因的表达.结果:丹酚酸A 100 μmol/L引起部分细胞脱壁与死亡,有一定毒性反应.丹酚酸A0.1一10 μmol/L对细胞形态无明显影响.丹酚酸A l一100 μmol/L浓度依赖性抑制细胞增殖,降低胶原沉积量与I型胶原分泌量.丹酚酸A 1-10 μmol/L对前胶原α2(I)mRNA表达均有明显抑制作用.结论:丹酚酸A抑制肝星状细胞增殖与胶原表达,是丹参抗肝纤维化的主要有效成分之一,抑制肝星状细胞活化是其抗肝纤维化的主要作用机制.%AIM: To investigate the effects of salvianolic acid-A(SA-A), one of main effective components of Salvia miltiorrhiza for its antifibrotic action, on the cell proliferation and collagen production in cultured hepatic stellate cells (HSC). METHODS: HSC were isolated through in situ perfusion of liver with pronase E and collagenase,and gradient centrifugation with Nycodenz. The cultured HSC were incubated with SA-A 0.1 - 100μmol/L for 24h. MTT spectrometric assay and intercellular incorporation of methyl-[3H]thymidine ([3H]TdR) was used to assess the cell proliferation. The amount of collagen was semi-quantified by ponceau staining and image analysis,the amount of type I collagen secretion was measured with ELISA and normalized by the total protein of cell layer.The total RNA was prepared from the control cells and the drag treated cells respectively, and the expression of pro-collagen α2 (I) mRNA was semi-quantitatively analyzed with RT

  9. Steatosis recovery after treatment with a balanced sunflower or olive oil-based diet: Involvement of perisinusoidal stellate cells

    Institute of Scientific and Technical Information of China (English)

    Raquel Hernández; Esther Martínez-Lara; Ana Ca(n)uelo; Ma Luisa del Moral; Santos Blanco; Eva Siles; Ana Jiménez; Juan (A)ngel Pedrosa; Ma (A)ngeles Peinado

    2005-01-01

    AIM: To analyze the relationship between perisinusoidal stellate cell (PSC) activation and the dietary fat quantity and composition in the treatment of hepatic steatosis.METHODS: Using an experimental rat model of steatosis based on the intake of a hyperlipidic diet (14% fat as olive oil or sunflower oil, HL-O and HL-S, respectively), we analyzed the liver's capability of recovery after the treatment with a normal-lipidic diet (5% fat as olive oil or sunflower oil, NL-O and NL-S, respectively) by immunocytochemical and Western blot analysis of glial fibrillary acidic protein (GFAP) expression in PSCs, collagen quantification and serum aminotransferase determination.RESULTS: The fatty infiltration in the steatotic livers decreased after the treatment with both NL diets, indicating liver recovery. This decrease was accompanied with a lower collagen deposition and aminotransferase level as well as changes in the PSC population that increased the GFAP expression. The above-mentioned effects were more pronounced in animals fed on NL-O based diet. CONCLUSION: Treatment with a balanced dietenriched in olive oil contributes to the liver recovery from a stea totic process. The PSC phenotype is a marker of this hepatic-recovery model.

  10. Depsides: lichen metabolites active against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Thi Huyen Vu

    Full Text Available A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1, the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV. Eight compounds, including one reported for the first time (2, were isolated and characterized. Two analogs (5, 6 were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6 were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1, bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication.

  11. Depsides: lichen metabolites active against hepatitis C virus.

    Science.gov (United States)

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel; Lohézic-Le Dévéhat, Françoise; Le Seyec, Jacques

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  12. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    Science.gov (United States)

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities. PMID:27094155

  13. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsumoto

    Full Text Available Glycyrrhizin (GL has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc. To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp, replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD, respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2. We found that group 1B PLA2 (PLA2G1B inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.

  14. Effect of caffeine on proliferation,apoptosis in hepatic stellate cell-T6 stimulated by acetaldehyde and its partial mechanisms%咖啡因对乙醛刺激的大鼠肝星状细胞HSC-T6增殖、凋亡的影响及部分作用机制代

    Institute of Scientific and Technical Information of China (English)

    代雪飞; 吕雄文; 管文婕; 杨万枝; 李俊

    2011-01-01

    目的 探讨咖啡因(CAF)对乙醛刺激的大鼠肝星状细胞(HSC)-T6增殖、凋亡的影响及部分作用机制.方法用不同浓度的CAF(0.5、1、2、4、8 mmol/L)对乙醛刺激的HSC-T6进行处理,四甲基偶氮唑蓝(MTT)法检测细胞增殖;流式细胞仪检测细胞凋亡及细胞周期分布;RT-PCR法检测HSC-T6中平滑肌肌动蛋白(α-SMA)、肿瘤坏死因子相关凋亡诱导配体(TRAIL)受体DR4、DR5的mRNA表达.结果 CAF对乙醛刺激的大鼠HSC-T6增殖具有抑制作用,阻滞细胞于G0/G1期;能够明显下调HSC-T6中α-SMA的mRNA表达,上调DR4、DR5的mRNA表达.结论 CAF对乙醛刺激的HSC-T6增殖具有抑制作用,并能够促进其凋亡,其机制可能与TRAIL受体DR4、DR5的表达有关.%Objective To explore the effect of caffeine on proliferation, apoptosis in hepatic stellate cell-T6( HSCT6 ) stimulated by acetaldehyde and its partial mechanisms. Methods HSC-T6 stimulated by acetaldehyde was incubated with different doses of caffeine( 0. 5 ,1 .2 ,4 ,8 mmol/L ) , cell proliferation was analyzed by MTT colorimetric assay, apoptosis rate and the cell cycle distribution were analyzed by flow cytometry( FCM ). The mRNA expressions of a-SMA.TRAIL receptor DR4 and DR5 were measured by RT-PCR. Results Caffeine could inhibit HSCT6 stimulated by acetaldehyde,the cells were accumulated in the G0/G1 phase. The mRNA expression levels of αSMA decreased,but DR4 and DR5 increased. Conclusion Caffeine can inhibit the growth of HSC-T6 stimulated by acetaldehyde and promote the apoptosis,the mechanisms may be related to the expression of TRAIL receptor DR4 and DR5.

  15. Overexpression of hepatic plasminogen activator inhibitor type 1 mRNA in rabbits with fatty liver

    Institute of Scientific and Technical Information of China (English)

    Jian-Gao Fan; Liang-Hua Chen; Zheng-Jie Xu; Min-De Zeng

    2001-01-01

    @@ INTRODUCTION Plasminogen activator inhibitor type 1 ( PAI-I ), an approximately Mr 50000 glycoprotein, is the major physiological inhibitor of plasminogen activators. It is not only the priming factor for atherosclerosis and coronary thrombosis[1-3] , but also participates in the genesis of chronic hepatitis and liver fibrosis[4-11] . However, there has been no available report yet about the research of hepatic PAl-1 gene expression in hyperlipidemia and fatty liver. The present study aimed to explore the change of hepatic PAl-1 mRNA and its plasma activity by means of animal model.

  16. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia.

    Science.gov (United States)

    Hilliard, Kristie L; Allen, Eri; Traber, Katrina E; Kim, Yuri; Wasserman, Gregory A; Jones, Matthew R; Mizgerd, Joseph P; Quinton, Lee J

    2015-10-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (10(6) CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3(-/-)). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3(-/-) mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3(-/-) mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3(-/-) mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  17. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    Science.gov (United States)

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  18. Female hepatology: Favorable role of estrogen in chronic liver disease with hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chronic hepatitis B virus (HBV) infection is the most common cause of hepatic fibrosis and hepatocellular carcinoma (HCC), mainly as a result of chronic necroinflammatory liver disease. A characteristic feature of chronic hepatitis B infection, alcoholic liver disease and nonalcoholic fatty liver disease (NAFLD) is hepatic steatosis. Hepatic steatosis leads to an increase in lipid peroxidation in hepatocytes, which, in turn, activates hepatic stellate cells (HSCs). HSCs are the primary target cells for inflammatory and oxidative stimuli, and these cells produce extracellular matrix components.Chronic hepatitis B appears to progress more rapidly in males than in females, and NAFLD, cirrhosis and HCC are predominately diseases that tend to occur in men and postmenopausal women. Premenopausal women have lower hepatic iron stores and a decreased production of proinflammatory cytokines. Hepatic steatosis has been observed in aromatase-deficient mice, and has been shown to decrease in animals after estradiol treatment. Estradiol is a potent endogenous antioxidant which suppresses hepatic fibrosis in animal models, and attenuates induction of redox sensitive transcription factors, hepatocyte apoptosis and HSC activation by inhibiting a generation of reactive oxygen species in primary cultures. Variant estrogen receptors are expressed to a greater extent in male patients with chronic liver disease than in females. These lines of evidence suggest that the greater progression of hepatic fibrosis and HCC in men and postmenopausal women may be due, at least in part, to lower production of estradiol and a reduced response to the action of estradiol. A better understanding of the basic mechanisms underlying the sex-associated differences in hepatic fibrogenesis and carciogenesis may open up new avenues for the prevention and treatment of chronic liver disease.

  19. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  20. Effect of Emodin on the Cell Proliferation and Extracellular Signal - regulated Kinase in Hepatic Stellate Cell-T6%大黄素对肝星状细胞增殖及细胞外信号调节激酶的影响

    Institute of Scientific and Technical Information of China (English)

    喻剑华; 黄兆胜; 赵珍东

    2012-01-01

    Objectives: To explore the effect of emodin on the cell proliferation and extracellular signal — regulate kinase in hepatic stellate cell -T6. Methods:The immortalized rat hepatic stellate cell line HSC -T6 was commonly cultured after revival ,and was allocated into normal control group and treated with different concentrations emodin. The cell proliferation was assessed via MTT assay,and cell cycle was analyzed by flow cytometry,and the expression of ERK1 mRNA was measured by semi - quantitative RT - PCR, and the expression of ERK, by immunohistochemistry. Results: After intervention of different concentration emodin(the extreme concentrations are 20μmol/mL,40μmol/mL,60μmol/mL respectively) ,the inhibition rates of proliferation increased significantly(compared with the normal group,P <0. 05, P < 0.01) and had dose -dependent manner. In cell cycle progression,emodin can inhibit cell cycle and the cell at G0/G1 phase increase obviously but descend at S phase, and G2/M phase decrease when emodin concentration is at 40 — 60μmol/mL(compared with the normal group,P<0.05). After exposure to emodin,the expressions of ERK1 mRNA are obviously downregulated,and there is statistical significance compared with the normal group(P<0.05,P<0.01). Im-munohistiochemical results showed that the position cells ERK, positive expression reduced obviously and the strength decrease. Conclusion: Emodin can inhibit the proliferation of HSC -T6,depress cell cycle at G0/G1 phase and restrain the expressions of ERK, and ERK, mRNA in HSC - T6.%目的:观察大黄素对HSC - T6细胞增殖及细胞外信号激酶(ERK1)表达的影响.方法:将培养细胞分成正常组和大黄素不同浓度干预组(大黄素终浓度分别为20μmol/L、40μmol/L、60μmol/L),采用MTT法观察大黄素对HSC - T6增殖的影响;采用流式细胞仪观察各组细胞周期的变化;采用反转录聚合酶链式反应(RT -PCR)半定量法观察ERK1mRNA的表达;采用

  1. Impact of artesunate on the expression and secretion of transforming growth factor-β1 of primary rat hepatic stellate cells%青蒿琥酯对大鼠原代肝星状细胞产生与分泌转化生长因子β1的影响

    Institute of Scientific and Technical Information of China (English)

    王媛; 方步武; 彭龙希

    2012-01-01

    目的 探讨青蒿琥酯对大鼠原代肝星状细胞(HSC)增殖的影响,从抑制HSC表达、生成和分泌转化生长因子β1 (TGF β1)这一环节探讨其抗肝纤维化的机制. 方法 分离大鼠HSC于培养瓶中原代培养10d,已处于培养活化状态,将HSC分为实验组和对照组,实验组以青蒿琥酯(终浓度分别为125、150、175、200、225μmol/L)作用24、48、72 h.以四甲基偶氮唑盐(MTT)法检测细胞增殖率,RT-PCR法检测HSC中TGFβ1 mRNA的表达水平,Western blot法分析TGFβ1蛋白水平的变化,酶联免疫吸附法测定培养上清液中TGFβ1含量.样本均数比较采用单因素方差分析,两样本均数比较采用独立样本t检验. 结果 不同浓度青蒿琥酯对培养活化的HSC均有明显抑制作用,且呈剂量-效应关系和时间-效应关系,作用24h时,125、150、175、200、225μmol/L青蒿琥酯对HSC的抑制率分别为6.06%±1.44%、21.47%±5.57%、42.00%±7.36%、67.12%±4.55%、79.83%±3.67%(P值均<0.01).青蒿琥酯作用HSC 24h能明显抑制、下调HSC表达TGFβ1mRNA,呈剂量-效应关系(P<0.01);并且明显降低细胞内TGFβ1蛋白及细胞上清液中TGFβ1水平,0、150、175、200μmol/L青蒿琥酯处理组TGFβ 1分别为(164.24±6.88) pg/ml、(102.68±4.45)pg/ml、(86.54±5.56)pg/ml、(56.55±5.66) pg/ml(P值均<0.01).结论 青蒿琥酯呈剂量和时间依赖性地抑制原代分离培养活化的HSC,青蒿琥酯在体外具有抗肝纤维化的作用,与其下调TGFβ1基因及蛋白的表达、翻译与TGFβ1分泌至细胞外等环节有关.%Objective To investigate the impact of the Artemisia annua plant-derived drug,artesunate,on proliferation of primary rat hepatic stellate cells (HSCs),and to analyze the underlying molecular mechanisms of its anti-fibrogenic effects involving the inhibition of transforming growth factor-beta 1 (TGF-β1) expression and secretion in liver.Method Isolated,cultured,and activated primary rat

  2. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    Directory of Open Access Journals (Sweden)

    Yoko Endo

    Full Text Available Quiescent hepatic stem cells (HSCs can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1, an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  3. Virocidal activity of Egyptian scorpion venoms against hepatitis C virus

    OpenAIRE

    El-Bitar, Alaa MH; Sarhan, Moustafa MH; Aoki, Chie; Takahara, Yusuke; Komoto, Mari; Deng, Lin; Moustafa, Mohsen A; Hotta, Hak

    2015-01-01

    Background Hepatitis C virus (HCV) is a major global health problem, causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Development of well-tolerated regimens with high cure rates and fewer side effects is still much needed. Recently, natural antimicrobial peptides (AMPs) are attracting more attention as biological compounds and can be a good template to develop therapeutic agents, including antiviral agents against a variety of viruses. Various AMPs have been characteri...

  4. Ultrastructure of oval cells in children with chronic hepatitis B, with special emphasis on the stage of liver fibrosis: The first pediatric study

    Institute of Scientific and Technical Information of China (English)

    Maria Elzbieta Sobaniec-Lotowska; Joanna Maria Lotowska; Dariusz Marek Lebensztejn

    2007-01-01

    AIM: To investigate the ultrastructure of oval ceils in children with chronic hepatitis B, with special emphasis on their location in areas of collagen fibroplasia.METHODS: Morphological investigations were conducted on biopsy material obtained from 40 children,aged 3-16 years with chronic hepatitis B. The stage of fibrosis was assessed histologically using the arbitrary semiquantitative numerical scoring system proposed by Ishak et al. The material for ultrastructural investigation was fixed in glutaraldehyde and paraformaldehyde and processed for transmission-electron microscopic analysis.RESULTS: Ultrastructural examination of biopsy specimens obtained from children with chronic hepatitis B showed the presence of two types of oval cells, the hepatic progenitor cells and intermediate hepatic-like cells. These cells were present in the parenchyma and were seen most commonly in areas of intense periportal fibrosis (at least stage 2 according to Ishak et al) and in the vicinity of the limiting plate of the lobule. The activated nonparenchymal hepatic cells, i.e. transformed hepatic stellate cells and Kupffer cells were seen in close proximity to the intermediate hepatic-like cells.CONCLUSION: We found a distinct relationship between the prevalence of oval cells (hepatic progenitor cells and intermediate hepatocyte-like cells) and fibrosis stage in pediatric patients with chronic hepatitis B.

  5. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Derek M Erion

    Full Text Available Hyperglycemia resulting from type 2 diabetes mellitus (T2DM is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since activation of glucokinase in β-cells is associated with increased risk of hypoglycemia, we hypothesized that selectively activating hepatic glucokinase would reduce fasting and postprandial glucose with minimal risk of hypoglycemia. Previous studies have shown that hepatic glucokinase overexpression is able to restore glucose homeostasis in diabetic models; however, these overexpression experiments have also revealed that excessive increases in hepatic glucokinase activity may also cause hepatosteatosis. Herein we sought to evaluate whether liver specific pharmacological activation of hepatic glucokinase is an effective strategy to reduce hyperglycemia without causing adverse hepatic lipids changes. To test this hypothesis, we evaluated a hepatoselective glucokinase activator, PF-04991532, in Goto-Kakizaki rats. In these studies, PF-04991532 reduced plasma glucose concentrations independent of changes in insulin concentrations in a dose-dependent manner both acutely and after 28 days of sub-chronic treatment. During a hyperglycemic clamp in Goto-Kakizaki rats, the glucose infusion rate was increased approximately 5-fold with PF-04991532. This increase in glucose infusion can be partially attributed to the 60% reduction in endogenous glucose production. While PF-04991532 induced dose-dependent increases in plasma triglyceride concentrations it had no effect on hepatic triglyceride concentrations in Goto-Kakizaki rats. Interestingly, PF-04991532 decreased intracellular AMP concentrations and increased hepatic futile cycling. These data suggest that

  6. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats.

    Science.gov (United States)

    Erion, Derek M; Lapworth, Amanda; Amor, Paul A; Bai, Guoyun; Vera, Nicholas B; Clark, Ronald W; Yan, Qingyun; Zhu, Yimin; Ross, Trenton T; Purkal, Julie; Gorgoglione, Matthew; Zhang, Guodong; Bonato, Vinicius; Baker, Levenia; Barucci, Nicole; D'Aquila, Theresa; Robertson, Alan; Aiello, Robert J; Yan, Jiangli; Trimmer, Jeff; Rolph, Timothy P; Pfefferkorn, Jeffrey A

    2014-01-01

    Hyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since activation of glucokinase in β-cells is associated with increased risk of hypoglycemia, we hypothesized that selectively activating hepatic glucokinase would reduce fasting and postprandial glucose with minimal risk of hypoglycemia. Previous studies have shown that hepatic glucokinase overexpression is able to restore glucose homeostasis in diabetic models; however, these overexpression experiments have also revealed that excessive increases in hepatic glucokinase activity may also cause hepatosteatosis. Herein we sought to evaluate whether liver specific pharmacological activation of hepatic glucokinase is an effective strategy to reduce hyperglycemia without causing adverse hepatic lipids changes. To test this hypothesis, we evaluated a hepatoselective glucokinase activator, PF-04991532, in Goto-Kakizaki rats. In these studies, PF-04991532 reduced plasma glucose concentrations independent of changes in insulin concentrations in a dose-dependent manner both acutely and after 28 days of sub-chronic treatment. During a hyperglycemic clamp in Goto-Kakizaki rats, the glucose infusion rate was increased approximately 5-fold with PF-04991532. This increase in glucose infusion can be partially attributed to the 60% reduction in endogenous glucose production. While PF-04991532 induced dose-dependent increases in plasma triglyceride concentrations it had no effect on hepatic triglyceride concentrations in Goto-Kakizaki rats. Interestingly, PF-04991532 decreased intracellular AMP concentrations and increased hepatic futile cycling. These data suggest that hepatoselective glucokinase

  7. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2*

    Science.gov (United States)

    Hogan, Meghan F.; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O.; Hull, Rebecca L.; Kahn, Steven E.; Montminy, Marc

    2015-01-01

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis. PMID:26342077

  8. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2.

    Science.gov (United States)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O; Hull, Rebecca L; Kahn, Steven E; Montminy, Marc

    2015-10-23

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis.

  9. Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats.

    Science.gov (United States)

    Gavrilovic, Ljubica; Spasojevic, Natasa; Dronjak, Sladjana

    2012-03-01

    The sympatho-adrenal system represents one of the main systems involved in the response to stressful events because its stress-induced activation results in an increased release of catecholamines. Exercise training acts as an important modulator of sympatho-adrenal system, adrenal medulla and stellate ganglia being two components of this system. This study aimed at investigating physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase in the adrenal medulla and stellate ganglia of chronically psychosocially stressed adult rats exposed daily to 20-min treadmill exercise for 12 weeks, using TaqMan RT-PCR assay. Chronic psychosocial stress decreased gene expression of the examined enzymes in the adrenal medulla and treadmill exercise did not lead to further modulation of the corresponding gene expression. On the other hand, chronic psychosocial stress produced a significant increase of TH (about 51%) and DBH (about 103%) gene expression in stellate ganglia, while treadmill exercise decreased gene expression of these enzymes to control levels in psychosocially stressed rats. Our data indicate that treadmill exercise leads to a decreased gene transcription of catecholamine biosynthetic enzymes in stellate ganglia and attenuation of cardiac noradrenaline production in stressful situations. Reduction of catecholamine synthesis in stellate ganglia may be linked to the beneficial effects of treadmill exercise on cardiovascular system in stressed animals.

  10. Utility of Stellate Ganglion Block in Atypical Facial Pain: A Case Report and Consideration of Its Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Harsha Shanthanna

    2013-01-01

    Full Text Available We present this report of a young patient with chronic severe atypical facial pain who was successfully controlled with stellate ganglion block under ultrasound guidance. The patient had a history of severe disabling, unilateral, facial neuropathic pain with minimal response to analgesic medications. Upon assessment the patient had features suggestive of trigeminal neuralgia, although postherpetic neuralgia could not be ruled out. As a diagnostic test intervention, stellate ganglion block was tried under ultrasound guidance. The patient showed significant improvement in pain control and functional disability lasting beyond 10 weeks. Subsequent blocks reinforced the analgesia. Atypical facial pain has several differential diagnoses. The involvement of sympathetic system in its causation or sustenance is uncertain. Stellate ganglion block achieves sympathetic block of cervicofacial structures, and its blockade has been shown to affect chronic pain conditions. Although its mechanism is not clear, one has to consider its possible role in conditions of stress apart from directly controlling the sympathetic activity. There is certainly a role in exploring the potential benefits of stellate ganglion block in such clinical conditions. The technique of stellate block under ultrasound is also described, as it influences the safety and precision of the block.

  11. Utility of stellate ganglion block in atypical facial pain: a case report and consideration of its possible mechanisms.

    Science.gov (United States)

    Shanthanna, Harsha

    2013-01-01

    We present this report of a young patient with chronic severe atypical facial pain who was successfully controlled with stellate ganglion block under ultrasound guidance. The patient had a history of severe disabling, unilateral, facial neuropathic pain with minimal response to analgesic medications. Upon assessment the patient had features suggestive of trigeminal neuralgia, although postherpetic neuralgia could not be ruled out. As a diagnostic test intervention, stellate ganglion block was tried under ultrasound guidance. The patient showed significant improvement in pain control and functional disability lasting beyond 10 weeks. Subsequent blocks reinforced the analgesia. Atypical facial pain has several differential diagnoses. The involvement of sympathetic system in its causation or sustenance is uncertain. Stellate ganglion block achieves sympathetic block of cervicofacial structures, and its blockade has been shown to affect chronic pain conditions. Although its mechanism is not clear, one has to consider its possible role in conditions of stress apart from directly controlling the sympathetic activity. There is certainly a role in exploring the potential benefits of stellate ganglion block in such clinical conditions. The technique of stellate block under ultrasound is also described, as it influences the safety and precision of the block. PMID:24065993

  12. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    Science.gov (United States)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists. PMID:24025677

  13. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    Science.gov (United States)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  14. Variability of human hepatic UDP-glucuronosyltransferase activity

    NARCIS (Netherlands)

    Little, JM; Lester, R; Kuipers, F; Vonk, R; Mackenzie, PI; Drake, RR; Frame, L; Radominska-Pandya, A

    1999-01-01

    The availability of a unique series of liver samples from human subjects, both control patients (9) and those with liver disease (6; biliary atresia (2), retransplant, chronic tyrosinemia type I, tyrosinemia, Wilson's disease) allowed us to characterize human hepatic UDP-glucuronosyltransferases usi

  15. 肝星状细胞条件培养基对肝癌细胞PLC/PRF/5耐药性的影响及其机制%Effect of hepatic stellate cell condition medium on chemo-resistance of hepatocellular carcinoma PLC/PRF/5 cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    喻国锋; 井莹莹; 寇兴瑞; 李蓉; 吴孟超; 卫立辛

    2013-01-01

    目的:探讨肝星状细胞条件培养基(hepatic stellate cell conditioned medium,HSC-CM)对人肝癌PLC/PRF/5细胞耐药性的影响及其可能的机制.方法:用无血清RPMI 1640培养肝星状细胞LX-2,使其在缺营养的环境下活化,收集其条件培养上清即为HSC-CM.PLC/PRF/5细胞在HSC-CM条件下培养24 h后,顺铂处理12 h或24 h,采用流式细胞术检测PLC/PRF/5细胞的凋亡情况,MTT法检测PLC/PRF/5细胞的增殖,real-time PCR检测PLC/PRF/5细胞上皮间质转化(epithelial mesenchymal transition,EMT)相关基因的表达水平.结果:顺铂组12和24h两个时间点PLC/PRF/5细胞的凋亡率为(22.34±1.12)%和(26.78±1.56)%;HSC-CM+顺铂组细胞的凋亡率为(17.22±1.42)%和(21.52±1.76)%,顺铂组细胞凋亡率显著高于HSC-CM+顺铂组(P<0.05).同在这两个时间点,顺铂组和HSC-CM+顺铂组PLC/PRF/5细胞的增殖活性分别为(68.65±2.56)%和(79.47 ±1.43)%,(46.54 ±3.65)%和(62.77±2.89)%,HSC-CM+顺铂组细胞增殖活性均高于顺铂组(P<0.05).Real-time PCR结果显示,与顺铂组相比较,HSC-CM+顺铂组PLC/PRF/5细胞中上皮标记物钙黏蛋白(E-cadherin)的表达下降(P<0.05),而间质细胞标记物神经黏附素(N-cadherin)、波形蛋白(vimentin)以及EMT相关转录因子Snail和ZEB1的表达显著上调(P<0.01).结论:HSC-CM可能通过诱导PLC/PRF/5细胞发生EMT,从而增强PLC/PRF/5细胞对顺铂的抵抗作用.

  16. Retinol metabolism in hepatic stellate cells : a new vision

    NARCIS (Netherlands)

    Bin Md Ajat, M.M.

    2015-01-01

    Vitamin A (all-trans-retinol) or its derivatives are involved in many physiological processes ranging from vision to cells differentiation. In mammals retinol is stored as retinyl ester (RE) and the liver is the major site for RE storage in the body. The liver is made of various cell types and REs a

  17. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Nielsen, M.J.; Nielsen, Signe Holm; Hansen, N.U.B.;

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate...

  18. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    Energy Technology Data Exchange (ETDEWEB)

    Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel); Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv (Israel); Shaul, Yosef [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  19. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  20. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    DEFF Research Database (Denmark)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu;

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein...... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...

  1. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  2. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  3. Vitamin A-induced cholestatic hepatitis: a case report

    DEFF Research Database (Denmark)

    Becker, P.; Maurer, B.; Schirrmacher, P.;

    2007-01-01

    We report a case of intrahepatic cholestasis due to chronic vitamin A supplementation. A 70-year-old woman was admitted to the hospital for jaundice and reduced nutritional and general status with a 2-month history of increasing cholestasis. Some years previously she had suffered from breast...... and ovarian cancer with subsequent surgery and chemotherapy. Chemotherapy was terminated one month before elevated serum transaminase activities and cholestatic serum markers were noted. Following the chemotherapy, supportive care included weekly vitamin A injections (100,000 IU per injection). Liver biopsy...... showed an acute toxic liver injury with focal parenchymal necrosis, sinusoidal lesions, inflammatory infiltrate (round cells, macrophages), and activation and proliferation of stellate cells. The hepatic vitamin A concentration was found to be significantly elevated. There were no signs of intrahepatic...

  4. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats.

    Science.gov (United States)

    Tripathi, Dinesh M; Erice, Eva; Lafoz, Erica; García-Calderó, Héctor; Sarin, Shiv K; Bosch, Jaime; Gracia-Sancho, Jordi; García-Pagán, Juan Carlos

    2015-09-01

    Increased hepatic vascular resistance is the primary factor in the development of portal hypertension. Metformin ameliorates vascular cells function in several vascular beds. Our study was aimed at evaluating the effects, and the underlying mechanisms, of metformin on hepatic and systemic hemodynamics in cirrhotic rats and its possible interaction with the effects of propranolol (Prop), the current standard treatment for portal hypertension. CCl4-cirrhotic rats received by gavage metformin 300 mg/kg or its vehicle once a day for 1 wk, before mean arterial pressure (MAP), portal pressure (PP), portal blood flow (PBF), hepatic vascular resistance, and putative molecular/cellular mechanisms were measured. In a subgroup of cirrhotic rats, the hemodynamic response to acute Prop (5 mg/kg iv) was assessed. Effects of metformin ± Prop on PP and MAP were validated in common bile duct ligated-cirrhotic rats. Metformin-treated CCl4-cirrhotic rats had lower PP and hepatic vascular resistance than vehicle-treated rats, without significant changes in MAP or PBF. Metformin caused a significant reduction in liver fibrosis (Sirius red), hepatic stellate cell activation (α-smooth muscle actin, platelet-derived growth factor receptor β polypeptide, transforming growth factor-βR1, and Rho kinase), hepatic inflammation (CD68 and CD163), superoxide (dihydroethidium staining), and nitric oxide scavenging (protein nitrotyrosination). Prop, by decreasing PBF, further reduced PP. Similar findings were observed in common bile duct ligated-cirrhotic rats. Metformin administration reduces PP by decreasing the structural and functional components of the elevated hepatic resistance of cirrhosis. This effect is additive to that of Prop. The potential impact of this pharmacological combination, otherwise commonly used in patients with cirrhosis and diabetes, needs clinical evaluation. PMID:26138461

  5. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    Science.gov (United States)

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  6. Pancreatic stellate cells as a morphological basis for the development of pancreatic fibrosis

    Directory of Open Access Journals (Sweden)

    Sirenko O.Yu.

    2010-01-01

    Full Text Available Last decade in Ukraine and many countries there is a clear tendency to increase the number of cases of pancreatic diseases. For more than century study of the pathogenesis of chronic pancreatitis it has been proposed many hypotheses. Some of them were eventually dismissed, partially confirmed by other clinical and experimental research. Significant progress in understanding the process of fibrosis in the pancreas is associated with the identification, isolation and description of pancreatic stellate cells. They present in periacinar space and have long cytoplasmic processes covered the basis of acinus. This cells can be changed from stable fat-storing to miofibroblastic phenotype. Pancreatic stellate cells perform a wide range of functions, they have the ability to contraction, proliferation, they can synthesize extracellular matrix components and influence on the surrounding cellular environment. These cells can be regarded as a morphological basis for the development of pancreatic fibrosis. Currently, for the treatment of chronic pancreatitis, the main therapy is directed on depression of secretory activity of pancreas and inactivation biogenic amines in blood. Treatment of chronic pancreatitis should aim to influence the key mechanisms of pancreatic stellate cells activation and proliferation. Understanding the biology of this cells can open potential therapeutic targets for treatment and prevention of chronic pancreatitis and other diseases accompanied by pancreatic fibrosis.

  7. Interplay of Matrix Stiffness and c-SRC in Hepatic Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jan eGörtzen

    2015-12-01

    Full Text Available Introduction:In liver fibrosis activation of hepatic stellate cells (HSC comprises phenotypical change into profibrotic and myofibroplastic cells with increased contraction and secretion of extracellular matrix (ECM proteins. The small GTPase RhoA orchestrates cytoskeleton formation, migration and mobility via non-receptor tyrosine-protein kinase c-SRC (cellular sarcoma in different cells. Furthermore, RhoA and its downstream effector Rho-kinase also play a crucial role in hepatic stellate cells and hepatic fibrogenesis. Matrix stiffness promotes HSC activation via cytoskeleton modulation. This study investigated the interaction of c-SRC and RhoA under different matrix stiffness conditions.Methods:Liver fibrosis was induced in rats using bile duct ligation (BDL, thioacetamide (TAA or carbon tetrachloride (CCl4 models. mRNA levels of albumin, PDGF-R, RHOA, COL1A1 and αSMA were analyzed via qRT-PCR. Western Blots using phospho-specific antibodies against p-c-SRC418 and p-c-SRC530 analyzed the levels of activating and inactivating c-SRC respectively. LX2 cells and hepatocytes were cultured on acrylamide gels of 1kPa and 12kPa or on plastic to mimic non-fibrotic, fibrotic or cirrhotic environments, then exposed to SRC-inhibitor PP2. Overexpression of RhoA was performed by transfection using RhoA-plasmids. Additionally, samples from cirrhotic patients and controls were collected at liver transplantations and tumor resections were analyzed for RhoA and c-SRC protein expression by Western Blot.Results:Transcription of albumin and RhoA was decreased, whereas transcription and activation of c-SRC was increased in hepatocytes cultured on 12kPa compared to 1kPa gels. LX2 cells cultured on 12kPa gels showed upregulation of RHOA, COL1A1 and αSMA mRNA levels. Inhibition of c-SRC by PP2 in LX2 cells led to an increase in COL1A1 and αSMA most prominently in 12kPa gels. In LX2 cells with RhoA overexpression, c-SRC inhibition by PP2 failed to improve fibrosis

  8. Comparative azo reductase activity of red azo dyes through caecal and hepatic microsomal fraction in rats.

    Science.gov (United States)

    Singh, S; Das, M; Khanna, S K

    1997-09-01

    In order to study the rate of formation of toxic aromatic amines, anaerobic reduction of four red azo dyes viz. amaranth, carmoisine, fast Red E and ponceau 4R was investigated by incubating caecal content and hepatic microsomal fraction of rats with 37.5 microM concentration of dyes in sodium phosphate buffer pH 7.4 using NADPH generating system, glucose oxidase system and nitrogen as the gaseous phase. Caecal suspension exhibited higher azo reductase activity than that of hepatic microsomal fraction using any of the 4 azo dyes. Caecal microbes showed maximal azo reductase activity when ponceau 4R was used as a substrate followed by fast Red E and carmoisine, while with amaranth the activity was minimum. Similarly ponceau 4 R exhibited maximum hepatic microsomal azo reductase activity followed by fast Red E and carmoisine whereas, amaranth had minimum activity. Caecal flora possessed almost 17 fold higher degradative capability of ponceau 4 R and fast Red E colourants than the hepatic microsomal fraction. The higher reductive ability through caecal flora for ponceau 4R and fast Red E signifies the formation of more aromatic amines which may be re-absorbed through the intestine to be either eliminated through urine as conjugates or retained in the target tissues to elicit toxic effects.

  9. Secretion and apparent activation of human hepatic lipase requires proper oligosaccharide processing in the endoplasmic reticulum

    NARCIS (Netherlands)

    A.J.M. Verhoeven (Adrie); B.P. Neve (Bernadette); H. Jansen (Hans)

    1999-01-01

    textabstractHuman hepatic lipase (HL) is a glycoprotein with four N-linked oligosaccharide side chains. The importance of glycosylation for the secretion of catalytically active HL was studied in HepG2 cells by using inhibitors of intracellular trafficking, N-glycosylat

  10. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    Science.gov (United States)

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  11. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    Science.gov (United States)

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  12. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Science.gov (United States)

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  13. Displaced avulsion fractures of the posterior cruciate ligament: Treated by stellate steel plate fixation

    Directory of Open Access Journals (Sweden)

    Lijun Li

    2015-01-01

    Full Text Available Background: The open reduction with internal fixation is an effective approach for treatment of avulsion fracture of posterior cruciate ligament. The previously used internal fixation materials including hollow screws, absorbable screw, tension bands and sutures have great defects such as insufficient fixation strength, susceptibility to re-fracture, etc. Stellate steel plate is novel material for internal fixation which has unique gear-like structure design. We used stellate steel plate for treatment of displaced avulsion fractures of posterior cruciate ligament in this study. Materials and Methods: 14 patients (9 men, 5 women; aged, 19-35 years; mean age, 28 years with displaced avulsion fractures of the tibial insertion of the posterior cruciate ligament were retrospectively analyzed between June 2009 and June 2011. The mean duration from injury to the operation was 8.3 days (range 6-15 days. All the patients were treated with open reduction and internal fixation of a stellate steel plate (DePuy, Raynham, MA 02767, USA. The Lysholm-Tegner knee function score criteria were used to analyze results. Results: The mean followup was 24.6 months (range 18-32 months. After 6 months, all the fractures healed and knee joint activity was normal, with no knee stiffness or instability. The Lysholm-Tegner scores were 97.1 ± 1.7 points at the final followup. Conclusion: Owing to its unique gear structure, the stellate steel plate design can effectively fix an avulsion fracture block and it is a simple operation with short postoperative rehabilitation time and firm fixation.

  14. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.

    Science.gov (United States)

    Shay, Christopher F; Ferrante, Michele; Chapman, G William; Hasselmo, Michael E

    2016-03-01

    Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258

  15. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  16. Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae.

    Science.gov (United States)

    Howarth, Deanna L; Yin, Chunyue; Yeh, Karen; Sadler, Kirsten C

    2013-06-01

    Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzo(mbtps1) mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration. PMID:23697887

  17. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells.

    Directory of Open Access Journals (Sweden)

    Kazuko Ino

    Full Text Available Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP(+CD45(- cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4. Because the vast majority of EGFP(+CD45(- cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs. EGFP(+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1 and angiotensin II (Ang II increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2 and Ang II type 1 receptor (AT1R, were expressed on Ly6C(high monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP(+F4/80(+CCR2(+ monocytic cells and EGFP(+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP(+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP(+ PaSCs in injured mice. We propose that CCR2(+ monocytes migrate into the pancreas possibly via the

  18. Does limited virucidal activity of biocides include duck hepatitis B virucidal action?

    Directory of Open Access Journals (Sweden)

    Sauerbrei Andreas

    2012-10-01

    Full Text Available Abstract Background There is agreement that the infectivity assay with the duck hepatitis B virus (DHBV is a suitable surrogate test to validate disinfectants for hepatitis B virucidal activity. However, since this test is not widely used, information is necessary whether disinfectants with limited virucidal activity also inactivate DHBV. In general, disinfectants with limited virucidal activity are used for skin and sensitive surfaces while agents with full activity are more aggressive. The present study compares the activity of five different biocides against DHBV and the classical test virus for limited virucidal activity, the vaccinia virus strain Lister Elstree (VACV or the modified vaccinia Ankara strain (MVA. Methods Virucidal assay was performed as suspension test according to the German DVV/RKI guideline. Duck hepatitis B virus obtained from congenitally infected Peking ducks was propagated in primary duck embryonic hepatocytes and was detected by indirect immunofluorescent antigen staining. Results The DHBV was inactivated by the use of 40% ethanol within 1-min and 30% isopropanol within 2-min exposure. In comparison, 40% ethanol within 2-min and 40% isopropanol within 1-min exposure were effective against VACV/MVA. These alcohols only have limited virucidal activity, while the following agents have full activity. 0.01% peracetic acid inactivated DHBV within 2 min and a concentration of 0.005% had virucidal efficacy against VACV/MVA within 1 min. After 2-min exposure, 0.05% glutardialdehyde showed a comparable activity against DHBV and VACV/MVA. This is also the case for 0.7% formaldehyde after a contact time of 30 min. Conclusions Duck hepatitis B virus is at least as sensitive to limited virucidal activity as VACV/MVA. Peracetic acid is less effective against DHBV, while the alcohols are less effective against VACV/MVA. It can be expected that in absence of more direct tests the results may be extrapolated to HBV.

  19. The canine hepatic progenitor cell niche: molecular characterisation in health and disease.

    Science.gov (United States)

    Kruitwagen, H S; Spee, B; Viebahn, C S; Venema, H B; Penning, L C; Grinwis, G C M; Favier, R P; van den Ingh, T S G A M; Rothuizen, J; Schotanus, B A

    2014-09-01

    Hepatic progenitor cells (HPCs) are an adult stem cell compartment in the liver that contributes to liver regeneration when replication of mature hepatocytes is insufficient. In this study, laser microdissection was used to isolate HPC niches from the livers of healthy dogs and dogs with lobular dissecting hepatitis (LDH), in which HPCs are massively activated. Gene expression of HPC, hepatocyte and biliary markers was determined by quantitative reverse transcriptase PCR. Expression and localisation of selected markers were further studied at the protein level by immunohistochemistry and immunofluorescent double staining in samples of normal liver and liver from dogs with LDH, acute and chronic hepatitis, and extrahepatic cholestasis. Activated HPC niches had higher gene expression of the hepatic progenitor markers OPN, FN14, CD29, CD44, CD133, LIF, LIFR and BMI1 compared to HPCs from normal liver. There was lower expression of albumin, but activated HPC niches were positive for the biliary markers SOX9, HNF1β and keratin 19 by immunohistochemistry and immunofluorescence. Laminin, activated stellate cells and macrophages are abundant extracellular matrix and cellular components of the canine HPC niche. This study demonstrates that the molecular and cellular characteristics of canine HPCs are similar to rodent and human HPCs, and that canine HPCs are distinctively activated in different types of liver disease. PMID:24923752

  20. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes - Effect of sex and the LIPC promoter variant

    NARCIS (Netherlands)

    Berk-Planken, IIL; Hoogerbrugge, N; Stolk, RP; Bootsma, AH; Jansen, H

    2003-01-01

    OBJECTIVE - Hepatic lipase (HL) is involved in the metabolism of several lipoproteins and may contribute to the atherogenic lipid profile in type 2 diabetes. Little is known about the effect of cholesterol synthesis inhibitors on HL activity in relation to sex and the hepatic lipase gene, the LIPC p

  1. Hepatoprotective activity of Vitex trifolia against carbon tetrachloride-induced hepatic damage

    Directory of Open Access Journals (Sweden)

    Manjunatha B

    2008-01-01

    Full Text Available Aqueous and ethanol extracts of leaf of Vitex trifolia was investigated for hepatoprotective activity against carbon tetrachloride induced liver damage. To assess the hepatoprotective activity of the extracts, various biochemical parameters viz., total bilirubin, total protein, alanine transaminase, aspartate transaminase and alkaline phosphatase activities were determined. Results of the serum biochemical estimations revealed significant reduction in total bilirubin and serum marker enzymes and increase in total protein in the animals treated with ethanol and aqueous extracts. However significant rise in these serum enzymes and decrease in total protein level was noticed in CCl4 treated group indicating the hepatic damage. The hepatoprotective activity is also supported by histological studies of liver tissue. Histology of the liver tissue treated with ethanol and aqueous extracts showed normal hepatic architecture with few fatty lobules. Hence the present study revealed that Vitex trifolia could afford significant protection against CCl 4 induced hepatocellular injury.

  2. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    Science.gov (United States)

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  3. Molecular therapy for hepatic injury and fibrosis: Where are we?

    Institute of Scientific and Technical Information of China (English)

    Colette C Prosser; Roy D Yen; Jian Wu

    2006-01-01

    Hepatic fibrosis is a wound healing response, involving pathways of inflammation and fibrogenesis. In response to various insults, such as alcohol, ischemia, viral agents,and medications or hepatotoxins, hepatocyte damage will cause the release of cytokines and other soluble factors by Kupffer cells and other cell types in the liver.These factors lead to activation of hepatic stellate cells,which synthesize large amounts of extracellular matrix components. With chronic injury and fibrosis, liver architecture and metabolism are disrupted, eventually manifesting as cirrhosis and its complications. In addition to eliminating etiology, such as antiviral therapy and pharmacological intervention, it is encouraging that novel strategies are being developed to directly address hepatic injury and fibrosis at the subcellular and molecular levels. With improvement in understanding these mechanisms and pathways, key steps in injury,signaling, activation, and gene expression are being targeted by molecular modalities and other molecular or gene therapy approaches. This article intends to provide an update in terms of the current status of molecular therapy for hepaticinjury and fibrosis and how far we are from clinical utilization of these new therapeutic modalities.

  4. Antioxidant and Anti-Hepatitis C Viral Activities of Commercial Milk Thistle Food Supplements

    OpenAIRE

    Kevin Anthony; Gitanjali Subramanya; Susan Uprichard; Faiza Hammouda; Mahmoud Saleh

    2013-01-01

    Milk thistle dietary supplements that contain silymarin are widely marketed and used in the USA and other countries for liver enhancement and recovery. More recently, silymarin has also been identified as a possible antiviral for the treatment of hepatitis C virus (HCV) infection. To assess different brands of commercially sold silymarin, 45 products were collected from local stores and analyzed for their silymarin content, antioxidant activities, and antiviral activity against HCV. Antioxida...

  5. Role of the receptor for advanced glycation end products in hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Christina Lohwasser; Daniel Neureiter; Yury Popov; Michael Bauer; Detlef Schuppan

    2009-01-01

    AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGEBSA) and Nε-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro. RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α. RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1(Ⅰ) mRNA by AGE-BSA. CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.

  6. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation

    Science.gov (United States)

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.

  7. Hepatitis D in Chronic Active Hepatitis B: Prevalence, Liver Enzyme Levels and Histopathology- an Epidemiological Study in Shiraz, Southern Iran, 2003-2004

    Directory of Open Access Journals (Sweden)

    Farnaz Khademolhosseini

    2008-12-01

    Full Text Available Background and Aims: At least 5% of hepatitis B carriers worldwide are infected with Hepatitis D virus (HDV. This study aims to determine the prevalence, transaminase levels and histopathological findings of HDV among patients with chronic active hepatitis B in southern Iran.Methods: During 2003-2004, 93 patients >15 years with chronic active hepatitis B were enrolled from referrals to Shiraz University of Medical Sciences in southern Iran.Results: Nine (9.7% patients were seropositive for the anti HDV antibody. 76.3% of patients were male and among the HDV positive group, all subjects were male too. A significantly higher AST and more advanced grade and stage of liver disease were observed in the HDV positive group. The most common mode of transmission in the positive group was intravenous drug use.Conclusions: The risk of liver disease progression in chronic hepatitis B appears to be higher in HDV infected patients. Intravenous drug abuse is an important risk factor for acquiring HDV infection. Checking anti-HDV is suggested in any patient with positive HBsAg, especially in males or those with history of intravenous drug abuse.

  8. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Hyon-Seung Yi

    Full Text Available Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3, a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs and natural killer (NK cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice.Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4 or bile duct ligation (BDL for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA. In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1, and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.

  9. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  10. A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice.

    Science.gov (United States)

    Li, Shuang; Lv, Yi-Fei; Su, Hou-Qiang; Zhang, Qian-Nan; Wang, Li-Rong; Hao, Zhi-Ming

    2016-01-01

    Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138-159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1-149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis. PMID:27562139

  11. Hepatitis A vaccine associated with autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    PA Berry; G Smith-Laing

    2007-01-01

    To describe a case of probable relapsing autoimmune hepatitis associated with vaccination against hepatitis A virus (HAV). A case report and review of literature were written concerning autoimmune hepatitis in association with hepatitis A and other hepatotropic viruses. Soon after the administration of formalin-inactivated hepatitis A vaccine, a man who had recently recovered from an uncharacterized but self-limiting hepatitic illness,experienced a severe deterioration (AST 1687 U/L, INR 1.4). Anti-nuclear antibodies were detectable, and liver biopsy was compatible with autoimmune hepatitis. The observation supports the role of HAV as a trigger of autoimmune hepatitis. Studies in helper T-cell activity and antibody expression against hepatic proteins in the context of hepatitis A infection are summarized, and the concept of molecular mimicry with regard to other forms of viral hepatitis and autoimmunity is briefly explored.

  12. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis.

    Science.gov (United States)

    Lian, Fan; Wang, Yu; Xiao, Youjun; Wu, Xiwen; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-10-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T‑cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. a mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA‑induced liver injury and a normal control. Blood samples were obtained to detect the levels of aminotransferases and inflammatory cytokines. Liver specimens were collected, and hematoxylin‑eosin staining was used for histopathological examination and detection. Apoptosis was evaluated using the terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling (TUNEL) method. The expression levels of apoptosis‑associated genes and proteins were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that FXR was downregulated at the mRNA and protein level in the liver specimens of mice induced with ConA‑induced hepatitis. Increased levels of aminotransferases and inflammatory cytokines, including interferon‑γ, tumor necrosis factor‑α, interleukin (IL)‑4 and IL‑2, were detected in ConA‑treated mice. The mice pretreated with the FXR agonist, CDCA, were more resistant to ConA hepatitis, as indicated by reduced levels of alanine transaminase/aspartate aminotransferase and aminotransferases. The activation of FXR ameliorated hepatocyte apoptosis, as demonstrated by TUNEL analysis and downregulation of the Fas/Fas ligand, tumor necrosis factor‑related apoptosis‑inducing ligand and caspase‑3. Taken together, FXR activation ameliorated liver injury and suppressed inflammatory cytokines in ConA‑induced hepatitis. FXR, therefore, exerts a protective role against ConA-induced apoptosis. PMID

  13. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model.

    Science.gov (United States)

    Athanason, Mark G; Ratliff, Whitney A; Chaput, Dale; MarElia, Catherine B; Kuehl, Melanie N; Stevens, Stanley M; Burkhardt, Brant R

    2016-11-15

    PANcreatic-DERived factor (PANDER) is a member of a superfamily of FAM3 proteins modulating glycemic levels by metabolic regulation of the liver and pancreas. The precise PANDER-induced hepatic signaling mechanism is still being elucidated and has been very complex due to the pleiotropic nature of this novel hormone. Our PANDER transgenic (PANTG) mouse displays a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased, a phenomena observed in type 2 diabetes. To examine the complex PANDER-induced mechanism of SHIR, we utilized quantitative mass spectrometry-based proteomic analysis using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to reveal the global hepatic proteome differences within the PANTG under the metabolic states of fasting, fed and insulin-stimulated conditions. Proteomic analysis identified lipid metabolism as one of the top cellular functions differentially altered in all metabolic states. Differentially expressed proteins within the PANTG having a lipid metabolic role included ACC, ACLY, CD36, CYP7A1, FASN and SCD1. Central to the differentially expressed proteins involved in lipid metabolism was the predicted activation of the liver X receptor (LXR) pathway. Western analysis validated the increased hepatic expression of LXRα along with LXR-directed targets such as FASN and CYP7A1 within the PANTG liver. Furthermore, recombinant PANDER was capable of inducing LXR promoter activity in-vitro as determined by luciferase reporter assays. Taken together, PANDER strongly impacts hepatic lipid metabolism across metabolic states and may induce a SHIR phenotype via the LXR pathway. PMID:27394190

  14. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  15. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Directory of Open Access Journals (Sweden)

    Caleb C. Lord

    2016-07-01

    Full Text Available Adipose triglyceride lipase (ATGL and comparative gene identification 58 (CGI-58 are critical regulators of triacylglycerol (TAG turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.

  16. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation.

    Science.gov (United States)

    Lord, Caleb C; Ferguson, Daniel; Thomas, Gwynneth; Brown, Amanda L; Schugar, Rebecca C; Burrows, Amy; Gromovsky, Anthony D; Betters, Jenna; Neumann, Chase; Sacks, Jessica; Marshall, Stephanie; Watts, Russell; Schweiger, Martina; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Lathia, Justin D; Sakaguchi, Takuya F; Lehner, Richard; Haemmerle, Guenter; Zechner, Rudolf; Brown, J Mark

    2016-07-26

    Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes. PMID:27396333

  17. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    OpenAIRE

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.; Quinton, Lee J.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis a...

  18. 外源性转化生长因子β3对HSC-T6细胞内源性转化生长因子β3表达的影响%Effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell-T6 (HSC-T6)

    Institute of Scientific and Technical Information of China (English)

    李莹; 邓亮; 钱伟; 周建宁; 徐可树

    2011-01-01

    Objective To investigate the effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell (HSC).Methods HSCs were cultured and divided into two groups:TGF-β3group and blank control group,the cells of TGF-β3 group were exposed to TGF-β3 (10 ng/ml),whereas the blank control group was not treated.The cells were incubated in the presence of exogenous TGF-β3 and then (1)were harvested at 0h,lh,2h,4h,12h,24h,and real time PCR was performed to detect the mRNA expression of endogenous TGF-β3.(2) The cells were collected at 0h,lh,6h,12h,and western-blot was used to detect the protein synthesis of endogenous TGF-β3 in HSC; (3) The cell culture supematant was harvested at 0h,lh,2h,4h,8h,14h,24h,and ELISA was performed to measure the total protein of extracellular TGF-β3; HSCs were treated with TGF-β3 (10ng/ml) for 2h.The cells were then incubated in serum-free medium and the cell culture supernatant was harvested at 2.25h,2.5h,3h,4h,6h,10h and 14h.ELISA was used to detect the extracellular secret ion of endogenous TGF-β3 by HSCs.Results (1) Exogenous TGF-β3 treatment induced a marked increase in TGF-β3 mRNA expression.By 2h of exogenous TGF-β3 treatment,maximal TGF-β3 mRNA expression levels (2.796 ± 0.518) of 2.74 fold above control values (1.022 ± 0.038) was reached (P <0.05).Thereafter,TGF-β3 mRNA expression level declined,and the expression level was maintained at level of 1.45-fold for at least 10h and was 1.18-fold above control values by 24h TGF-β3 treatment (P < 0.05); (2)No significant difference about the intracellular protein expression level of endogenous TGF-β3 was found between two groups.(P > 0.05); (3) The total expression level of TGF-β3 reached a peak [(18.931 ± 2.904)ng/ml] at 4h after TGF-β3 treatment (1.89-fold higher than basic TGF-β3 (10ng/ml).After that,it slowly declined.The expression peak [(0.835 ± 0.027) ng/ml] induction of extracellular secreted TGF-β3 was at 3h (32.12-fold higher than

  19. Salvianolic Acid B Attenuates Rat Hepatic Fibrosis via Downregulating Angiotensin II Signaling

    Directory of Open Access Journals (Sweden)

    Shu Li

    2012-01-01

    Full Text Available The renin-angiotensin system (RAS plays an important role in hepatic fibrosis. Salvianolic acid B (Sal B, one of the water-soluble components from Radix Salviae miltiorrhizae, has been used to treat hepatic fibrosis, but it is still not clear whether the effect of Sal B is related to angiotensin II (Ang II signaling pathway. In the present study, we studied Sal B effect on rat liver fibrosis and Ang-II related signaling mediators in dimethylnitrosamine-(DMN- induced rat fibrotic model in vivo and Ang-II stimulated hepatic stellate cells (HSCs in vitro, with perindopril or losartan as control drug, respectively. The results showed that Sal B and perindopril inhibited rat hepatic fibrosis and reduced expression of Ang II receptor type 1 (AT1R and ERK activation in fibrotic liver. Sal B and losartan also inhibited Ang II-stimulated HSC activation including cell proliferation and expression of type I collagen I (Col-I and α-smooth muscle actin (α-SMA production in vitro, reduced the gene expression of transforming growth factor beta (TGF-β, and downregulated AT1R expression and ERK and c-Jun phosphorylation. In conclusion, our results indicate that Sal B may exert an antihepatic fibrosis effect via downregulating Ang II signaling in HSC activation.

  20. Experimental study of midazolam as probe on evaluating activity of inhibited hepatic CYP3A

    Institute of Scientific and Technical Information of China (English)

    Xue-huiZHU; Jian-jieJIAO; Jian-shiLOU

    2005-01-01

    AIM To study the effect of ketoconazole (KTZ), a selective inhibitor of CYP3A, on in vivo and in vitro metabolic activity of hepatic CYP3A in rat with midazolam (MDZ) as probe, which was assessed by pharmacokinetic parameters of MDZ., and to establish a suitable marker or indicator for estimating drugmetabolizing activity of hepatic CYP3A. METHODS 1. In vivo study: Several loading doses of KTZ prepared in a mixture of PEG400 and propylene glycol (9:1) were administrated through rat sublingual vein followed by constant infusion at different rates through tail vein with an attempt to achieve corresponding steady-state plasma concentrations in order to attain continuous inhibition on CYP3A.

  1. Hormonal Regulation of Hepatic Drug Metabolizing Enzyme Activity During Adolescence

    OpenAIRE

    Kennedy, M J

    2008-01-01

    Activities of drug metabolizing enzymes (DME) are known to change throughout the course of physical and sexual maturation with the greatest variability noted during infancy and adolescence. The mechanisms responsible for developmental regulation of DME are currently unknown. However, the hormonal changes of puberty/adolescence provide a theoretical framework for understanding biochemical regulation of DME activity during growth and maturation. Important information regarding potential influen...

  2. Determination of platelet-activating factor by reverse phase high-performance liquid chromatography and its application in viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Hong-Cui Cao; Xiao-Ming Chen; Wei Xu

    2005-01-01

    AIM: To detect the platelet-activating factor (PAF) and the plasma or serum levels of tumor necrosis factor-α (TNF-α) malondialdehyde (MDA), endotoxin (ET) and to discuss their significance in various types of viral hepatitis.METHODS: PAF, TNF-α, MDA, and ET levels in 60 controls, 16 cases of acute viral hepatitis, 71 cases of chronic viral hepatitis, 19 cases of severe viral hepatitis were detected by reverse phase high-performance liquid chromatography (rHPLC), bio-assay, ELISA, thiobarbituric acid (TBA), and limulus lysate test (LLT), respectively.RESULTS: The rHPLC was more sensitive and specific than bio-assay (r = 0.912, P<0.01). The plasma levels of PAF, TNF-α, MDA, and ET in patients with viral hepatitis were higher than those in controls (P<0.01).CONCLUSION: rHPLC is more reliable and accurate for the detection of PAF.

  3. Effectiveness of Losartan-Loaded Hyaluronic Acid (HA) Micelles for the Reduction of Advanced Hepatic Fibrosis in C3H/HeN Mice Model.

    Science.gov (United States)

    Thomas, Reju George; Moon, Myeong Ju; Kim, Jo Heon; Lee, Jae Hyuk; Jeong, Yong Yeon

    2015-01-01

    Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis.

  4. Molecular Mechanism and Treatment of Viral Hepatitis-Related Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Tung-Hung Su

    2014-06-01

    Full Text Available Hepatic fibrosis is a wound-healing response to various chronic stimuli, including viral hepatitis B or C infection. Activated myofibroblasts, predominantly derived from the hepatic stellate cells (HSCs, regulate the balance between matrix metalloproteinases and their tissue inhibitors to maintain extracellular matrix homeostasis. Transforming growth factor-β and platelet-derived growth factor are classic profibrogenic signals that activate HSC proliferation. In addition, proinflammatory cytokines and chemokines coordinate macrophages, T cells, NK/NKT cells, and liver sinusoidal endothelial cells in complex fibrogenic and regression processes. In addition, fibrogenesis involves angiogenesis, metabolic reprogramming, autophagy, microRNA, and epigenetic regulations. Hepatic inflammation is the driving force behind liver fibrosis; however, host single nucleotide polymorphisms and viral factors, including the genotype, viral load, viral mutation, and viral proteins, have been associated with fibrosis progression. Eliminating the underlying etiology is the most crucial antifibrotic therapy. Growing evidence has indicated that persistent viral suppression with antiviral therapy can result in fibrosis regression, reduced liver disease progression, decreased hepatocellular carcinoma, and improved chances of survival. Preclinical studies and clinical trials are currently examining several investigational agents that target key fibrogenic pathways; the results are promising and shed light on this debilitating illness.

  5. Activation of CXCL-8 Transcription by Hepatitis E Virus ORF-1 via AP-1

    Directory of Open Access Journals (Sweden)

    Zhubing Li

    2015-01-01

    Full Text Available Hepatitis E virus (HEV is a small nonenveloped single-stranded positive-sense RNA virus and is one of the major causes for acute hepatitis worldwide. CXCL-8 is a small multifunctional proinflammatory chemokine. It was reported recently that HEV infection significantly upregulates CXCL-8 gene expression. In this study, we investigated the mechanism of HEV-induced CXCL-8 transcriptional activation. Using CXCL-8 promoter reporters of different lengths ranging from −1400 to −173, we showed that −173 promoter has the highest promoter activity in the presence of HEV genomic RNA, indicating that the −173 promoter contains sequences responsible for CXCL-8 activation by HEV. Ectopic expression of the ORF-1 protein can upregulate the −173 CXCL-8 promoter activity. In contrast, expression of the ORF-2 protein suppresses the CXCL-8 promoter activity and expression of the ORF-3 protein has no effect on the CXCL-8 promoter activity. We further showed that AP-1 is required for CXCL-8 activation because neither HEV genomic RNA nor the ORF-1 protein can upregulate the −173 CXCL-8 promoter in the absence of the AP-1 binding sequence. Taken together, our results showed that HEV and HEV ORF-1 protein activate the CXCL-8 promoter via AP-1. This novel function of HEV ORF-1 protein should contribute to our understanding of HEV-host interactions and HEV-associated pathogenesis.

  6. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  7. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    Science.gov (United States)

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  8. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  9. Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease

    Directory of Open Access Journals (Sweden)

    Ismail Nagwa

    2010-01-01

    Full Text Available Background/Aim: To study the oxidative stress status in children with cholestatic chronic liver disease by determining activities of glutathione peroxidase (GPx, superoxide dismutase (SOD and catalase (CAT in liver tissue. Materials and Methods: A total of 34 children suffering from cholestatic chronic liver disease were studied. They were selected from the Hepatology Clinic, Cairo University, and compared with seven children who happened to have incidental normal liver biopsy. The patients were divided into three groups: extrahepatic biliary atresia (n=13, neonatal hepatitis (n=15 and paucity of intrahepatic bile ducts (n=6; GPx, SOD and CAT levels were measured in fresh liver tissue using ELISA . Results: In the cholestatic patients, a significant increase was found in mean levels of SOD, GPx and CAT in hepatic tissue compared to control children. The three enzymes significantly increased in the extrahepatic biliary atresia group, whereas in the groups of neonatal hepatitis and paucity of intrahepatic bile ducts, only GPx and CAT enzymes were significantly increased. Conclusion: Oxidative stress could play a role in the pathogenesis of cholestatic chronic liver diseases. These preliminary results are encouraging to conduct more extensive clinical studies using adjuvant antioxidant therapy.

  10. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    OpenAIRE

    Hwa-Young Lee; Geum-Hwa Lee; Mi-Rin Lee; Hye-Kyung Kim; Nan-young Kim; Seung-Hyun Kim; Yong-Chul Lee; Hyung-Ryong Kim; Han-Jung Chae

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated tri...

  11. Group IVA phospholipase A2 participates in the progression of hepatic fibrosis.

    Science.gov (United States)

    Ishihara, Keiichi; Miyazaki, Akira; Nabe, Takeshi; Fushimi, Hideaki; Iriyama, Nao; Kanai, Shiho; Sato, Takashi; Uozumi, Naonori; Shimizu, Takao; Akiba, Satoshi

    2012-10-01

    Group IVA phospholipase A2 (IVA-PLA2) is an enzyme that intiates the arachidonic acid pathway and plays an important role in inflammation. We demonstrate that IVA-PLA2 deficiency suppresses lipid deposition in the liver, which was induced by administration of a high-fat and -cholesterol diet (HFCD) for 16 wk in mice. Herein, we performed 2-dimensional gel-based comparative proteomics to further define the suppressive effect of IVA-PLA2 deficiency on fatty liver formation. In comparisons among 4 groups, wild-type (WT)/normal diet (ND), IVA-PLA2-deficient knockout (KO)/ND, WT/HFCD, and KO/HFCD, 4 proteins, 3 of which are associated with hepatic fibrosis, were identified as molecules, of which altered expression by HFCD was suppressed in KO mice compared to WT mice. Therefore, we assessed the effect of IVA-PLA2 deficiency on hepatic fibrosis induced by HFCD or carbon tetrachloride (CCl4) in mouse models. Biochemical and histological analyses revealed that IVA-PLA2 deficiency markedly reduced overall collagen accumulation in the liver of HFCD- and CCl4-derived mouse models. We found that IVA-PLA2 deficiency prevented activation of hepatic stellate cells and infiltration of F4/80-positive macrophages without affecting other immunocytes such as CD8+ lymphocytes and natural killer cells. In summary, IVA-PLA2 deficiency attenuates not only lipid deposition in the liver but also hepatic fibrosis formation.

  12. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    Directory of Open Access Journals (Sweden)

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  13. Pancreatic Stellate Cells and Pancreatic Carcinoma: An Unholy Alliance

    Directory of Open Access Journals (Sweden)

    Johannes-Matthias Löhr

    2009-07-01

    Full Text Available The importance of the stromal compartment in the development, proliferation, invasion, metastasis and resistance of epithelial cancers has increasingly been recognized in recent decades [1, 2]. This stromal reaction is found in many carcinomas, e.g. in breast, prostate, colon, ovarian and pancreatic cancer. It is made up of stromal cells, endothelial cells, immune cells and extracellular matrix proteins. Moreover, the ECM proteins in the stroma act as a reservoir for growth factors released either by tumor or stromal cells, thus enabling autocrine and paracrine stimulation of the cells within the tumor mass. In this respect, groundbreaking work in solid tumors was done by Mina Bissell with breast carcinoma as her model system [3]. Recently, Vonlaufen et al. have contributed a review on the relationship between activated pancreatic stellate cells (PSCs and pancreatic ductal adenocarcinoma cells which is worth reading [4]. Vonlaufen et al., with their own study [5] and those of some other groups (see their review, convincingly demonstrate a reciprocal influence of both nonepithelial and epithelial constituents of pancreatic carcinoma which works to their mutual benefit. Thus, the coinjection of PSC and pancreatic tumor cells enhances tumor growth and metastasis. In In vitro and animal models, PSCs increase tumor cell proliferation and decrease basal and induced apoptosis of pancreatic tumor cells. On the other hand, pancreatic tumor cells activate PSCs, recruit them to their vicinity and stimulate their proliferation. This review clearly exemplifies the specialized milieu in which both cell types grow to their mutual benefit, thus forming one of the deadliest tumors we know.

  14. COMMD1-deficient dogs accumulate copper in hepatocytes and provide a good model for chronic hepatitis and fibrosis.

    Directory of Open Access Journals (Sweden)

    Robert P Favier

    Full Text Available New therapeutic concepts developed in rodent models should ideally be evaluated in large animal models prior to human clinical application. COMMD1-deficiency in dogs leads to hepatic copper accumulation and chronic hepatitis representing a Wilson's disease like phenotype. Detailed understanding of the pathogenesis and time course of this animal model is required to test its feasibility as a large animal model for chronic hepatitis. In addition to mouse models, true longitudinal studies are possible due to the size of these dogs permitting detailed analysis of the sequence of events from initial insult to final cirrhosis. Therefore, liver biopsies were taken each half year from five new born COMMD1-deficient dogs over a period of 42 months. Biopsies were used for H&E, reticulin, and rubeanic acid (copper staining. Immunohistochemistry was performed on hepatic stellate cell (HSC activation marker (alpha-smooth muscle actin, α-SMA, proliferation (Ki67, apoptosis (caspase-3, and bile duct and liver progenitor cell (LPC markers keratin (K 19 and 7. Quantitative RT-PCR and Western Blots were performed on gene products involved in the regenerative and fibrotic pathways. Maximum copper accumulation was reached at 12 months of age, which coincided with the first signs of hepatitis. HSCs were activated (α-SMA from 18 months onwards, with increasing reticulin deposition and hepatocytic proliferation in later stages. Hepatitis and caspase-3 activity (first noticed at 18 months increased over time. Both HGF and TGF-β1 gene expression peaked at 24 months, and thereafter decreased gradually. Both STAT3 and c-MET showed an increased time-dependent activation. Smad2/3 phosphorylation, indicative for fibrogenesis, was present at all time-points. COMMD1-deficient dogs develop chronic liver disease and cirrhosis comparable to human chronic hepatitis, although at much higher pace. Therefore they represent a genetically-defined large animal model to test clinical

  15. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Hwa-Young Lee

    Full Text Available Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia.

  16. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  17. Investigation of Antioxidant and Hepatoprotective Activity of Standardized Curcuma xanthorrhiza Rhizome in Carbon Tetrachloride-Induced Hepatic Damaged Rats

    Directory of Open Access Journals (Sweden)

    Sutha Devaraj

    2014-01-01

    Full Text Available Curcuma xanthorrhiza (CX has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and “jamu” as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4- induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system.

  18. Inhibitory effects of idoxifene on hepatic fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Ya-jun ZHOU; Dong-mei YIN; Hong-shan CHEN; Jian-hua SHI; Bao-xi SHA; Xing WANG

    2005-01-01

    Aim: To investigate the effects of a tissue-specific selective estrogen receptor modulator, idoxifene, on hepatic fibrosis in rats. Methods: Hepatic fibrosis was induced by dimethylnitrosamine (DMN) in male rats. The DMN model of hepatic fibrosis and the hepatocytes undergoing oxidative stress were treated with idoxifene respectively. The effect of idoxifene on hepatic fibrosis in the DMN model was examined by immunohistochemistry. Effects of idoxifene on antioxidant enzyme levels of copper, zinc-dependent superoxide dismutase (CuZn-SOD),and cellular glutathione peroxidase (GSHPx) were measured by ELISA. Effects of idoxifene on activation, proliferation, and apoptosis of culture-activated hepatic stellate cells (HSC) were analysed by immunohistochemistry, bromodeoxyuridine (BrdU) uptake, and flow cytometry, respectively. Results: Idoxifene could mark edly suppress DMN-induced hepatic fibrosis in male rats. A treatment of 0.4mg.kg-1.d-1 of idoxifene reduced the protein levels of collagen in the DMN model by 41.19% (P<0.05). Protein level of CuZn-SOD and activitiy of GSHPx in liver treated with DMN plus 0.4 mg.kg-1.d-1 of idoxifene were 2.65 times (P<0.05) and 2.08 times greater (P<0.05) than that of liver treated with DMN alone respectively.The protein level of CuZn-SOD and activity of GSHPx in cultured rat hepatocytes treated with ferric nitrilotriacetate (FeNTA) plus 1 × 10-7 mol/L of idoxifene were 3.43 times (P<0.05) and 2.52 times (P<0.05) greater than that treated with FeNTA alone. Idoxifene could inhibit HSC activation. Compared with the control, the uptake of BrdU in HSC cultured with 1× 10-7 mol/L of idoxifene was reduced by 51.87 % (P<0.05), and the number of apoptotic HSCs cultured with 1 × 10-7 mol/L of idoxifene increased by 94.52% (P<0.05). Conclusion: Idoxifene showed inhibitory action on hepatic fibrosis in male rats.

  19. Hepatic Steatosis in Response to Acute Alcohol Exposure in Zebrafish requires Srebp Activation

    Science.gov (United States)

    Passeri, Michael J.; Cinaroglu, Ayca; Gao, Chuan; Sadler, Kirsten C.

    2008-01-01

    Steatosis is the most common consequence of acute alcohol abuse and may predispose to more severe hepatic disease. Increased lipogenesis driven by the sterol response element binding protein (SREBP) transcription factors is essential for steatosis associated with chronic alcohol ingestion, but the mechanisms underlying steatosis following acute alcohol exposure are unknown. Zebrafish larvae represent an attractive vertebrate model for studying alcoholic liver disease (ALD), because they possess the pathways to metabolize alcohol, the liver is mature by 4 days post-fertilization (dpf), and alcohol can be simply added to their water. Exposing 4 dpf zebrafish larvae to 2% ethanol (EtOH) for 32 hours achieves ∼80 mM intracellular EtOH and upregulation of hepatic cyp2e1, sod and bip, indicating that EtOH is metabolized and provokes oxidant stress. EtOH-treated larvae develop hepatomegaly and steatosis accompanied by changes in the expression of genes required for hepatic lipid metabolism. Based on the importance of SREPBs in chronic ALD, we explored the role of Srebps in this model of acute ALD. Srebp activation was prevented in gonzo larvae, which harbor a mutation in the membrane bound transcription factor protease 1 (mbtps1) gene, and in embryos injected with a morpholino to knock-down Srebp cleavage activating protein (scap). Both gonzo mutants and scap morphants were resistant to steatosis in response to 2% EtOH, and the expression of many Srebp target genes are down regulated in gonzo mutant livers. Conclusion Zebrafish larvae develop signs of acute ALD, including steatosis. Srebp activation is required for steatosis in this model. The tractability of zebrafish genetics provides a valuable tool for dissecting the molecular pathogenesis of acute ALD. PMID:19127516

  20. Effects of special blue fluorescent light on hepatic mixed-function oxidase activity in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.R.; Yeary, R.A.; Randall, G.

    1981-01-01

    Phototherapy has been widely used in the treatment of neonatal hyperbilirubinemia. Recent reports, however, have indicated that fluorescent light may be toxic and mutagenic to mammalian cells. these findings suggest possible long-term side effects with the use of phototherapy. This study was undertaken to determine the effects of phototherapy on hepatic microsomal enzyme activity. The exposure of Sprague-Dawley and Gunn rats to special blue fluorescent light at an average irradiance of 1,200 microW/cm2 resulted in no significant changes in liver microsomal enzyme activity for aniline hydroxylase, p-nitroanisole-O-demethylase, ethylmorphine-N-demethylase, cytochrome c reductase or the quantity of cytochrome P-450. A significant decrease in aniline hydroxylase and p-nitroanisole-O-demethylase activity was observed when liver microsomes were exposed in vitro to special blue fluorescent light. Photoactivated bilirubin did not effect the activity of the mixed-function oxidase enzymes measured under the conditions of this study.

  1. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    Science.gov (United States)

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-01-01

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand. PMID:27669233

  2. Relationship between entero-hepatic bile acid circulation and interdigestive migrating myoelectrical activity in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Fang; Lei Dong; Wei-Jin Zhang; Jin-Yan Luo

    2005-01-01

    AIM: To investigate the effects of entero-hepatic bile acid circulation on the inter-digestive migrating myoelectrical complex (MMC) in rats.METHODS: Thirty-two rats were divided into four groups.Three pairs of bipolar silver electrodes were chronically implanted in the antrum, duodenum and jejunum. Three groups of them were ligated around the upper part of common bile duct (CBD). The experiments were performed in conscious and fasting state. The gastrointestinal myoelectrical activity was recorded. Ursodeoxycholic acid (UDCA) and saline were then perfused into stomachs of two groups with CBD obstruction and the effects of them on the MMC were observed.RESULTS: A typical pattern of MMC was observed in normal fasting rats. MMC of antral and duodenal origin disappeared temporarily in earlier stage of CBD obstruction. While MMC of jejunum origin appeared.increased MMC cycle duration was seen after 4 d in rats with CBD obstruction. The MMC after CBD obstruction was characterized by an increased duration of phase Ⅱ-like activity and decreased duration of phase Ⅰ & Ⅲ activity.Perfusion into stomachs with UDCA resulted in a shorter MMC cycle duration and a longer duration of phase Ⅲ of duodenal origin compared to the normal group.CONCLUSION: Entero-hepatic bile acid circulation initiates inter-digestive MMC of duodenal origin.

  3. Clinical significance of activity of ALT enzyme in patients with hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate serum alanine aminotransferase (ALT) levels in relation to the clinical, biochemical,ultrasonographic and histological characteristics of patients with hepatitis C virus.METHODS: Duration of disease, HCV-RNA, liver steatosis, and the hepatitis activity index (HAI) were correlated with serum ALT in 36 patients with HCV. ALT values were also investigated in 16 control subjects without any liver diseases.RESULTS: In bivariate analyses, ALT levels correlated with duration of HCV infection (P< 0.01), HCV-RNA (P<0.05), and the HAI(P<0.01). Among the components of the HAI, ALT concentrations were significantly associated with pedportal bridging/necrosis (P<0.01) and fibrosis (P<0.05). In multivariate analysis, periportal bridging/necrosis (β = 0.508; P < 0.01), duration of HCV infection (β = 0.413; P < 0.01), and HCV-RNA (β= 0.253; P < 0.05)were independently associated with ALT activity. The normal ALT activity for men and women was < 23 IU/L and < 22 IU/L, respectively.CONCLUSION: In patients with HCV, alterations in the liver tissue as reflected by ALT elevation are mainly associated with periportal bridging/necrosis, viral load and duration of disease. A cut-off value < 23 IU/L distinguished with high diagnostic accuracy healthy controls from patients with HCV.

  4. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  5. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    Science.gov (United States)

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  6. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Ring-Larsen, H; Christensen, N J

    1987-01-01

    Hepatic intestinal and whole body plasma clearance and appearance of noradrenaline (NA) was quantified in patients with alcoholic cirrhosis (n = 12) and in controls (n = 6). As NA may be released as well as removed in the same vascular bed, infusion of tritium labelled NA (3H-NA) was carried out...... during hepatic vein catheterisation in order to determine both flux rates. In alcoholic cirrhosis plasma concentrations of endogenous NA and adrenaline (A) were significantly above control values (NA: median 2.4 v 1.7 nmol/l, p less than 0.02; A: 0.38 v 0.19 nmol/l, p less than 0.01). Whole body...

  7. Demethyleneberberine Protects against Hepatic Fibrosis in Mice by Modulating NF-κB Signaling.

    Science.gov (United States)

    Wang, Yongchen; Zhao, Zheng; Yan, Yan; Qiang, Xiaoyan; Zhou, Cuisong; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2016-01-01

    Demethyleneberberine (DMB) is an essential metabolite of Berberine (BBR) in vivo. Recent reports have revealed multiple novel therapeutic applications of BBR. However, the pharmacological activities of DMB remain to be elucidated. This study aimed to demonstrate the hepatoprotective and anti-fibrotic effects of DMB both in vitro and in vivo. Here we showed that DMB protects against thioacetamide (TAA)-induced hepatic fibrosis in mice and exhibits a higher safety profile as compared to BBR. Flow cytometry and Western blotting analysis showed that DMB is able to suppress the activation of hepatic stellate cells (HSCs) and induce cell apoptosis through the nuclear factor-κB (NF-κB) cascade. Immunohistochemical (IHC) and quantitative polymerase chain reaction (qPCR) analysis indicated that DMB also has inhibitory effects on collagen synthesis and is able to increase collagen degradation by blocking the transforming growth factor β 1 (TGF-β1)-Smad signaling and reducing the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs). These findings indicate that DMB has the potential to attenuate hepatic fibrosis via suppressing HSC activation. PMID:27376272

  8. Demethyleneberberine Protects against Hepatic Fibrosis in Mice by Modulating NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yongchen Wang

    2016-06-01

    Full Text Available Demethyleneberberine (DMB is an essential metabolite of Berberine (BBR in vivo. Recent reports have revealed multiple novel therapeutic applications of BBR. However, the pharmacological activities of DMB remain to be elucidated. This study aimed to demonstrate the hepatoprotective and anti-fibrotic effects of DMB both in vitro and in vivo. Here we showed that DMB protects against thioacetamide (TAA-induced hepatic fibrosis in mice and exhibits a higher safety profile as compared to BBR. Flow cytometry and Western blotting analysis showed that DMB is able to suppress the activation of hepatic stellate cells (HSCs and induce cell apoptosis through the nuclear factor-κB (NF-κB cascade. Immunohistochemical (IHC and quantitative polymerase chain reaction (qPCR analysis indicated that DMB also has inhibitory effects on collagen synthesis and is able to increase collagen degradation by blocking the transforming growth factor β 1 (TGF-β1-Smad signaling and reducing the expression of matrix metalloproteinases (MMPs and tissue inhibitors of MMP (TIMPs. These findings indicate that DMB has the potential to attenuate hepatic fibrosis via suppressing HSC activation.

  9. "Liverscore" is predictive of both liver fibrosis and activity in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Shoukat Ali Arain; Qamar Jamal; Amir Omair

    2011-01-01

    AIM: To formulate a noninvasive index predictive of severity of liver fibrosis and activity in chronic hepatitis C.METHODS: This cross sectional study was conducted on polymerase chain reaction positive, treatment na(i)ve patients. Fibrosis was staged on a five point scale from F0-F4 and activity was graded on a four point scale from A0-A3, according to the METAVIR system. Patients were divided into two overall severity groups, minimal disease (< F2 and < A2) and significant disease (≥ F2 or ≥ A2). Eleven markers were measured in blood. Statistically, the primary outcome variable was identification of minimal and significant overall disease. Indices were formulated using β regression values of different combinations of nine statistically significant factors.Diagnostic performance of these indices was assessed through receiver-operating characteristic curve analysis.RESULTS: A total of 98 patients were included and of these 46 had an overall clinically significant disease. Our final six marker index, Liverscore for Hepatitis C, consisted of age, alanine transaminase, gamma-glutamyl transpeptidase, apolipoprotein A-1, alpha-2 macroglobulin and hyaluronic acid. The area under the curve was found to be 0.813. On a 0-1 scale, negative predictive value at a cutoff level of ≤ 0.40 was 83%, while positive predictive value at ≥ 0.80 remained 89%. Altogether,61% of the patients had these discriminative scores.CONCLUSION: This index is discriminative of minimal and significant overall liver disease in a majority of chronic hepatitis C patients and can help in clinical decision making.

  10. MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis

    OpenAIRE

    Yu, Fujun; Lu, Zhongqiu; HUANG, KATE; Wang, Xiaodong; Xu, Ziqiang; Chen, Bicheng; Dong, Peihong; Zheng, Jianjian

    2015-01-01

    Aberrant Wnt/β-catenin pathway contributes to the development of liver fibrosis. MicroRNAs (MiRNAs) are found to act as regulators of the activation of hepatic stellate cell (HSC) in liver fibrosis. However, whether miRNAs activate Wnt/β-catenin pathway in activated HSCs during liver fibrosis is largely unknown. In this study, we found that Salvianolic acid B (Sal B) treatment significantly inhibited liver fibrosis in CCl4-treated rats, HSC-T6 cells and rat primary HSCs, resulting in the supp...

  11. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress.

    Science.gov (United States)

    Chan, Stanley M H; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Choong, Zi-Heng; Wang, Hao; Watt, Matthew J; Ye, Ji-Ming

    2013-06-01

    Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de novo lipogenesis (DNL) and directly interfering with insulin signaling through the activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) pathway. The current study interrogated these two proposed mechanisms in a mouse model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of fenofibrate (FB) 100 mg/kg/day, a peroxisome proliferator-activated receptor α (PPARα) agonist known to reduce lipid accumulation while maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced glucose intolerance, hepatic steatosis, and the impaired hepatic insulin signaling (pAkt and pGSK3β). Of note, both the IRE1/XBP1 and PERK/eIF2α arms of unfolded protein response (UPR) signaling were activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, FAS, and SCD1 and [3H]H2O incorporation into lipids), FB treatment markedly increased fatty acid oxidation (indicated by induction of ACOX1, p-ACC, β-HAD activity, and [14C]palmitate oxidation) and eliminated the accumulation of diacylglycerols (DAGs), which is known to have an impact on insulin signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation of JNK or IKK, is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing the accumulation of deleterious lipids, activation of PPARα can ameliorate hepatic insulin resistance against increased ER stress.

  12. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    Science.gov (United States)

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-01

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. PMID:27233607

  13. T cell immune response is correlated with fibrosis and inflammatory activity in hepatitis B cirrhotics

    Institute of Scientific and Technical Information of China (English)

    Jie-Ting Tang; Jing-Yuan Fang; Wei-Qi Gu; En-Lin Li

    2006-01-01

    AIM: To explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity.METHODS: Peripheral blood samples from a total of 43 hepatitis B cirrhotic patients (LC) and 19 healthy controls (NC) were collected to measure their serum levels of IFN-γ, interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R), interleukin-10 (IL-10) and three serological markers of fibrosis including hyaluronic acid (HA), procollagen type Ⅲ peptide (PⅢP), and type Ⅳ collagen were measured using a double antibody sandwich ELISA. Also,serum total bilirubin (TB) and alanine aminotransferase (ALT) were measured by routine measures.RESULTS: The concentrations of serological markers of fibrosis in patients with active cirrhosis (ALC) were significantly higher than those in stationary liver cirrhosis (SLC) or NC groups. The levels of serological markers in HBeAg-positive patients were significantly higher than those in HBeAg-negative patients. In SLC and ALC patients, a negative linear correlation was found between IFN-γ levels and the serological markers of fibrosis. IFN-γ and IL-2 levels in the ALC group were significantly higher than those in the SLC and NC groups, but the statistical difference was not significant between the latter two. In contrast, IL-10 levels in the SLC group were significantly higher than that in the NC group, but no significant difference was found between SLC and ALC groups. The sIL-2R level was elevated gradually in all these groups,and the differences were significant. Positive linear correlations were seen between IFN-γ activity and ALT levels (r = 0.339, P < 0.05), and IL-2 activity and TB levels (r = 0.517, P < 0.05). sIL-2R expression was positively correlated with both ALT and TB levels (r = 0.324, 0.455,P < 0.05), whereas there was no statistically significant correlation between IL-10 expression and serum ALT and TB levels (r = -0.102, -0.093, P > 0.05). Finally

  14. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    International Nuclear Information System (INIS)

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists

  15. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    Energy Technology Data Exchange (ETDEWEB)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  16. Decreased hepatic phosphorylated p38 mitogen-activated protein kinase contributes to attenuation of thioacetamide-induced hepatic necrosis in diet-induced obese mice.

    Science.gov (United States)

    Shirai, Makoto; Arakawa, Shingo; Teranishi, Munehiro; Kai, Kiyonori

    2016-04-01

    We previously reported that thioacetamide (TA)-induced hepatocellular necrosis was attenuated in mice fed a high-fat diet (HFD mice) compared with mice fed a normal rodent diet (ND mice). In this study, we investigated whether p38 mitogen-activated protein kinase (p38 MAPK) was involved in this attenuation. Western blot analysis revealed that hepatic phosphorylated p38 MAPK protein decreased at 8 and 24 hours (hr) after TA dosing in the HFD mice, while it decreased only at 24 hr in the ND mice in comparison to the time- and diet-matched, vehicle-treated mice. p38 MAPK regulates various biological functions including inflammation, therefore, hepatic metabolomics analysis focusing on pro-inflammatory lipid mediators was performed. At 24 hr after TA dosing, only one pro-inflammatory mediator, 12-hydroxyeicosatetraenoic acid (HETE), was higher in the HFD mice. On the other hand, in addition to 12-HETE, 15-HETE and 12-hydroxyeicosapentaenoic acid (HEPE) were higher and omega-3/omega-6 polyunsaturated fatty acids ratios were lower in the ND mice at 24 hr. These results of metabolomics indicated that less pro-inflammatory state was seen in HFD mice than in ND mice at 24 hr. Finally, to confirm whether the observed decrease in phosphorylated p38 MAPK could attenuate TA-induced hepatocellular necrosis, we showed that SB203580 hydrochloride, an inhibitor of p38 MAPK, partially attenuated TA-induced hepatic necrosis in ND mice. Collectively, these results suggest that a prompt decrease in phosphorylation of p38 MAPK after TA administration is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26961609

  17. The role of Kupffer cells in complement activation in D-Galactosamine/lipopolysaccharide-induced hepatic injury of rats.

    OpenAIRE

    Matsuo, Ryuichi; Ukida, Minoru; Nishikawa, Yoshiyuki; Omori, Nobuhiko; Tsuji, Takao

    1992-01-01

    To investigate the role of Kupffer cells in complement activation, we used a rat model of acute hepatic injury induced by D-Galactosamine (GalN) and lipopolysaccharide (LPS). In in vivo study, minimal histological changes were observed after i.p. GalN (200 mg/kg) single administration. Complement hemolytic activity (CH 50) decreased to 70% of its initial value 2-3 h after i.p. LPS (1.5 mg/kg) single administration. Massive hepatic necrosis was induced by simultaneous administration of GalN an...

  18. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV and hepatitis C virus (HCV replication in preclinical models.

    Directory of Open Access Journals (Sweden)

    Daniela Paulsen

    Full Text Available Inactivated orf virus (iORFV, strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV and hepatitis B virus (HBV. Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  19. Controversial issues regarding the roles of IL-10 and IFN-γ in active/inactive chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Hossein; Khorramdelazad; Gholamhossein; Hassanshahi; Mohammad; Kazemi; Arababadi

    2014-01-01

    According to the important roles played by cytokines in induction of appropriate immune responses against hepatitis B virus(HBV),Dimitropoulou et al have examined the important cytokines in their patients.They showed that the serum levels of interleukin 10(IL-10)and interferon-γ(IFN-γ)were decreased in patients with HBeAg-negative chronic active hepatitis B compared with the inactive hepatitis B virus carriers(Dimitropoulou et al 2013).The controversy can be considered regarding the decreased serum levels of IFN-γin the HBeAg-negative chronic active hepatitis B patients.They concluded that subsequent to decreased expression of IFN-γ,the process of HBV proliferation led to liver diseases.Previous studies stated that HBV is not directly cytopathic for the infected hepatocytes and immune responses are the main reason for destruction of hepatocytes(Chisari et al,2010).Scientists believe that immune responses against HBV are stronger in active forms of chronic HBV infected patients than inactive forms(Zhang et al,2012).Therefore,the findings from Dimitropoulou et al may deserve further attention and discussion.Additionally,downregulation of IL-10 inchronically active hepatitis B infected patients has also confirmed our claim.IL-10 is an anti-inflammatory cytokine and its expression is increased in inactive forms in order to downregulate immune responses(Arababadi et al,2012).Thus,based on the results from Dimitropoulou et al,it can be concluded that increased immune responses in chronically active hepatitis B infected patients are related to declined expression of IL-10 and interestingly IFN-γis not involved in induction of immune responses in these patients.

  20. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  1. Activation of IFN-γ/STAT/IRF-1 in hepatic responses to Klebsiella pneumoniae infection.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Lin

    Full Text Available BACKGROUND: Klebsiella pneumoniae-caused liver abscess (KLA has become a health problem in Taiwan and is continually reported in other countries. Diabetes mellitus, the most common metabolic disorder, underlies half of the KLA patients in Taiwan. The clinical impact of KLA has been well-documented. Nevertheless, the molecular basis regarding how K. pneumoniae causes liver infection, particularly in diabetic individuals, remains unclear. METHODOLOGY/PRINCIPLE FINDINGS: Auto-bioluminescence-expressing K. pneumoniae was inoculated into diabetic mice and age-match naïve control. With the use of in vivo imaging system, translocation of the bioluminescence-expressing K. pneumoniae from intestine to extraintestinal organs, mainly the liver, was noted in 80% of the diabetic mice, whereas the same bacteria causes extraintestinal infections in only 31% of naïve mice. Besides increased morbidity, the severity of hepatic tissue injury was also enhanced in the K. pneumoniae-infected diabetic mice. Upon K. pneumoniae infection, IFN-γ production was significantly evoked in the liver. To mediate IFN-γ signal, STAT (signal transducers and activators of transcription 1 and 3 were activated in hepatocytes, and so was the expression of IRF (interferon regulatory factor-1. Moreover, accumulation of neutrophils which was triggered by prolonged production of IL-1β and MIP-2, and significant increases in the level of active caspase 3 and phospho-eIF2α, were exclusively revealed in the K. pneumoniae-infected diabetic mice. CONCLUSION: The activation of IFN-γ/STAT/IRF-1 signaling demonstrated by this work emphasizes the role of IFN-γ for mediating the hepatic response to K. pneumoniae infection.

  2. Hepatic 5'-monodeiodinase activity in teleosts in vitro: A survey of thirty-three species.

    Science.gov (United States)

    Leatherland, J F; Reddy, P K; Yong, A N; Leatherland, A; Lam, T J

    1990-01-01

    The in vitro hepatic 5'-monodeiodination of thyroxine (T4) to triiodothyronine (T3) in Oreochromis mossambicus, Channa striata, Clarias batrachus, Cyprinus carpio and Oxyeleotris marmorata was found to be time, pH and temperature dependent, and related to the amount of substrate (T4) and homogenate introduced into the reaction vessel, in a manner which was consistent with Menton-Michaelis kinetics, and thus indicative of an enzyme-regulated process. Dithiothreitol introduced into the reaction vessel stimulated T3 production in a dose-related manner.Hepatic 5'-monodeiodinase activity was also detected in a further 28 species of teleosts suggesting that the peripheral monodeiodination of T4, which is well-documented in salmonids, is also widespread amongst other teleost fishes. All species examined exhibited evidence of enzymatic deiodination, but there were marked differences in Km and Vmax values between the species. There was no apparent phylogenetic or environmental relationships to explain the widely divergent Km and/or Vmax values, nor was there a correlation between Km and Vmax when the species were considered together. PMID:24221892

  3. Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Kazankov, Konstantin; Jessen, Niels;

    Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis......Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis...

  4. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice

    NARCIS (Netherlands)

    Korsheninnikova, E.; van der Zon, G. C. M.; Voshol, P. J.; Janssen, G. M.; Havekes, L. M.; Grefhorst, A.; Kuipers, F.; Reijngoud, D. -J.; Romijn, J. A.; Ouwens, D. M.; Maassen, J. A.

    2006-01-01

    Aims/hypothesis Activation of nutrient sensing through mammalian target of rapamycin (mTOR) has been linked to the pathogenesis of insulin resistance. We examined activation of mTOR-signalling in relation to insulin resistance and hepatic steatosis in mice. Materials and methods Chronic hepatic stea

  5. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  6. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  7. Specific activation of 2'-5'oligoadenylate synthetase gene promoter by hepatitis C virus-core protein: A potential for developing hepatitis C virus targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Shan-Shan Mao; Qiong-Qiong He; Yuan Zi; Ji-Fang Wen; De-Yun Feng

    2009-01-01

    AIM: To examine whether 2'-5'oligoadenylate synthetase (OAS) gene promoter can be specifically activated by hepatitis C virus (HCV)-core protein.METHODS: Human embryo hepatic cell line L02 was transfected with pcDNA3.1-core plasmid and selected by G418. Expression of HCV-core was detected by reverse transcription polymerase chain reaction and Western blotting. The OAS promoter sequence was amplified from the genomic DNA and inserted into pGL3-basic vector. The resultant pGL3-OAS-Luci plasmid was transiently transfected into L02/core cells and luciferase activity was assayed.RESULTS: L02/core cell line stably expressing HCV-core protein was established. The pGL3-OAS-Luci construct exhibited significant transcriptional activity in the L02/core cells but not in the L02 cells.CONCLUSION: HCV-core protein activates the OAS gene promoter specifically and effectively. Utilization of OAS gene promoter would be an ideal strategy for developing HCV-specific gene therapy.

  8. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice.

    Science.gov (United States)

    Deshpande, Krutika T; Liu, Shinlan; McCracken, Jennifer M; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N; Richard, Zachary C; O'Neil, Maura F; Pritchard, Michele T

    2016-01-06

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl₄-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl₄ exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl₄ and euthanized 24-96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl₄-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl₄ exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl₄-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl₄. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.

  9. Myricetin Increases Hepatic Peroxisome Proliferator-Activated Receptor α Protein Expression and Decreases Plasma Lipids and Adiposity in Rats

    Directory of Open Access Journals (Sweden)

    Chia Ju Chang

    2012-01-01

    Full Text Available The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1 per day displayed similar characteristics to fenofibrate (100 mg kg−1 per day in reducing lowered body weight (BW gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPARα. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARα and down-regulation of SREBP expressions in the liver of HFD-fed rats.

  10. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    International Nuclear Information System (INIS)

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  11. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats

    Institute of Scientific and Technical Information of China (English)

    Arief Nurrochmad; Supardjan Amir Margono; Sardjiman; Arief Rahman Hakim; Ernawati; Erna Kurniawati; Erva Fatmawati

    2013-01-01

    Objective: To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. Methods: The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl4) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. Results: The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. Conculsion: All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.

  12. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo.

    Science.gov (United States)

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-12-04

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines.

  13. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase.

    Science.gov (United States)

    Liang, Guoxin; Kitamura, Kouichi; Wang, Zhe; Liu, Guangyan; Chowdhury, Sajeda; Fu, Weixin; Koura, Miki; Wakae, Kousho; Honjo, Tasuku; Muramatsu, Masamichi

    2013-02-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.

  14. Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    OpenAIRE

    Ursula Manuelpillai; Dinushka Lourensz; Vijesh Vaghjiani; Jorge Tchongue; Derek Lacey; Jing-Yang Tee; Padma Murthi; James Chan; Alexander Hodge; William Sievert

    2012-01-01

    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon t...

  15. [Viral hepatitis in travellers].

    Science.gov (United States)

    Abreu, Cândida

    2007-01-01

    Considering the geographical asymmetric distribution of viral hepatitis A, B and E, having a much higher prevalence in the less developed world, travellers from developed countries are exposed to a considerable and often underestimated risk of hepatitis infection. In fact a significant percentage of viral hepatitis occurring in developed countries is travel related. This results from globalization and increased mobility from tourism, international work, humanitarian and religious missions or other travel related activities. Several studies published in Europe and North America shown that more than 50% of reported cases of hepatitis A are travel related. On the other hand frequent outbreaks of hepatitis A and E in specific geographic areas raise the risk of infection in these restricted zones and that should be clearly identified. Selected aspects related with the distribution of hepatitis A, B and E are reviewed, particularly the situation in Portugal according to the published studies, as well as relevant clinical manifestations and differential diagnosis of viral hepatitis. Basic prevention rules considering enteric transmitted hepatitis (hepatitis A and hepatitis E) and parenteral transmitted (hepatitis B) are reviewed as well as hepatitis A and B immunoprophylaxis. Common clinical situations and daily practice "pre travel" advice issues are discussed according to WHO/CDC recommendations and the Portuguese National Vaccination Program. Implications from near future availability of a hepatitis E vaccine, a currently in phase 2 trial, are highlighted. Potential indications for travellers to endemic countries like India, Nepal and some regions of China, where up to 30% of sporadic cases of acute viral hepatitis are caused by hepatitis E virus, are considered. Continued epidemiological surveillance for viral hepatitis is essential to recognize and control possible outbreaks, but also to identify new viral hepatitis agents that may emerge as important global health

  16. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    Science.gov (United States)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  17. Baicalein selectively induces apoptosis in activated lymphocytes and ameliorates concanavalin a-induced hepatitis in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Insufficient apoptosis in activated lymphocytes contributes to the development of autoimmune hepatitis (AIH. Baicalein (BE, a flavonoid originally isolated from the root of Scutellaria baicalensis Georgi, possesses anti-inflammatory properties. However, whether BE can selectively induce apoptosis in activated lymphocytes and exert therapeutic effect on AIH has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The pro-apoptotic properties of BE were evaluated in vitro on different types of immune cells, and in vivo effects of BE were examined in a murine model of Concanavalin A (Con A-induced hepatitis. In vitro treatment with BE resulted in a higher increase in the level of apoptosis in Con A-stimulated murine splenocytes, Con A-stimulated CD3(+ splenocytes, lipopolysaccharide (LPS-stimulated CD19(+ splenocytes, and phorbol 12-myristate 13-acetate/ionomycin-stimulated Jurkat T cells, compared with that in unstimulated naïve ones. Murine bone marrow-derived dentritic cells, peritoneal macrophages, and RAW264.7 cells, either stimulated with LPS or unstimulated, were all insensitive to the BE-induced apoptosis. BE treatment also led to a loss of mitochondrial membrane potential, an increase of cytochrome c release from mitochondria to the cytosol, a decrease in the ratio of Bcl-2/Bax, and activation of caspase-9,-3 in Con A-stimulated CD3(+ splenocytes and LPS-stimulated CD19(+ splenocytes, while showing no impact on Fas/FasL expressions and caspase-8 activation. In vivo administration of BE alleviated Con A-induced liver injury, suppressed serum level of TNF-α and IFN-γ, and reduced liver infiltration of mononuclear cells (MNCs. Furthermore, BE treatment increased the incidences of apoptosis in liver-infiltrating MNCs and splenocytes, as well as in CD3(+ and CD19(+ splenocytes. When liver MNCs and splenocytes from BE-treated mice were cultured in vitro for 24 h, they exhibited marked increase in apoptosis compared to vehicle

  18. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance.

    Directory of Open Access Journals (Sweden)

    Christopher J Lelliott

    2006-11-01

    Full Text Available The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT. Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.

  19. Antioxidant activity of new aramide nanoparticles containing redox-active N-phthaloyl valine moieties in the hepatic cytochrome P450 system in male rats.

    Science.gov (United States)

    Hassan, Hammed H A M; El-Banna, Sabah G; Elhusseiny, Amel F; Mansour, El-Sayed M E

    2012-07-10

    We report the synthesis of aramide nanoparticles containing a chiral N-phthaloyl valine moiety and their antioxidant activities on hepatic contents of cytochrome P₄₅₀, amidopyrene N-demethylase, aniline-4-hyroxylase and induced the hepatic content of cytochrome b5 and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome C-reductase. Polymers were obtained as well-separated spherical nanoparticles while highly aggregated particles via H-bonding organization of the aramide-containing pyridine led to a thin layer formation. The effects of the nanoparticles and CCl₄ on enzyme activities and thiobarbituric acid reactive substances (TBARS) levels of male rat liver were studied. Pretreatments of rats with the polyamides prior to the administration of CCl₄ decreased the hepatic content of the tested enzymes. Doses reduced the toxic effects exerted by (•CCl₃) upon the liver through inhibition of the cytochrome P₄₅₀ system. Inhibition of such metabolizing enzymes could reduce the carcinogenic effects of chemical carcinogens.

  20. [Effect of Arnica montana tincture on some hydrolytic enzyme activities of rat liver in experimental toxic hepatitis].

    Science.gov (United States)

    Iaremiĭ, I M; Meshchyshen, I F; Hrihor'ieva, N P; Kostiuk, L S

    1998-01-01

    Effects of tinctura arnica on arginase, adenosine triphosphatase, glucose-6-phosphatase and 5'-nucleotidase activities of rats liver in case of experimental toxic hepatitis have been studied. Toxic hepatitis was caused by 2 times interstomach administration of 0.25 ml oil solution of carbon tetrachloride per 100 g of animal weight. 20 mkl/100 g of tinctura arnica was administered every day per os for 14 days. The enzyme activities have been investigated at 3, 7 and 17 days. A significant demention of a studied hydrolytic enzyme activities in rats liver at intoxication of the body by CCI4 has been shown. It has been established that tinctura arnica administered per os to intoxicated animals sped up the normalization of hydrolytic enzyme activities in rat liver.

  1. Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; Yi-Tao Jia; De-Kai Qiu

    2007-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology.The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition,DNA binding activities of nuclear factor kappa B (NF-κB)were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-γ, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-κB was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-κB and the expression of proinflammatory cytokines.Moreover, hepatic injuries were improved significantly after SB203580 administration.CONCLUSION: p38 MAPK and NF-κB play an important role in an animal model of autoimmune hepatitis (AIH)induced by autoantigens.

  2. Active hepatitis C infection and HCV genotypes prevalent among the IDUs of Khyber Pakhtunkhwa

    Directory of Open Access Journals (Sweden)

    Uz Zaman Khaleeq

    2011-06-01

    Full Text Available Abstract Injection drug users (IDUs are considered as a high risk group to develop hepatitis C due to needle sharing. In this study we have examined 200 injection drug users from various regions of the Khyber Pakhtunkhwa province for the prevalence of active HCV infection and HCV genotypes by Immunochromatographic assays, RT-PCR and Type-specific PCR. Our results indicated that 24% of the IDUs were actively infected with HCV while anti HCV was detected among 31.5% cases. Prevalent HCV genotypes were HCV 2a, 3a, 4 and 1a. Majority of the IDUs were married and had attained primary or middle school education. 95% of the IDUs had a previous history of needle sharing. Our study indicates that the rate of active HCV infection among the IDUs is higher with comparatively more prevalence of the rarely found HCV types in KPK. The predominant mode of HCV transmission turned out to be needle sharing among the IDUs.

  3. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C;

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription...... metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity....

  4. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  5. Relation of TGF-β3/TGF-β1 mRNA ratio to expression of TGF-β1,MMP-9 and TIMP-1 in rat hepatic stellate cells%大鼠肝星状细胞TGF-β3/TGF-β1mRNA比值与TGF-β1、MMP-9、TIMP-1表达的关系

    Institute of Scientific and Technical Information of China (English)

    余姣; 周霞; 李琪; 钱伟; 徐可树

    2009-01-01

    目的 探讨大鼠肝星状细胞(HSC-T6)中转化生长因子-β3(TGF-β3)和转化生长因子-β1(TGF-β1)mRNA比值变化与TGF-β1、MMP-9、TIMP-1表达的关系.方法 构建质粒pcDNA 3.1(+)-TGF-β3和pcDNA 3.1(+)-TGF-β1.将pcDNA 3.1(+)-TGF-1β1转染HSC-T6细胞株,经筛选建立高表达TGF-β1的HSC-T6细胞阳性克隆.pcDNA 3.1(+)-TGF-β3转染该阳性克隆,48 h后荧光定量PCR法和Western blot法分别检测TGF-β3、TGF-β1、MMP-9和TIMP-1 mRNA和蛋白的变化.结果 空白组、对照组、阳性克隆组及TGF-β3干预组中,TGF-β3/TGF-β1mRNA比值分别为0.286±0.070、0.874±0.141、0.448±0.327和1.277±0.244;阳性克隆组与空白组和对照组相比,TGF-β1和TIMP-1的mRNA及蛋白表达明显增高(P1时,TGF-β1和TIMP-1表达减少,MMP-9表达增加;当TGF-β3/TGF-β1mRNA比值<1时,TGF-β1表达减少,TIMP-1和MMP-9表达无变化.%Objective To investigate the change of TGF-β3/TGF-β1 mRNA ratio and explore its correlation with TGF-β1,MMP-9,TIMP-1 expression in rat hepatic stellate cells.Methods Plasmids pcDNA3.1 (+)- TGF-β3 and pcDNA3.1 (+)-TGF-β1 were constructed,pcDNA3.1 (+)-TGF-β1 was transfected into HSC-T6 cell line and the positive cell clone with high expression of TGF-β1 was established after being filtrated,pcDNA3.1 (+)- TGF-β3 was transfected into the positive clone.Fortyeight hours later,the mRNA and the protein expression of TGF-β3,TGF-β1,MMP-9 and TIMP-1 was detected with real-time PCR and Western blot.Results TGF-β3/TGF-β1 mRNA ratios in the blank group,the control group,the positive clone group and the TGF-β3 intervene group were 0.286+0.070,0.874±0.141,0.448±0.327 and 277±0.244,respectively.The expression of TGF-β1 and TIMP-lmRNA and protein were much higher in the positive clone group than those in the blank group and the control group(P<0.05).The expression of MMP-9 mRNA and protein was much lower in the positive clone group than those in the blank group and the control group(P<0

  6. Soluble Serum CD81 Is Elevated in Patients with Chronic Hepatitis C and Correlates with Alanine Aminotransferase Serum Activity

    Science.gov (United States)

    Welker, Martin-Walter; Reichert, David; Susser, Simone; Sarrazin, Christoph; Martinez, Yolanda; Herrmann, Eva; Zeuzem, Stefan; Piiper, Albrecht; Kronenberger, Bernd

    2012-01-01

    Aim Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance of soluble exosomal CD81 in HCV pathogenesis is poorly defined. We performed a case-control study to investigate whether soluble CD81 in the exosomal serum fraction is associated with HCV replication and inflammatory activity. Patients and Methods Four cohorts were investigated, patients with chronic hepatitis C (n = 37), patients with chronic HCV infection and persistently normal ALT levels (n = 24), patients with long term sustained virologic response (SVR, n = 7), and healthy volunteers (n = 23). Concentration of soluble CD81 was assessed semi-quantitatively after differential centrifugation ranging from 200 g to 100,000 g in the fifth centrifugation fraction by immunoblotting and densitometry. Results Soluble CD81 was increased in patients with chronic hepatitis C compared to healthy subjects (p = 0.03) and cured patients (p = 0.017). Patients with chronic HCV infection and persistently normal ALT levels and patients with long term SVR had similar soluble CD81 levels as healthy controls (p>0.2). Overall, soluble CD81 levels were associated with ALT levels (r = 0.334, p = 0.016) and severe liver fibrosis (p = 0.027). Conclusion CD81 is increased in the exosomal serum fraction in patients with chronic hepatitis C and appears to be associated with inflammatory activity and severity of fibrosis. PMID:22355327

  7. Effect of leptin on hepatic stellate cells in liver fibrosis rats and its relation to ERK signal transduction pathway%瘦素对大鼠肝纤维化星状细胞的作用及相关ERK信号转导机制

    Institute of Scientific and Technical Information of China (English)

    周光耀; 金玲湘; 林巍; 潘陈为; 诸葛璐; 方佩佩

    2014-01-01

    目的:探讨瘦素(leptin)对大鼠肝纤维化星状细胞(HSC)的作用及相关信号转导机制。方法采用改良原位灌注、Optiprep密度梯度离心法分离纯化大鼠HSC。通过台盼蓝拒染试验评估细胞存活率,α-平滑肌肌动蛋白(α- SMA)免疫组化鉴定,光镜观察形态学变化。将40只SD大鼠分为4个处理组:对照组、血管紧张素Ⅱ(AngⅡ)组(加入10-7mol/L AngⅡ)、Leptin组(加入100ng/ml Leptin)、Leptin+AngⅡ组(加入100ng/ml Leptin+10-7mol/L AngⅡ)。分别采用3H- TdR和3H- Pro掺入法进行HSC增殖和胶原合成的测定。Western blot检测各处理组p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白表达情况。结果大鼠HSC存活率>90%,传代1次后HSC纯度>95%。与对照组相比,AngⅡ组、Leptin组、Leptin+AngⅡ组的HSC增殖和胶原合成均明显增加(均P<0.05);与AngⅡ组、Leptin组相比,Leptin+AngⅡ组HSC增殖和胶原合成明显增加(均P<0.05)。Western blot显示,AngⅡ组、Leptin组、Leptin+AngⅡ组的p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白水平均较对照组明显升高(均P<0.05);与AngⅡ组、Lep-tin组相比,Leptin+AngⅡ组p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白水平明显升高(均P<0.05)。结论瘦素可通过上调AngⅡ水平,激活ERK信号转导通路,刺激HSC增殖和胶原合成,导致肝纤维化。%Objective To investigate the effect of leptin on hepatic stel ate cells(HSC) in liver fibrosis rats and its relation to ERK signal transduction pathway. Methods The purified HSCs were obtained by the modified in situ perfusion and Optiprep density gradient centrifugation. The survival rate of HSCs was evaluated by trypan blue exclusion test, the identification of HSCs was tested by α- SMA immunocytochemical staining, and the morphological changes were observed by light microscope. The cultured HSCs were divided into four groups: the control group, the

  8. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiao-Ping Chen; Wan-Guang Zhang; Feng Zhang; Shuai Xiang; Han-Hua Dong; Lei Zhang

    2009-01-01

    AIM: To elucidate the interaction between nonparenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover.CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions.

  9. Ethanol-induced hepatic autophagy: Friend or foe?

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Excessive alcohol intake may induce hepatic apoptosis,steatosis, fibrosis, cirrhosis and even cancer. Ethanolinducedactivation of general or selective autophagyas mitophagy or lipophagy in hepatocytes is generallyconsidered a prosurvival mechanism. On the otherside of the coin, upregulation of autophagy in nonhepatocytesas stellate cells may stimulate fibrogenesisand subsequently induce detrimental effects on the liver.The autophagic response of other non-hepatocytes asmacrophages and endothelial cells is unknown yet andneeds to be investigated as these cells play importantroles in ethanol-induced hepatic steatosis and damage.Selective pharmacological stimulation of autophagyin hepatocytes may be of therapeutic importance inalcoholic liver disease.

  10. Total triterpenoid from Prunella vulgaris L prevents fibrosis in CC14 induced hepatic fibrosis in the rat and its mechanism research on PDGF-induced rat hepatic steilate cell

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Li Jun

    2012-01-01

    Aims: Total triterpenoid from Prunella vulgaris L. (TTP), known as medicinehad, had a preventive effect against hepatic steatosis in our previous was to evaluate whether TTP could improve liver fibrosis nism of action of TTP on hepatic stellate growth factor (PDGF). a traditional Chinese study. Our objective in rats and to investigate the mecha- cell (HSC) proliferation induced by platelet-derivedgrowth factor (PDGF).

  11. 银杏叶提取物对AGEs诱导的大鼠HSC增殖的抑制作用%The effect of ginko biloba extract on proliferation of hepatic stellate cell activating by advanced glycation end products

    Institute of Scientific and Technical Information of China (English)

    史美娜; 栗华

    2013-01-01

    目的:探讨不同浓度晚期糖基化终产物(AGEs)对体外培养的大鼠肝星状细胞(HSC)增殖的影响,并观察不同浓度银杏叶提取物(EGb)对其增殖有无抑制作用。方法体外合成AGEs,MTT法观察不同浓度的AGEs对HSC增殖的影响及不同浓度EGb对AGEs促HSC增殖的抑制作用。结果当培养液中AGEs浓度≥50mg/L时,12~48h内检测发现HSC较正常对照组增殖明显并呈时间及剂量依赖性(P<0.05),而6h内及低浓度AGEs组未观察到其对HSC增殖有明显影响。EGb在培养48h时对AGEs刺激的HSC的增殖有显著抑制作用(P<0.05),且呈明显的剂量依赖性。结论 AGEs可以促进HSC增殖,呈时间、剂量依赖性;在作用时间充分的前提下,EGb可抑制AGEs诱导的HSC增殖,呈剂量依赖性。%Objective To investigate the effect of ginko biloba extract (EGb) on the cell proliferation in HSC stimulated by advanced glycation end products(AGEs). Methods AGEs was synthesized by incubating glucose with BSA in vitro. MTT colorimetric assay was used to observe the effect of AGEs at different dosages on the proliferation of HSC,and to measure the effect of EGb at different dosages on the proliferation of HSC.Results The proliferation of HSC was enhanced after incubating with ≥50mg/L AGEs for 12-48 hour with a dose and time dependent manner but within 6 hour(P<0.05). The low concentration of AGEs group which was not observed a significant effect on the proliferation of HSC. The proliferation of HSC was slow and exhibited a dose dependent manner with 48 hour treatment of EGb. Conclusion EGb depressed the proliferation of HSC which is induced by AGEs with a dose and time dependant manner.

  12. Effect of Curcuma longa Linn. extraction on the proliferation and activation of rat hepatic stellate cell%姜黄提取物对大鼠肝星状细胞增殖与活化的影响

    Institute of Scientific and Technical Information of China (English)

    成扬; 平键; 谭英姿; 陈高峰

    2006-01-01

    目的研究姜黄提取物(姜黄素)对大鼠肝星状细胞增殖和活化的影响.方法培养大鼠T6肝星状细胞株,并使用姜黄素对细胞进行处理,采用四甲基偶氮唑蓝[3-(4,5-dimthy-2-2thiazoly)2,5-dipheny-2H-tetrazoliunbromide,MTT]比色分析法检测药物对细胞增殖的影响;收集细胞并抽提细胞总蛋白,10%聚丙烯酰胺凝胶电泳分离蛋白,采用Westernblot检测药物处理对细胞表达α平滑肌肌动蛋白的影响.结果姜黄素剂量依赖性地抑制大鼠T6肝星状细胞株的增殖,并可以降低细胞表达α平滑肌肌动蛋白的水平.结论姜黄素能够抑制肝星状细胞的增殖和活化.

  13. Hepatitis C Virus Infection Downregulates the Ligands of the Activating Receptor NKG2D

    Institute of Scientific and Technical Information of China (English)

    Chaoyang Wen; Hui Zhong; Xiang He; Hongfang Ma; Ningbo Hou; Congwen Wei; Ting Song; Yanhong Zhang; Liping Sun; Qingjun Ma

    2008-01-01

    Natural killer (NK) cells are a major component of the host innate immune defense against various pathogens.Several viruses, including hepatitis C virus (HCV), have developed strategies to evade the NK-cell response. In our study, we found HCV infection could trigger DNA damage response by both ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) pathways. Recent reports had revealed that NKG2D ligands (NK cellactivating iigands) were upregulated when a major DNA damage checkpoint pathway was activated. However,here we found that DNA damage response was activated but NKG2D ligands were downregulated upon HCV infection. Further studies showed that the protease NS3/4A of HCV which had been shown relation with immune invasion contributed to the reduced expression of NKG2D ligands. These findings provide a novel insight into the mechanisms evolved by HCV to escape from the NK cell response. Cellular & Molecular Immunology. 2008;5(6):475-478.

  14. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  15. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Directory of Open Access Journals (Sweden)

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results  The incidence of A1846T mutation gradually increased with the severity of hepatitis B, reaching 31.03%, 42.27%, and 55.48% in CHB-M, CHB-S and ACLF patients respectively (P<0.01. The replication capacity of 1846T mutants, level of secreted HBsAg, and transcriptional activity of CP promoter were increased by 320%, 28% and 85% respectively, compared with 1846A wild-type strains. While the more common double mutation A1762T/G1764A in CP region was increased by 67%, 9% and 72% respectively, compared with its counterpart wild-type strains. A1846T had a greater influence on viral replication capacity in vitro. Conclusions A1846T mutation could significantly increase the

  16. Phosphorylated heat shock protein 27 promotes lipid clearance in hepatic cells through interacting with STAT3 and activating autophagy.

    Science.gov (United States)

    Shen, Lei; Qi, Zhilin; Zhu, Yanyan; Song, Xiaomeng; Xuan, Chunxia; Ben, Peiling; Lan, Lei; Luo, Lan; Yin, Zhimin

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) has become the major liver disease worldwide. Recently, several studies have identified that the activation of autophagy attenuates hepatic steatosis. Heat shock protein 27 (Hsp27) is involved in autophagy in response to various stimuli. In this study, we demonstrate that phosphorylated Hsp27 stimulates autophagy and lipid droplet clearance and interacts with STAT3. In vivo study showed that high fat diet (HFD) feeding increased Hsp25 (mouse orthology of Hsp27) phosphorylation and autophagy in mouse livers. Inhibition of Hsp25 phosphorylation exacerbated HFD-induced hepatic steatosis in mice. In vitro study showed that palmitate-induced lipid overload in hepatic cells was enhanced by Hsp27 knockdown, KRIBB3 treatment and Hsp27-3A (non-phosphorylatable) overexpression but was prevented by Hsp27-WT (wild type) and Hsp27-3D (phosphomimetic) overexpression. Mechanism analysis demonstrated that palmitate could induce Hsp27 phosphorylation which promoted palmitate-induced autophagy. Phosphorylated Hsp27 interacted with STAT3 in response to palmitate treatment, and disrupted the STAT3/PKR complexes, facilitated PKR-dependent eIF2α phosphorylation, and thus stimulated autophagy. To conclude, our study provides a novel mechanism by which the phosphorylated Hsp27 promotes hepatic lipid clearance and suggests a new insight for therapy of steatotic diseases such as nonalcoholic fatty liver disease (NAFLD). PMID:27185187

  17. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  18. Redox regulation of apurinic/apyrimidinic endonuclease 1 activity in Long-Evans Cinnamon rats during spontaneous hepatitis.

    Science.gov (United States)

    Karmahapatra, Soumendra Krishna; Saha, Tapas; Adhikari, Sanjay; Woodrick, Jordan; Roy, Rabindra

    2014-03-01

    The Long-Evans Cinnamon (LEC) rat is an animal model for Wilson's disease. This animal is genetically predisposed to copper accumulation in the liver, increased oxidative stress, accumulation of DNA damage, and the spontaneous development of hepatocellular carcinoma. Thus, this animal model is useful for studying the relationship of endogenous DNA damage to spontaneous carcinogenesis. In this study, we have investigated the apurinic/apyrimidinic endonuclease 1 (APE1)-mediated excision repair of endogenous DNA damage, apurinic/apyrimidinic (AP)-sites, which is highly mutagenic and implicated in human cancer. We found that the activity was reduced in the liver extracts from the acute hepatitis period of LEC rats as compared with extracts from the age-matched Long-Evans Agouti rats. The acute hepatitis period had also a heightened oxidative stress condition as assessed by an increase in oxidized glutathione level and loss of enzyme activity of glyceraldehyde 3-phosphate dehydrogenase, a key redox-sensitive protein in cells. Interestingly, the activity reduction was not due to changes in protein expression but apparently by reversible protein oxidation as the addition of reducing agents to extracts of the liver from acute hepatitis period reactivated APE1 activity and thus, confirmed the oxidation-mediated loss of APE1 activity under increased oxidative stress. These findings show for the first time in an animal model that the repair mechanism of AP-sites is impaired by increased oxidative stress in acute hepatitis via redox regulation which contributed to the increased accumulation of mutagenic AP-sites in liver DNA.

  19. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration.

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    Full Text Available The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC, which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.

  20. Historical reflections on autoimmune hepatitis

    OpenAIRE

    Mackay, Ian R.

    2008-01-01

    Autoimmune hepatitis (AIH), initially known as chronic active or active chronic hepatitis (and by various other names), first came under clinical notice in the late 1940s. However, quite likely, chronic active hepatitis (CAH) had been observed prior to this and was attributed to a persistently destructive virus infection of the liver. An earlier (and controversial) designation in 1956 as lupoid hepatitis was derived from associated L.E. cell test positivity and emphasized accompanying multisy...

  1. Chronic hepatitis C and fibrosis: evidences for possible estrogen benefits

    Directory of Open Access Journals (Sweden)

    Liana Codes

    2007-06-01

    Full Text Available The main injury caused by hepatitis C virus is the hepatic fibrosis, as a result of a chronic inflammatory process in the liver characterized by the deposit of components from the extracellular matrix. The fibrosis development leads to the modification of the hepatic architecture, of the hepatocellular function and to irregularities in the microcirculation. The tissue remodeling process observed in fibrosis has stellate cells, located at the space of Disse, as main acting agents. These cells, in response to a harmful stimulus, undergo phenotypic changes from non-proliferating cells to proliferating cells that express a- smooth-muscle actin (a-SMA, a process called as transdifferentiation. There are evidences that the oxidative stress is involved in the chronic liver disease and serves as bond between the injury and the hepatic fibrosis. A number of studies suggest that the estrogen, at physiological levels, presents an antifibrogenic action probably through an antioxidant effect, decreasing the levels of lipid peroxidation products in the liver and blood, thus inhibiting the myofibroblastic transformation of stellate cells and contributing for gender-associated differences in relation to the fibrosis development. The aim of this paper was to describe data from literature concerning the interaction between chronic hepatitis C and estrogens, pregnancy, use of oral contraceptives, menopause and hormone reposition therapy.

  2. Hepatoprotective Activity of Cassia fistula root against Carbon tetrachloride-Induced Hepatic Injury in rats (Wistar

    Directory of Open Access Journals (Sweden)

    SAGAR DAWADA

    2012-04-01

    Full Text Available The protective effects of the alcoholic extract of Cassia fistula root; against CCl4 induced hepatic failure in male albino rats (wistar strain was investigated. For acute and massive invasion of hepatopathy, CCl4 (s.c injection of CCl4+Olive Oil in 1:1 ratio; 2ml/kg was used and the insidious intoxication was evidenced bysignificant turmoil of various biochemical parameters followed by significant (p<0.001 weight loss in toxic control group. The administration of alcoholic root extract (200mg/kg and 100mg/kg of body weight for 7 days, elicited protective action since the elevated levels of marker enzymes (SGOT, SGPT, ALP of liver functionswere found to be decreasing progressively in a dose dependent manner. The final body weight was also significantly (p<0.001 increased when compared with the toxic control group. The serum total protein and theserum albumin were also approaching normal values. The results found in alcoholic extract 200mg/kg treated rat were quite promising and were comparable with a standard drug Silymarin. In the alcoholic extract 200mg/kg treated rat group all the marker enzymes were analyzed to be decreasing significantly. The statistically processed results support the conclusion, that the alcoholic root extract of Cassia fistula root (200mg/kg and 100mg/kg possesses dose dependent, significant protective activity against CCl4 induced hepatotoxicity.

  3. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  4. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Science.gov (United States)

    Weber, Nicholas D; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S; Roychoudhury, Pavitra; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  5. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity.

    Science.gov (United States)

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A; Meyers, Marvin J; Le Grice, Stuart F J; Thomas, Craig J; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R; D'Erasmo, Michael P; Suyabatmaz, Duygu M; Murelli, Ryan P; Tavis, John E

    2015-02-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50]=25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  6. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection.

    Science.gov (United States)

    Chen, Xiaosong; Zhang, Jianjian; Han, Conghui; Dai, Huijuan; Kong, Xianming; Xu, Longmei; Xia, Qiang; Zhang, Ming; Zhang, Jianjun

    2015-07-01

    Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol. PMID:25901028

  7. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis

    OpenAIRE

    LIAN, FAN; Wang, Yu; Xiao, Youjun; WU, XIWEN; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-01-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T-cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. A mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA-induced liver injury ...

  8. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  9. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    Science.gov (United States)

    Hashimoto, Toru; Ide, Takashi

    2015-11-01

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  10. Decreased activity of hepatic P-glycoprotein in the isolated perfused liver of the adjuvant arthritis rat.

    Science.gov (United States)

    Achira, M; Totsuka, R; Kume, T

    2002-11-01

    1. We investigated the hepatobiliary transport of doxorubicin in the isolated perfused liver prepared from the adjuvant arthritis rat, an animal model for rheumatoid arthritis, to examine the hepatic P-glycoprotein activity in the adjuvant arthritis rat. 2. Liver was isolated from the normal and the adjuvant arthritis rat and perfused for 60 min with recirculating buffer and the perfusate and bile samples were collected at timed interval. 3. The elimination of doxorubicin in the adjuvant arthritis rat tended to be reduced, but it was not significantly different from the normal rat. Biliary clearance (CL(bile)) in the normal rat was 1.93 +/- 0.48 ml min(-1), whereas, CL(bile) in the adjuvant arthritis rat was significantly decreased to 0.40 +/- 0.13 ml min(-1). 4. CL(bile) was markedly decreased to about 0.15 ml min(-1) in the presence of 100 microM verapamil in both types of rat. Methotrexate treatment had no effect on CL(bile) in both the normal and adjuvant arthritis rat (2.18 +/- 0.22 and 0.47 +/- 0.22 ml min(-1), respectively). 5. The results suggest that the hepatic P-glycoprotein activity was markedly decreased in the adjuvant arthritis rat and the effect of methotrexate on the hepatic P-glycoprotein activity did not corresponded to its anti-inflammatory effect. PMID:12487726

  11. Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Cristina Cheroni

    Full Text Available Hepatitis C virus (HCV variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%. Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.

  12. Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity.

    Science.gov (United States)

    Cheroni, Cristina; Donnici, Lorena; Aghemo, Alessio; Balistreri, Francesca; Bianco, Annalisa; Zanoni, Valeria; Pagani, Massimiliano; Soffredini, Roberta; D'Ambrosio, Roberta; Rumi, Maria Grazia; Colombo, Massimo; Abrignani, Sergio; Neddermann, Petra; De Francesco, Raffaele

    2015-01-01

    Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.

  13. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway.

    Directory of Open Access Journals (Sweden)

    Guido Carpino

    Full Text Available Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production.

  14. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway

    Science.gov (United States)

    Renzi, Anastasia; De Stefanis, Cristiano; Stronati, Laura; Franchitto, Antonio; Alisi, Anna; Onori, Paolo; De Vito, Rita; Alpini, Gianfranco; Gaudio, Eugenio

    2016-01-01

    Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production. PMID:27310371

  15. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    Science.gov (United States)

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  16. Mitochondria-dependent apoptosis of con A-activated T lymphocytes induced by asiatic acid for preventing murine fulminant hepatitis.

    Science.gov (United States)

    Guo, Wenjie; Liu, Wen; Hong, Shaocheng; Liu, Hailiang; Qian, Cheng; Shen, Yan; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2012-01-01

    Selectively facilitating apoptosis of activated T cells is essential for the clearance of pathogenic injurious cells and subsequent efficient resolution of inflammation. However, few chemicals have been reported to trigger apoptosis of activated T cells for the treatment of hepatitis without affecting quiescent T cells. In the present study, we found that asiatic acid, a natural triterpenoid, selectively triggered apoptosis of concanavalin A (Con A)-activated T cells in a mitochondria-dependent manner indicated by the disruption of the mitochondrial transmembrane potential, release of cytochrome c from mitochondria to cytosol, caspases activation, and cleavage of PARP. In addition, asiatic acid also induced the cleavage of caspase 8 and Bid and augmented Fas expression in Con A-activated T cells. However, following activation of T cells from MRL(lpr/lpr) mice with mutation of Fas demonstrated a similar susceptibility to asiatic acid-induced apoptosis compared with normal T cells, suggesting that Fas-mediated death-receptor apoptotic pathway does not mainly contribute to asiatic acid-induced cell death. Furthermore, asiatic acid significantly alleviated Con A-induced T cell-dependent fulminant hepatitis in mice, as assessed by reduced serum transaminases, pro-inflammatory cytokines, and pathologic parameters. Consistent with the in vitro results, asiatic acid also induced apoptosis of activated CD4(+) T cells in vivo. Taken together, our results demonstrated that the ability of asiatic acid to induce apoptosis of activated T cells and its potential use in the treatment of T-cell-mediated inflammatory diseases.

  17. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  18. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    Institute of Scientific and Technical Information of China (English)

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang

    2005-01-01

    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  19. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States); Edelman, Jeffrey L.; Brooks, Patricia A. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  20. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Yuta; Inoue, Jun [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan)

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.