WorldWideScience

Sample records for activated carbons produced

  1. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  2. Adsorption Of Blue-Dye On Activated Carbons Produced From Rice ...

    African Journals Online (AJOL)

    The activated carbons prepared were used for the adsorption of blue-dye of concentration ranging from 100 to 2000 mg/l from aqueous solution. The results obtained indicated that ferric chloride-activated carbons produced from coconut coirpith are better adsorbents for blue-dye than those prepared from rice husk.

  3. Removal of imidacloprid using activated carbon produced from ...

    African Journals Online (AJOL)

    In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that ...

  4. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  5. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    Science.gov (United States)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  6. Phenol adsorption by activated carbon produced from spent coffee grounds.

    Science.gov (United States)

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  7. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    Science.gov (United States)

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  8. Removal of Pb(II ions and malachite green dye from wastewater by activated carbon produced from lemon peel

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2014-06-01

    Full Text Available In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were �tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II ions from wastewaters.

  9. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  10. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste

    International Nuclear Information System (INIS)

    Williams, Paul T.; Reed, Anton R.

    2006-01-01

    Biomass waste in the form of biomass flax fibre, produced as a by-product of the textile industry was processed via both physical and chemical activation to produce activated carbons. The surface area of the physically activated carbons were up to 840 m 2 g -1 and the carbons were of mesoporous structure. Chemical activation using zinc chloride produced high surface area activated carbons up to 2400 m 2 g -1 and the pore size distribution was mainly microporous. However, the process conditions of temperature and zinc chloride concentration could be used to manipulate the surface area and porosity of the carbons to produce microporous, mesoporous and mixed microporous/mesoporous activated carbons. The physically activated carbons were found to be a mixture of Type I and Type IV carbons and the chemically activated carbons were found to be mainly Type I carbons. The development of surface morphology of physically and chemically activated carbons observed via scanning electron microscopy showed that physical activation produced activated carbons with a nodular and pitted surface morphology whereas activated carbons produced through chemical activation had a smooth surface morphology. Transmission electron microscopy analysis could identify mesopore structures in the physically activated carbon and microporous structures in the chemically activated carbons

  11. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  12. Carbon-Based Supercapacitors Produced by Activation of Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  13. Carbon-Based Supercapacitors Produced by Activation of Graphene

    Science.gov (United States)

    Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D.; Ganesh, K. J.; Cai, Weiwei; Ferreira, Paulo J.; Pirkle, Adam; Wallace, Robert M.; Cychosz, Katie A.; Thommes, Matthias; Su, Dong; Stach, Eric A.; Ruoff, Rodney S.

    2011-06-01

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp2-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  14. Carbon-based Supercapacitors Produced by Activation of Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  15. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  16. Activation and micropore structure determination of activated carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  17. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  18. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    Directory of Open Access Journals (Sweden)

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  19. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    International Nuclear Information System (INIS)

    Dolan, M.M.

    1987-01-01

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute

  20. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  1. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  2. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  3. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  4. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    Sloot, H.A. van der; Hoede, D.; Zonderhuis, J.; Meijer, C.

    1980-02-01

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO 2 at 950 0 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  5. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L.; Garcia, A. Macias; Diaz-Diez, M.A.

    2008-01-01

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO 2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO 2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  6. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  7. Evaluation of single-step steam pyrolysis-activated carbons

    African Journals Online (AJOL)

    Mgina

    Activated carbon has been widely used worldwide as an effective filtration or adsorption ... of producing activated carbon (AC) from local agroforestry residues by ..... impurities from waste water. .... Production of granular activated carbon.

  8. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    Science.gov (United States)

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  9. Pollutants removal onto novel activated carbons made from lignocellulosic precursors

    OpenAIRE

    Valente Nabais, Joao; Laginhas, Carlos; Carrott, Manuela; Carrott, Peter; Gomes, Jose; Suhas, Suhas; Ramires, Ana; Roman, Silvia

    2009-01-01

    The adsorption of phenol and mercury from dilute aqueous solutions onto new activated carbons was studied. These included activated carbons produced from novel precursors, namely rapeseed, vine shoots and kenaf, and samples oxidised with nitric acid in liquid phase. The results have shown the significant potential of rapeseed, vine shoots and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface...

  10. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Bermudez; B. Fidalgo; A. Arenillas; J.A. Menendez [Instituto Nacional del Carbn, Oviedo (Spain)

    2010-10-15

    The dry reforming of coke oven gases (COG) over an activated carbon used as catalyst has been studied in order to produce a syngas suitable for methanol synthesis. The primary aim of this work was to study the influence of the high amount of hydrogen present in the COG on the process of dry reforming, as well as the influence of other operation conditions, such us temperature and volumetric hourly space velocity (VHSV). It was found that the reverse water gas shift (RWGS) reaction takes place due to the hydrogen present in the COG, and that its influence on the process increases as the temperature decreases. This situation may give rise to the consumption of the hydrogen present in the COG, and the consequent formation of a syngas which is inappropriate for the synthesis of methanol. This reaction can be avoided by working at high temperatures (about 1000{sup o}C) in order to produce a syngas that is suitable for methanol synthesis. It was also found that the RWGS reaction is favoured by an increase in the VHSV. In addition, the active carbon FY5 was proven to be an adequate catalyst for the production of syngas from COG. 25 refs., 7 figs., 2 tabs.

  11. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  12. Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent

    Science.gov (United States)

    Yuliusman; Nasruddin; Afdhol, M. K.; Amiliana, R. A.; Hanafi, A.

    2017-07-01

    Palm shell is a potential source of raw materials for the produce of activated carbon as biosorbent for quite large numbers. The purpose of this study is to produce activated carbon qualified Indonesian Industrial Standard (SNI), which will be used as biosorbent to purify the impurities in the off gas petroleum refinery products. Stages of manufacture of activated carbon include carbonization, activation of chemistry and physics. Carbonization of activated carbon is done at a temperature of 400°C followed by chemical activation with active agent KOH and ZnCl2. Then the physical activation is done by flowing N2 gas for 1 hour at 850°C and followed by gas flow through the CO2 for 1 hour at 850°C. Research results indicate that activation of the active agent KOH produce activated carbon is better than using the active agent ZnCl2. The use of KOH as an active agent to produce activated carbon with a water content of 13.6%, ash content of 9.4%, iodine number of 884 mg/g and a surface area of 1115 m2/g. While the use of ZnCl2 as the active agent to produce activated carbon with a water content of 14.5%, total ash content of 9.0%, iodine number 648 mg/g and a surface area of 743 m2/g.

  13. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  14. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  15. Production of activated carbons from almond shell

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  16. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  17. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  18. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  19. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  20. Activated carbon fibers and engineered forms from renewable resources

    Science.gov (United States)

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  1. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    Science.gov (United States)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  2. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam

    International Nuclear Information System (INIS)

    Sun, Kang; Jiang, Jian chun

    2010-01-01

    The use of rubber-seed shell as a raw material for the production of activated carbon with physical activation was investigated. The produced activated carbons were characterized by Nitrogen adsorption isotherms, Scanning electron microscope, Thermo-gravimetric and Differential scanning calorimetric in order to understand the rubber-seed shell activated carbon. The results showed that rubber-seed shell is a good precursor for activated carbon. The optimal activation condition is: temperature 880 o C, steam flow 6 kg h -1 , residence time 60 min. Characteristics of activated carbon with a high yield (30.5%) are: specific surface area (S BET ) 948 m 2 g -1 , total volume 0.988 m 3 kg -1 , iodine number of adsorbent (q iodine ) 1.326 g g -1 , amount of methylene blue adsorption of adsorbent (q mb ) 265 mg g -1 , hardness 94.7%. It is demonstrated that rubber-seed shell is an attractive source of raw material for producing high capacity activated carbon by physical activation with steam.

  3. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    Science.gov (United States)

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  4. Production of activated carbon from peat. A techno-economic feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Asplund, D; Ekman, E

    1984-05-01

    The production of activated carbon from peat was studied both with laboratory and pilot plant experiments in a fluidized-bed furnace. Peat coke was mainly used as raw material, and it was gasified partially with steam to granular activated carbon. The activated carbon grades produced were evaluated on the basis of physical characteristics, for example, volume weight, hardness, specific surface, and pore structure. The proximated analysis of activated carbon crush produced from peat coke: volume weight 220-260 g/l, specific surface 700-1100 msup/g, ash content 13-15%. The physical properties of the produced activated carbon grades were equal to those of commercial carbon brands. On the basis of these trial runs, an activated carbon plant for capacities of 400 t/a and 1500 t/a was preliminary designed adn the use of the fluidized-bed furnace for regenerating activated carbon was evaluated. The initial investment in the production plant was estimated to amount to FIM 3.5 mill. and FIM 5.9 mill. The refund periods of the basic alternatives would be 26 and 2 years, and the minimum capacity of profitable production 900 t/a.

  5. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  6. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  7. Activated carbon from maize tassels and polymer composites for water decontamination

    OpenAIRE

    2014-01-01

    Ph.D. (Chemistry) This study presents work on the preparation, characterisation and application of agricultural waste residue, maize tassel in the production of activated carbon (AC) using both physical and chemical methods of activation in their production. The activated carbon produced from maize tassel (MTAC) or steam-produced activated carbon (STAC) were later added as a filler – together with beta-cyclodextrin (β-CD), and raw tassel (RT) – in the production of polyurethane composite a...

  8. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties

    OpenAIRE

    Valente Nabais, Joao; Gomes, Jose; Suhas, Suhas; Carrott, Peter; Laginhas, Carlos; Roman, Silvia

    2009-01-01

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phasewere also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface...

  9. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  10. Characterization of Sodium Carbonate (Na2CO3) Treated Rice Husk Activated Carbon and Adsorption of Lead from Car Battery Wastewater

    Science.gov (United States)

    Hanum, F.; Bani, O.; Izdiharo, A. M.

    2017-03-01

    The use of rice husk as adsorbent would not only reduce its disposal problems, but would also produce value-added products, such as activated carbon derived from rice husk. This study aimed to determine the optimum carbonization temperature for activated carbon production from rice husk and its adsorption performance on Pb in car battery wastewater. In this study, activated carbon was produced by carbonizing rice husk 400-600 °C for 90-150 minutes followed by chemical activation using 5% Na2CO3 and sieving to 100 meshes. Lead adsorption was measured using atomic absorption spectroscopy (AAS). Results suggested that highest carbon yield of 47.75% was obtained for carbonization at 500 °C for 150 minutes. At that condition, produced activated carbon contained 3.35% moisture, 30.86% ash, 18.04% volatile matter. The adsorption capacity was found to be 0.6007 mg lead/g adsorbent with % adsorpsi 58.08%

  11. NiMo-sulfide supported on activated carbon to produce renewable diesel

    Directory of Open Access Journals (Sweden)

    Nancy Y Acelas

    2017-03-01

    Full Text Available Due to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5. Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.

  12. Method of producing radioactive carbon powder

    International Nuclear Information System (INIS)

    Imamura, Y.

    1980-01-01

    Carbon powder, placed in a hermetically closed apparatus under vacuum together with radium ore, adsorbs radon gas emanating from the radium ore thus producing a radioactive carbonaceous material, the radioactivity of which is due to the presence of adsorbed radon. The radioactive carbon powder thus obtained has excellent therapeutical efficacy and is suitable for a variety of applications because of the mild radioactivity of radon. Radium ore permits substantially limitlessly repeated production of the radioactive carbon powder

  13. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons

    International Nuclear Information System (INIS)

    Atekwana, Eliot A.; Seeger, Eric J.

    2015-01-01

    The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ"1"3C_D_I_C) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO_3"−-rich, SO_4"2"−-rich and Cl"−-rich. The HCO_3"−-rich groundwater is undergoing closed system carbonate evolution from soil CO_2_(_g_) and weathering of aquifer carbonates. The SO_4"2"−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl"−-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ"1"3C_D_I_C of the HCO_3"−-rich groundwater was controlled by nearly equal contribution of carbon from soil CO_2_(_g_) and the aquifer carbonates, such that the δ"1"3C of carbon added to the groundwater was −11.6‰. In the SO_4"2"−-rich groundwater, gypsum induced dedolomitization increased the "1"3C such that the δ"1"3C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl"−-rich groundwater, common ion induced precipitation of calcite depleted the "1"3C such that the δ"1"3C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution. - Highlights: • We studied carbonate and δ"1"3C evolution in groundwater contaminated by produced water brine. • Multiple processes affect the carbonate and δ"1"3C evolution of the groundwater. • The processes are carbonate weathering, dedolomitization and common ion induce calcite precipitation. • The δ"1"3C added to DIC was −11.6‰ for weathering, −9.4‰ for dedolomitization

  14. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  15. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  16. Activation and micropore structure of carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  17. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane

    International Nuclear Information System (INIS)

    Suelves, I.; Utrilla, R.; Torres, D.; Llobet, S. de; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.

    2013-01-01

    Polymer-based composites were prepared using different concentrations of nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). Four carbonaceous nanostructures were produced using different catalysts (with Ni and Fe as active phases) in a rotary bed reactor capable of producing up to 20 g of carbon per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of epoxy-based composites is studied. An increase in the thermal stability and the decrease of electrical resistivity were observed for the composites at carbon contents as low as 1 wt%. The highest reduction of the electrical resistivity was obtained using multi-walled carbon nanotubes obtained with the Fe based catalysts. This effect could be related to the high degree of structural order of these materials. The results were compared with those obtained using a commercial carbon nanofibre, showing that the use of carbon nanostructures from CDM can be a valid alternative to the commercial nanofibres. -- Highlights: ► Preparation of polymer nanocomposites with enhanced thermal and electrical properties. ► Formation of nanostructured carbon materials with different textural and structural properties at large scale. ► Catalytic decomposition of methane to simultaneously produce hydrogen and carbon materials.

  19. Production and characterization of activated carbon using indigenous waste materials

    International Nuclear Information System (INIS)

    Shahid, M.; Ibrahim, F.

    2011-01-01

    Activated carbon was produced from shisham wood and coconut shell through chemical activation, using phosphoric acid and low temperature carbonization. Proximate analysis and characterization of the product were carried out and Brunauer Emmett Teller (BET) surface area, total ash content, moisture content, pH value and iodine number were determined. The product characteristics were well comparable with those of the commercially available activated carbon. (author)

  20. Microstructure and surface properties of lignocellulosic-based activated carbons

    International Nuclear Information System (INIS)

    González-García, P.; Centeno, T.A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L.C.

    2013-01-01

    Highlights: ► Activated carbons were produced by KOH activation at 700 °C. ► The observed nanostructure consists of highly disordered graphene–like layers with sp 2 bond content ≈ 95%. ► Textural parameters show high surface area (≈ 1000 m 2 /g) and pore width of 1.3–1.8 nm. ► Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet–like particles with variable length and thickness, formed by highly disordered graphene–like layers with sp 2 content ≈ 95% and average mass density of 1.65 g/cm 3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m 2 /g and average pore width centered in the supermicropores range (1.3–1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm 2 ) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  1. Preparation of activated carbon from western Canadian high rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, G.; Wong, B.; Furimsky, E. [Alberta Research Council, Devon, AB (Canada). Coal and Hydrocarbon Processing Dept.

    1995-01-01

    Partial steam gasification of Mt. Klappan anthracite and Cascade semianthracite with char conversion greater than 60%, produced activated carbons with surface areas greater than 1000 m{sup 2}/g. The pore structures of the activated carbons were predominantly microporous and mesoporous. The proportions of macropores were of the order of 2%. Fuel gas produced during steam activation of chars contained predominantly combustible gases i.e. 45-55% H{sub 2} and 30-40% CO whereas the amount of CO{sub 2} ranged between 5 and 15%. Correlations of char conversion with operating parameters and surface areas were developed and used to predict the activation process. Selected samples of activated carbons were characterized for the water and wastewater treatment as well as for gold recovery. 7 refs., 3 figs., 7 tabs.

  2. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  3. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  4. Binder-less activated carbon electrode from gelam wood for use in supercapacitors

    Directory of Open Access Journals (Sweden)

    IVANDINI A. TRIBIDASARI

    2013-04-01

    Full Text Available This work focused on the relation between the porous structure of activated carbon and its capacitive properties. Three types of activated carbon monoliths were used as the electrodes in a half cell electrochemical system. One monolith was produced from activated carbon and considered to be a binder-less electrode. Two others were produced from acid and high pressure steam oxidized activated carbon. The micrographs clearly indicate that three electrodes have different porous structures. Both porosity and surface area of carbons increased due to the formation of grains during oxidation. This fact specified that an acid oxidized carbon monolith will have relatively higher capacitance compared to non-oxidized and steam oxidized monoliths. Maximum capacitance values for acid, steam oxidized and non-oxidized electrodes were 27.68, 2.23 and 1.20 F g-1, respectively.

  5. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    Science.gov (United States)

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  6. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianzhong, E-mail: xjz8112@sina.com [College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei (China); Chen, Lingzhi [College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei (China); Department of Applied Chemistry, Hengshui University, Hengshui 053000, Hebei (China); Qu, Hongqiang; Jiao, Yunhong; Xie, Jixing [College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei (China); Xing, Guangen [Department of Applied Chemistry, Hengshui University, Hengshui 053000, Hebei (China)

    2014-11-30

    Highlights: • Activated carbons were produced from reedy grass leaves by activation with phosphoric acid. • The activated carbons have a large number of oxygen- and phosphorus-containing surface groups. • The structure of activated carbons was bight fibers features on the surface and the external surface of the activated carbons was slightly corrugated and abundant pores. - Abstract: Activated carbons were produced from reedy grass leaves by chemical activation with H{sub 3}PO{sub 4} in N{sub 2} atmosphere and their characteristics were investigated. The effects of activation temperature and time were examined. Adsorption capacity was demonstrated with BET and iodine number. Micropore volume and pore size distribution of activated carbons were characterized by N{sub 2} adsorption isotherms. The surface area and iodine number of the activated carbons produced at 500 °C for 2 h were 1474 m{sup 2}/g and 1128 mg/g, respectively. Thermal decomposition of pure reedy grass leaves and H{sub 3}PO{sub 4}-impregnated reedy grass leaves have been investigated with thermogravimetric/mass spectroscopy (TG–MS) technique. It was found that the temperature and intensity of maximum evolution of H{sub 2}O and CO{sub 2} of H{sub 3}PO{sub 4}-impregnated reedy grass leaves were lower than that of pure reedy grass leaves. This implies that H{sub 3}PO{sub 4} as an activating reagent changed the thermal degradation of the reedy grass leaves, stabilized the cellulose structure, leading to a subsequent change in the evolution of porosity. The results of X-ray photoelectron spectroscopy and Fourier-infrared spectroscopy analysis indicate that the produced activated carbons have rich functional groups on surface.

  7. Brazilian natural fiber (jute as raw material for activated carbon production

    Directory of Open Access Journals (Sweden)

    CARLA F.S. ROMBALDO

    2014-12-01

    Full Text Available Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.

  8. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  9. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    Science.gov (United States)

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  10. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  11. Fish as major carbonate mud producers and missing components of the tropical carbonate factory

    Science.gov (United States)

    Perry, Chris T.; Salter, Michael A.; Harborne, Alastair R.; Crowley, Stephen F.; Jelks, Howard L.; Wilson, Rod W.

    2011-01-01

    Carbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts ("low" and "high" Mg-calcite and aragonite), but that very fine-grained (mostly 4 mole % MgCO3) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ~6.1 x 106 kg CaCO3/year across the Bahamian archipelago, all as mud-grade (the marine carbonate factories function both today and in the past.

  12. Isothermal approach to predict the removal efficiency of β-carotene adsorption from CPO using activated carbon produced from tea waste

    Science.gov (United States)

    Harahap, S. A. A.; Nazar, A.; Yunita, M.; Pasaribu, RA; Panjaitan, F.; Yanuar, F.; Misran, E.

    2018-02-01

    Adsorption of β-carotene in crude palm oil (CPO) was studied using activated carbon produced from tea waste (ACTW) an adsorbent. Isothermal studies were carried out at 60 °C with the ratio of activated carbon to CPO were 1:3, 1:4, 1:5, and 1:6, respectively. The ACTW showed excellent performance as the percentage of adsorption of β-carotene from CPO was > 99%. The best percentage removal (R) was achieved at ACTW to CPO ratio equal to 1:3, which was 99.61%. The appropriate isotherm model for this study was Freundlich isotherm model. The combination of Freundlich isotherm equation and mass balance equation showed a good agreement when validated to the experimental data. The equation subsequently executed to predict the removal efficiency under given sets of operating conditions. At a targetted R, CPO volume can be estimated for a certain initial concentration β-carotene in CPO C0 and mass of ACTW adsorbent M used.

  13. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Kumar, B.G. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600 025 (India); Shivakamy, K. [Centralised Waste Management Facility, Bhabha Atomic Research Centre, Kalpakkam 603 102 (India); Miranda, Lima Rose [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600 025 (India); Velan, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600 025 (India)]. E-mail: velan@annauniv.edu

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1 h and 750 deg. C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g{sup -1} for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon.

  14. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.

    Science.gov (United States)

    Qiao, Jinli; Liu, Yuyu; Hong, Feng; Zhang, Jiujun

    2014-01-21

    This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

  15. Measurement of the activity coefficient of carbon in steels in liquid sodium

    International Nuclear Information System (INIS)

    Surville, G.

    1983-06-01

    In sodium cooled fast reactors carbon is both a carbon impurity and element of structural materials. Carbon transfert through liquid sodium can produce carburization or decarburization of structural materials. Carbon content in sodium is determined with thin foils of austenitic alloys, when equilibrium is reached thermodynamic activity of carbon in sodium is deduced from carbon activity in alloys. Studied alloys are FeMn 20%, FeNi 30%, Z2CN 18-10 and Z3CND17-13. Carbon activity of alloys in sodium was between 5.10 -3 and 10 -1 at 600 and 650 0 C. Calibration was obtained with the alloys FeNi 30% in gaseous mixtures He-CO-CO 2 of known activity [fr

  16. Adsorption of peptides produced by cyanobacterium Microcystis aeruginosa onto granular activated carbon

    Czech Academy of Sciences Publication Activity Database

    Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Hnaťuková, Petra; Šafaříková, Jana

    2014-01-01

    Roč. 69, April (2014), s. 595-608 ISSN 0008-6223 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : Microcystis aeruginosa * granular activated carbon * celllular organic matter (COM) Subject RIV: BK - Fluid Dynamics Impact factor: 6.196, year: 2014 http://www.sciencedirect.com/science/article/pii/S000862231301227X

  17. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  18. Porosity and adsorption properties of activated carbon derived from palm oil waste

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Nor Hayati Alias; Choo Thye Foo; Megat Harun Al-Rashid Megat Ahmad

    2004-01-01

    Activated carbon have extensively been used as adsorbents in industry for the removal of pollutant species from gases for the purpose of purification and recovery of chemicals. The adsorption properties of the carbons depend very much on the porosity and type of pore presents which can be generated and controlled during synthesis and activation steps. This paper reports the effect of chemical activation by ZnCl 3 , KOH and nh 4 OH on the porosity of carbon produced from palm oil industry waste. Type of pores will further be validated by the SEM micrograph. The amount of gas adsorbed, the adsorption capacities can also be estimated based on the BET experiments data. The applicability of the produced carbon materials for the removal and exchange of hazardous incinerator gas is discussed. (Author)

  19. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Harb, Moussab; Saih, Youssef; Aguilar Tapia, Antonio; Ould-Chikh, Samy; Hazemann, Jean-louis; Li, Jun; Wei, Nini; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2017-01-01

    Conducting catalytic methane decomposition over Fe catalysts is a green and economic route to produce H2 without CO/CO2 contamination. Fused 65wt% and impregnated 20wt% Fe catalysts were synthesized with different additives to investigate their activity, whereas showing Fe-Al2O3 combination as the best catalyst. Al2O3 is speculated to expose more Fe00 for the selective deposition of carbon nano tubes (CNTs). A fused Fe (65wt%)-Al2O3 sample was further investigated by means of H2-TPR, in-situ XRD, HRTEM and XAS to conclude 750°C is the optimized temperature for H2 pre-reduction and reaction to obtain a high activity. Based on density functional theory (DFT) study, a reaction mechanism over Fe catalysts was proposed to explain the formation of graphite from unstable supersaturated iron carbides decomposition. A carbon deposition model was further proposed which explains the formation of different carbon nano materials.

  20. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials

    KAUST Repository

    Zhou, Lu

    2017-02-21

    Conducting catalytic methane decomposition over Fe catalysts is a green and economic route to produce H2 without CO/CO2 contamination. Fused 65wt% and impregnated 20wt% Fe catalysts were synthesized with different additives to investigate their activity, whereas showing Fe-Al2O3 combination as the best catalyst. Al2O3 is speculated to expose more Fe00 for the selective deposition of carbon nano tubes (CNTs). A fused Fe (65wt%)-Al2O3 sample was further investigated by means of H2-TPR, in-situ XRD, HRTEM and XAS to conclude 750°C is the optimized temperature for H2 pre-reduction and reaction to obtain a high activity. Based on density functional theory (DFT) study, a reaction mechanism over Fe catalysts was proposed to explain the formation of graphite from unstable supersaturated iron carbides decomposition. A carbon deposition model was further proposed which explains the formation of different carbon nano materials.

  1. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  2. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  3. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  4. Microstructure and surface properties of lignocellulosic-based activated carbons

    Science.gov (United States)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  5. Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products

    International Nuclear Information System (INIS)

    Nieto-Delgado, C.; Terrones, M.; Rangel-Mendez, J.R.

    2011-01-01

    This work has the aim to employ the agave bagasse, a waste from Tequila and Mescal industries, to obtain a product of high commercial value such as activated carbon. The activated carbon production methodology was based on a chemical activation, by using ZnCl 2 and H 3 PO 4 as activating agent and agave bagasse as a natural source of carbon. The activation temperature (150-450 o C), activation time (0-60 min) and weight ratio of activating agent to precursor (0.2-4) were studied. The produced carbon materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and nitrogen physisorption at -196 o C. In addition, the activating agent recovery was evaluated. We were able to obtain highly microporous activated carbons with micropore volumes between 0.24 and 1.20 cm 3 /g and a surface area within 300 and 2139 m 2 /g. These results demonstrated the feasibility to treat the industrial wastes of the Tequila and Mescal industries, being this wastes an excellent precursor to produce highly microporous activated carbons that can be processed at low activation temperatures in short times, with the possibility of recycling the activating agent.

  6. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xincheng [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Jiang Jianchun, E-mail: lhs_ac2011@yahoo.cn [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Sun Kang; Xie Xinping; Hu Yiming [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China)

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  7. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  8. Separation of Th from aqueous solutions using activated carbon

    International Nuclear Information System (INIS)

    Kutahyali, C.; Eral, M.

    2005-01-01

    Since the last century, thorium has been extensively used in a variety of applications. These applications produce various gaseous, liquid and solid wastes containing isotopes of thorium. Liquid wastes are freed into the surface or the underground waters of mines. Solid and liquid wastes are also produced during nuclear fuel production. Direct toxicity of thorium is low due to its stability at ambient temperatures; however thorium fine powder is self-ignitable to thorium oxide. When thorium nitrate enters living organisms it is mainly localized in liver, spleen and marrow and it precipitates in a hydroxide form. Investigations concerning the removal or minimization of the thorium concentration in the waste waters are of considerable importance environmental point of view. Adsorption is an important technique in separation and purification processes. Among many types of adsorbent materials, activated carbons are the most widely used, because of their large adsorptive capacity and low cost. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. Separation and purification processes based on adsorption technique are also important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity. The activated carbons used in this study were prepared by the chemical activation of acrylic fiber. The chemical composition of acrylic fiber is a copolymer of acrylonitrile-vinyl acetate is called also poliacrylonitryl fiber. The effects of carbonization conditions resulting activated carbon were examined. Precursor/activating agent (KOH and ZnCl 2 ) ratio and carbonization temperature were investigated for the preparation of adsorbent. Adsorption experiments were carried out by a batch technique. The adsorption of thorium was studied as a function of

  9. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    Zulkarnain Zainal; Chan, Sook Keng; Abdul Halim Abdullah

    2008-01-01

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO 2 / AC was found to be two times better than the removal by immobilised AC or immobilised TiO 2 alone. In 4 hours and with the concentration of 10 ppm, TiO 2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  10. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  11. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    Science.gov (United States)

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  12. Waste management activities and carbon emissions in Africa

    International Nuclear Information System (INIS)

    Couth, R.; Trois, C.

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  13. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  14. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chilton [Food and Drug Administration, Dept. of Health and Human Services, Lenexa, KS (United States); Losso, Jack N.; Rao, Ramu M. [Louisiana State Univ. Agricultural Center, Dept. of Food Science, Baton Rouge, LA (United States); Marshall, Wayne E. [USDA-ARS, Southern Regional Research Center, New Orleans, LA (United States)

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO{sub 2}-activated pecan shell carbon. At geosmin concentrations <0.07 {sup {mu}}g/l for the phosphoric acid-activated pecan shell carbon and below 0.08 {sup {mu}}g/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 {sup {mu}}g/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal. (Author)

  15. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  16. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    International Nuclear Information System (INIS)

    Jimenez, Vicente; Sanchez, Paula; Valverde, Jose Luis; Romero, Amaya

    2010-01-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N 2 /77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H 2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  17. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Vicente, E-mail: vicente.jimenez@uclm.es [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Sanchez, Paula; Valverde, Jose Luis [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Romero, Amaya [Escuela Tecnica Agricola, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2010-11-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N{sub 2}/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H{sub 2} and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  18. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    OpenAIRE

    Yang, Wen; Feng, Yanyan; Chu, Wei

    2014-01-01

    Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A) models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane c...

  19. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  20. Selecting activated carbon for water and wastewater treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  1. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    OpenAIRE

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-l...

  2. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  3. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    Science.gov (United States)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  4. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  5. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane capacities. In addition, a thermodynamic study of the heat of adsorption of CH4 on the carbon spheres was carried out. Adsorption of CH4 on carbon spheres showed a decrease in the adsorption heat with CH4 occupancy, and the heat of adsorption fell from 20.51 to 12.50 kJ/mol at 298 K and then increased to a little higher values at a very high loading (>0.70, indicating that CH4/CH4 interactions within the adsorption layer became significant.

  6. Method of producing a carbon coated ceramic membrane and associated product

    Science.gov (United States)

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  7. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  8. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  9. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  10. Deuterium retention properties of co-deposited carbon films produced at wall gaps

    International Nuclear Information System (INIS)

    Nobuta, Yuji; Kanazawa, Jun; Yamauchi, Yuji; Hino, Tomoaki; Yokoyama, Kenji; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato; Akamaru, Satoshi; Hatano, Yuji

    2013-01-01

    Deuterium retention properties in co-deposited carbon film produced in gap and the relationship between this retention behavior and the crystal structure of carbon film were investigated. In the case of a wide gap, the atomic ratio of deuterium to carbon (D/C) in the film was almost constant at any depth in the gap, while in the case of a narrow gap the D/C ratio decreased with increasing distance from the gap entrance. The micro structure of carbon film tended to be more amorphous for the film produced at locations deeper in the gap. Thermal desorption spectra of D 2 in the film produced near the gap entrance showed one broad main peak at around 1100 K, while that in the film produced near the bottom showed very sharp peaks at around 950 K. This difference in desorption behavior was related with the differences of micro structure. (author)

  11. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    Science.gov (United States)

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  12. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties

    International Nuclear Information System (INIS)

    Valente Nabais, J.M.; Gomes, J.A.; Suhas; Carrott, P.J.M.; Laginhas, C.; Roman, S.

    2009-01-01

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m 2 g -1 and pore volume 0.5 cm 3 g -1 . The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 deg. C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g -1 for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the π-π dispersion interaction between the phenol aromatic ring and the delocalised π electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  13. The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent

    Directory of Open Access Journals (Sweden)

    Zulkania Ariany

    2018-01-01

    Full Text Available Activated carbon from bio-char waste of bio oil pyrolysis of mixed sugarcane bagasse and Rambutan twigs was investigated. Bio-char as by-product of bio-oil pyrolysis has potential to be good adsorbed by activating process. Bio-chars waste was activated in fixed bed reactor inside furnace without presenting oxygen. Gas N2 and CO2 were employed to drive out oxygen from the reactor and as activator, respectively. One of the best activation treatments is achieved by performing activation in different temperature and time to produce standard activated carbon. The experiment was performed at different temperatures and activation time, i.e. 800, 850, and 900° C and 80 and 120 minutes, respectively, to determine the optimal operating condition. Activated carbon was characterized by analysis of moisture content, ash content pH, and methylene blue test. The results showed that optimum activation was at 850°C and 80 minute, where activated carbon produced indicated the best adsorption capacity. The ash content and pH had significant role in resulting good activated carbon.

  14. Activated carbon material

    International Nuclear Information System (INIS)

    Evans, A.G.

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards

  15. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  16. Spectroscopic and corpuscular analysis of laser-produced carbon plasma

    International Nuclear Information System (INIS)

    Czarnecka, A.; Kubkowska, M.; Kowalska-Strzeciwilk, E.; Parys, P.; Sadowski, M.J.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Ladygina, M.

    2013-01-01

    The paper describes spectroscopic and corpuscular measurements of laser-produced carbon plasma, which was created at surfaces of three targets made of CFC of the Snecma-N11 type with different crystallographic orientations. In order to irradiate the investigated samples the use was made of a Nd:YAG laser. Experiments were performed in a vacuum chamber under the initial pressure equal to 5.10-5 mbar. A Mechelle 900 optical spectrometer equipped with a CCD detector was used to record spectra emitted from the produced carbon-plasma. The recorded optical spectra showed distinct carbon lines ranging from CI to CIV. Basing on the Stark broadening of the CII 426.7 nm line it was possible to estimate the electron density of plasma from each investigated sample. Corpuscular measurements of the emitted ions were carried out by means of an electrostatic ion-energy analyzer and ion collector.

  17. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Directory of Open Access Journals (Sweden)

    Keum-Il Song

    2014-01-01

    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  18. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  19. Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca Fruit Stem

    Directory of Open Access Journals (Sweden)

    O. A. Ekpete

    2017-01-01

    Full Text Available Carbonization of carbon obtained from plantain (Musa paradisiaca stem was achieved at a temperature of 400°C for one hour. The carbonized carbon was divided into two parts to be activated separately. The activated carbon CPPAC (carbonized plantain phosphoric acid activated carbon and CPZAC (carbonized plantain zinc chloride activated carbon were produced via the chemical activation process using H3PO4 and ZnCl2. Characterization of pH, bulk density, moisture content, ash content, volatile matter, iodine number, and oxygen functional group was conducted. When comparing the surface properties of both CPPAC and CPZAC with the untreated plantain carbon (UPC, it was observed that there existed significant differences in all properties with the exemption of carboxylic group for CPPAC and phenolic group for both CPPAC and CPZAC, thus signifying that a chemical transformation did occur. When comparing the results obtained from CPPAC to that of CPZAC, CPPAC was more preferable for adsorption due to its low bulk density, low ash content, and high iodine value, signifying thus that the activating agents both reacted differently with the plantain stem.

  20. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  1. Preparation of Activated Carbon from Maize Stems by Sulfuric Acids Activation and Their Application in Copper (II Ion Sorption

    Directory of Open Access Journals (Sweden)

    Erin Ryantin Gunawan

    2010-04-01

    Full Text Available Activated carbons were prepared from maize (Zea mays L. stems by sulfuric acids activation or chemical methods. The dry maize stems are usually used as low-value energy resources in many countries, burned in the field, or discarded, which are unfavorable to environment. This motivates the investigation of producing value-added products from the dry maize stems, such as activated carbons, as well as solving some environmental problems. The preparation process consisted of sulfuric acid impregnation at different impregnation ratio followed by carbonization at 250-400 oC for 1-4 h. The results show that the impregnation ratio was 1.25, the optimum activation temperature was 300 oC and the activation time was 1 h. The sorption capacity of the activated carbon was 25.1 mg/g.

  2. Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients.

    Science.gov (United States)

    Riley, Stephanie M; Ahoor, Danika C; Cath, Tzahi Y

    2018-05-31

    Large volumes of water are required for the development of unconventional oil and gas (O&G) wells. Water scarcity coupled with seismicity induced by deep-well disposal promote new O&G wastewater management strategies, specifically treatment and reuse. One technology that has been proven effective for removal of organic matter and solids is biologically active filtration (BAF) with granular active carbon (GAC); however, further optimization is needed to enhance BAF performance. This study evaluated three GAC media (one spent and two new) and two nutrient-mix supplements for enhanced removal of chemical oxygen demand (COD) and dissolved organic carbon (DOC). Biofilm development was also monitored and correlated to BAF performance. The spent GAC with extant biofilm quickly acclimated to PW and demonstrated up to 92% DOC removal (81% COD) in 24h, while little impact by nutrient addition was observed. In addition, virgin GAC was slow to establish a biofilm, indicating that appropriate GAC selection and pre-developed biofilm is critical for efficient BAF performance. Furthermore, the production of high quality BAF effluent (less than 20mg/L DOC) presents the opportunity to apply BAF as a pretreatment for subsequent desalination-expanding the potential for reuse applications of PW. Copyright © 2017. Published by Elsevier B.V.

  3. Activated Carbon from the Chinese Herbal Medicine Waste by H3PO4 Activation

    Directory of Open Access Journals (Sweden)

    Tie Mi

    2015-01-01

    Full Text Available Large amounts of Chinese herbal medicine wastes produced by the medicinal factories have been mainly landfilled as waste. In this study, via phosphoric acid activation, a Chinese herbal medicine waste from Magnolia officinalis (CHMW-MO was prepared for activated carbon (CHMW-MO-AC. The effect of preparation conditions (phosphoric acid/CHMW-MO impregnation ratio, activation temperature, and time of activated carbon on yield of CHMW-MO-AC was investigated. The surface area and porous texture of the CHMW-MO-ACs were characterized by nitrogen adsorption at 77 K. The SBET and pore volume were achieved in their highest value of 920 m2/g and 0.703 cm3/g, respectively. Thermal gravity analysis and scanning electron microscope images showed that CHMW-MO-ACs have a high thermal resistance and pore development. The results indicated that CHMW-MO is a good precursor material for preparing activated carbon, and CHMW-MO-AC with well-developed mesopore volume can be prepared by H3PO4 activation.

  4. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Bayer, E.

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm 3 to 0.52 g.cm 3 . Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g -1 ), while O. martiana contained the highest lignin content (40.7 g.100g -1 ). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V micro ) was between 0.33cm 3 .g -1 - 0.40cm 3 .g -1 , while the mesopore volume(V meso ) was between 0.05 cm 3 .g -1 - 0.07 cm 3 .g -1 . The BET specific surface exceeds 1000 m 2 .g -1 . All these values compared favourably with high grade commercial active carbons. (author)

  5. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox shell by chemical activation with H3PO4

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    Full Text Available Activated carbons were prepared from Fox nutshell by chemical activation with H3PO4 in N2 atmosphere and their characteristics were studied. The effects of activation temperature and impregnation ratio were examined. N2 adsorption isotherms characterized the surface area, total pore volume, micropore volume and pore size distribution of activated carbons. Activated carbon was produced at 700 °C with a 1.5 impregnation ratio and one hour of activation time has found 2636 m2/g and 1.53 cm3/g of highest BET surface area and total pore volume, respectively. The result of Fourier-infrared spectroscopy analysis of the prepared activated carbon confirmed that the carbon has abundant functional groups on the surface. Field emission scanning electron micrographs of the prepared activated carbon showed that a porous structure formed during activation. Keywords: Activated carbons, Fox nutshell, Chemical activation, H3PO4, Activated carbon, Surface chemistry, Porous structure

  6. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  7. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder

    Science.gov (United States)

    Maulina, S.; Iriansyah, M.

    2018-02-01

    Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.

  8. Preparation and characterization of activated carbon from castor de-oiled cake

    Directory of Open Access Journals (Sweden)

    Viviana M. Ospina-Guarín

    2014-01-01

    Full Text Available Biomass residues have been used to produce activated carbons. On this process, the activation method and the raw composition determine the properties as porosity and surface area of the charcoal. After the extraction of castor oil, there is a solid byproduct (cake of low added value, which was used in the production of activated carbon to add value to this waste. For this purpose two traditional methods were used, first, physical activation using as activating agents steam, CO2 and mixture of both, and additionally chemical activation using K2CO3 as the activating agent. Some activated carbons were characterized using N2 adsorption isotherms, BET surface areas varied between 255.98 (m2/g and 1218.43 (m2/g. By SEM and EDS analysis was possible to observe that materials obtained by the two types of activation are principally amorphous and morphological characteristics of the carbon obtained by physical activation are very different from those obtained by chemical activation. Finally, through impregnation of inorganic phases of Ni and Mo was revealed that the high dispersion characteristics, these carbonaceous materials will have potential to be used as catalyst support.

  9. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

    Science.gov (United States)

    Han, Zhantao; Sani, Badruddeen; Mrozik, Wojciech; Obst, Martin; Beckingham, Barbara; Karapanagioti, Hrissi K; Werner, David

    2015-03-01

    This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Le Coq, L.; Faur, C.; Le Cloirec, P.; Phan Ngoc, H.

    2005-01-01

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO 2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H 3 PO 4 , HNO 3 , KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical

  11. Activated carbon from flash pyrolysis of eucalyptus residue

    Directory of Open Access Journals (Sweden)

    Grima-Olmedo C

    2016-09-01

    Full Text Available Forestry waste (eucalyptus sp was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10–15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  12. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Recent Progress in Producing Lignin-Based Carbon Fibers for Functional Applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Burwell, Deanna [GrafTech International Holdings Inc.; Dai, Xuliang [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Akato, Kokouvi [Oak Ridge National Laboratory

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  14. Vapor mercury uptake with sulphur impregnated active carbons derived using sulphur dioxide

    International Nuclear Information System (INIS)

    Tong, S.; Methta, H.; Ahmed, I.; Morris, E.; Fuentes de Maria, L.; Jia, C.Q.

    2008-01-01

    Active carbon adsorption is the primary technology used for removal of vapour mercury from flue gases in coal-fired power plants, municipal solid waste combustors, and other sources. It can be carried out using two different processes, notably injection of powder active carbon into flue gas streams upstream of the particulate collection devices, and filtration with a granular active carbon fixed bed downstream of the flue gas desulphurization units and/or particulate collectors. This paper presented an investigation of vapour mercury uptake performance of laboratory-made sulphur impregnated active carbons (SIACs) using a fixed bed reactor in a temperature range of 25 to 200 degrees Celsius. The materials and methods as well as the properties of activated carbons studied were presented. The experimental set-up was also described. The paper discussed the effects of initial concentration, the flow rate, the loading amount of SIACs, temperature, and the sulphur impregnation on the mercury uptake performance. The study showed that SIACs produced with sulphur dioxide exhibited a more complicated behaviour when temperature was varied, implying a mixed adsorption mechanism. 10 refs., 3 tabs., 8 figs

  15. Active carbons from low temperature conversion chars

    Energy Technology Data Exchange (ETDEWEB)

    Adebowale, K O [Department of Chemistry, University of lbadan, lbadan (Nigeria); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Bayer, E [Universitaet Tuebingen, Institut fuer Organische Chemie, Forschungstelle Nukleinsaeure- und Peptidchemie, Tuebingen (Germany)

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm{sup 3} to 0.52 g.cm{sup 3}. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g{sup -1}), while O. martiana contained the highest lignin content (40.7 g.100g{sup -1}). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V{sub micro}) was between 0.33cm{sup 3}.g{sup -1} - 0.40cm{sup 3}.g{sup -1}, while the mesopore volume(V{sub meso}) was between 0.05 cm{sup 3}.g{sup -1} - 0.07 cm{sup 3}.g{sup -1}. The BET specific surface exceeds 1000 m{sup 2}.g{sup -1}. All these values compared favourably with high grade commercial active carbons. (author)

  16. Determination of carbon in chromium by photon activation

    Energy Technology Data Exchange (ETDEWEB)

    Fedoroff, M; Loos-Neskovic, C; Revel, G [Centre National de la Recherche Scientifique, 94 - Vitry-sur-Seine (France). Centre d' Etudes de Chimie Metallurgique

    1975-01-01

    Carbon is determined in chromium by activation in 35 MeV photons. The sample is dissolved by a fused NaOH-NaNO/sub 3/ bath. Carbon dioxide is then extracted by acid dissolution of the solidified bath. A limit of detection of 0.03 ..mu..g of carbon is achieved. Chromium samples are irradiated in photons emitted from a platinum target submitted to an electron beam of 35 MeV produced by a linear accelerator at C.E.N. Saclay. Two graphite foils of some mg are irradiated at the same time and are used as standards. The radioactivities of absorbers and standards are measured on a NaI detector for the annihilation ..gamma..-ray of the ..beta../sup +/radiation.

  17. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Naoto, E-mail: tsubon@eng.hokudai.ac.jp; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-15

    Highlights: • Activated carbon prepared from a lignin/urea/K{sub 2}CO{sub 3} mixture provides a high specific surface area and a large pore volume. • Part of the urea nitrogen present in the mixture is retained as heterocyclic nitrogen in the solid phase after activation/carbonization. • Pore development is thought to proceed through interactions between K-species and C–N forms. - Abstract: The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K{sub 2}CO{sub 3} activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500–900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m{sup 2}/g and 0.13 cm{sup 3}/g at 800 °C, and 540 m{sup 2}/g and 0.31 cm{sup 3}/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300–3400 m{sup 2}/g and 2.0–2.3 cm{sup 3}/g after holding at 800–900 °C for 1 h. Heating a lignin/urea/K{sub 2}CO{sub 3} mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K{sub 2}CO{sub 3} and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  18. High-Surface-Area, Emulsion-Templated Carbon Foams by Activation of polyHIPEs Derived from Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Robert T. Woodward

    2016-09-01

    Full Text Available Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene. Poly(divinylbenzene was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion-templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas.

  19. Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba

    Directory of Open Access Journals (Sweden)

    Doreen Kohlbach

    2017-09-01

    Full Text Available Antarctic krill Euphausia superba (“krill” constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA analysis, bulk stable isotope analysis (BSIA, and compound-specific stable isotope analysis (CSIA of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget, and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill.

  20. Production of high quality adsorbent charcoal from Phil. Wood II. Granulated activated carbon

    International Nuclear Information System (INIS)

    Arida, V.P.; Atienza, O.G.; Quilao, T.A.; Caballero, A.R.; Laxamana, J.S.; Pugal, D.L.; Guce, C.P.

    1992-01-01

    Two Philippine wood species out of twelve earlier studied in part I namely ''ipil-ipil'' Leucaena leucocephala (Lann) de Wit and coconut coir dust were selected for the production of good quality granulated activated carbon. Fluidization method was used in the study. The conditions for the granulation of the carbonized chars using molasses were established. An optimum ratio of 1:0.5 and 1:0.8 (char:binder) was used in the granulation process for ''ipil-ipil'' and coir dust, respectively. Carbonization was done at gradually increasing temperature of 3 0 C/min at 600 0 C. Carbonized granules with particle sizes ranging from 0.5-2.0 mm were used for the activation study. The produced granules were activated in an external heat type stainless steel reactor as mentioned in Part I using steam as activating agent. The physical properties and adsorptive capacity of the activated granular products obtained at varying activation were determined and correlated. Methylene blue adsorption and internal surface area obtained at varying conditions were determined and correlated. Maximum values obtained for methylene blue adsorption and internal surface area are 290 mg/g AC and 1,200m 2 /g AC at 900 0 C, respectively for ''ipil-ipil'' and 390 mg/g AC and 1,000m 2 g AC at 850 0 C respectively for coir dust. Gas adsorption tests done using benzene acetone and carbon tetrachloride for both ''ipil-ipil'' and coir dust activated granular char products showed that both exhibited maximum absorbability at 900 0 C. Results of the study have shown that good quality granulated activated carbon can be produced from ''ipil-ipil'' and coir dust which find suitable applications in various adsorption processes such as organic solvent adsorption, gas adsorption, water purification, oil and sugar refining, among others. (auth.). 3 refs.; 4 tabs.; 14 figs

  1. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    OpenAIRE

    Siti Hardianti; Susila Arita Rachman; Harminuke E.H.

    2017-01-01

    Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% w...

  2. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  3. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  4. Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2005-01-01

    This study compares the potential of natural charcoal from Scots pine (Pinus sylvestris L.) and activated carbon to improve germination under the hypothesis that natural charcoal adsorbs phytotoxins produced by dwarf-shrubs, but due to it's chemical properties to a lesser extent than activated

  5. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  6. Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor

    Directory of Open Access Journals (Sweden)

    Huaxing Xu

    2014-01-01

    Full Text Available Nanoporous activated carbon material was produced from the waste rice husks (RHs by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1 at the current density of 1 A g−1 and remains 80% for 198 F g−1 at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.

  7. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon

    Directory of Open Access Journals (Sweden)

    Radić Dejan B.

    2017-01-01

    Full Text Available High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000°C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215°C, maximum of exothermic processes (400-450°C, beginning of the second intense mass change phase (635-700°C, and maximum endothermic processes (800-815°C were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.

  8. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  9. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    Science.gov (United States)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  10. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  12. Experiment of Industrial Waste Absorption using Activated Carbon from Coal of Tanjung Tabalong, South Kalimantan

    Directory of Open Access Journals (Sweden)

    M. Ulum Gani

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.130Activated carbon made from Tanjung Tabalong coal was investigated its absorption capability to organic and inorganic elements in industrial waste. Coal was carbonized at low temperature of 600C to produce semicoke, and then was activated at temperature of 700C with activation time of 120 minutes with water steam flow. The absorption capability of activated carbon to chemical oxygen demand (COD was performed using 2.5 and 9.0 g activated carbon for 250 ml and 300 ml COD waste respectively. The agitation time of each experiment were 30, 60, and 90 minutes. Atomic absorption spectrophotometer (AAS was used to analyze the COD waste. The result shows that 2.5 g activated carbon could absorb COD waste ranging from 6.9-67.5 %, while the utilization of 9 g could absorb COD waste ranging from 88.9 - 100 %. The more activated carbon and the longer time of agitation used in this experiment, the more the absorption of COD waste.

  13. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    Directory of Open Access Journals (Sweden)

    Siti Hardianti

    2017-06-01

    Full Text Available Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% while sub-bituminous 49.05%. NaOH was used in chemical activation while heated at 400-500°C whereas physical activation was conducted at 800-1000°C. Activated carbon has high activity in adsorbing indicated by high iodine number resulted from analysis. SEM-EDS result confirmed that activated carbon made from coal has the quality in accordance to SNI and can be used as adsorbent in acid water treatment.

  14. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete

    NARCIS (Netherlands)

    Yuan, B.; Straub, C.; Segers, S.; Yu, Q.; Brouwers, H.J.H.

    2017-01-01

    This paper aims to study the suitability of fully replacing cement by sodium carbonate activated slag in producing autoclaved aerated concrete (AAC). The material properties of the product are characterized in terms of green strength development, mechanical properties, pore related properties such

  15. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  16. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  17. Lightning-produced Carbon Species in the Atmosphere of Saturn

    Science.gov (United States)

    Delitsky, Mona; Baines, K. H.

    2010-10-01

    Recent studies by Baines et al (2009) indicate that thunderstorm-associated clouds on Saturn are spectrally dark from 0.7 to 4 um, darker than regular clouds. This darkening is found to be consistent with the presence of particles of elemental carbon, such as in the form of soot particles mixed in with spectrally bright condensates. This carbon is thought to be generated by lightning-induced dissociation of methane. Lightning on Saturn will input large amounts of energy to a narrow column of atmosphere and generate products at high energies such as radicals and ions. After the column cools down, the new chemical species recombine and are frozen into a new chemical equilibrium. Experimental studies in the literature of reactions of methane and other gases in plasma discharges (which simulate lightning) indicate that, even with high ratios of hydrogen/methane, the elemental carbon obtained will form solid dark particles that persist and have a very high C/H ratio. Basically, they are mostly pure carbon, in the form of soot, amorphous carbon, graphite, graphene, polycyclic aromatic hydrocarbons, carbon black, carbon onions, etc. Hydrogen will act as a sealant onto the particles and attach to dangling bonds on their growing surfaces. Even in experiments to form the most crystalline allotrope of carbon, that is, diamond, the presence of hydrogen does not inhibit diamond formation, even at the low pressures in the atmospheres of the Jovian planets or in the interstellar medium (Allamandola et al 1991). Therefore, some form of elemental carbon is likely produced in Saturnian storm clouds and may occur as dark particles of either amorphous carbon, PAHs or crystalline carbon in a form such as graphite. ..Refs: Baines et al., PSS 57, 1650-1658 (2009) ; Allamandola et al., Meteoritics 26, 313 (1991).

  18. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  19. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  20. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  1. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    Science.gov (United States)

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  3. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    Science.gov (United States)

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  4. Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition

    Directory of Open Access Journals (Sweden)

    Peng Yang

    2013-12-01

    Full Text Available Continuous and uniform carbon nanofilms (CNFs are prepared by pyrolysis of polyimide films which are produced by molecular layer deposition (MLD. The film thickness can be easily controlled at nanometer scale by altering the cycle numbers. During the annealing process at 600 °C, the polyimide film is subject to shrinkage of 70% in thickness. The obtained CNFs do not exhibit a well-graphitized structure due to the low calcination temperature. No clear pore structures are observed in the produced films. CNFs grown on a glass substrate with a thickness of about 1.4 nm shows almost 98% optical transmittance in the visible spectrum range. Au nanoparticles coated with CNFs are produced by this method. Carbon nanotubes with uniform wall thickness are obtained using anodic aluminum oxide as a template by depositing polyimide films into its pores. Our results demonstrate that this method is very effective to coat conformal and uniform CNFs on various substrates, such as nanoparticles and porous templates, to produce functional composite nanomaterials.

  5. Modeling boron separation from water by activated carbon, impregnated and unimpregnated

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M.; Grbavcic, Z. [Belgrade Univ., Belgrade (BA). Faculty of Technology and Metallurgy; Marinovic, V. [Belgrade Univ., Belgrade (BA). Ist. of Technical Science of the Serbian Academy of Science and Arts

    2000-10-01

    The sorption of boron from boric acid water solution by impregnated activated carbon has been studied. Barium, calcium, mannitol, tartaric acid and citric acid were used as chemical active materials. All processes were performed in a chromatographic continuous system at 22{sup 0} C. Experimental results show that activated carbon impregnated with mannitol is effective in removing boron from water. The separation of boron from the wastewater from a factory for producing enameled dishes by activated carbon impregnated with mannitol was also performed. Two models have been applied to describe published and new data on boron sorption by impregnated activated carbon. Both of them are based on the analysis of boron concentration response to the step input function. This led to a mathematical model that quite successfully described impregnation effects on adsorption capacities. [Italian] E' stato studiato l'assorbimento del boro, mediante carbone attivo impregnato, da soluzioni acquose di acido borico. Quali materiali chimici attivi sono stati utilizzati: bario, calcio, mannitolo, acido tartarico ed acido citrico. Tutti i processi sono stati condotti in un sistema cromatografico continuo a 22{sup 0}C. I risultati sperimentali mostrano che il carbone attivo impregnato con mannitolo e' efficace nella rimozione del boro dall'acqua. E' anche stata effettuata la separazione del boro da acque di scarico di un'industria per la produzione di piatti smaltati mediante carbone attivo impregnato con mannitolo. Sono stati applicati due modelli per descrivere i risultati, pubblicati e nuovi, dell'assorbimento del boro mediante carbone attivo impregnato. Entrambi sono basati sull'analisi della risposta alla concentrazione di boro successivamente incrementata a stadi. Cio' porta ad un modello matematico che descrive abbastanza soddisfacentemente gli effetti dell'impregnazione sulla capacita' di assorbimento.

  6. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  7. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  8. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  9. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration

    International Nuclear Information System (INIS)

    Maroto-Valer, M.M.; Kuchta, M.E.; Zhang, Y.; Andresen, J.M.; Fauth, D.J.

    2005-01-01

    Mineral carbonation, the reaction of magnesium-rich minerals such as olivine and serpentine with CO 2 to form stable mineral carbonates, is a novel and promising approach to carbon sequestration. However, the preparation of the minerals prior to carbonation can be energy intensive, where some current studies have been exploring extensive pulverization of the minerals below 37 μm, heat treatment of minerals up to 650 o C, prior separation of CO 2 from flue gases, and carbonation at high pressures, temperatures and long reaction times of up to 125 atm, 185 o C and 6 h, respectively. Thus, the objective of the mineral activation concept is to promote and accelerate carbonation reaction rates and efficiencies through surface activation to the extent that such rigorous reaction conditions were not required. The physical activations were performed with air and steam, while chemical activations were performed with a suite of acids and bases. The parent serpentine, activated serpentines, and carbonation products were characterized to determine their surface properties and assess their potential as carbonation minerals. The results indicate that the surface area of the raw serpentine, which is approximately 8 m 2 /g, can be increased through physical and chemical activation methods to over 330 m 2 /g. The chemical activations were more effective than the physical activations at increasing the surface area, with the 650 o C steam activated serpentine presenting a surface area of only 17 m 2 /g. Sulfuric acid was the most effective acid used during the chemical activations, resulting in surface areas greater than 330 m 2 /g. Several of the samples produced underwent varying degrees of carbonation. The steam activated serpentine underwent a 60% conversion to magnesite at 155 o C and 126 atm in 1 h, while the parent sample only exhibited a 7% conversion. The most promising results came from the carbonation of the extracted Mg(OH) 2 solution, where, based on the amount of

  10. Method for producing fluorinated diamond-like carbon films

    Science.gov (United States)

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  11. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  12. Removal of steroid estrogens from wastewater using granular activated carbon: comparison between virgin and reactivated carbon.

    Science.gov (United States)

    Rowsell, Victoria Francesca; Pang, Dawn Sok Cheng; Tsafou, Foteini; Voulvoulis, Nikolaos

    2009-04-01

    This research was set up in response to new European legislation to identify cost-effective treatment for removal of steroid estrogens from effluent. This study aimed to compare estrogen removal of two types of granular activated carbon: virgin (F400) and reactivated (C401) carbon. Rapid, small-scale column tests were conducted with a total bed volume of 24.9 cm3 over three columns, and analysis was carried out using high-performance liquid chromatography. Results demonstrated that C401 performed more efficiently with greater than or equal to 81% estrogen removal in wastewater compared to F400 which produced greater than or equal to 65% estrogen removal. Estrogen removal can be affected by competitive adsorption from natural organic matter present in wastewater. In addition, the physical properties of each carbon had the potential to influence adsorption differently, thus resulting in the observed varied adsorption capability of the two carbons.

  13. Use of various types of carbon-containing raw materials to produce thermal energy

    Directory of Open Access Journals (Sweden)

    В. Б. Кусков

    2016-08-01

    Full Text Available Many types of carbon-containing organic compounds and all possible carbon-containing products or wastes in low demand can be used to produce thermal energy. A technology has been developed for producing highly flammable briquettes on the basis of bituminous coal. These briquettes have a special incendiary layer. It is easily ignites from low energy heat sources (e.g. matches, and then flame spreads to the rest of briquette. Use of coal slacks and paper wastes as carbon-containing components playing the role of binders provides an opportunity to get a fuel briquette easy in terms of production and plain in composition while at the same time dispose of coal and paper wastes. Such briquettes may also have a special incendiary layer. Technology for fuel briquettes production from wood and slate wastes employed no binding agents, as wood products acted as binders. Thus technologies have been developed to produce fuel briquettes from various carbon-containing materials in low demand. The briquettes are intended for household boilers, fireplaces, different ovens in order to cook food, heat residential and utility premises, cabins, etc.

  14. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  15. Composite supercapacitor electrodes made of activated carbon ...

    Indian Academy of Sciences (India)

    carbon/PEDOT:PSS and activated carbon/doped PEDOT. T S SONIA, P A MINI, ... polymeric anodes for organic photovoltaics, light-emitting diodes (Pingree et al ... looked upon are carbon nanotubes (CNTs), graphene and activated carbon.

  16. Structural Features of Carbons Produced Using Glucose, Lactose, and Saccharose

    Science.gov (United States)

    Myronyuk, Ivan F.; Mandzyuk, Volodymyr I.; Sachko, Volodymyr M.; Gun'ko, Volodymyr M.

    2016-11-01

    Glucose, lactose, and saccharose were used as precursors to prepare chars at 400 °C then activated at 800 °C or 1000 °C in closed vessels with controlled amounts of oxygen penetrating through nanopores in the vessel walls. There are correlations between the porosity, amounts of residual O- and H-containing functionalities, and electroconductivity of amorphous carbons studied. The pore size distributions calculated using the nitrogen adsorption isotherms and TEM images show that all carbons are mainly nanoporous with certain contribution of narrow mesopores (at pore half-width x < 5 nm). Oxidizing activation by oxygen penetrating into the closed vessels with chars through nanopores can more strongly change the outer layers of char particles than the inner pores. Therefore, despite relatively great burn-off degree, the textural characteristics are relatively low for activated carbons.

  17. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  18. Preparation of activated carbon fabrics from cotton fabric precursor

    Science.gov (United States)

    Salehi, R.; Dadashian, F.; Abedi, M.

    2017-10-01

    The preparation of activated carbon fabrics (ACFs) from cotton fabric was performed by chemical activation with phosphoric acid (H3PO4). The operation conditions for obtaining the ACFs with the highest the adsorption capacity and process yield, proposed. Optimized conditions were: impregnation ratio of 2, the rate of temperature rising of 7.5 °C min-1, the activation temperature of 500 °C and the activation time of 30 min. The ACFs produced under optimized conditions was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The surface area and pore volume of carbon nanostructures was characterized by BET nitrogen adsorption isotherm at 77 °K. The pore size distribution calculated from the desorption branch according to BJH method. The iodine number of the prepared ACFs was determined by titration at 30 °C based on the ASTM D4607-94. The results showed the improvement of porous structure, fabric shape, surface area (690 m2/g), total pore volume (0.3216 cm3/g), and well-preserved fibers integrity.

  19. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.

    Science.gov (United States)

    Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins

    2015-09-15

    Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  1. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  2. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  3. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  4. Factors affecting the adsorption of chromium (VI) on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Orbak, I.; Karatepe, N. [Istanbul Technical University, Istanbul (Turkey)

    2006-09-15

    The aim of this investigation was to determine the adsorption behavior of chromium (VI) on two different activated carbon samples produced from Tuncbilek lignite. The effects of the initial chromium (VI) concentration (250-1000 mg/L), temperature (297-323 K) and pH (2.0-9.5) on adsorption were investigated systematically. The effectiveness of the parameters on chromium adsorption was found to be in the order of pH, the initial Cr(VI) concentration and the temperature. Increasing the pH from 2.0 to 9.5 caused a decrease in adsorption. However, the adsorption was increased by increasing the initial Cr(VI) concentration and temperature. The multilinear mathematical model was also developed to predict the Cr(VI) adsorption on activated carbon samples within the experimental conditions.

  5. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  6. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  7. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    Science.gov (United States)

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  9. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    Science.gov (United States)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  10. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  11. Dynamics of C2 formation in laser-produced carbon plasma in helium environment

    International Nuclear Information System (INIS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We investigated the role of helium ambient gas on the dynamics of C 2 species formation in laser-produced carbon plasma. The plasma was produced by focusing 1064 nm pulses from an Nd:YAG laser onto a carbon target. The emission from the C 2 species was studied using optical emission spectroscopy, and spectrally resolved and integrated fast imaging. Our results indicate that the formation of C 2 in the plasma plume is strongly affected by the pressure of the He gas. In vacuum, the C 2 emission zone was located near the target and C 2 intensity oscillations were observed both in axial and radial directions with increasing the He pressure. The oscillations in C 2 intensity at higher pressures in the expanding plume could be caused by various formation zones of carbon dimers.

  12. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    Science.gov (United States)

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of CO2 Flow Rate on the Pinang Frond-Based Activated Carbon for Methylene Blue Removal

    Directory of Open Access Journals (Sweden)

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC was produced at various CO2 flow rates in the range of 150–600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO2 flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m2/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.

  14. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  15. Promoting effect of active carbons on methanol dehydrogenation on sodium carbonate - hydrogen spillover

    OpenAIRE

    Su, S.; Prairie, M.; Renken, A.

    1993-01-01

    Methanol dehydrogenation to formaldehyde was conducted in a fixed-bed flow reactor with sodium carbonate catalyst mixed with active carbons or transition metals. The additives promoted the reaction rate at 880-970 K without modifying formaldehyde selectivity. This effect increases with increasing carbon content in the carbon-carbonate mixture. Activation energy of methanol conversion is the same for the mixture and the carbonate alone. Temperature-programmed desorption experiments showed that...

  16. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  17. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  18. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Esterification of fatty acids using sulfated zirconia and composites activated carbon/sulfated zirconia catalysts

    International Nuclear Information System (INIS)

    Brum, Sarah S.; Santos, Valeria C. dos; Destro, Priscila; Guerreiro, Mario Cesar

    2011-01-01

    In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity. (author)

  20. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    Science.gov (United States)

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A novel activated carbon for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  2. Measurement of carbon thermodynamic activity in sodium

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Zagorulko, Yu I; Kovalev, Yu P; Alekseev, V V [Institute of Physics and Power Engineering, Obninsk (USSR)

    1980-05-01

    The report presents the brief outline on system of carbon activity detecting system in sodium (SCD), operating on the carbon-permeable membrane, of the methods and the results of testing it under the experimental circulating loop conditions. The results of carbon activity sensor calibration with the use of equilibrium samples of XI8H9, Fe -8Ni, Fe -12Mn materials are listed. The behaviour of carbon activity sensor signals in sodium under various transitional conditions and hydrodynamic perturbation in the circulating loop, containing carbon bearing impurities in the sodium flow and their deposits on the surfaces flushed by sodium, are described. (author)

  3. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  4. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon analysis in MOCVD grown HgCdMnTe by charged particle activation

    International Nuclear Information System (INIS)

    Stannard, W.B.; Walker, S.R.; Johnston, P.N.; Bubb, I.F.

    1994-01-01

    Charged Particle Activation Analysis (CPAA) has been used for the determination of the concentration of carbon in HgCdMnTe grown by Metal Organic Chemical Vapour Deposition (MOCVD). The samples were irradiated with a beam of 3.0 MeV 3 He ions. 11 C is produced by the reaction 12 C( 3 He, α) 11 C and is a positron (β + ) emitting radionuclide with a half-life of 20.38 min. At the same time the reaction 16 O( 3 He, p) 18 F produces 18 F which is also a β + emitter and has a half-life of 109.72 min. A post-irradiation etching technique has been developed to enable removal of surface contaminants. The radioactivity is determined by a β + spectrometer consisting of two NaI γ-ray detectors (3x3 in.) oriented at 180 . The two coincident 511 keV γ-rays emitted at 180 during the positron annihilation are detected. The initial 11 C and 18 F activities, and hence the oxygen and carbon contributions, can be separated by analysis of the count rate versus time. Analysis shows significant carbon levels in the HgCdMnTe samples. ((orig.))

  6. Behaviour of waterborne radon in activated carbon filters

    International Nuclear Information System (INIS)

    Haberer, K.; Akkermann-Kubillus, A.

    1999-01-01

    To investigate the behaviour of radon in adsorption/desorption processes in filter systems with different activated carbon types, measurements were focused on adsorption capacity, adsorption velocity, retain capability, interaction with ions (poisoning of active centers) and adsorption of radon daughters. Various activated carbon types derived from hard coal, brown coal, peat and wood, were used in adsorption tests runs with activated carbons which are frequently applied in water treatment facilities. In laboratory tests, water facility filter conditions were simulated using pilot plant columns filled with different carbon types. Finally, a small scale laboratory column was installed at a natural water source with elevated activity. Long-time filter runs were conducted under varying flow rates and with different amounts of the in waterworks wide-spread used activated carbon F-300. The main results observed were: 1. The amount of radioactivity adsorbed depends upon the type of carbon, its granular size and the contact time between the activated carbon and water. The decontamination capacity was between 19% and 94. 2. The DOC-levels of water influences the adsorbable radioactivity due to the poisoning of the active centres of the carbon. The adsorption velocity decreased down to 15%. 3. The maximum decontamination rate of the water under waterworks conditions was 60%. (orig.) [de

  7. Textural and chemical characterization of activated carbon prepared from shell of african palm (Elaeis guineensis by chemical activation with CaCl2 and MgCl2

    Directory of Open Access Journals (Sweden)

    Sergio Acevedo

    2015-09-01

    Full Text Available Activated carbons through chemical activation of African palm shells (Elaeis guineensis with magnesium chloride and calcium chloride solutions at different concentrations were obtained. The prepared materials were characterized textural and chemically. The results show that activated carbons with higher values of surface area and pore volume are obtained when solutions with lower concentrations of the activating agent are used. The obtained activated carbons have surface areas and pore volumes with values between 10 and 501 m2 /g and 0.01 and 0.29 cm3 /g respectively. Immersion enthalpies values of solids in water were between -14.3 and -32.8 J/g and benzene between -13.9 and -38.6 J/g. Total acidity and basicity of the activated carbons had values between 23 and 262 μmol/g 123 and 1724 μmol/g respectively. pH at the point of zero charge was also determined with values between 4.08 and 9.92 for set of activated carbons . The results show that activation with CaCl2 and MgCl2 salts produce activated carbons with pores in the range of mesopores for facilitate entry of the adsorbate into the materials.

  8. CO{sub 2} capture using fly ash-derived activated carbons impregnated with low molecular mass amines

    Energy Technology Data Exchange (ETDEWEB)

    Karl M. Smith; Ana Arenillas; Trevor C. Drage; Colin E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-07-01

    At the Nottingham Fuel and Energy centre, a program is underway to develop high capacity CO{sub 2} sorbents for flue gas from large point sources such as fossil-fuel power plants. Two different approaches are presented here. Firstly, the modification of the surface chemistry of low cost carbos by impregnation with a basic nitrogen-containing polymer and different amines is described. Secondly, the development of high nitrogen content carbon matrix adsorbents by carbonization and subsequent thermal or chemical activation of a range of materials is summarised. Such high nitrogen content adsorbents, generated at high temperature, are advantageous as their inherent thermal stability will minimise alteration during multiple adsorption and regeneration cycles. Relatively low MM amines, namely diethanolamine and (DEA, MM 105) and tetraethylenepentaamineacrylonitrile (TEPAN, MM 311) are used to produce high capacity CO{sub 2} sorbents from activated carbons derived form unburned carbon in fly ash, which have low mesoporosities. The unburned carbons were obtained through the froth flotation and dry-sieving of fly ash and their activation was performed using, variously, steam and CO{sub 2}. It was found that the impregnation of a fly-ash derived carbon with amines can produce CO{sub 2} sorbents, with uptakes up to 5 wt% at 75{degree}C. Nitrogen incorporation in carbon materials generally promotes the adsorption of CO{sub 2} with the process being totally reversible but, although the amount of nitrogen incorporated into the adsorbent is important, nitrogen functionality is also important. 9 refs., 2 figs.

  9. Preparing activated carbon from charcoal and investigation of the selective uranium adsorption

    International Nuclear Information System (INIS)

    Kuetahyali, C.; Eral, M.

    2001-01-01

    Preconcentration and separation procedures based on adsorption phenomena are important in nuclear and especially radiation chemistry, industry, medicine and daily life. Adsorption of uranium onto various solids is important from purification, environmental and radioactive waste disposal points of view . The treatment of aqueous nuclear waste solutions containing soluble metal ions requires concentration of the metal ions into smaller volume followed by recovery or secure disposal. For this purpose, many processes are being utilized such as precipitation, ion-exchange, solvent extraction and adsorption on solids etc. Interest in the adsorption of metal ions for recovery purposes has increased manyfold in recent years, because of its simplicity, selectivity and efficiency . The main advantage of adsorption is the separation of trace amount of elements from large volumes of solutions. In recent years, several studies have been made to recover radionuclides by adsorption using natural and synthetic adsorbents. Adsorption on charcoal is one of the most efficient techniques used in water treatment processes for the removal of organics and micropollutants from wastes and drinking waters. Adsorption processes have long been used in the removal of color, odor, and organic pollution. These processes are usually based on the use of activated carbon . Activated carbon consists mainly of carbon and is produced from every carbonaceous material. Activated carbon characterized by its high surface area and its wide distribution of porosity. The textural properties (surface area and porosity) of activated carbons play an important role in determining the capacity of the material in adsorption from aqueous solution. Chemistry of the surface is also important . Generally, activated carbons are mainly microporous, but in addition to micropores they contain meso- and macropores, which are very important in facilitating acces of the adsorbate molecules to the interior of carbon particles

  10. Determination of patulin producing activity and radiation sensitivity of fungisolated from Korean apples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Jo, Min Ho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-06-15

    Patulin is a mycotoxin produced by a variety of molds, especially within genera Penicillium, Aspergillus and Byssochlamys growing on various fruits. In this study, patulin producing activities and the effects of a gamma irradiation on the control and/or sterilization of fungal strains isolated from Korean apples, Malus pumila var. dulcissima, were evaluated. Nine fungal strains; five strains of genus Penicillium and one strains of genus Glomerella, Giberella, Alternaria and Galactomyces were isolated and identified by the similarity analysis based on the nucleotide sequence of the ITS5-5.8S-ITS4 region. Among the isolated strains, four Penicillium strains and a Glomerella showed patulin producing activities. The maximal patulin-producing activity of P. griseofulvum ATCC 46037, a standard strain of patulin-producing fungi, was 1,211.5 ppm in a 5-GYEP broth medium, while those of the isolated fungi reached to 27.4⁓134.2 ppm. Patulin-producing levels were dependent on the carbon sources and maximal production of the patulin by P. griseofulvum, P. crustosum, I-3, I-6, I-7 and I-8 was observed in a broth media containing glycerol, fructose, glycerol, glucose, lactose and fructose, respectively. The D10-values of the conidia of tested strains in an aqueous suspension were calculated in the range of 0.25⁓0.64 kGy. In conclusion, although the patulin producing activities of the isolated fungi were significantly lower than those of standard strains, it cannot deny the possibility of an patulin contamination of the Korean apples. Therefore, gamma ray irradiation (1.0 kGy) after harvest of apples could be applied to prevent the growth of a patulin producing molds for a safe distribution.

  11. Determination of patulin producing activity and radiation sensitivity of fungisolated from Korean apples

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Jo, Min Ho

    2017-01-01

    Patulin is a mycotoxin produced by a variety of molds, especially within genera Penicillium, Aspergillus and Byssochlamys growing on various fruits. In this study, patulin producing activities and the effects of a gamma irradiation on the control and/or sterilization of fungal strains isolated from Korean apples, Malus pumila var. dulcissima, were evaluated. Nine fungal strains; five strains of genus Penicillium and one strains of genus Glomerella, Giberella, Alternaria and Galactomyces were isolated and identified by the similarity analysis based on the nucleotide sequence of the ITS5-5.8S-ITS4 region. Among the isolated strains, four Penicillium strains and a Glomerella showed patulin producing activities. The maximal patulin-producing activity of P. griseofulvum ATCC 46037, a standard strain of patulin-producing fungi, was 1,211.5 ppm in a 5-GYEP broth medium, while those of the isolated fungi reached to 27.4⁓134.2 ppm. Patulin-producing levels were dependent on the carbon sources and maximal production of the patulin by P. griseofulvum, P. crustosum, I-3, I-6, I-7 and I-8 was observed in a broth media containing glycerol, fructose, glycerol, glucose, lactose and fructose, respectively. The D10-values of the conidia of tested strains in an aqueous suspension were calculated in the range of 0.25⁓0.64 kGy. In conclusion, although the patulin producing activities of the isolated fungi were significantly lower than those of standard strains, it cannot deny the possibility of an patulin contamination of the Korean apples. Therefore, gamma ray irradiation (1.0 kGy) after harvest of apples could be applied to prevent the growth of a patulin producing molds for a safe distribution

  12. Chemical/structural characterization of carbon nanoparticles produced by laser pyrolysis and used for nanotube growth

    International Nuclear Information System (INIS)

    Orlanducci, S.; Valentini, F.; Piccirillo, S.; Terranova, M.L.; Botti, S.; Ciardi, R.; Rossi, M.; Palleschi, G.

    2004-01-01

    Carbon nanoparticles produced by CO 2 laser pyrolysis have been investigated using morphological and structural probes such as high-resolution scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and electron diffraction, as well as chemical probes, such as gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry. The produced particles resulted to have a spherical shape and a diameter of about 50 nm with graphitic domains of the order of 80 A. They contain appreciable fractions of polycyclic aromatic hydrocarbons, which can be extracted with toluene, as well as fullerene units. The implications of these results for the use of carbon nanopowders in the carbon nanotube synthesis are also discussed

  13. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  14. Behaviour of natural radionuclides on activated carbon filter

    International Nuclear Information System (INIS)

    Haberer, K.; Akkermann-Kubillus, A.; Dahlheimer, A.

    1998-01-01

    To investigate the behaviour of radon in adsorption/desorption processes at filter systems based on different activated carbon types, measurements were focused on adsorption capacity, adsorption velocity, retain capability, interaction with ions (poisoning of active centers) and adsorption of radon daughters. Various activated carbon types derived from hard coal, brown coal, peat and wood, were used in adsorption tests runs with activated carbons which are applied in water treatment facilities. In laboratory tests, water facility filter conditions were simulated using pilot plant columns filled with different carbon types. A small scale laboratory column was installed at a natural water source with elevated activity. Tests runs were conducted under varying flow rates and with different amounts of carbon. A full-scale waterworks filter system operated for 6 months was investigated for radon decay products adsorbed on the carbon. The main results observed were: 1. The amount of radioactivity adsorbed depends upon the type of carbon, its granular size and the contact time between the activated carbon and water. The decontamination capacity was between 19% and 94%. 2. The DOC-levels of water influences the adsorbable radioactivity due to the poisoning of the active centers of the carbon. The adsorption velocity decreased down to 15%. 3. The maximum decontamination rate of the water under waterworks conditions was 60%. (orig.) [de

  15. Biological regeneration of humic acid-loaded partially exhausted activated carbon (down flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Martin, R.J.; Khaliq, F.

    1995-01-01

    This paper represents the report on the biological regeneration of partially exhausted (down flow) activated carbon following the experimental studies carried out at the university of Birmingham, UK. The Research investigated the extent of bio regeneration of humic acid of concentration 100 mg/l. Bio regeneration in the partial exhaustion system (down flow) was evaluated in terms of substrate removal. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. The regeneration performance of the bio regeneration, partially exhausted (with humic acid) carbon increased during initial cycles, later on, it deteriorated significantly with each successive regeneration cycle. Microbial fouling of the carbon, especially at the bottom of the carbon bed was found to produce a substantial deterioration of the bio regeneration performance. (author)

  16. Preparation and characterisation of activated carbon

    International Nuclear Information System (INIS)

    Badri bin Muhammad; Karen binti Badri; Mohd Zobir bin Hussein; Zulkarnain bin Zainal; W.M. Daud bin W Yunus; Ramli bin Ibrahim

    1994-01-01

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  17. Production of activated carbon from peanut hill using phosphoric acid and microwave activation

    Directory of Open Access Journals (Sweden)

    Weerawat Clowutimon

    2015-06-01

    Full Text Available The optimum conditions for preparing activated carbon from peanut hulls by phosphoric acid and microwave activation were studied. Factors investigated in this study were temperature of carbonization at 300, 350, 400 and 450๐ C, and time of carbonization at 30, 60 and 90 minutes. The optimum yield was observed that carbonization temperature of 400๐ C and time at 60 minutes, respectively. The yield of charcoal was 39% and the f ix carbon was 69%. Then the charcoal was activated by phosphoric acid and microwave irradiation, respectively. The effect of the weight per volume ratios of charcoal to activating acid (1:1, 1:2 and 2:1(W/V, microwave power at (activated 300, 500 and 700 watts, and activated time (30, 60 and 90 seconds were studied. The results showed that the optimum conditions for activating peanut charcoal were 1:2 (W/V charcoal per activating acid, microwave power 700 watts for 90 seconds. The results yielding maximum surface area by BET method was 303.1 m2 /g and pore volume was 0.140 cm3 /g. An efficiency of maximum iodine adsorption was 418 mg iodine/g activated carbon. Comparing the adsorption efficiency of non- irradiated and irradiated activated carbon, the efficiency of irradiated activated carbon improved up to 31%, due to its larger surface area and pore volume.

  18. KOH activation of pitch-derived carbonaceous materials - Effect of carbonization degree

    Energy Technology Data Exchange (ETDEWEB)

    Krol, Magdalena [Institute of Open Cast Mining POLTEGOR-Institute, Parkowa, Wroclaw (Poland); Gryglewicz, Grazyna; Machnikowski, Jacek [Division of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Technology, Gdanska (Poland)

    2011-01-15

    Two series of mesophase pitches and semi-cokes of different carbonization degree were produced by heat treatment of anthracene oil derived pitches P1 and P4 in the temperature range of 460-700 C. These carbonaceous materials were activated with potassium hydroxide at 700 C using 1:3 reagents ratio to assess the effects of the precursor optical texture and carbonization degree on the activation behavior. The results show that the increase in the pitch pretreatment temperature suppresses propensity to the pore generation while enhancing particle breaking. The effect can be illustrated by decreases in the BET surface area S{sub BET} from {proportional_to} 2700 to {proportional_to} 1500 m{sup 2} g{sup -1} and the micropore volume V{sub DR} from {proportional_to} 0.85 to {proportional_to} 0.45 cm{sup 3} g{sup -1}. These parameters are inversely related with the H/C atomic ratio of precursor. In contrast, the anisotropic development of pitch coke, varying from flow type to mosaics, has a slight effect on the activation behaviour. The mechanism of porosity generation, that is proposed, stresses the role of hydrogen occurring at the edges of graphene layers and potassium metal insertion/deinsertion on the porosity development and particle disintegration during KOH activation of pitch-derived carbons. (author)

  19. Adsorption and desorption of pertechnetate on activated carbon

    International Nuclear Information System (INIS)

    Dano, M.; Galambos, M.; Rajec, P.; Viglasova, E.; Krajnak, A.; Novak, I.

    2014-01-01

    High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of radionuclides from aqueous solutions. The most important property of activated carbon, the property that determines its usage, is the pore structure. The total number of pores, their shape and size determine the adsorption capacity and even the dynamic adsorption rate of the activated carbon. This report is dedicated to sorption properties of new activated carbon sorbents. (authors)

  20. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  1. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  2. Removal of Sulfate from Waste Water by Activated Carbon

    OpenAIRE

    Mohammed Sadeq Salman

    2009-01-01

    Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 9.) , agitation time (0 120)min and adsorbent dose (2 10) gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm ...

  3. SAXS study on activated carbons

    International Nuclear Information System (INIS)

    Bota, A.; Heringer, D.; Mihalffy, T.

    1999-01-01

    SAXS fractal analysis of activated carbons is presented. It gives very useful information about the structural changes of the carbon skeleton. From the fact, that the sequence of the activation and the heat treatment affect the fractal behaviours more drastically than the particle size distribution of the structural units, it follows that all changes in the pore and matrix structure may reduce principally to the bonding of the crystallite units. (K.A.)

  4. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H{sub 3}PO{sub 4} mixed with Fe/Al/Mn activation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuanyuan [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Yue, Qinyan, E-mail: qyyue58@aliyun.com [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Mao, Yanpeng [School of Energy and Power Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu; Gao, Yuan; Huang, Lihui [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2014-01-30

    Highlights: • FeCl{sub 3}, AlCl{sub 3} and MnCl{sub 2} were used as the assisted activator to produce carbons. • Doping with MnCl{sub 2} was favorable for the enlargement of activated carbon. • The assisted activator had good performance for holding more fixed carbon. • The maximum adsorption capacities followed the order of AC-Fe > AC-Al > AC-Mn > AC. • The XPS analysis was used to confirm the adsorption/transformation mechanism. -- Abstract: FeCl{sub 3}, AlCl{sub 3} and MnCl{sub 2} were used as the assisted activation agent in activated carbon preparation by H{sub 3}PO{sub 4} activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N{sub 2} adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl{sub 2} as assisted activation agent displayed the highest BET surface area (1332 m{sup 2}/g) and the highest pore volume (1.060 cm{sup 3}/g). FeCl{sub 3}, AlCl{sub 3} and MnCl{sub 2} had successfully improved Cr(VI) adsorption and activated carbon with FeCl{sub 3} as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na{sub 2}SO{sub 4} and NaNO{sub 3}) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with

  5. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  6. Optimization of microwave-assisted durian seed based activated carbon preparation conditions for methylene blue dye removal

    Science.gov (United States)

    Ahmad, Mohd Azmier; Hamid, Siti Ruqayyah Ab.; Yusop, Mohamad Firdaus Mohamad; Aziz, Hamidi Abdul

    2017-10-01

    Due to easy access and relatively high fixed carbon content of 26.13% in its raw form, durian seed based activated carbon (DSAC) was produced via microwave heating. For activation stage, physiochemical approach consist of carbon dioxide (CO2) gasification and potassium hydroxide (KOH) as chemical activator were employed. Three most influential preparation variables on adsorption performance and yield of activated carbon (AC), which is radiation power, radiation time and KOH impregnation ratio (IR) were optimized with the help of response surface methodology (RSM). The optimization result revealed that 440W, 4.0 minutes and 0.55 of radiation power, radiation time and IR respectively, were needed to remove 80.23% of methylene blue (MB) dye and to obtain 25.77% of DSAC's yield. High Brunauer-Emmet-Teller (BET) surface area, total pore volume and average pore size of 852.30m2/g, 0.465cm3/g and 3.74nm respectively, were obtained on optimized DSAC.

  7. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  8. Kinetic and Isotherm Modelling of the Adsorption of Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    Alessandro A. Casazza

    2015-01-01

    Full Text Available The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL, the maximum sorption capacity of activated carbon expressed as mg of caff eic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to bett er describe the sorption system. The results confi rmed the effi ciency of activated carbon to remove almost all phenolic compound fractions from olive mill effl uent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries.

  9. Microstructural analysis of carbon nanotubes produced from pyrolysis/combustion of styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Joner O.; Zhuo, Chuanwei; Levendis, Yannis A. [Northeastern Univ., Boston, MA (United States). Coll. of Engineering. Dept. of Mechanical and Industrial Engineering; Tenorio, Jorge A.S. [University of Sao Paulo (USP), SP (Brazil). Polytechnic School. Dept. of Metallurgical and Materials Engineering

    2010-07-01

    Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanotubes (CNTs) growth, and therefore to establish a novel process for destination for wastes produced from SBR. Pellets of this rubber were controlled burned at temperature of 1000 deg C, and a catalyst system was used to synthesize the nanomaterials. CNTs are materials with a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, and the hydrocarbons emissions were measured using GC. Results showed that materials with diameters of 30-100 nm and lengths of about 30 {mu}m were formed. That materials presented similar structures of multi-walled CNTs. Therefore, the use of SBR to produce carbon nanotubes showed quite satisfactory and an interesting field for future investments. (author)

  10. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  11. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  12. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    Science.gov (United States)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  13. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst

    Science.gov (United States)

    Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.

    2018-06-01

    Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD

  14. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS; TOPICAL

    International Nuclear Information System (INIS)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-01-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy and Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  15. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  16. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    International Nuclear Information System (INIS)

    Kamali, Ali Reza; Schwandt, Carsten; Fray, Derek J.

    2011-01-01

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: → Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. → The degree of crystallinity of graphite reactant and carbon product are related. → A graphite reactant is identified that enables the preparation of carbon nanotubes. → The carbon products possess uniform mesoporosity with narrow pore size distribution.

  17. NiFe{sub 2}O{sub 4}/activated carbon nanocomposite as magnetic material from petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brämer-Escamilla, W., E-mail: wbramer@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, P. [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); García, J.; Del Castillo, H.; Villarroel, M. [Laboratorio de Cinética y Catálisis, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes ULA, Mérida 5101-A (Venezuela, Bolivarian Republic of); Rodriguez, J.P. [Laboratorio de Microscopia Electrónica. Instituto de Estudios Científicos y Tecnológicos IDECYT. Apartado 47925 - Caracas 1041-A (Venezuela, Bolivarian Republic of); Ramos, M.A.; Morales, R. [Instituto Zuliano de Investigaciones Tecnológicas INZIT. Apdo. Postal 331. La Cañada-Maracaibo (Venezuela, Bolivarian Republic of); Diaz, Y. [Centro de Química, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2014-06-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe{sub 2}O{sub 4} were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72 nm and TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. Chemical modification and activation temperature of 800 °C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4 m{sup 2}/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size. - Highlights: • TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. • Nanoparticles were supported on the activated carbon from petcoke. • Activation dramatically increased the BET surface area to 842 m{sup 2}/g. • Magnetic properties show strong dependence on the particle size. • Sulphur content was reduced from 6 to 1% with the petcoke activation.

  18. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  19. Changes in peripheral nervous system activity produced in rats by prenatal exposure to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, M.R. (Inst. of Pharmacology, Bari Univ. (Italy)); Renna, G. (Inst. of Pharmacology, Bari Univ. (Italy)); Giustino, A. (Inst. of Pharmacology, Bari Univ. (Italy)); De Salvia, M.A. (Inst. of Pharmacology, Bari Univ. (Italy)); Cuomo, V. (Inst. of Pharmacology, Bari Univ. (Italy))

    1993-06-01

    The present experiments were designed to investigate whether alterations of peripheral nervous system activity may be produced in male Wistar rats by prenatal exposure (from day 0 to day 20 of pregnancy) to relatively low levels of CO (75 and 150 ppm). The voltage clamp analysis of ionic currents recorded from sciatic nerve fibres showed that prenatal exposure to CO produced modifications of sodium current properties. In particular, in 40-day-old rats exposed to CO (75 and 150 ppm) during gestation, the inactivation kinetics of transient sodium current were significantly slowed. Analysis of the potential dependence of steady-state Na inactivation, h[sub [infinity

  20. Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode

    Science.gov (United States)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad; Gogotsi, Yury

    2018-04-10

    A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.

  1. Quality of poultry litter-derived granular activated carbon.

    Science.gov (United States)

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  2. Measurement of carbon activity in sodium and steel and the behaviour of carbon-bearing species

    International Nuclear Information System (INIS)

    Rajendran Pillai, S.; Ranganathan, R.; Mathews, C.K.

    1988-01-01

    Carburization or decarburization of structural materials in a sodium system depends on the local differences in carbon activity. The behaviour of carbon-bearing species in sodium influences its carbon activity. In order to understand the behaviour of carbon in these systems, an electrochemical carbon meter was fabricated in our laboratory. The original version of this meter was capable of operating in the temperature range of 850-980 K. Studies are carried out to extend this lower limit of temperature. Employing the carbon meter, experiments were carried out to understand the behaviour of carbon-bearing species. Gas equilibration experiments were also carried out with the same view. A new method for measuring the carbon activity in steels are described which employs the carbon meter. A review on these investigations and the conclusions reached on the behaviour of carbon in fast reactor loops are described

  3. Adsorption of uranium on adsorbents produced from used tires

    International Nuclear Information System (INIS)

    Mahramanlioglu, M.

    2003-01-01

    Potential use of adsorbents produced from used tires for the removal of uranium from aqueous solutions is investigated. Two different adsorbents were used including char and activated carbon produced from used tires. The surface area was larger on activated carbon. Adsorption experiments were carried out as a function of time, adsorbent concentration, pH and initial concentration of uranium. The adsorption kinetics was found to follow the Lagergren equation. The rate constants of intraparticle diffusion and mass transfer coefficients were calculated. It was shown that the equilibrium data could be fitted by the Langmuir and Freundlich equations. The adsorption of uranium in the presence of different cations were also studied and the results were correlated with the ionic potential of the cations. It was demonstrated that the activated carbon produced from used tires can be considered as an adsorbent that has a commercial potential for uranium removal. (author)

  4. Paracrystalline structure of activated carbons

    Science.gov (United States)

    Szczygielska, A.; Burian, A.; Dore, J. C.

    2001-06-01

    Structural studies by means of neutron diffraction of activated carbons, prepared from a polymer of phenol formaldehyde resin by carbonization and activation processes, with variable porosity, are presented. The neutron scattering data were recorded over the range of the scattering vector Q from 2.5 to 500 nm-1. The structure of activated carbons has been described in terms of disordered graphite-like layers with very weak interlayer correlations. The model has been generated by computer simulations and its validity has been tested by comparison of the experimental and calculated intensity functions. Modelling studies have shown that the model containing 3-4 layers each about 2 nm in diameter accounts for the experimental data and that graphite layers are randomly translated and rotated, according to the turbostratic structure. Near-neighbour carbon-carbon distances of about 0.139 nm and 0.154 nm have been determined. The Debye-Waller factor exp (-Q2σ2/2) with σ = σ0(r)1/2 suggests a paracrystalline structure within a single layer. The value of the interlayer spacing of 0.36 nm has been found from paracrystalline simulations of the layer arrangement in the c-axis direction. The high quality of the experimental data has enabled determination of the coordination numbers, the interatomic distances and their standard deviations using a curve-fitting procedure over the Q-range from 250 nm to 500 nm, providing structural information about short- and intermediate-range ordering.

  5. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    Science.gov (United States)

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Production of granular activated carbon from agricultural wastes and determination of their physical, chemical and adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Ayguen, A.; Duman, I. [Istanbul Technical Univ., Inst. of Science and Technology, Dept. of Metallurgical Engineering, Istanbul (Turkey); Yenisoy-Karakas, S. [TUeBITAK Marmara Research Center (MRC), Materials and Chemical Technologies Research Inst., Gebze Kocaeli (Turkey)

    2004-07-01

    The aim of this study is to produce activated carbons with good mechanical strength and high adsorption capacities toward various organics from food wastes such as walnut, almond, hazelnut shells and apricot stones. Turkey has huge amounts of these wastes in canning industry. The chemical activation with ZnCl{sub 2} was preferred to manufacture activated carbons. The best activation temperature and time were determined. Granular activated carbons were discussed with respect to their physical, chemical, surface area and adsorption properties. For all raw materials, the specific surface areas of greater than 730 m{sup 2} g{sup -1} were reached. As a result of the adsorption studies, adsorption capacities were in order of hazelnut> apricot stones> walnut> almond. The correlation coefficients obtained from Langmuir and Freundlich isotherms are in good agreement with the experimental results. (orig.)

  7. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    International Nuclear Information System (INIS)

    Beker, Ulker; Ganbold, Batchimeg; Dertli, Halil; Guelbayir, Dilek Duranoglu

    2010-01-01

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L -1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  8. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  9. Antibacterial Activity of Culture Extracts of Penicillium chrysogenum PCL501: Effects of Carbon Sources

    Directory of Open Access Journals (Sweden)

    Blessing M. Onyegeme-Okerenta

    2009-05-01

    Full Text Available Penicillium chrysogenum PCL501 produced β-lactam antibiotics when fermented with different agro-wastes: cassava shavings, corncob, sawdust and sugarcane pulp. In vitro antibacterial activity of the culture extracts was tested against four clinical bacterial isolates, namely, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. All the culture extracts and standard drug (commercial Benzyl Penicillin inhibited the growth B. subtilis and E. coli; the potency varied with carbon source. Antibacterial activity of extracts from cultures containing cassava shavings and sugarcane pulp was comparable with that of the standard drug. The MIC against the susceptible organisms was 0.20mg/ml for the standard drug and ranged from 0.40 to 1.50mg/ml for the culture extracts. Neither the culture extracts nor the standard drug inhibited K. pneumoniae and P. aeruginosa; the bacterial strains produced β-lactamase enzymes. Cassava shavings and sugarcane pulp are indicated as suitable cheap carbon sources for the production of antibiotics by Penicillium chrysogenum PCL501.

  10. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nowicki Piotr

    2015-12-01

    Full Text Available Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II ions.

  11. Grafting of activated carbon cloths for selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S., E-mail: delpeux@cnrs-orleans.fr

    2016-05-01

    Graphical abstract: - Highlights: • A controlled grafting of carboxylic functions on activated carbon fibers. • The carbon material nanotextural properties preservation after grafting. • An identification of the grafting mechanism through ToF SIMS analysis. • A chemical mapping of the grafted surface using ToF SIMS technique and imaging. - Abstract: Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  12. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    Science.gov (United States)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  13. Activated carbons employed to remove ionic liquids from aqueous solutions

    International Nuclear Information System (INIS)

    Hassan, S.; Farooq, A.; Ahmad, M.A.; Irfan, N.; Tufail, M.

    2011-01-01

    Imidazolium and pyridinium based ionic liquids (ILs) have been separated from aqueous solutions by adsorption using a raw Chinese activated carbon (CAC), a bleached Chinese activated carbon (BAC) and an acid treated Chinese activated carbon (AAC) as adsorbent. Adsorption isotherms data of ionic liquids on activated carbons has been obtained. The influence of both cations and anions was analyzed by studying three different ILs. The role of surface chemistry of the adsorbent was also examined using activated carbons modified by oxidative treatments. The BET surface area of activated carbons was measured by nitrogen adsorption. The results of this work indicate that activated carbon is an attractive adsorbent to remove ionic liquids from water streams. It has also been demonstrated that the adsorption of hydrophilic ionic liquids can be improved by modifying the amount and nature of oxygen groups on the activated carbon surface specially by increasing basic groups. The adsorption data for isotherms was studied at acidic, neutral and basic pH values. (author)

  14. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  15. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  16. Development of activated carbon derived from banana peel for CO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, Azry; Thangamuthu, Subhashini; Ramdan, Amira Nurain [Chemical Engineering Department Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak (Malaysia); Taha, Mohd Faisal [Fundamental and Applied Sciences Department Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak (Malaysia)

    2015-08-28

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO{sub 2}) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO{sub 2}. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m{sup 2}/g), total pore volume (0.01638 cm{sup 3}/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO{sub 2} through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  17. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  18. Role of activated carbon on micropollutans degradation by different radiation processes

    Directory of Open Access Journals (Sweden)

    Inmaculada Velo Gala

    2015-04-01

    Full Text Available The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent

  19. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  20. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  1. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  2. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  3. Carbon and carbon-14 in lunar soil 14163

    International Nuclear Information System (INIS)

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000 0 C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small ( 53 μ) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14

  4. The physical nature and manufacture of activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.J. (NCP, Bedfordview (South Africa))

    1991-04-01

    After defining activated carbon, the author describes its structure and outlines the physical characteristics distinguishing one type of activated carbon from another. The adsorptive properties of these carbons, the raw materials used, and the manufacturing processes - chemical activation, and physical or thermal activation - are eoutlined. The high-temperature thermal route (which is the most important for the products employed in gold recovery) using coconut shells or coals as the raw material is then discussed in some detail. 20 refs., 11 figs., 2 tabs.

  5. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    Science.gov (United States)

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  6. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    Science.gov (United States)

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. PMID:25814023

  8. High Pressure Adsorption Isotherm of CO2 on Activated Carbon using Volumetric Method

    Directory of Open Access Journals (Sweden)

    Awaludin Martin

    2011-05-01

    Full Text Available Adsorption system is ones of the most effective methods for CO2 separating with other substances that produced from the burning of fossil fuels. In the design for that application, beside of characteristics of porous material (adsorbent data, CO2 adsorption data on the adsorbent (kinetic and thermodynamic are also needed. The aim of this research is resulting isothermal adsorption data at pressures up to 3.5 MPa by indirect methods (volumetric method at isothermal temperature of 300, 308, 318 and 338 K. Adsorbent that used in this research is activated carbon made from East of Kalimantan coals by physical activation method (CO2 which is the surface area of activated carbon is 668 m2/g and pore volume is 0.47 mL/g. Carbon dioxide (CO2 that used in this research is high purity carbon dioxide with a purity of 99.9%. Data from the experiment results then correlated using the Langmuir and Toth equations model. The results showed that the maximum adsorption capacity is 0.314 kg/kg at 300 K and 3384.69 kPa. The results of regression of experiment data using Langmuir and Toth models were 3.4% and 1.7%.

  9. Preparation and Characterization of Various Activated Carbons Derived From Mixed Precursors Using Phosphoric Acid

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.; Sharaf El-Deen, S.E.A.; Elkhalafawy, A.; Shehata, F.A.; Mahmoud, W.H.

    2008-01-01

    Rice straw (RS) and rice husk (RH), a low-cost agricultural by-products, have been used as a mixed precursor (i.e., RS mixed with RH in 1:1; 1:3 and 3:1 ratios) for the production of novel carbons using phosphoric acid as chemical activation. The raw materials were impregnated with 50% and 70% H 3 PO 4 followed by activation at 500 degree C. The latter proved to be the most effective in producing active carbon with good adsorptive capacity. The resulting carbons were characterized by elemental analysis, infrared spectroscopy, density, SEM and S BET . In general, the resulting carbons showed reasonable surface areas with mainly micropore structure. The adsorption capacity was demonstrated by the isotherms of methylene blue (MB), phenol and iodine from aqueous solution. The adsorption data was found to conform with the Langmuir equation with the concentration range studied, and the monolayer coverage was determined for each of the samples. It was found that surface area is mainly attributed to micropore volume so that phenol adsorption and iodine number correspond well with surface area determined by nitrogen adsorption

  10. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    and various CaCO_3 polymorphs, this is the first documented evidence for C isotope fractionation between ACC and the calcite it recrystallizes to. This phenomenon may prove important for the interpretation of CaCO_3-based C isotope environmental proxies. - Highlights: • Earthworms produce granules of calcium carbonate that form from an amorphous calcium carbonate suspension. • The microspherulites of amorphous calcium carbonate coalesce and recrystallize. • Fractionation of C isotopes occurs as the ACC recrystallizes with ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52%. • This is consistent with a dissolution-reprecipitation pathway rather than solid state rearrangement. • This may be important for the interpretation of CaCO_3-based C isotope environmental proxies.

  11. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  12. Adsorption of Pb(II and Cu(II by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times

    Directory of Open Access Journals (Sweden)

    Myoung-Eun Lee

    2017-12-01

    Full Text Available Ginkgo trees are common street trees in Korea, and the large amounts of leaves that fall onto the streets annually need to be cleaned and treated. Therefore, fallen gingko leaves have been used as a raw material to produce biochar for the removal of heavy metals from solutions. Gingko-leaf-derived biochar was produced under various carbonization temperatures and times. This study evaluated the physicochemical properties and adsorption characteristics of gingko-leaf-derived biochar samples produced under different carbonization conditions regarding Pb(II and Cu(II. The biochar samples that were produced at 800 °C for 90 and 120 min contained the highest oxygen- and nitrogen-substituted carbons, which might contribute to a high metal-adsorption rate. The intensity of the phosphate bond was increased with the increasing of the carbonization temperature up to 800 °C and after 90 min of carbonization. The Pb(II and Cu(II adsorption capacities were the highest when the gingko-leaf-derived biochar was produced at 800 °C, and the removal rates were 99.2% and 34.2%, respectively. The highest removal rate was achieved when the intensity of the phosphate functional group in the biochar was the highest. Therefore, the gingko-leaf-derived biochar produced at 800 °C for 90 min can be used as an effective bio-adsorbent in the removal of metals from solutions.

  13. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  14. Artichoke as a non-conventional precursor for activated carbon: Role of the activation process

    Directory of Open Access Journals (Sweden)

    Gamal M.S. ElShafei

    2017-09-01

    Full Text Available Artichoke peels were used to produce activated carbon using chemical activation methods. Two activation protocols were compared: a two-step method A and a one-step method B. As newly used activating agents, KCl, CrCl3 and TiCl4 were compared. The results show that method B is superior to A. KOH with method B had an area of 2321 m2/g and a total pore volume 1.0071 cm3/g, of which 0.9794 cm3/g was confined to micropores. The corresponding values for KCl are 1731, 0.6925 and 0.6718. TiCl4 had lower but comparable values with those of KCl. CrCl3 appeared to be the least successful among the three newly used activating agents. The post-activation washing step strongly affects the characteristics of the final product. The differences among the effects of Zn, Cr and Ti are discussed in terms of the differences in polarizing power.

  15. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  16. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  17. Sorption studies of nickel ions onto activated carbon

    Science.gov (United States)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  18. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  19. Adsorption of pesticides onto granular activated carbon in water treatment process

    OpenAIRE

    Kopecká, Ivana

    2010-01-01

    The diploma thesis is aimed at adsorption processes during the removal of pesticides onto granular activated carbon (GAC) in the process of drinking water treatment. Adsorption onto GAC represents an efficient method for pesticides removal. High adsorption efficiency can be significantly reduced due to the occurrence of natural organic matter (NOM) in raw water, which involves AOM (Algal Organic Matter) produced by phytoplankton. Analogous to NOM, AOM probably affects adsorption of pesticides...

  20. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  1. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    International Nuclear Information System (INIS)

    Byrnes, M.E.

    2010-01-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  2. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  3. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    Science.gov (United States)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  4. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    Science.gov (United States)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2017-10-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  5. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  6. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  7. Adsorption kinetics of surfactants on activated carbon

    Science.gov (United States)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  8. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    In this study, the use of a bituminous coal for the production of activated carbons with chemical activation was investigated. The effects of process variables such as chemical reagents, activation temperature, impregnation ratio and carbonization temperature were investigated to optimize these parameters. The resultant ...

  9. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Activated Carbon by Co-pyrolysis and Steam Activation from Particle Board and Melamine Formaldehyde Resin: Production, Adsorption Properties and Techno Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Kenny Vanreppelen

    2013-03-01

    Full Text Available One of the top strategic objectives and research areas in Europe is recovering wood from processing and end of life products. However, there are still several "contaminated" wood products that are not or only partly reused/recycled. Particle board waste which is contaminated with aminoplasts is one of these products. In addition, a considerable amount of aminoplast waste resinis produced for the production of particle board that cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde respectively make them ideal precursors for the production of nitrogenised activated carbon. The profitability of the produced activated carbon is investigated by calculating the net present value, the minimum selling price and performing a Monte Carlo sensitivity analysis. Encouraging results for a profitable production are obtained even though the current assumptions start from a rather pessimistic scenario.

  11. Preparation and characterization of active carbon using palm kernel ...

    African Journals Online (AJOL)

    Activated carbons were prepared from Palm kernel shells. Carbonization temperature was 6000C, at a residence time of 5 min for each process. Chemical activation was done by heating a mixture of carbonized material and the activating agents at a temperature of 700C to form a paste, followed by subsequent cooling and ...

  12. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate

    International Nuclear Information System (INIS)

    Eloneva, Sanni; Said, Arshe; Fogelholm, Carl-Johan; Zevenhoven, Ron

    2012-01-01

    Highlights: ► An NH 4 -salt-based method utilizes CO 2 and steelmaking slags to produce pure CaCO 3 . ► It was determined if its economic potential warrants moving forward. ► Despite small solvent losses, the method was found to have economical potential. ► The method has significant CO 2 emissions reduction potential. ► Scaling up the reactor will allow for a more detailed design for the process. -- Abstract: One of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation is the so-called CO 2 sequestration by mineral carbonation, or CO 2 mineral sequestration. Steel manufacturing could benefit from this option by utilizing its own by-products, i.e. steelmaking slags to combine with CO 2 . We have recently studied a method, where aqueous solution of ammonium salt (e.g. ammonium acetate, ammonium nitrate and ammonium chloride) is used to extract calcium selectively from the steel converter slag, followed by precipitation of pure calcium carbonate by bubbling CO 2 through the produced solution. The ammonium salt solution is recovered and re-used. The purpose of this research was to determine if the economic potential of the method warrants moving forward to large-scale application. Despite the small solvent losses, the method was found to have economical potential. In addition, it has significant CO 2 emission reduction potential as well. Scaling up the reactor from the small laboratory scale will allow more detailed design for the process to be made followed by a full economical evaluation including all of the important operational and capital investment costs.

  13. Kinetic Study of Water Contaminants Adsorption by Bamboo Granular Activated and Non-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Opololaoluwa Oladimarun Ijaola

    2013-10-01

    Full Text Available The adsorptive capacity of metal ions from surface water with activated and non-activated carbon derived from bamboo was investigated. The validation of adsorption kinetics of Cl, PO4 and Pb was done by pseudo-first and second order model while adsorption isotherms was proved by Langmuir and Freundlich isotherm model for activated and non- activated bamboo granular carbon. Generally, the amount of metal ions uptake increases with time and activation levels and the pH of bamboo granular carbon increase with activation. Similarly, the pore space of the activated carbon also increases with activation levels. The correlation coefficients (R2 show that the pseudo-second order model gave a better fit to the adsorption process with 0.9918 as the least value and 1.00 as the highest value as compared with the pseudo-first order with 0.813 as the highest value and 0 as the least. The Freundlich isotherm was more favorable when compared with the Langmuir isotherm in determining the adsorptive capacity of bamboo granular activated carbon. The study has shown that chemical activation increases the pore space, surface area and the pH of bamboo granular carbon which ultimately increases the adsorption rate of metal ions in the contaminated surface water.

  14. Preparation And Characterization Of Cr/Activated Carbon Catalyst From Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Zainal Fanani

    2016-02-01

    Full Text Available Preparation and characterization of Cr/activated carbon catalyst from palm empty fruit bunch had been done. The research were to determine the effect of carbonization temperature towards adsorption of ammonia, iodine number, metilen blue number, and porosity of activated carbon and Cr/activated carbon catalyst. The determination of porosity include surface area, micropore volume and total pore volume. The results showed the best carbonization temperature activated carbon and Cr/activated carbon catalyst at 700°C. The adsorption ammonia of activated carbon and Cr/activated carbon catalyst as 6.379 mmol/g and 8.1624 mmol/g. The iodine number of activated carbon and Cr/activated carbon catalyst as 1520.16 mg/g and 1535.67 mg/g. The metilen blue number of activated carbon and Cr/activated carbon catalyst as 281.71 mg/g and 319.18 mg/g. The surface area of activated carbon and Cr/activated carbon catalyst as 1527.80 m2/g and 1652.58 m2/g. The micropore volume of activated carbon and Cr/activated carbon catalyst as 0.7460 cm3/g and 0.8670 cm3/g. The total pore volume of activated carbon and Cr/activated carbon catalyst as 0.8243 cm3/g and 0.8970 cm3/g.

  15. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    OpenAIRE

    Y. V. Hete; S. B. Gholase; R. U. Khope

    2012-01-01

    This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  16. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    Science.gov (United States)

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  17. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    Science.gov (United States)

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.

  18. Performance of Separation Processes for Precipitated Calcium Carbonate Produced with an Innovative Method from Steelmaking Slag and Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Teir, Sebastian, E-mail: sebastian.teir@vtt.fi [VTT Technical Research Centre of Finland Ltd., Espoo (Finland); Auvinen, Toni [Outotec Dewatering Technology Center, Lappeenranta (Finland); Said, Arshe [Department of Energy Technology, School of Engineering, Aalto University, Espoo (Finland); Kotiranta, Tuukka; Peltola, Heljä [Outotec Research Center, Pori (Finland)

    2016-02-22

    In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO{sub 2} emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride, and ammonia, the product needs to be washed and hence filtered. In this work, different separation processes, including washing, filtering, and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO{sub 2} by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content, and conductivity, and the filtrates by their residual solids content, chloride content, and conductivity. Pressure filtration gave a high capacity (400–460 kg/m{sup 2}h) and a low cake residual moisture content (12–14 wt-%). Vacuum filtration gave slightly higher filtration rates (500–610 kg/m{sup 2}h at the lowest residual chloride contents of the cakes), but the cake residual moisture also stayed higher (25–26 wt-%). As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered

  19. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils.

    Science.gov (United States)

    Duerr, Mark A; Aurora, Rajeev; Ford, David A

    2015-05-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Garcia M, A.

    2001-01-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  1. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Y. V. Hete

    2012-01-01

    Full Text Available This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  2. Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine

    International Nuclear Information System (INIS)

    Huang Shaoming; Dai Liming

    2002-01-01

    By pyrolysis of iron phthalocyanine (FePc), either in a patterned or non-patterned fashion, under an Ar/H 2 atmosphere, we have demonstrated the large-scale production of aligned carbon nanotubes perpendicular to the substrate surface useful for building devices with three-dimensional structures. Depending on the particular pyrolytic conditions used, carbon nanotubes with a wide range of microscopic structures having curved, helical, coiled, branched, and tube-within-tube shapes have also been prepared by the pyrolysis of FePc. This, coupled with several microfabrication methods (photolithography, soft-lithography, self-assembling, micro-contact transfer, etc.), has enabled us to produce carbon nanotube arrays of various macroscopic architectures including polyhedral, flower-like, dendritic, circular, multilayered, and micropatterned geometries. In this article, we summarize our work on the preparation of FePc-generated carbon nanotubes with the large variety of microscopic and macroscopic structures and give a brief overview on the perspectives of making carbon nanotubes with tailor-made microscopic/macroscopic structures, and hence well-defined physicochemical properties, for specific applications

  3. Chemical activation of gasification carbon residue for phosphate removal

    Science.gov (United States)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  4. Carbon fiber/SiC composite for reduced activation

    International Nuclear Information System (INIS)

    Noda, T.; Araki, H.; Abe, F.; Okada, M.

    1991-01-01

    A carbon fiber/SiC composite fabricated by a chemical vapor infiltration process at 1173-1623 K was studied to develop a low-activation material. A high-purity composite was obtained with the total amount of impurities less than 0.02 wt%. The microstructure and the mechanical properties using a bend test were examined. A composite with woven carbon yarn showed both high strength and toughness. Further, the induced activity of the material was evaluated by calculations simulating fusion neutron irradiation. The carbon fiber/SiC composite shows an excellent low-activation behavior. (orig.)

  5. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R; Mueller, S; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  6. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Drage; A. Arenillas; K.M. Smith; C. Pevida; S. Piippo; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-01-15

    Adsorption is considered to be one of the more promising technologies for the capture of CO{sub 2} from flue gases. In general, nitrogen enrichment is reported to be effective in enhancing the specific adsorbent-adsorbate interaction for CO{sub 2}. Nitrogen enriched carbons were produced from urea-formaldehyde and melamine-formaldehyde resins polymerised in the presence of K{sub 2}CO{sub 3} as a chemical activation agent, with activation undertaken over a range of temperatures. CO{sub 2} adsorption capacity was determined to be dependent upon both textural properties and more importantly nitrogen functionality. Adsorbents capable of capturing above 8 wt.% CO{sub 2} at 25{sup o}C were produced from the chemical activation of urea-formaldehyde resin at 500{sup o}C. Chemical activation seems to produce more effective adsorbents than CO{sub 2} activation. 29 refs., 4 figs., 3 tabs.

  7. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    Science.gov (United States)

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources

    Directory of Open Access Journals (Sweden)

    Vance-Harrop Mabel H.

    2003-01-01

    Full Text Available Candida lipolytica IA 1055 produced extracellular biosurfactants with emulsification activity by fermentation using babassu oil and D-glucose as carbon sources. Natural seawater diluted at 50% supplemented with urea, ammonium sulfate, and phosphate was used as economic basal medium. The best results were achieved with the YSW-B2 medium, which contained urea, ammonium sulfate, and babassu oil and with YSW-B3 medium, which contained urea, ammonium sulfate, phosphate, and babassu oil, kept under fed batch fermentation for 60 hours with 5% of babassu oil. For the two media, the maximum specific growth rates were 0.02 h-1 and 0.04 h-1; the generation times were 34.6 h-1 and 17.3 h-1, and the emulsification activities were 0.666 and 0.158 units, respectively. The molecules of these new bioemulsifiers were contituted of carbohydrates, proteins and lipids.

  9. Modeling and preparation of activated carbon for methane storage II. Neural network modeling and experimental studies of the activated carbon preparation

    International Nuclear Information System (INIS)

    Namvar-Asl, Mahnaz; Soltanieh, Mohammad; Rashidi, Alimorad

    2008-01-01

    This study describes the activated carbon (AC) preparation for methane storage. Due to the need for the introduction of a model, correlating the effective preparation parameters with the characteristic parameters of the activated carbon, a model was developed by neural networks. In a previous study [Namvar-Asl M, Soltanieh M, Rashidi A, Irandoukht A. Modeling and preparation of activated carbon for methane storage: (I) modeling of activated carbon characteristics with neural networks and response surface method. Proceedings of CESEP07, Krakow, Poland; 2007.], the model was designed with the MATLAB toolboxes providing the best response for the correlation of the characteristics parameters and the methane uptake of the activated carbon. Regarding this model, the characteristics of the activated carbon were determined for a target methane uptake. After the determination of the characteristics, the demonstrated model of this work guided us to the selection of the effective AC preparation parameters. According to the modeling results, some samples were prepared and their methane storage capacity was measured. The results were compared with those of a target methane uptake (special amount of methane storage). Among the designed models, one of them illustrated the methane storage capacity of 180 v/v. It was finally found that the neural network modeling for the assay of the efficient AC preparation parameters was financially feasible, with respect to the determined methane storage capacity. This study could be useful for the development of the Adsorbed Natural Gas (ANG) technology

  10. Synthesis of Mesoporous Carbons from Date Pits for the Adsorption of Large Molecular Weight Micropollutants in Wastewater

    KAUST Repository

    Al Jeffrey, Ahmed

    2013-07-01

    Efficient reuse of waste water requires removal of micro-pollutants from waste water streams by affordable and sustainable methods. Activated carbon is considered a powerful adsorbent due to its high surface area and low cost of treatment, compared to other expensive methods such as membrane filtration. Producing activated carbon with larger mesoporosity (>2nm) is of particular interest in industry in the removal of larger molecular sized pollutants. This study reports the synthesis of mesoporous activated carbons from a nonsoluble biomass precursor (date-pits) along with chemical activation using ZnCl2. Thus, produced activated carbon showed high surface area and large mesopore volume up to 1571 m2/g and 2.00 cm3/g respectively. In addition, the pore size of the product was as high as 9.30 nm. As a method of verification, HRTEM (Highresolution transmission electron microscopy) was used to directly authenticate the pore size of the synthesized activated carbons. Tannic acid and atrazine were used as model waste water pollutants and the adsorption capability of the produced activated carbon for these pollutants were evaluated and compared to a commercial mesoporous carbon: G60 from Norit. The results showed that the sorption capacity of produced activated carbon for tannic acid was 2 times that of G60 while the sorption capacity of produced activated carbon for atrazine was lower than that of G60. The activated carbon was also evaluated for adsorption of real secondary effluent municipal wastewater and the results suggest that the produced activated carbon was able to sorb a greater amount of biopolymers than G60. These results demonstrate that the thus-produced activated carbon may be a promising sorbent for waste water treatment.

  11. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    Science.gov (United States)

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors.

  12. Diclofenac removal from water with ozone and activated carbon.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, Pablo; Alvarez, Pedro; Oropesa, Ana

    2009-04-30

    Diclofenac (DCF) has been treated in water with ozone in the presence of various activated carbons. Activated carbon-free ozonation or single ozonation leads to a complete degradation of DCF in less than 15 min while in the presence of activated carbons higher degradation rates of TOC and DCF are noticeably achieved. Among the activated carbons used, P110 Hydraffin was found the most suitable for the catalytic ozonation of DCF. The influence of pH was also investigated. In the case of the single ozonation the increasing pH slightly increases the TOC removal rate. This effect, however, was not so clear in the presence of activated carbons where the influence of the adsorption process must be considered. Ecotoxicity experiments were performed, pointing out that single ozonation reduces the toxicity of the contaminated water but catalytic ozonation improved those results. As far as kinetics is concerned, DCF is removed with ozone in a fast kinetic regime and activated carbon merely acts as a simple adsorbent. However, for TOC removal the ozonation kinetic regime becomes slow. In the absence of the adsorbent, the apparent rate constant of the mineralization process was determined at different pH values. On the other hand, determination of the rate constant of the catalytic reaction over the activated carbon was not possible due to the effect of mass transfer resistances that controlled the process rate at the conditions investigated.

  13. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong seon; Kim, Wi soo [NESS, Daejeon (Korea, Republic of); Han, Byoung sub. [Enesys Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH.

  14. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    International Nuclear Information System (INIS)

    Jeon, Jong seon; Kim, Wi soo; Han, Byoung sub.

    2016-01-01

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH

  15. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  16. Outdoor corrosion of zinc coated carbon steel, determined by thin layer activation

    International Nuclear Information System (INIS)

    Agostini, M.L.; Laguzzi, G.; De Cristofaro, N.; Stroosnijder, M.F.

    2001-01-01

    Thin Layer Activation was applied in the frame of a European programme addressed to the evaluation of the corrosion the behaviour of different steels. This included outdoor exposure of zinc coated carbon steel in a rural-marine climatic environment, for a period of several months. The zinc layer of specimens was 10 micrometers thick. For the TLA studies 65Zn radio nuclides were produced along the full depth of the coating, by a cyclotron accelerated deuteron beam. For quantification of the material release, activity versus depth was determined using different thickness of Zn coatings on top the carbon steel. After exposure corrosion product were removed from the surface using a pickling solution and the residual activity was determined by gamma spectrometry. The high sensitivity of the method allowed the evaluation of relatively small thickness losses (i.e. 1.2 micrometer). Thickness loss results, obtained by the TLA method, were compared with those arising from the Atomic Absorption analysis of zinc detected in the pickling solutions. A good agreement was observed between the different methods

  17. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    Science.gov (United States)

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Singh, Kunwar P.; Singh, Vinod K.

    2006-01-01

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  19. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    International Nuclear Information System (INIS)

    Blundell, A.; Thorley, A.W.

    1980-01-01

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted

  20. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Blundell, A; Thorley, A W [UKAEA, Risley, Warrington, Cheshire (United Kingdom)

    1980-05-01

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted.

  1. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  2. Pilot Scale Production of Activated Carbon Spheres Using Fluidized Bed Reactor and Its Evaluation for the Removal of Hexavalent Chromium from Aqueous Solutions

    Science.gov (United States)

    Tripathi, Nagesh Kumar; Sathe, Manisha

    2017-12-01

    Large scale production of activated carbon is need of ongoing research due to its excellent adsorption capacity for removal of heavy metals from contaminated solutions. In the present study, polymeric precursor polystyrene beads [Brunauer Emmett Teller (BET) surface area, 46 m2/g; carbon content, 40.64%; crushing strength, 0.32 kg/sphere] were used to produce a new variant of activated carbon, Activated Carbon Spheres (ACS) in a pilot scale fluidized bed reactor. ACS were prepared by carbonization of polymeric precursor at 850 °C followed by activation of resultant material with steam. Prepared ACS were characterized using scanning electron microscope, CHNS analyzer, thermogravimetric analyzer, surface area analyzer and crushing strength tester. The produced ACS have 1009 m2/g BET surface area, 0.89 cm3/g total pore volume, 92.32% carbon content and 1.1 kg/sphere crushing strength with less than 1% of moisture and ash content. The ACS were also evaluated for its potential to remove hexavalent chromium [Cr(VI)] from contaminated solutions. The chromium removal is observed to be 99.1% at initial concentration 50 mg/l, pH 2, ACS dose 1 g/l, contact time 2 h, agitation 120 rpm and temperature 30 °C. Thus ACS can be used as an adsorbent material for the removal of Cr(VI) from contaminated solutions.

  3. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Na, Chongzheng [Univ. of Notre Dame, IN (United States)

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety of synthetic methods, we show that synthesizing graphene-­supported UO2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.

  4. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    Science.gov (United States)

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.

  5. Utilization of Cacao Pod Husk (Theobroma cacao l.) as Activated Carbon and Catalyst in Biodiesel Production Process from Waste Cooking Oil

    Science.gov (United States)

    Rachmat, Devita; Johar Mawarani, Lizda; Dewi Risanti, Doty

    2018-01-01

    Cocoa pod husk (Theobroma cacao l.) is a waste from cocoa beans processing. In this research we employ cocoa pod husk as activated carbon to decrease the value of FFA (Free Fatty Acid) in waste cooking oil and as K2CO3 catalyst in biodiesel production process from waste cooking oil. Cocoa pod husk was crusched and grounded into powder that passed thorugh 60 mesh-screen. As activated carbon, cocoa pod husk was firstly carbonized at three variant temperatures i.e 250°C, 300°C and 350°C. The activation process was done using HCl 2M as activator. Based on the results of XRD and FTIR, the carbonization at all variant temperatures does not cause a significant changes in terms of crystallite structure and water content. The pore of activated carbon started to form in sample that was carbonized at 350°C resulting in pore diameter of 5.14644 nm. This result was supported by the fact that the ability of this activated carbon in reducing the FFA of waste cooking oil was the most pronounced one, i.e. up to 86.7% of FFA. It was found that the performance of cocoa pod husk’s activated carbon in reducing FFA is more effective than esterification using H2SO4 which can only decrease 80.8%. On the other hand, the utilization as K2CO3 catalyst was carried out by carbonization at temperature 650°C and extraction using aquadest solvent. The extraction of cocoa pod husk produced 7.067% K2CO3 catalyst. According to RD results the fraction of K2CO3 compound from the green catalysts is the same as the commercial (SAP, 99%) that is ≥ 60%. From the obtained results, the best yield percentage was obtained using K2CO3 catalyst from cacao pod husk extract, i.e. 73-85%. To cope with biodiesel conversion efficiency, a two-step process consisting pretreatment with activated carbon carbonized at 350°C and esterification with K2CO3 from cocoa pod husk catalyst was developed. This two-step process could reach a high conversion of 85%. From the results it was clear that the produced

  6. Micro-milling of spent granular activated carbon for its possible reuse as an adsorbent: Remaining capacity and characteristics.

    Science.gov (United States)

    Pan, Long; Takagi, Yuichi; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2017-05-01

    We milled granular activated carbons (GACs) that had been used for 0-9 years in water treatment plants and produced carbon particles with different sizes and ages: powdered activated carbons (PAC, median diameter 12-42 μm), superfine PAC (SPAC, 0.9-3.5 μm), and submicron-sized SPAC (SSPAC, 220-290 nm). The fact that SPAC produced from 1-year-old GAC and SSPAC from 2-year-old GAC removed 2-methylisoborneol (MIB) from water with an efficiency similar to that of virgin PAC after a carbon contact time of 30 min suggests that spent GAC could be reused for water treatment after being milled. This potential for reuse was created by increasing the equilibrium adsorption capacity via reduction of the carbon particle size and improving the adsorption kinetics. During long-term (>1 year) use in GAC beds, the volume of pores in the carbon, particularly pores with widths of 0.6-0.9 nm, was greatly reduced. The equilibrium adsorption capacities of the carbon for compounds with molecular sizes in this range could therefore decrease with increasing carbon age. Among these compounds, the decreases of capacities were prominent for hydrophobic compounds, including MIB. For hydrophobic compounds, however, the equilibrium adsorption capacities could be increased with decreasing carbon particle size. The iodine number, among other indices, was best correlated with the equilibrium adsorption capacity of the MIB and would be a good index to assess the remaining MIB adsorption capacity of spent carbon. Spent GAC can possibly be reused as SPAC or SSPAC if its iodine number is ≥ 600 mg/g. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  8. Understanding mercury binding on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Padak, B.; Wilcox, J. [Stanford University, Stanford, CA (United States)

    2009-10-15

    Understanding the mechanism by which mercury adsorbs on activated carbon is crucial to the design and fabrication of effective capture technologies. In this study, the possible binding mechanism of mercury (Hg) and its species, i.e., HgCl and HgCl{sub 2} on activated carbon is investigated using ab initio-based energetic calculations. The activated carbon surface is modeled by a single graphene layer in which the edge atoms on the upper side are unsaturated in order to simulate the active sites. in some cases, chlorine atoms are placed at the edge sites to examine the effect of chlorine on the binding of Hg, HgCl and HgCl{sub 2}. It has been concluded that both HgCl and HgCl{sub 2} can be adsorbed dissociatively or non-dissociatively. In the case of dissociative adsorption, it is energetically favorable for atomic Hg to desorb and energetically favorable for it to remain on the surface in the Hg{sup 1+} state, HgCl. The Hg{sup 2+}, oxidized compound, HgCl2 was not found to be stable on the surface. The most probable mercury species on the surface was found to be HgCl.

  9. Activated carbons from Mongolian coals by thermal treatment

    Directory of Open Access Journals (Sweden)

    A Ariunaa

    2014-09-01

    Full Text Available Mongolian different rank coals were used as raw material to prepare activatedcarbons by physical activation method. The coal derived carbons were oxidized with nitric acid in order to introduce surface oxygen groups. The ultimate elemental analysis, scanning electron microscopy, surface area, pore size distribution analysis and selective neutralization method were used to characterize the surface properties of activated carbons, oxidizedcarbons and raw coals. The effect of coal grade on the adsorption properties of the carbons were studied. It was concluded that Naryn sukhait bituminous coal could be serve as suitable raw material for production of activated carbons for removal of heavy metal ions from solution.DOI: http://dx.doi.org/10.5564/mjc.v12i0.174 Mongolian Journal of Chemistry Vol.12 2011: 60-64

  10. Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Bommier, Clement; Xu, Rui; Wang, Wei; Wang, Xingfeng; Wen, David; Lu, Jun; Ji, Xiulei

    2015-04-01

    Current synthetic methods of biomass-derived activated carbon call for a costly chemical or physical activation process. Herein, we report a simple one-step annealing synthesis yielding a high surface area cellulose-derived activated carbon. We discover that simply varying the flow rate of Argon during pyrolysis enables ‘self-activation’ reactions that can tune the specific surface areas of the resulting carbon, ranging from 98 m2/g to values as high as 2600 m2/g. Furthermore, we, for the first time, observe a direct evolution of H2 from the pyrolysis, which gives strong evidence towards an in situ self-activation mechanism. Surprisingly, the obtained activated carbon is a crumbled graphene nanostructure composed of interconnected sheets, making it ideal for use in an electrochemical capacitor. The cellulose-derived nanoporous carbon exhibits a capacitance of 132 F g-1 at 1 A g-1, a performance comparable to the state-of-the-art activated carbons. This work presents a fundamentally new angle to look at the synthesis of activated carbon, and highlights the importance of a controlled inert gas flow rate during synthesis in general, as its contributions can have a very large impact on the final material properties.

  11. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  12. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  13. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  14. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    KEY WORDS: Chemical activation, Adsorption, Activated carbon, Pesticide ..... density solvent based dispersive liquid–liquid microextraction for quantitative extraction of ... El-Hamouz, A.; Hilal, H.S.; Nassar, N.; Mardawi, Z. Solid olive waste in ...

  15. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.

    Science.gov (United States)

    An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An

    2015-04-15

    A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    van der Sloot, H A [Stichting Reactor Centrum Nederland, Petten

    1977-01-01

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 ..mu..g Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate.

  17. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    Science.gov (United States)

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  18. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  19. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  20. Study of Activated Carbons by Pyrolysis of Mangifera Indica Seed (Mango in Presence of Sodium and Potassium Hydroxide

    Directory of Open Access Journals (Sweden)

    J. C. Moreno-Piraján

    2012-01-01

    Full Text Available Activated carbons (ACs were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities. Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms. Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.

  1. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    Science.gov (United States)

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  2. Preparation of mesoporous carbon from fructose using zinc-based activators

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2015-07-01

    Full Text Available Mesoporous carbons were synthesized from fructose using activators of zinc silicate (ZS, zinc borate (ZB, and zinc borosilicate (ZBS. The synthesis involves 3 steps, including caramelization of sugar, carbonization of caramel, and washing of carbon to separate the activator from the carbon. The solid products were characterized by N2 gas adsorption-desorption, X-ray diffraction, FTIR spectrophotometry, and Transmission Electron Microscopy. The pore characterizations of the carbons indicate that in ZBS system, ZB may have the role as mesopore size controller, whereas silica component may improve porosity created by ZB without changing the size. This role of ZB may be connected to it’s performance as catalyst of caramelization and it’s crystalinity, as supported by measurement of caramel intermediete and characterization of the activators with X-ray diffraction. The infrared spectra confirms that the carbons’s surfaces have C=O, C-O, and O-H functional groups. The XRD patterns of the carbons show that all activators create the turbotratic carbons.

  3. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  4. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: claudia_rbm@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)

    2011-09-15

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  5. Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma

    Science.gov (United States)

    Glonek, Karolina; Wróblewska, Agnieszka; Makuch, Edyta; Ulejczyk, Bogdan; Krawczyk, Krzysztof; Wróbel, Rafał. J.; Koren, Zvi C.; Michalkiewicz, Beata

    2017-10-01

    The waste from industrial fruits processing is utilized for the extraction of limonene, a renewable terpene biomass compound obtained from orange peels. This was followed by limonene oxidation, which produces highly useful oxygenated derivatives (carveol, and perillyl alcohol, 1,2-epoxylimonene and its diol). New catalysts were obtained by treating relatively inexpensive commercially available EuroPh and FPV activated carbons with plasma. These catalysts were characterized by the following instrumental methods XRD, sorption of N2 and CO2, SEM, EDS, TEM, XPS, and Raman spectroscopy. The activities of the plasma-treated catalysts were measured in the oxidation of limonene by means of either hydrogen peroxide or t-butyl hydroperoxide as the oxidizing agents. During the oxidation with hydrogen peroxide the new plasma-treated catalysts were more active than their untreated counterparts. This effect was noticeable in the considerable increase in the conversion of limonene. The mechanism explaining this property is proposed, and it takes into account the role of the appropriate functional groups on the surface of the catalysts. This work has shown for the first time that the commercial EuroPh and FPV activated carbons, after having been treated by plasma, are active catalysts for the selective limonene oxidation for the production of value-added industrial products.

  6. Comparison tests, in a pilot plant, of the performance of a coal-derived granular activated carbon: a comparison with coconut husk derived activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S.; Kasahara, A.; Tsuruzono, Y.; Gotoh, M.

    1986-01-01

    A 160 m/sup 3//d pilot plant has been used in a series of comparison tests of the performance of coal-derived and coconut husk derived activated carbons. Activated carbons are used to remove trihalomethane precursors and malodorous substances from city water. A higher mean removal of coloration and COD/sub M//sub n/ was achieved with the coal-derived carbon (by factors of 1.5 and 1.8, respectively). The two activated carbons gave similar performances as regards turbidity, alkalinity, total iron and total manganese. 4 figures, 5 tables.

  7. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  8. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger.

    Science.gov (United States)

    Li, Yuxin; Hong, Yan; Han, Yanquan; Wang, Yongzhong; Xia, Lunzhu

    2016-02-01

    Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol) in these four kinds of ginger sample extracts were simultaneously determined by UPLC-PDA. Meanwhile, the antioxidant effect of fresh, dried, stir-frying and carbonized gingers were evaluated by three assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP)). The results demonstrated that antioxidant activity of dried ginger was the highest, for its phenolic contents are 5.2-, 1.1- and 2.4-fold higher than that of fresh, stir-frying and carbonized ginger, respectively, the antioxidant activities' results indicated a similar tendency with phenolic contents: dried ginger>stir-frying ginger>fresh ginger>carbonized ginger. The processing contributed to the decreased concentration of gingerols and the increased levels of shogaols, which reducing the antioxidant effects in pace with processing. This study elucidated the relationship of the heating process with the constituents and antioxidant activity, and provided a guide for choosing different kinds of ginger samples on clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Carbon footprinting. An introduction for organisations

    International Nuclear Information System (INIS)

    2007-08-01

    To some degree or other, every person and every organisation, either directly or indirectly, is responsible for producing carbon dioxide gas which finds its way into the atmosphere and therefore contributes to the greenhouse effect. The amount of carbon dioxide produced by a person, an organisation, a company, an industry, an event, or even a population can be quantified in what is now described as a carbon footprint. Gases other than carbon dioxide are also released to the atmosphere through man's activities and these can also be evaluated in terms of the carbon footprint. This document explains the meaning of the expression 'carbon footprint' and aims to assist businesses and organisations to determine collective and individual carbon footprints

  10. Optimization of activated carbon from sewage sludge using response surface methodology

    International Nuclear Information System (INIS)

    Muhammad Salleh Abustan; Hamidi Abdul Aziz; Mohd Azmier Ahmad

    2010-01-01

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central composite design (CCD), two quadratic models were developed to correlate the preparation variables to the COD and ammonia removal. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from wastewater sludge cake was obtained by using activation temperature of 510 degree Celsius, activation time of 30 min and carbon dioxide flow rate of 500 ml/ min. The optimum activated carbon showed COD and ammonia removal of 26 and 13 %, respectively. (author)

  11. Production and characterization of activated carbon from indigenous coal (lakhra coal)

    International Nuclear Information System (INIS)

    Sattar, H.; Hussain, S.N.; Asghar, A.; Butt, A.

    2006-01-01

    In the present study, indigenous coal has been exploited for the preparation of activated carbon by physical. activation and characterization of if was done by using available techniques. Physical activation involved two steps; Carbonization and CO; activation. For different temperatures, carbonization was carried out for 4 hours in an oven and it was observed that percent yield and iodine number was maximum at 600 degree C. The carbonized material of 600 C was activated at different intervals of time and different temperatures for constant flow of CO/sub 2/; (activating gas). The optimum temperature and time for CO/sub 2/; activation was observed to be 750 C and 3 hours respectively, which gave lower percent yield of active carbon but of higher iodine number and methylene blue values. (author)

  12. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates.

    Science.gov (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš

    2017-05-01

    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml -1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l -1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  13. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  14. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  15. ACTIVATED CARBON/REFRIGERANT COMBINATIONS FOR ...

    African Journals Online (AJOL)

    ES Obe

    2001-03-01

    Mar 1, 2001 ... to solar adsorption refrigeration machines are estimated. ... heat, activated carbon/ammonia requires the use of advanced flat-plate collectors such as those with multiple ... the thermodynamic performance of zeolite-water.

  16. Preconcentration and extraction of copper(II) on activated carbon ...

    African Journals Online (AJOL)

    Activated carbon modified method was used for the preconcentration and ... in real samples such as tap water, wastewater and a synthetic water sample by flame ... KEY WORDS: Copper(II), Solid phase extraction, Activated carbon, Flame ...

  17. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  18. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water.

    Science.gov (United States)

    Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua

    2018-03-01

    Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Utilization of Activated Carbon Prepared from Aceh Coffee Grounds as Bio-sorbent for Treatment of Fertilizer Industrial Waste Water

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.

    2018-05-01

    The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.

  20. Disinfection of bacteria attached to granular activated carbon.

    Science.gov (United States)

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  1. Fixation Of Mo In Uranium Leach Liquor By Activated Carbon

    International Nuclear Information System (INIS)

    Mainar, S.; Guswita, A.; Erni, R.A.; Susilaningtyas

    1996-01-01

    The use of activated carbon for Mo fixation by bulk system is reported. Several factors influencing the fixation process were examined, including contact time, carbon particle size, carbon porosity and the effect of other elements present in Mo containing solutions. Experimental data showed that an adsorption equilibrium of Mo on of activated carbon and 0,85 to 1,18 mm of carbon particle size under forced-convection mass transfer in 100 ml solution that contains + 0,56 m mol of Mo and +. 0,25 m mol Of U was reached after 6 hours period. Under those conditions, about 0,50 m mol of Mo and 0,026 m mol of U were adsorbed into carbon. High concentration of rare earth elements decreased Mo adsorption, hence, the use of activated carbon was not effective to separate Mo from the digestion liquor of Rirang are where Mo was adsorbed, into the carbon + 34,5 %

  2. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon

    International Nuclear Information System (INIS)

    Liu Yazi; Yang Shaogui; Hong Jun; Sun Cheng

    2007-01-01

    TiO 2 thin films were deposited on granular activated carbon by a dip-coating method at low temperature (373 K), using microwave radiation to enhance the crystallization of titania nanoparticles. Uniform and continuous anatase titania films were deposited on the surface of activated carbon. BET surface area of TiO 2 -mounted activated carbon (TiO 2 /AC) decreased a little in comparison with activated carbon. TiO 2 /AC possessed strong optical absorption capacity with a band gap absorption edge around 360 nm. The photocatalytic activity did not increase when the as-synthesized TiO 2 /AC was thermally treated, but was much higher than commercial P-25 in degradation of phenol by irradiation of electrodeless discharge lamps (EDLs)

  3. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  4. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    OpenAIRE

    Abou-Elela, Sohair I.; Ali, Mohammed Eid M.; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  5. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  6. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  7. Preparation of activated Carbons from extracted waste biomass by chemical activation

    International Nuclear Information System (INIS)

    Toteva, V.; Nickolov, R.

    2013-01-01

    Full text: Novel biomass precursors for the production of activated carbons (ACs) were studied. ACs were prepared from extracted coffee husks and extracted spent ground coffee - separately or as mixtures with 10, 20 and 30 mass % Bulgarian lignite coal. Activation by potassium hydroxide was employed for all samples. The results obtained show that the surface and porous parameters of the ACs depend on the nature of the initial materials used. The specific surface areas (BET) and the microporosities of ACs obtained from extracted spent ground coffee mixed with 20 mass % Bulgarian lignite coals, are greater than those of the ACs from extracted coffee husks. It is likely that the reason for this result is the chemical composition of the precursors. The coffee husks have less lignin and more holocellulose. The latter undergoes more significant destructive changes in the process of chemical activation. On the contrary, waste ground coffee precursors contain more lignin and less holocellulose. As a result, after the chemical activation, the carbons prepared from extracted spent ground coffee exhibit better porous parameters and higher specific surface areas. key words: activated carbons, extraction, waste biomass

  8. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  9. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sik; Jun, Yubin; Lee, Changha, E-mail: clee@unist.ac.kr; Oh, Jae Eun, E-mail: ohjaeeun@unist.ac.kr

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  10. Fabrication of novel micro-nano carbonous composites based on self-made hollow activated carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yuxia; Qiu Tingting [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Qiu Jun, E-mail: qiujun@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai 201804 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Hollow pipe and porous HACF with solid carbon net framework structure were successfully prepared by template method. Black-Right-Pointing-Pointer CNTs were grown successfully on the self-made HACF substrate by CVD techniques. Black-Right-Pointing-Pointer A novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. Black-Right-Pointing-Pointer The formation mechanism of micro phase HACF and nano phase CNTs were respectively discussed. - Abstract: The hollow activated carbon fibers (HACF) were prepared by using commercial polypropylene hollow fiber (PPHF) as the template, and phenol-formaldehyde resin (PF) as carbon precursors. Final HACF was formed through the thermal decomposition and carbonization of PF at 700 Degree-Sign C under the nitrogen atmosphere, and activation at 800 Degree-Sign C with carbon dioxide as the activating agent, consecutively. Then, carbon nanotubes (CNTs) were grown by chemical vapor deposition (CVD) techniques using the as-grown porous HACF as substrate. The growth process was achieved by pyrolyzing ethanol steam at 700 Degree-Sign C using nickel as catalyst. Finally, CNTs was grown successfully on the substrate, and a novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. The as-grown HACF and micro-nano CNTs/HACF were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Moreover, the formation mechanisms were also discussed.

  11. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    Orozco, A. Micaela Ferro; Contreras, Edgardo M.; Zaritzky, Noemi E.

    2008-01-01

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  12. ELECTRICITY-FREE PRODUCTION OF ACTIVATED CARBON FROM BIOMASS IN BORNEO TO IMPROVE WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Yasutaka Sasaki,

    2011-11-01

    Full Text Available Activated carbons (ACs were prepared from biomass of Borneo island (wood charcoal, peat, and coconut husk by using an electricity–free furnace, of which the energy source was exclusively wood charcoal. This furnace was comprised of two parts, an inner vessel equipped with water inlet for steam activation and an outer shell as a heating part for the inner vessel. The inside temperature of the inner vessel was able to reach over 1000 oC. Peat and wood charcoal were converted to AC by carbonization followed by steam activation, and the specific BET surface areas of resultant ACs were 889 m2/g and 749 m2/g, respectively. A mobile apparatus for water purification was newly designed and fabricated with the resultant AC, together with a white quartz sand, which is called keranggas in Kalimantan. The CODOH of both polluted creek water by the University of Palangka Raya and Kahayan River water were remarkably decreased by the purification with the designed apparatus from 20.0 mgO/L to 0.93 mgO/L, and 18.2 mgO/L to 0.74 mgO/L, respectively. Thus, the newly designed furnace and purification apparatus were shown to be highly effective tools to produce a promising agent for water purification and to produce clarified water without use of electricity, respectively.

  13. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity

    International Nuclear Information System (INIS)

    Kauffman, Nathan; Dumortier, Jerome; Hayes, Dermot J.; Brown, Robert C.; Laird, David A.

    2014-01-01

    A partial solution to problems associated with anthropogenic greenhouse gas (GHG) emissions could be the development and deployment of carbon-negative technologies, i.e., producing energy while reducing atmospheric carbon dioxide levels. Biofuels have been considered a possibility but have faced limitations due to competition with food production and GHG emissions through indirect land-use change (ILUC). In this article, we show how emissions from ILUC can potentially be reduced by producing food and bioenergy from biochar amended soils. The possibility of yield improvements from biochar would reduce the land requirement for crop production and thus, lead to a reduction in emissions from ILUC. In our application, biochar and bio-oil are produced via fast pyrolysis of corn stover. Bio-oil is subsequently upgraded into a fuel suitable for use in internal combustion engines. Applying the U.S. regulatory method used to determine biofuel life cycle emissions, our results show that a biochar-induced yield improvement in the U.S. Midwest ranging from 1% to 8% above trend can lead to an ILUC credit between 1.65 and 14.79 t CO 2 -equivalent ha −1  year −1 when future emissions are assessed over the next 30 years. The model is generalizable to other feedstocks and locations and illustrates the relationship between biochar and crop production. - Highlights: • If biochar leads to higher crop yields, a land-use change (LUC) credit applies. • Indirect LUC credit is applied to biofuel if biochar is produced as a by-product. • 1.65 to 14.79 t CO 2 -e ha −1  year −1 credit for 1%–8% yield increase in U.S. Midwest. • Life cycle analysis generalizable to other locations and feedstock

  14. Activity in the circular alley does not produce the activity anorexia syndrome in rats.

    Science.gov (United States)

    Koh, M T; Lett, B T; Grant, V L

    2000-04-01

    The activity anorexia syndrome is characterized by reduced food intake and body weight compared to control levels and increasing levels of physical activity. To induce it, food-restricted rats are confined in running wheels except during the daily meal. We tested whether activity in a flat circular alley also produces the activity anorexia syndrome. In Experiment 1, food-restricted rats were maintained in alleys, wheels, or home cages (control condition). In Experiment 2, they were maintained in alleys, wheels, novel cages, or home cages. The novel cage was added to control for the possibility that the alley might produce an anorectic effect simply because it was a new living space. The alley did not produce the activity anorexia syndrome whereas the wheel did. Although weight loss was greater in the alley than home-cage condition, the alley produced weak, inconsistent suppression of feeding. Moreover, the suppression produced by the alley may have stemmed simply from living in a novel environment. Finally, in contrast to wheel running, alley activity decreased over days. Alley activity, unlike wheel running, may not be reinforcing. Likely, a physical activity must be reinforcing to produce the activity anorexia syndrome. Implications for anorexia nervosa were discussed. Copyright 2000 Academic Press.

  15. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  16. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.; Verliefde, Arne R. D.; Schoutteten, K.; Van Der Linden, Bart Th; Heijman, Sebastiaan G J; Beurroies, Isabelle; Denoyel, Renaud O.; Amy, Gary L.; Van Dijk, Johannis C.

    2013-01-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  17. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    Science.gov (United States)

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  18. Ignition properties of nuclear grade activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  19. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  20. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  1. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  2. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    Science.gov (United States)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  3. Factors Affecting the Adsorption of Trivalent Chromium Ions by Activated Carbon Prepared from Waste Rubber Tyres

    Directory of Open Access Journals (Sweden)

    Sylvia E. Benjamin

    2017-08-01

    Full Text Available Economic gains are generally the outcome of industrialization and consequently urbanization. However, positive fiscal index generates a negative impact on natural environment sources heaving pollutant burden on soil, air and water. Industries throw tones of contaminated water into soil and water bodies without proper treatment and create a potential threat for both living and non-living species. Chromium in trivalent state (Cr3+ is added in water bodies and soil through waste water from tanneries, cooling water systems, chemical and pulp and paper industries. The present research work aims at the preparation of an inexpensive activated carbon prepared from non- degradable waste scrap rubber tyres. The carbon produced from scrap rubber tyres was activated by 5% solution of BaCl2 and 0.4 N solution of HCl and verified by ethylene blue solution. The adsorption capacity of the Tyre activated carbon (TAC was investigated for different parameters i.e., initial chromium (III ion concentration, activated carbon dosage, contact/ stirring time and pH. The adsorption capacity of TAC depends on the initial metal ion concentration and the TAC dose. pH of the chromium solution effects the adsorption capacity of TAC due to the formation of tetra hydroxochromate(III complexes,. The results show that TAC offers a cost effective reclamation process for the removal of Cr3+ from effluent waters.

  4. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  5. Characterization and restoration of performance of 'aged' radioiodine removing activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.

    1997-01-01

    The degradation of radioiodine removal performance for impregnated activated carbons because of ageing is well established. However, the causes for this degradation remain unclear. One theory is that this reduction in performance from the ageing process results from an oxidation of the surface of the carbon. Radioiodine removing activated carbons that failed radioiodine removal tests showed an oxidized surface that had become hydrophilic compared with new carbons. We attempted to restore the performance of these 'failed' carbons with a combination of thermal and chemical treatment. The results of these investigations are presented and discussed with the view of extending the life of radioiodine removing activated carbons. 4 refs., 2 tabs

  6. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    Directory of Open Access Journals (Sweden)

    N. Boukmouche

    2014-07-01

    Full Text Available In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated carbon contains the carbon element in high atomic percentage. Electrochemical impedance spectroscopy revealed a capacitive behavior (electrostatic phenomena. The specific capacity per unit area of the electrochemical double layer of activated carbon electrode in sulfuric acid electrolyte was 3.16 F cm−2. Cyclic voltammetry and galvanostatic chronopotentiometry demonstrated that the electrode has excellent electrochemical reversibility. It has been found that the surface capacitance was strongly related to the specific surface area and pore size.

  7. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Directory of Open Access Journals (Sweden)

    Barthélemy J.-P.

    2003-01-01

    Full Text Available In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC. Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results. Nevertheless, this kind of experiment allows us to assess the adsorption performances of an activated carbon for different pesticides. Because of the lack of comparable available results, we have eveloped a standardized methodology based on the experiment in mini-column of granular activated carbon. The main experimental conditions are activated carbon: Filtrasorb 400 (Chemviron Carbon; water: mineral and organic reconstituted water (humic acid concentration: 0,5 mg/l; influent concentration 500 g . l -1 ; activated carbon weight: 200 mg; EBCT (Empty Bed Contact Time: 0.16 min.; linear speed: 0.15 m . s -1 . In these conditions, it appears that diuron is highly adsorbed in comparison with other active substances like chloridazon, atrazine or MCPA. From the ratio of effluent volume for the breakthrough point with respect to diuron, it is suggested that products of which the difference factor ratio is – (a below 0.40: may be reckoned as weakly adsorbed (MCPA; (b from 0.41 to 0.80: may be reckoned as moderately adsorbed (chloridazon and atrazine; (c above 0.80: as highly adsorbed on granular activated carbon. Active substances that are weakly adsorbed and have to be removed from drinking water, may highly reduce the lifetime of an activated carbon bed. This kind of information is particularly useful for water suppliers and for regulatory authorities.

  8. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment.

    Science.gov (United States)

    Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk

    2014-01-01

    Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P carbon fines as a by-product by ultrasonication interfere with the DNA recovery.

  9. Waste Composite Sensor Designed by Cellulose and Activated Carbon as Ethylene Absorber

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Activated carbon was successfully derived from scrap tile waste from thermochemical conversion. Chemical and physical modifications were therefore employed to modify the specific surface area and porosity of activated carbon. Cellulose was successfully extracted from palm front. Designation of waste composite was prepared by cellulose and activated carbon. Less than 30 wt% of activated carbon was integrated into cellulose sheet matrix. It was important to note that there is no change in mechanical and morphological properties. Small amount of activated carbon was well dispersed. In order to investigate the feasibility of composite as active packaging, oxygen permeation rate and ethylene gas adsorption ability were preliminary investigated.

  10. A Colorimetric Method for the Determination of the Exhaustion Level of Granular Activated Carbons Used in Rum Production

    Directory of Open Access Journals (Sweden)

    Harold Crespo Sariol

    2016-09-01

    Full Text Available Spectrophotometric measurement applied on saturated granular activated carbon (GAC is not yet explored. A colorimetric method in the visible range has been developed in order to determine the exhaustion level of GAC used in rum production. Aqueous ammonia solution has been used as an indicative agent to determine the extraction rate of taste compounds within the rum production process and the exhaustion degree of the GAC. The colorimetric results showed excellent correlation with the iodine number and the contact pH. The proposed colorimetric method opens possibilities for rum producers to improve the management and economical use of the activated carbon at the industrial scale.

  11. Obtention and characterization of activated carbons from seeds of Macuna sp

    International Nuclear Information System (INIS)

    Vargas, Jaime E; Giraldo, Liliana; Moreno, Juan C

    2008-01-01

    A series of activated carbons from a lignocellulosic material is obtained by a physical activation with water vapor. Mucuna sp is the scientific name of the seed used as a lignoocellulosic precursor. In this work the seeds are crushed and sieved before carbonizing them to obtain granular activated carbon. The effect of temperature (600-900 Celsius degrade) and time of activation (1-10 h) was studied as well as the relationship with the textural properties of the carbon. The activated carbons obtained with different percentages of Burn-off were characterized by physical adsorption of N 2 at 77K. We evaluated the ability of an adsorption in solution of the activated carbons by iodine index and the methylene blue index. We found a correlation between burn-off and the apparent surface area calculated by the BET method with values close to 1000 m 2 g -1 as well as microspore volumes between 0.060 and 0.400 cm 3 g -1 calculated by the DR method and the method alpha. The adsorption capacity in solution gives good results, because the results show good correlation with the porosity data. This is very important when determining the possible applications of the activated carbons

  12. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater

    International Nuclear Information System (INIS)

    Ayanda, Olushola S.; Fatoki, Olalekan S.; Adekola, Folahan A.; Ximba, Bhekumusa J.

    2013-01-01

    Highlights: • Removal of tributyltin from artificial seawater using nZnO/activated carbon and its precursors was studied. • Detailed equilibrium and kinetic studies were reported. • Adsorption conditions were optimized and applied to natural seawater. • Higher removal efficiency of TBT was obtained for the composite and activated carbon except nZnO. • TBT concentration was determine by GC-FPD following derivatization. -- Abstract: The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO

  13. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... good and cheap agricultural residue for the production of activated carbon, with carbon, hydrogen and nitrogen ... fuel-wood because household energy requirements are met with ..... Thin layer solar drying and mathematical.

  14. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    2018-01-01

    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  15. Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2017-01-15

    In this study, carbon coated WC (WC@C) was synthesized through solvothermal reactions in the presence of reducing agent magnesium (Mg) by employing tungsten oxide (WO{sub 3}) as a precursor, acetone (C{sub 3}H{sub 6}O) as a carbon source. The formation of WC@C nano particles is confirmed by X-ray diffraction and Transmission electron microscopy. The thermal stability of the synthesized powder examined in air shows its stability up to 550 °C. In this method, in-situ produced outer carbon layer increase the surface area of materials which is 52.6 m{sup 2} g{sup −1} with pore volume 0.213 cm{sup 3} g{sup −1}. The Electrocatalytic activity of ethanol oxidation on a synthesized sample with and without Pt nano particles have been investigated using cyclic voltammetry (CV). The CV results show the enhancement in oxidation stability of WC@C in acidic media as well as better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles as compared to without Pt nano particles. - Highlights: • Tungsten carbide nano powder was synthesized using acetone as carbon source. • In-situ produced outer carbon layer increase the surface area of materials. • Mesoporous WC with surface areas 52.6 m{sup 2}/g obtained. • Pt modified WC powder showed higher electrochemical stability. • Better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles.

  16. Ozonation of Cephalexin Antibiotic Using Granular Activated Carbon in a Circulating Reactor

    International Nuclear Information System (INIS)

    Amin, N. S.; Akhtar, J.

    2015-01-01

    A circulating reactor was used to decompose cephalexin during catalytic ozonation. The effect of ozone supply and granular activated carbon (GAC) catalyst was investigated for removal of CEX and COD. The regeneration of exhausted activated carbon was investigated during in-situ ozonation. According to results, ozone supply appeared as the most influencing variable followed by dosage of granular activated carbon. The BET surface area, thermogravimetric analysis (TGA) and temperature programmed desorption (TPD) curves indicated that solid phase regeneration of activated carbon using ozone gas followed by mild thermal decomposition was very effective. The adsorption capacity of regenerated activated carbon was slightly lower than virgin activated carbon. The overall study revealed that catalytic ozonation was effective in removing cephalexin from solution and the method can be applied for in-situ ozonation processes. (author)

  17. Conclusions from fire tests in activated carbon filled adsorbers

    International Nuclear Information System (INIS)

    Mathewes, W.

    1987-01-01

    Activated carbons as used in gas-phase adsorption may be subjected to heating, either from heat applied externally to the carbon bed, or heat generated by radioactive contaminants, or by the adsorption process itself. This report presents results of artificially ignited beds of activated carbon. This report also considers results concerning the self-ignition of non-contaminated carbon and such of solvent-contaminated carbon subjected to external heating in beds with an air flow and in beds without an air flow. An estimation is given for the heat generation caused by radioactive contaminants as well as by the adsorption process. Studies of handling of endangered components and studies of alarm indicating systems give guidance for the contemporary lay-out and design

  18. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    Science.gov (United States)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  19. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Shubin; Song, Huaihe; Chen, Xiaohong; Okotrub, A.V.; Bulusheva, L.G.

    2007-01-01

    The effects of etching process on the morphology, structure and electrochemical performance of arc-produced multiwalled carbon nanotubes (CNTs) as anode material for lithium-ion batteries were systematically investigated by TEM and a variety of electrochemical testing techniques. It was found that the etched CNTs exhibited four times higher reversible capacity than that of raw CNTs, and possessed excellent cyclability with almost 100% capacity retention after 30 cycles. The kinetic properties of three kinds of CNTs electrodes involving the pristine (CNTs-1), etched (CNTs-2) as well as etch-carbonized samples (CNTs-3) were characterized via ac impedance measurement. It was indicated that, after 30 cycles the exchange current density i 0 of etched CNTs ((7.6-7.8) x 10 -3 A cm -2 ) was higher than that of the raw CNTs (5.9 x 10 -3 A cm -2 ), suggesting the electrochemical activity of CNTs was enhanced by the etching treatment. The storage characteristics of the CNTs electrodes at room temperature and 50 o C were particularly compared. It was found that the film resistance on CNTs electrode generally tended to become large with the elongation of storage time, especially storage at high temperature. In comparison with CNTs-1 and CNTs-3, CNTs-2 exhibited more distinctly increase of film resistance, which is related with the surface properties

  20. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    Science.gov (United States)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  1. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  2. The determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    International Nuclear Information System (INIS)

    Sloot, H.A. van der

    1977-01-01

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 μg Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate. (T.G.)

  3. Study on regeneration of activated carbon by means of electron radiation

    International Nuclear Information System (INIS)

    Zhu Guanghua; Arai, H.; Hosono, M.

    1991-01-01

    The results of regeneration of activated carbon adsorbing sodium lauryl sulfate (SLS) by 2 MeV electron radiation, and the dependence of the regeneration rate of activated carbon on the electron current intensity, the temperature of sample and the atmosphere were reported. It is shown that regeneration of activated carbon by electron radiation is full of promise

  4. High performance supercapacitor from activated carbon derived from waste orange skin

    Science.gov (United States)

    Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.

  5. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  6. Preparation and characterization of CeO2 highly dispersed on activated carbon

    International Nuclear Information System (INIS)

    Serrano-Ruiz, J.C.; Ramos-Fernandez, E.V.; Silvestre-Albero, J.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F.

    2008-01-01

    A new material constituted by cerium dioxide highly dispersed on activated carbon (CeO 2 /AC) was prepared by an impregnation method using cerium(III) nitrate as CeO 2 precursor. In order to evaluate the degree of ceria dispersion on the carbon support, CeO 2 /AC was characterized by a number of techniques: thermogravimetry coupled with a mass spectrometer (TG-MS), N 2 adsorption at 77 K, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The analysis of the decomposition process under inert atmosphere indicated that cerium nitrate decomposes at 440-460 K, with the evolution of NO. Furthermore, this process produces an additional oxidation of the carbon surface (with evolution of N 2 O) and the subsequent onset of new oxygen surface groups, detected by means of temperature-programmed desorption. The ceria deposition process takes place with a decrease in the N 2 adsorption capacity of the starting carbon support, and the analysis of the pore size distribution showed that the majority of ceria particles are situated at the most internal part of the carbon porosity. The temperature-programmed reduction profile of CeO 2 /AC was very different to that shown by unsupported CeO 2 , with only one continuous reduction process at low temperatures (800-900 K). Finally, TEM pictures gave direct evidence that ceria is highly dispersed on the carbon surface, with a narrow CeO 2 particle distribution centred around 3 nm

  7. Synthesis of carbon-13 and carbon-14 labeled paldimycin tri-sodium salt

    International Nuclear Information System (INIS)

    Hsi, R.S.P.; Witz, D.F.; Visser, J.; Stolle, W.T.; Ditto, C.L.

    1989-01-01

    Carbon-14 labeled paldimycin trisodium salt was prepared by addition of N-acetyl-L-cysteine to [ 14 C]paulomycin, the radioactive antibiotic produced by fermentation of Streptomyces paulus in the presence of L-methionine labeled with carbon-14 in the S-methyl group. Carbon-13 nuclear magnetic resonance (NMR) spectra of paulomycin produced when the fermentation was carried out in the presence of L-[S-methyl- 13 C]methionine showed that the isotope incorporation had occurred specifically at the methoxy group of ring C, i.e., the 2-deoxy sugar portion of paulomycin. With sustained slow feed of labeled precursors during the optimum antibiotic production period, carbon-14 isotope yields of up to 17.5% with specific activity of up to 11.4 μCi per milligram of paulomycin, and carbon-13 isotope yields of up to 24% with 17-fold isotope enrichment over natural abundance, were achieved. (author)

  8. Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon

    International Nuclear Information System (INIS)

    Rashidi, Nor Adilla; Yusup, Suzana; Hameed, Bassim H.

    2013-01-01

    CO 2 (Carbon dioxide) emissions are one of the greenhouse gases that cause global warming. The power generation industry is one of the main emitters of CO 2 , and the emissions are expected to increase in the coming years as there seems to be no abatement in the consumption of fossil fuels for the production of electricity. Thus, there is a need for CO 2 adsorption technologies to mitigate the emissions. However, there are several disadvantages associated with the current adsorption technologies. One of the issues is corrosion and the need for specialized equipment. Therefore, alternative and more sustainable materials are sought after to improve the viability of the adsorption technology. In this study, several types of agricultural wastes were used as activated carbon precursors for CO 2 adsorption process in a TGA (thermogravimetric analyser). The adsorption was also modelled through a pseudo-first order and second order model, Elovich's kinetic model, and an intra-particle diffusion model. From the correlation coefficient, it was found that pseudo-second order model was well-fitted with the kinetic data. In addition, activation energy below than 42 kJ/mol confirmed that the physisorption process occurred. - Highlights: • Utilization of lignocellulosic wastes for production of activated carbon. • Single CO 2 activation that yields good adsorptive capacity of adsorbent. • Activation temperature has the most prominent effect on adsorptive properties. • CO 2 adsorption capacity reduces with increasing of adsorption temperature. • Pseudo-second order kinetic model shows best fits to the experimental data

  9. Development and environmental applications of activated carbon cloths

    OpenAIRE

    Cukierman, Ana Lea

    2017-01-01

    Activated carbon cloths have received growing attention because they offer comparative advantages over the traditional powdered or granular forms of this well-known adsorbent, providing further potential uses for technological innovations in several fields. The present article provides an overview of research studies and advances concerned with the development of activated carbon cloths and their use as adsorbent in environmental applications, mostly reported in the last years. The influence ...

  10. Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2

    Directory of Open Access Journals (Sweden)

    Andi Muhammad Anshar

    2016-05-01

    Full Text Available The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400oC and then activated by 10% of ZnCl2. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400oC and activated with 10% of ZnCl2 for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.

  11. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    Science.gov (United States)

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  12. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  13. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  14. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  15. The removal of chloramphenicol from water through adsorption on activated carbon

    Science.gov (United States)

    Lach, Joanna; Ociepa-Kubicka, Agnieszka

    2017-10-01

    The presented research investigated the removal of chloramphenicol from water solutions on selected activated carbon available in three grades with different porous structure and surface chemical composition. Two models of adsorption kinetics were examined, i.e. the pseudo-first order and the pseudo-second order models. For all examined cases, the results of tests with higher value of coefficient R2 were described by the equation for pseudo-second order kinetics. The adsorption kinetics was also investigated on the activated carbons modified with ozone. The measurements were taken from the solutions with pH values of 2 and 7. Chloramphenicol was the most efficiently adsorbed on the activated carbon F-300 from the solutions with pH=7, and on the activated carbon ROW 08 Supra from the solutions with pH=2. The adsorption of this antibiotic was in the majority of cases higher from the solutions with pH=2 than pH=7. The modification of the activated carbons with ozone enhanced their adsorption capacities for chloramphenicol. The adsorption is influenced by the modification method of activated carbon (i.e. the duration of ozonation of the activated carbon solution and the solution temperature). The results were described with the Freundlich and Langmuir adsorption isotherm equations. Both models well described the obtained results (high R2 values).

  16. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  17. A brief review on activated carbon derived from agriculture by-product

    Science.gov (United States)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  18. Investigating dissolution of mechanically activated olivine for carbonation purposes

    International Nuclear Information System (INIS)

    Haug, Tove Anette; Kleiv, Rolf Arne; Munz, Ingrid Anne

    2010-01-01

    mechanically activated samples in general reacted faster than predicted by the theoretical models. Mechanical activation as a pre-treatment method was found to enhance the initial specific reaction rates by approximately three orders of magnitude for a sample milled dry for 60 min in a planetary mono mill compared to an unactivated sample. Wet milling in the planetary mill did not produce samples with the same maximum reaction rate as dry milling, but wet milling in general might be easier to implement into a wet carbonation process. Mechanical activation in a planetary mill is likely to consume too much energy for CO 2 sequestration purposes, but the increase in obtained olivine rate constants illustrates a potential for using milling as a pre-treatment method.

  19. Can we produce carbon and climate neutral forest bioenergy?

    OpenAIRE

    Repo, Anna; Tuovinen, Juha Pekka; Liski, Jari

    2015-01-01

    Harvesting branches, stumps and unmercantable tops, in addition to stem wood, decreases the carbon input to the soil and consequently reduces the forest carbon stock. We examine the changes in the forest carbon cycle that would compensate for this carbon loss over a rotation period and lead to carbon neutral forest residue bioenergy systems. In addition, we analyse the potential climate impact of these carbon neutral systems. In a boreal forest, the carbon loss was compensated for with a 10% ...

  20. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  1. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin; Tokash, Justin C.; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  2. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    International Nuclear Information System (INIS)

    Wang, C.-H.; Shih, H.-C.; Tsai, Y.-T.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H.

    2006-01-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN x NTs) directly grown on the carbon cloth have been investigated. The CN x NTs directly grown on the carbon cloth (CN x NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN x NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN x NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN x NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications

  3. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Shih, H.-C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Tsai, Y.-T. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Du, H.-Y. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Chen, L.-C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China); Chen, K.-H. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China) and Institue of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan (China)]. E-mail: chenkh@pub.iams.sinica.edu.tw

    2006-12-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN {sub x} NTs) directly grown on the carbon cloth have been investigated. The CN {sub x} NTs directly grown on the carbon cloth (CN {sub x} NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN {sub x} NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN {sub x} NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN {sub x} NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.

  4. Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation

    Science.gov (United States)

    Farma, Rakhmawati; Fatjrin, Delika; Awitdrus, Deraman, Mohamad

    2017-01-01

    The activated carbon adsorption was influenced by the quality of activated carbon. The activated carbon quality can be improved by chemical activation and microwave irradiation. In this study, activated carbon has been made using biomass from fibers of oil palm empty fruit bunches. The microwave irradiation was applied at various irradiation times of 5, 10, 15 and 20 minutes, and at output power of 630 Watt. The physical properties of activated carbon were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and methylene blue adsorption. Analysis of microstructure showed that the activated carbon was semicrystalline with two peaks of 002 and 100 at 2θ around of 22° and 44°, respectively. The values of stack height (Lc) before and after irradiation increased from 2,799 nm to 3,860 nm, which indicated increasing surface area. Characteristics of surface morphology of activated carbon showed the pores number increased after microwave irradiation. Microwave irradiation time of 15 minutes resulted the highest pores number justified in the activated carbon with their surface area of 319,60 m2/g and adsorption of methylene blue of 86,07 mg/g.

  5. Science, Ethics and the Climate Responsibilities of Industrial Carbon Producers

    Science.gov (United States)

    Frumhoff, P. C.

    2014-12-01

    The question of responsibility for climate change lies at the heart of societal debate over actions to curb greenhouse gas emissions and prepare for now unavoidable climate impacts. The UN Framework Convention on Climate Change established the principle of "common but differentiated responsibilities" among nations, signaling the recognition that industrialized nations who had produced the lion's share of historic emissions bore particular responsibility for avoiding dangerous interference with the climate system. But climate responsibilities can be distributed in other ways as well. This talk focuses on the scientific, historical and ethical basis for considering the climate responsibilities of the major fossil energy companies that have produced and marketed the coal, oil and natural gas whose use largely drives global warming, often while investing in efforts to discredit the scientific evidence and prevent policies that would encourage a transition to low-carbon energy. Earth scientists and scientific societies who rely on financial support from these companies have an opportunity to consider what ethical stance they might take to align their research, scientific understanding and values.

  6. Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans

    Science.gov (United States)

    Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi

    2009-11-01

    The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.

  7. Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth

    Institute of Scientific and Technical Information of China (English)

    B.V. Kalucljerovic; M.S. Trtica; B.B. Radak; J.M. Stasic; S.S. Krstic Musovic; V.M. Dodevski

    2011-01-01

    Interaction of pulsed transversely excited atmospheric (TEA) CO2-1aser radiation at 10.6 μm with nanoporous activated carbon cloth was investigated. Activated carbon cloth of different adsorption characteristics was used. Activated carbon cloth modifications were initiated by laser pulse intensities from 0.5 to 28 MW/cm^2, depending on the cloth adsorption characteristics. CO2 laser radiation was effectively absorbed by the used activated carbon cloth and largely converted into thermal energy. The type of modification depended on laser power density, number of pulses, but mostly on material characteristics such as specific surface area. The higher the surface area of activated carbon cloth, the higher the damage threshold.

  8. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Mohan Jena, Hara, E-mail: hmjena@nitrkl.ac.in

    2015-11-30

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl{sub 2}. • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, and 1.96 cm{sup 3}/g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m{sup 2}/g, 1.68 cm{sup 3}/g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl{sub 2} as an activator. The process has been conducted at different impregnation (ZnCl{sub 2}/Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, 1.96 cm{sup 3}/g, and 1.68 cm{sup 3}/g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  9. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    International Nuclear Information System (INIS)

    Kumar, Arvind; Mohan Jena, Hara

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl 2 . • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m 2 /g, 2124 m 2 /g, and 1.96 cm 3 /g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m 2 /g, 1.68 cm 3 /g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl 2 as an activator. The process has been conducted at different impregnation (ZnCl 2 /Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m 2 /g, 2124 m 2 /g, 1.96 cm 3 /g, and 1.68 cm 3 /g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  10. CO{sub 2} capture using fly ash-derived activated carbons impregnated with low molecular mass amines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.M.; Arenillas, A.; Drage, T.C.; Snape, C.E. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    Two different approaches to develop high capacity CO{sub 2} sorbents are presented. Firstly, the modification of the surface chemistry of low cost carbons by impregnation with a basic nitrogen-containing polymer (i.e.polyethylenimine) is described. Relatively low molecular mass (MM) amines, namely diethanolamine (DEA, MM 105) and tetraethylenepentaamineacrylonitrile (TEPAN, MM 311) are used to produce high capacity CO{sub 2} sorbents from activated carbons derived from unburned carbon in fly ash, which have low mesoporosities. The CO{sub 2} adsorption capacity and thermal stability of the prepared sorbents was measured as a function of temperature in a thermogravimetric analyser. The results indicate that TEPAN is more effective than DEA; at a temperature of 75{sup o}C, fly ash-derived activated carbons loaded with TEPAN achieved CO{sub 2} adsorption capacities in excess of 5 wt%, which compares fabvourably with the CO{sub 2} absorption capacity of 6.5 wt% achieved with a mesoporous silica loaded with TEPAN, and outperforms fly ash-derived activated carbons loaded with PEI. TEPAN has also been shown to have a higher thermal stability than DEA. The second approach involves the development of high nitrogen content carbon matrix adsorbents by carbonisation and subsequent thermal or chemical activation of a range of materials (polyacrylonitrile, glucose-amine mixtures, melamine and urea/melamine-formaldehyde resins). The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. However, the adsorbent obtained from carbazole-sugar co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9 wt%, probably because the presence of more basic functionalities as determined by XPS analysis. 9 refs., 2 figs.

  11. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  12. Methods and systems for producing syngas

    Science.gov (United States)

    Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  13. Dynamic adsorption properties of xenon on activated carbons and their structure characterization

    International Nuclear Information System (INIS)

    Liu Suiqing; Liu Jing; Qian Yuan; Zeng Youshi; Du Lin; Pi Li; Liu Wei

    2013-01-01

    Background: In recent years, adsorption of radioactive xenon by activated carbon has been increasingly applied to the treatment of off-gas in nuclear power project. Though pore structure of activated carbon has a great impact on its dynamic adsorption coefficients for xenon, the concerned research is rare. Purpose: It is very necessary to figure out the relationship between the pore structure and the dynamic adsorption coefficients for the purpose of the selection and development of activated carbon. Methods: In this study, the dynamic adsorption coefficients of xenon on four kinds of activated carbons were measured on a dynamic adsorption platform under the condition of 25℃, OMPa (gauge pressure). And these four kinds of activated carbons were characterized by nitrogen adsorption and SEM. Results: The results show that the activated carbon of JH12-16 with the specific surface area of 991.9 m 2 ·g -1 has the largest xenon dynamic adsorption coefficient among these activated carbons. Conclusions: The dynamic adsorption coefficient of xenon on activated carbon doesn't increase with the specific surface area or the pore volume. The mesopore and macropore only play the role of passageway for xenon adsorption. The most suitable pore for xenon adsorption is the pore with the pore size ranged from 0.55 to 0.6 nm. (authors)

  14. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms

    DEFF Research Database (Denmark)

    Mari, Xavier

    1999-01-01

    The carbon content of transparent exopolymeric particles (TEP) was measured in the laboratory in particles produced by bubbling exudates of the diatom Thalassiosira weissflogii, grown under nitrogen non-limited conditions (N:P = 7). The carbon content of these particles (TEP-C) appears to vary...... a coastal area (Kattegat, Denmark), TEP carbon concentration in the surface mixed layer was on the order of 230 ± 150 µg C l-1. This is high relative to other sources of particulate organic carbon (e.g. phytoplankton) and depending on TEP turnover rates, suggests that TEP is an important pathway...... for dissolved organic carbon in coastal seas. The carbon to nitrogen ratio of TEP was measured from particles formed by bubbling exudates of the diatoms T. weissflogii, Skeletonema costatum, Chaetoceros neogracile and C. affinis. Each of these diatom species was grown under various N:P ratios, from N...

  15. Synthesis and characterization of chemically activated carbon derived from arecanut shell

    Directory of Open Access Journals (Sweden)

    A. S. Jadhav

    2016-03-01

    Full Text Available Activated carbon (AC was prepared from areca-nut shell (AS by chemical activation using phosphoric acid (PA. Activated carbon was prepared in three batches using phosphoric acid of 50 gm, 100 gm, and 300 gm with varying impregnation ratios by weight of 1:1, 2:1 and 3:1, 4:1 each. Characterization of the prepared activated carbon was done by methylene blue number (MBN, iodine number (IN, acid adsorption test (AAT, and elemental composition. Activation was carried out at 400 C. It was found that activated carbon derived from areca-nut shell shown improved results for methylene blue number (MBN, iodine number (IN, and acid adsorption test(AAT. Thermal analysis was carried out to know the weight loss and SEM was performed to know the morphology of AC.

  16. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    Science.gov (United States)

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes.

  17. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activities of new curcumin analogs as carbonic anhydrase II (CA-II) inhibitor. Methods: Carbonic anhydrase II (CA-II) inhibition was determined by each ligand capability to inhibit the esterase activity of CA-II using 4-NPA as a substrate in 96-well plates. Dimethyl sulfoxide was used to dissolve each ...

  18. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  19. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.

    2017-01-01

    Highlights: • Apricot (Prunus armeniaca L.) is presented as a source for biodiesel, bio-oil and activated carbon. • Methylic and ethylic esters of apricot seed kernel oil conformed to ASTM (D6751) standards. • High yield (43.66% w/w) of bio-oil was produced by pyrolysis of de-oiled seed kernel. • High quality of activated carbon was obtained from the biochar. - Abstract: Production of liquid bio-fuels (biodiesel and bio-oil) as well as activated carbon from one non-edible feedstock, apricot (Prunus armeniaca L.) seed kernel was the main objective of the present research work. The oil was extracted from apricot seed kernel with a yield of 49.44% w/w of kernels. Potassium hydroxide-catalyzed transesterification of apricot (Prunus armeniaca L.) seed kernel oil with methanol and ethanol was then applied to produce methylic and ethylic, respectively. Properties of the obtained biodiesels were evaluated and found conformed to ASTM D 6751 limits. The apricot de-oiled seed kernel was pyrolyzed in a semi-batch reactor for bio-oil production. The effect of the pyrolysis temperatures (350, 400, 450, 500, 550 and 600 °C), pyrolysis time (30, 60, 90, 120 and 150 min) and feed particles size (0.25, 0.40, 0.59 and 0.84 mm) on the bio-oil yield was investigated. The maximum production of bio-oil (43.66% w/w) was achieved at a pyrolysis temperature of 450 °C, 60 min pyrolysis time and a feed particles size of 0.25 mm. The bio-oil obtained under the optimal conditions was characterized by the elemental analysis, FTIR spectroscopy and column chromatography. The FTIR analysis of the produced bio-fuel indicated that it composes mainly of alkanes, alkenes, ketones, carboxylic acids and amines. Properties of the resulting bio-oil were analyzed in terms of calorific value, density, flash point, pH, acid value, pour point and refractive index. The properties were close to those of petroleum fractions and comparable to those of other bio-oils published in literature. Referring to

  20. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  1. A review of activated carbon technologies for reducing MSW incinerator emissions

    International Nuclear Information System (INIS)

    Clarke, M.J.

    1991-01-01

    Though activated carbon is, by no means, a newcomer to the pollution control field, having been used as a water purifier and more recently demonstrated as a flue gas cleaner on power plants, it is now attracting considerable attention in Europe as a means to reduce further the quantity of toxic organic and metal emissions from new and existing municipal waste combustors. Since activated carbon is a potentially important future emissions control technology for MWCs in the US, particularly for removal of mercury and dioxin, this paper discusses the impetus which has motivated the experimentation with various activated carbon technologies which is now taking place, will describe how some of the activated carbon systems (e.g., post-emissions control fixed carbon bed and injection of carbon with scrubber reagent) being tested now function and where they fit in existing pollution control trains, and will present available performance data and emissions reductions actually achieved for each system

  2. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  3. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  4. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Directory of Open Access Journals (Sweden)

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  5. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  6. Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans

    Science.gov (United States)

    Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong

    2018-05-01

    The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.

  7. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  8. SO{sub 2} removal from flue gas by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nilgun Karatepe; Ilkun Orbak; Reha Yavuz; Ayse Ozyuguran [Istanbul Technical University, Maslak-Istanbul (Turkey). Institute of Energy

    2007-07-01

    Adsorption of sulphur dioxide (SO{sub 2}) onto activated carbons prepared from Tuncbilek lignite with different methods was investigated. Experimental results showed that the adsorption temperature, initial SO{sub 2} concentration, particle size of the activated carbon and H{sub 2}O content in the flue gas had significantly effect on the amounts of SO{sub 2} adsorbed. Textural (BET surface area, micropore surface area, total pore volume, micropore volume and average pore size) characteristics of activated carbons also played an important role on adsorption of SO{sub 2}. 10 refs., 5 figs., 4 tabs.

  9. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J.A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6% and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  10. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  11. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  12. A novel method to produce dry geopolymer cement powder

    Directory of Open Access Journals (Sweden)

    H.A. Abdel-Gawwad

    2016-04-01

    Full Text Available Geopolymer cement is the result of reaction of two materials containing aluminosilicate and concentrated alkaline solution to produce an inorganic polymer binder. The alkali solutions are corrosive and often viscous solutions which are not user friendly, and would be difficult to use for bulk production. This work aims to produce one-mix geopolymer mixed water that could be an alternative to Portland cement by blending with dry activator. Sodium hydroxide (SH was dissolved in water and added to calcium carbonate (CC then dried at 80 °C for 8 h followed by pulverization to a fixed particle size to produce the dry activator consisting of calcium hydroxide (CH, sodium carbonate (SC and pirssonite (P. This increases their commercial availability. The dry activator was blended with granulated blast-furnace slag (GBFS to produce geopolymer cement powder and by addition of water; the geopolymerization process is started. The effect of W/C and SH/CC ratio on the physico-mechanical properties of slag pastes was studied. The results showed that the optimum percent of activator and CC content is 4% SH and 5% CC, by the weight of slag, which give the highest physico-mechanical properties of GBFS. The characterization of the activated slag pastes was carried out using TGA, DTG, IR spectroscopy and SEM techniques.

  13. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.; Verliefde, Arne R. D.; Heijman, Bas G J; Gelin, Simon; Pereira, Manuel Fernando Ribeiro; Rocha, Raquel P.; Figueiredo, José Luí s M; Amy, Gary L.; Van Dijk, Hans C.

    2012-01-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  14. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  15. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.

    Science.gov (United States)

    Sousa, M; Melo, V M M; Rodrigues, S; Sant'ana, H B; Gonçalves, L R B

    2012-08-01

    Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.

  16. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S.

    2011-01-01

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  17. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  18. Determination of Activated Carbon Residual Life using a Microwave Cavity Resonator

    International Nuclear Information System (INIS)

    Mason, A; Wylie, S; Shaw, A; Al-Shamma'a, A I; Thomas, A; Keele, H

    2011-01-01

    This paper presents the continuation of work conducted jointly between Dstl and LJMU. This unique body of work has been, largely, concerned with detecting the residual life of high performance filter materials using electromagnetic (EM) waves within a resonant cavity. Past work has considered both HEPA [1] and ASZM-TEDA[2] activated carbon filter materials. This paper continues the later work, considering the response of ASZM-TEDA activated carbon through the co-ageing of two distinct batches of the material. The paper briefly introduces activated carbon, discusses theory relevant to the work and the methodology used for investigation. A comprehensive set of results is included which seek to validate this technique for determining the residual lifespan of activated carbon.

  19. Electricity generation from wetlands with activated carbon bioanode

    Science.gov (United States)

    Sudirjo, E.; Buisman, C. J. N.; Strik, D. P. B. T. B.

    2018-03-01

    Paddy fields are potential non-tidal wetlands to apply Plant Microbial Fuel Cell (PMFC) technology. World widely they cover about 160 million ha of which 13.3 million ha is located in Indonesia. With the PMFC, in-situ electricity is generated by a bioanode with electrochemically active bacteria which use primary the organic matter supplied by the plant (e.g. as rhizodeposits and plant residues). One of limitations when installing a PMFC in a non-tidal wetland is the usage of “expensive” large amounts of electrodes to overcome the poor conductivity of wet soils. However, in a cultivated wetland such as rice paddy field, it is possible to alter soil composition. Adding a conductive carbon material such as activated carbon is believed to improve soil conductivity with minimum impact on plant vitality. The objective of this research was to study the effect of activated carbon as an alternative bioanode material on the electricity output and plants vitality. Lab result shows that activated carbon can be a potential alternative for bioanode material. It can continuously deliver current on average 1.54 A/m3 anode (0.26 A/m2 PGA or 66 mW/m2 PGA) for 98 days. Based on this result the next step is to do a test of this technology in the real paddy fields.

  20. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Science.gov (United States)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  1. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  2. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B.; Mishra, I.M.; Wasewar, K.L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  3. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  4. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  5. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  6. Factor Affecting Textile Dye Removal Using Adsorbent From Activated Carbon: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Razi Mohd Adib

    2017-01-01

    Full Text Available Industrial company such as textile, leather, cosmetics, paper and plastic generated wastewater containing large amount of dye colour. The removal of dye materials are importance as the presence of this kind of pollutant influence the quality of water and makes it aesthetically unpleasant. As their chemical structures are complicated, it is difficult to treat dyes with municipal waste treatment operations. Even a small quantity of dye does cause high visibility and undesirability. There have been various treatment technique reviewed for the removal of dye in wastewater. However, these treatment process has made it to another expensive treatment method. This review focus on the application of adsorbent in dye removal from textile wastewater as the most economical and effective method, adsorption has become the most preferred method to remove dye. The review provides literature information about different basis materials used to produce activated carbon like agricultural waste and industrial waste as well as the operational parameters factors in term of contact time, adsorbent dosage, pH solution and initial dye concentration that will affect the process in removing textile dye. This review approach the low cost and environmental friendly adsorbent for replacing conventional activated carbon.

  7. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China)

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.

  8. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    Science.gov (United States)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  9. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    International Nuclear Information System (INIS)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia; Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest

    2009-01-01

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml -1 was easily measured.

  10. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus UAB, E-08193 Bellaterra, Barcelona (Spain); Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest, E-mail: cesar.fernandez@imb-cnm.csic.e [Nanobiosensors and Molecular Nanobiophysics Group, Research Center on Nanoscience and Nanotechnology (CIN2) CSIC-ICN, ETSE, Campus UAB-Edificio Q, E-08193 Bellaterra, Barcelona (Spain)

    2009-08-19

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml{sup -1} was easily measured.

  11. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  12. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  13. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin; Loh, Wai Soong; Rahman, Kazi Afzalur; Thu, Kyaw; Surayawan, Bambang; Alhamid, M. Idrus; Nasruddin,; Ng, Kim Choon

    2011-01-01

    ) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300

  14. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    Science.gov (United States)

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  16. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    known to be in most cases limited, to use a long procedure or to be costly. ..... Figure 4. (A) Isotherm adsorption of imidacloprid onto akpi activated carbon, plots of .... such as wastewater treatment, chemical and pharmaceutical industry.

  17. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  18. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis

    International Nuclear Information System (INIS)

    Simões dos Reis, Glaydson; Wilhelm, Michaela; Silva, Thamires Canuto de Almeida; Rezwan, Kurosch; Sampaio, Carlos Hoffmann; Lima, Eder Claudio; Guelli Ulson de Souza, Selene M.A.

    2016-01-01

    Highlights: • Using of DOE for preparation of AC by conventional and microwave pyrolysis. • The significant parameters in producing activated carbon were investigated. • Conventional pyrolysis AC had better textural development than microwave AC. • Temperature and holding time had significant influence on the S_B_E_T. • Reduction of production cost of activated carbon. - Abstract: Experimental design and response surface methodology were used for the preparation and comparison of activated carbon produced from sewage sludge by two types of pyrolysis: conventional furnace and microwave. The preparation method was performed following a full fractional factorial design (2"3), including pyrolysis temperature or power radiation, holding time and chemical activation agent, and specific surface area (S_B_E_T) of prepared activated carbon. The influence of these factors on the S_B_E_T of obtained carbon was investigated using an analysis of variance. Samples made by conventional pyrolysis showed overall higher S_B_E_T values than samples synthesised by the microwave method. The optimum parameters for the preparation of activated carbon using the conventional pyrolysis have been identified as: pyrolysis temperature of 500 °C, holding time of 15 min, and a ratio of ZnCl_2:sludge of 0.5. Microwave pyrolysis is found to be optimal when operating at 980 W for 12 min. Under these conditions, S_B_E_T values of 679 and 501 m"2g"−"1, respectively, have been obtained. The analysis of nitrogen adsorption/desorption isotherms revealed the presence of micro and mesopores in the activated carbon. The most important significant factor, according statistical analysis, in the variance in S_B_E_T for the conventional pyrolysis samples were the pyrolysis temperature and interaction between pyrolysis temperature, holding time and ratio of ZnCl_2:sludge were the most important factors. The highest impact parameters for the microwave method were found for the interaction

  19. Ozonation of 1,2-dihydroxybenzene in the presence of activated carbon.

    Science.gov (United States)

    Zaror, C; Soto, G; Valdés, H; Mansilla, H

    2001-01-01

    This work aims at obtaining experimental data on ozonation of 1,2-dihydroxybenzene (DHB) in the presence of activated carbon, with a view to assessing possible changes in its surface chemical structure and adsorption capacity. Experiments were conducted in a 0.5 L reactor, loaded with 2 g Filtrasorb 400 granular activated carbon, and 1-5 mM DHB aqueous solution at pH 2-8. Ozone gas was generated with an Ozocav generator, and fed into the reactor for a given exposure time, in the range 0.5-240 min, at 25 degrees C and 1 atm. After each run, liquid and activated carbon samples were taken for chemical assays. Soluble organic groups present on the active carbon surface were desorbed and analysed by GC-MS and HPLC. Activated carbon chemical surface properties were analysed using TPD, FT-IR, and XPS techniques. Reactions between ozone and adsorbed DHB were shown to be fast, leading to formation of C-6, C-4 and C-2 by-products. Oxygenated surface groups, particularly, COOH and C = O, increased as a result of ozonation.

  20. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Removal of micro pollutants using activated biochars and powdered activated carbon in water

    Science.gov (United States)

    Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.

    2015-12-01

    Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as

  2. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  3. Removal Of Labeled ALPHA-Fetoprotein (AFP) Using Rice Husk-Based Activated Carbon

    International Nuclear Information System (INIS)

    ABDEL-MOUHTY, N.R.

    2009-01-01

    Biomass agricultural waste materials, rice husk (RH) or saw dust (SD), were used for the preparation of activated carbons. RH was activated by chemical activation using phosphoric acid or potassium hydroxide. The prepared activated carbons were characterized and used for the adsorption of labeled alpha-fetoprotein ( 125 I-AFP) from the lab waste of iodine labeled alpha-fetoprotein tracer. The effects of various factors, e.g. carbon type, carbon dosage, temperature, particle size of carbon, effect of different waste volumes on the adsorption capacity, were quantitatively determined. Desorption of activated carbon was also investigated. From the experimental results, it was found that SDK had the lowest ability for adsorption of 125I-AFP and the highest uptake was 83% by carbon RHH. The amount of adsorption accomplished per unit weight of a solid adsorbent was greater, the more finely divided and the more porous the solid. 0.5 g for RHH carbon was found to be optimum dose of adsorbent for the removal of 125I-AFP. The optimum volume of waste with 0.5 g dose of RHH was 15 ml. The increased adsorption with temperature may be due to the increase of the intra-particle diffusion rate of sorbate ions into the pores at higher temperature as diffusion is an endothermic process.

  4. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  5. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    Science.gov (United States)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  6. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  7. Assessment of the possibility of using data mining methods to predict sorption isotherms of selected organic compounds on activated carbon

    Directory of Open Access Journals (Sweden)

    Dąbek Lidia

    2017-01-01

    Full Text Available The paper analyses the use of four data mining methods (Support Vector Machines. Cascade Neural Networks. Random Forests and Boosted Trees to predict sorption on activated carbons. The input data for statistical models included the activated carbon parameters, organic substances and equilibrium concentrations in the solution. The assessment of the predictive abilities of the developed models was made with the use of mean absolute error (MAE, mean absolute percentage error (MAPE, and root mean squared error (RMSE. The computations proved that methods of data mining considered in the study can be applied to predict sorption of selected organic compounds 011 activated carbon. The lowest values of sorption prediction errors were obtained with the Cascade Neural Networks method (MAE = 1.23 g/g; MAPE = 7.90% and RMSE = 1.81 g/g, while the highest error values were produced by the Boosted Trees method (MAE=14.31 g/g; MAPE = 39.43% and RMSE = 27.76 g/g.

  8. Retention of gaseous fission products by pure and modified activated carbon

    International Nuclear Information System (INIS)

    Wilhelmova, L.; Cejnar, F.

    1975-01-01

    The results are reported of research into Czechoslovak-made activated carbon Desorex DB-2 and Supersorbon HS-1 and their retention properties. Krypton, xenon and helium of spectral purity were used in the investigation. The effect of surface impregnation was also studied on the retention efficiency of the activated carbon. It was found that the impregnation with alkali metal fluorides, such as RbF and CsF favourably affected the retention properties of the activated carbon as concerns gaseous fission products. (L.O.)

  9. Supercapacitors from Activated Carbon Derived from Granatum.

    Science.gov (United States)

    Wang, Qiannan; Yang, Lin; Wang, Zhao; Chen, Kexun; Zhang, Lipeng

    2015-12-01

    Granatum carbon (GC) as electrode materials for supercapacitors is prepared via the chemical activation with different activating agent such as ZnC2 and KOH with an intention to improve the surface area and their electrochemical performance. The structure and electrochemical properties of GC materials are characterized with N2 adsorption/desorption measurements, scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that the specific surface area of the granatum-based activated carbons increased obviously from 573 m2 x g(-1) to 1341 m2 x g(-1) by ZnC2 activation and to 930 m2 x g(-1) by KOH treatment. Furthermore, GCZ also delivers specific capacitance of 195.1 Fx g(-1) at the current density of 0.1 A x g(-1) in 30 wt.% KOH aqueous electrolyte and low capacitance loss of 28.5% when the current density increased by 10 times.

  10. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  11. Practical experiences with granular activated carbon (GAC) at the ...

    African Journals Online (AJOL)

    Practical experiences with granular activated carbon (GAC) at the Rietvlei Water Treatment Plant. ... The porosity was found to be 0.69 for the 12 x 40 size carbon and 0.66 for the 8 x 30 size carbon. By using a ... The third part of the study measured the physical changes of the GAC found at different points in the GAC cycle.

  12. Equilibrium curve determination of HF adsorption by activated carbon

    International Nuclear Information System (INIS)

    Bahrami, H.; Safdari, S. J.; Mousavian, S. M. A.

    2010-01-01

    One of the byproducts of uranium enrichment industry is hydrogen fluoride gas. Due to the toxicity and corrosivity of the molecule, it has adverse effects on the environment and the process. Therefore, it must be removed by adsorption towers. The activated carbon is one of the proposed sorbent for the adsorption. Hydrogen fluoride adsorption equilibrium curve gives important information for designing the adsorption towers. In this article, the hydrogen fluoride adsorption and adsorption factors were determined experimentally, and four different types of carbon have been used. The operating pressure in all tests was less than 30 mbar. Comparison between the obtained experimental equilibrium curves shows that the first, second and fourth types of activated carbon are suitable for the adsorption of hydrogen fluoride. The experimental data were fitted using mathematical models of Langmuir, Freundlich, Toth and Henry. The results show that Toth mathematical model is more suitable than other models. Also, the absolute error were predicted by the model of Toth for the first, second and fourth types of the activated carbon were 12.9, 16.5 and 34 percent, respectively.

  13. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Murat; Apaydin-Varol, Esin [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey); Puetuen, Ayse E., E-mail: aeputun@anadolu.edu.tr [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey)

    2011-05-15

    This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K{sub 2}CO{sub 3} and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K{sub 2}CO{sub 3} and 75 wt.% of KOH as 1635 and 1474 m{sup 2}/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions.

  14. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  15. Functionalized Carbon Nanotubes Produced by APCVD using Camphor

    Directory of Open Access Journals (Sweden)

    A. H. Mahdizadeh Moghaddam

    2015-01-01

    Full Text Available A simple chemical vapor deposition technique at atmospheric pressure (APCVD is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for production of carbon nanotubes (CNTs. The oxygen atoms in camphor oxidize the amorphous carbons and create hydroxyl functional groups in AMWCNTs. The molecular structure of camphor lead to form hexagonal and pentagonal carbon rings which increase the growth rate and alignment of MWCNTs. In this work, AMWCNTs are grown on silicon substrate, copper, and quartz. The synthesized AMWCNTs are characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR and transmission electron microscopy (TEM. The SEM results show that the deposited CNTs are formed in vertical aligned arrays and each has a functional OH group which is seen in FTIR spectroscopy results.

  16. A Review on Adsorption of Cationic Dyes using Activated Carbon

    Directory of Open Access Journals (Sweden)

    Corda Nikita Chrishel

    2018-01-01

    Full Text Available In this article efficiency of activated carbon as a potent adsorbent of cationic dyes has been reviewed. Non-biodegradable nature of pollutants and their removal in the present generation is a great challenge. Therefore, extensive study on adsorption of these classes of pollutants from water bodies is being carried out. Methylene blue (majorly a dye seen in the effluent streams of textile, printing, paper industries along with some of the commonly used cationic dyes in process industries and their sorption on activated carbon are reviewed here. High cost of commercially activated carbon which is a limitation to its extensive use have paved way for study of adsorption by naturally obtained and extracted activated carbon from agricultural wastes and various other sources. The purpose of this review paper is to summarize the available information on the removal of cationic dyes using naturally extracted and commercially obtained activated carbon. Various parameters such as temperature, initial dye concentration, pH, contact time, adsorbent dosage, particle size, stirring, agitation etc. were studied and the optimum parameters were determined based on the experimental outcomes. Equilibrium data was examined using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich and few other isotherm models. Kinetic studies also have been carried out to find the most suitable way of expressing the adsorption process.

  17. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    International Nuclear Information System (INIS)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M.

    2012-01-01

    Highlights: ► Phosphoric acid activation results in formation of carbons with acidic surface groups. ► Maximum amount of surface groups is introduced at impregnation ratio 1.25. ► Phosphoric acid activated carbons show high capacity to copper. ► Phosphoric acid activated carbons are predominantly microporous. ► Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S BET = 2081 m 2 /g, V tot = 1.1 cm 3 /g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0–2.6), weakly acidic carboxylic (pK = 4.7–5.0), enol/lactone (pK = 6.7–7.4; 8.8–9.4) and phenol (pK = 10.1–10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  18. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M. [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine); Sapsay, V.I.; Klymchuk, D.O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv (Ukraine); Puziy, A.M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Phosphoric acid activation results in formation of carbons with acidic surface groups. Black-Right-Pointing-Pointer Maximum amount of surface groups is introduced at impregnation ratio 1.25. Black-Right-Pointing-Pointer Phosphoric acid activated carbons show high capacity to copper. Black-Right-Pointing-Pointer Phosphoric acid activated carbons are predominantly microporous. Black-Right-Pointing-Pointer Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 Degree-Sign C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S{sub BET} = 2081 m{sup 2}/g, V{sub tot} = 1.1 cm{sup 3}/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  19. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  20. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.