WorldWideScience

Sample records for activated carbons prepared

  1. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  2. Preparation of activated carbon by chemical activation under vacuum.

    Science.gov (United States)

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  3. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  4. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  5. Preparation of microporous activated carbons based on carbonized apricot shells

    Directory of Open Access Journals (Sweden)

    Vladimir Pavlenko

    2014-10-01

    Full Text Available Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced activated carbons were studied by using SEM microscopy; the pore structure and specific surface area were investigated using the method of low-temperature nitrogen adsorption.

  6. Preparation of microporous activated carbons based on carbonized apricot shells

    OpenAIRE

    Vladimir Pavlenko; Sergey Anurov; Zulkhair Mansurov; Bijsenbaev Makhmut; Tatyana Konkova; Seithan Azat; Sandugash Tanirbergenova; Nurzhamal Zhylybaeva

    2014-01-01

    Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced...

  7. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  8. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  9. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  10. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  11. Activated carbon fibers prepared from quinoline and isoquinoline pitches

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, I.; An, K.; Korai, Y. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Kojima, T.; Komatsu, M. [Mitsubishi Gas Chemical Co. Inc., Tokyo (Japan); Yoshikawa, M. [Osaka Gas Co. Ltd., Osaka (Japan)

    1998-11-01

    Nitrogen enriched activated carbon fibers (ACFs) were prepared from isotropic quinoline and isoquinoline pitches produced by the catalytic action of HF/BF3 through spinning, stabilization, carbonization, and oxidative activation. The pitches exhibited excellent spinnability, and the resultant fibers had mechanical properties comparable to those of commercial fibers. The surface areas and nitrogen contents of the ACFs, obtained hereby were 740-860 m{sup 2}/g and 4-5.6%, respectively, at around 50 wt% of burn-off. FT-IR and XPS analyses identified the surface oxygen and nitrogen functional groups on the stabilized and activated fibers. The ACFs from isoquinoline pitch (IQP-ACF) exhibited higher basicity (l.3 meq/g) than commercial ACFs of similar surface areas (0.68 and 0.25 meq/g for PAN (FE-300) and coal tar pitch (OG-8A) based ACFs, respectively) due to a higher basic nitrogen content on the surface. The activation appears to expose basic nitrogen atoms, which were located under the surface. The basicity of ACF from quinoline pitch (QP-ACF) was much lower than that of IQP-ACF, however, QP-ACF adsorbed 74 mg/g of SO2, which was 1.4 and 2.3 times higher than that over FE-300 and OG-8A. In contrast, IQP-ACFs showed less adsorption of SO2 than that of QP-ACF and FE-300, but more than that of OG-8A. Oxidation activity of ACF surface may participate in the adsorption of SO2 in the form of SO3 or H2SO4. The oxygen functional groups under the influence of neighboring nitrogen atoms may be the active sites for the oxidative adsorption. 15 refs., 8 figs., 4 tabs.

  12. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2014-03-01

    Conclusion: Produced activated carbon has desired surface area and adsorptive capacity for gasoline adsorption in aquatic environments and it seems preparation activated carbon from waste tiers is cheap, effective and environment friendly.

  13. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  14. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  15. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Science.gov (United States)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  16. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  17. CHARACTERIZATION OF ACACIA MANGIUM WOOD BASED ACTIVATED CARBONS PREPARED IN THE PRESENCE OF BASIC ACTIVATING AGENTS

    Directory of Open Access Journals (Sweden)

    Mohammed Danish

    2011-06-01

    Full Text Available The aim of this study was to observe the effects of alkaline activating agents on the characteristics, composition, and surface morphology of the designed activated carbons. Activated carbons were prepared by pyrolysis of Acacia mangium wood in the presence of two basic activating agents (calcium oxide and potassium hydroxide. The extent of impregnation ratio of precursor to activating agents was fixed at 2:1(w/w. Prior to pyrolysis, 24 hours soaking was conducted at 348 K. Activation was carried out in a stainless steel capped graphite crucible at 773 K for 2 hours in the absence of purge gas. The burn-off percentage was found to be 70.27±0.93% for CaO activated carbon (COAC and 73.30±0.20% for KOH activated carbon (PHAC. The activating agents had a strong influence on the surface functional groups as well as elemental composition of these activated carbons. Characterization of the activated carbon obtained was performed with field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and nitrogen adsorption as Brunauer, Emmett and Teller (BET and Dubinin-Radushkevich (DR isotherms.

  18. Preparation and characterization of activated carbon from marine macro-algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Aravindhan, R. [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020 (India); Raghava Rao, J. [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020 (India)], E-mail: rao_clri@yahoo.com; Unni Nair, B. [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020 (India)

    2009-03-15

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (S{sub BET}) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m{sup 2} g{sup -1}, respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon.

  19. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    Science.gov (United States)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  20. Textural Development of Activated Carbon Prepared from Recycled PET with Different Chemical Activation Agents

    OpenAIRE

    Cansado, Isabel; Ribeiro Carrott, Manuela; Carrott, Peter; Mourão, Paulo

    2008-01-01

    In this work a series of microporous activated carbons, with different burn offs, was prepared from recycled PET provided by Selenis (Portalegre-Portugal). These AC were prepared by chemical activation with KOH, NaOH and H3PO4, and carbonised under a N2 flow of 85cm3min-1 between 873 and 1273K. The carbonised samples were then cooled and successively washed until the washable solutions achieved a pH around 7.0, afterwards these were dried at 110ºC. All adsorbents were characterised by the ads...

  1. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  2. PREPARATION OF ACTIVATED CARBON FIBERS AND THEIR XENON ADSORPTION PROPERTIES (Ⅰ)-PREPARATION AND PORE STRUCTURE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of sisal based activated carbon fibers were prepared with steam activation attemperature from 750 ℃ to 900 ℃. Their pore structures were characterized through their nitrogenadsorption isotherms at 77K using different theories. The results showed that t-plot method andDR-plot method could suitably be used to characterize the mesopore structure and the multi-stagedistribution of pore size of activated carbon fibers. It also showed that the pore size widens with theincrease of activation temperature.

  3. Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

    Institute of Scientific and Technical Information of China (English)

    YU Qiongfen; LI Ming; JI Xu; QIU Yu; ZHU Yuntao; LENG Congbin

    2016-01-01

    Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.

  4. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhang; Lijun Jin; Shengwei Zhu; Haoquan Hu

    2012-01-01

    Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method,and the experiments were carried out to investigate the effects of KOH/CLR ratio,solvent for mixing the CLR and KOH,and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD).The results showed that optimal KOH/CLR ratio of 2 ∶ 1;solvent with higher solubility to KOH or the CLR,and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD.The resultant mesoporous carbons show higher and more stable activity than microporous carbons.Additionally,the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.

  5. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Science.gov (United States)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  6. A simple and highly effective process for the preparation of activated carbons with high surface area

    Energy Technology Data Exchange (ETDEWEB)

    Li Ying, E-mail: liyingjlu@163.com [College of Chemistry, Jilin University, Changchun 130012 (China); Ding Xuefeng; Guo Yupeng; Wang Lili; Rong Chunguang; Qu Yuning; Ma Xiaoyu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Zichen, E-mail: wangzc@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-06-15

    Highlights: {yields} High surface area activated carbon can be prepared by rice husk H{sub 3}PO{sub 4} without pretreatment. {yields} The characteristics of the activated carbon were greatly influenced by post-processing method. {yields} The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. {yields} Some silica in rice husk reacted with H{sub 3}PO{sub 4} to form SiP{sub 2}O{sub 7} which could be removed by post-process. - Abstract: Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H{sub 3}PO{sub 4} with impregnation ratio of 5:1, activation temperature of 500 deg. C, activation time of 0.5 h, wash water temperature of 100 deg. C). SiO{sub 2} content could affect the surface area of activated carbons, either. The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. The SiO{sub 2} content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H{sub 3}PO{sub 4} to form silicon phosphate (SiP{sub 2}O{sub 7}), and it could be proved further by X-ray diffraction analysis, SiP{sub 2}O{sub 7} could be removed by post-process.

  7. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  8. PREPARATION OF MICROWAVE ABSORBING NICKEL-BASED ACTIVATED CARBON BY ELECTROLESS PLATING WITH PALLADIUM-FREE ACTIVATION

    OpenAIRE

    Boyang Jia; Lijuan Wang

    2010-01-01

    Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), vibrating sample magnetometry (VSM), and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. ...

  9. Characterization of activated carbon prepared from chlorella-based algal residue.

    Science.gov (United States)

    Chang, Yuan-Ming; Tsai, Wen-Tien; Li, Ming-Hsuan

    2015-05-01

    The chlorella-based microalgal residue (AR) was tested as a novel precursor for preparing activated carbons. A combined carbonization-activation process with flowing N2 and CO2 gases was used to prepare the carbon materials at the activation temperatures of 800-1000 °C and the residence times of 0-30 min in this work. The elemental contents, pore properties and scanning electron microscopy (SEM) observations of the resulting activated carbons have been performed. The results showed that activation temperature may be the most important parameter for determining their pore properties. The maximal Brunauer-Emmett-Teller (BET) surface area and total pore volume of the resulting activated carbon, which was produced at the activation temperature of 950 °C with the residence time of 30 min, were 840 m(2)/g and 0.46 cm(3)/g, respectively. More interestingly, the resulting activated carbons have significant nitrogen contents of 3.6-9.6 wt%, which make them lower carbon contents (i.e., 54.6-68.4 wt%) than those of commercial activated carbons.

  10. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    Science.gov (United States)

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  11. Adsorption of Purine Compounds in Beer with Activated Carbon Prepared from Beer Lees

    OpenAIRE

    Shibata, Junji; MURAYAMA, Norihiro; TAKEYAMA, Masato

    2009-01-01

    Six hundred thousand tons of beer lees are discharged annually in Japanese breweries. It is well known that purine compounds are one of substances which cause the gout and beer especially contains a lot of purine compounds such as adenosine, adenosine 5’-phosphate and so on, compared with the other alcoholic drinks. The application of activated carbon prepared from beer lees was investigated in order to remove purine compounds in beer. The reuse and recycling of beer lees to activated carbon ...

  12. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    OpenAIRE

    Mohammad Ali Baghapour; Babak jahed; Gholam Hossein Joshani

    2014-01-01

    Background and Objectives: Increasing waste tiers production has made the recycling of this solid waste a critical issue in the world. On the other hand, it seems contamination of groundwater to the petroleum pollutant like gasoline is a great threat to the health of societies in developing countries. The main objective of this study was gasoline removal from aquatic environment by waste tire derived activated carbon. Materials and Methods: In this study for preparation of activated carbon...

  13. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon

    Institute of Scientific and Technical Information of China (English)

    Yuxin WANG; Congmin LIU; Yaping ZHOU

    2008-01-01

    Activated carbon with high specific surface area and considerable mesopores was prepared from bam-boo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% H3PO4 at 80℃ for 9 days and activation at 500℃ for 4 h, the prepared acti-vated carbon had the highest mesopore volume of 0.67 cm3/g, a specific surface area of 1567 m2/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH4, CO2, N2 and O2on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO2 and the other gases was observed, which would be of interest for the adsorp-tive separation/purification of gaseous CO2 from its mix-tures, especially from mixtures with N2 and/or O2.

  14. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    Science.gov (United States)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  15. Preparation of activated carbon from sorghum pith and its structural and electrochemical properties

    International Nuclear Information System (INIS)

    Research highlights: → Sorghum pith as the cost effective raw material for activated carbon preparation. → Physicochemical method/KOH activation for preparation of activated carbon is inexpensive. → Activated carbon having lower surface area surprisingly delivered a higher specific capacitance. → Treated at 500 oC activated carbon exceeds maximum specific capacitances of 320.6 F/g at 10 mV/s. -- Abstract: The cost effective activated carbon (AC) has been prepared from sorghum pith by NaOH activation at various temperatures, including 300 oC (AC1), 400 oC (AC2) and 500 oC (AC3) for the electrodes in electric double layer capacitor (EDLC) applications. The amorphous nature of the samples has been observed from X-ray diffraction and Raman spectral studies. Subsequently, the surface functional groups, surface morphology, pore diameter and specific surface area have been identified through FT-IR, SEM, histogram and N2 adsorption/desorption isotherm methods. The electrochemical characterization of AC electrodes has been examined using cyclic voltammetry technique in the potential range of -0.1-1.2 V in 1.0 M H2SO4 electrolyte at different scan rates (10, 20, 30, 40, 50 and 100 mV/s). The maximum specific capacitances of 320.6 F/g at 10 mV/s and 222.1 F/g at 100 mV/s have been obtained for AC3 electrode when compared with AC1 and AC2 electrodes. Based on the characterization studies, it has been inferred that the activated carbon prepared from sorghum pith may be one of the innovative carbon electrode materials for EDLC applications.

  16. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2

    Institute of Scientific and Technical Information of China (English)

    Hao Yang; Maochu Gong; Yaoqiang Chen

    2011-01-01

    Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD,FT-IR and texture property test.The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces.The texture property test reveals that the activated carbons displayed different texture properties,especially the micropore size distribution.The adsorption capacities of the activated carbons were investigated by adsorbing CH4,CO2,N2 and O2 at 25 ℃ in the pressure range of 0-200 kPa.The results reveal that all the activated carbons had high CO2 adsorption capacity,one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa.And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa.In the pressure range of 0-200 kPa,the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.

  17. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  18. STUDIES ON THE PREPARATION OF ZINC-CONTAINING ACTIVATED CARBON FIBERS AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of activated carbon fibers, using sisal fiber as precursors, were preparedwith steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. Theantibacterial activities of these activated carbon fibers were determined and compared. The researchresults showed that these sisal based activated carbon fibers supporting zinc have strongerantibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related tothe precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silversupported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.

  19. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    Zhang Jianrong; Jiang Dechen; Chen Bin; Zhu Junjie; Jiang Liping; Fang Huiqun

    2001-01-01

    @@ In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.

  20. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    Zhang; Jianrong

    2001-01-01

    In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.  ……

  1. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    Science.gov (United States)

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes.

  2. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  3. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  4. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    Science.gov (United States)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  5. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    Science.gov (United States)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  6. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor

    International Nuclear Information System (INIS)

    We report a new methodology to prepare activated carbon and activated carbons/ZnO composites from walnut shell-derived hydrothermal carbons (hydrochars), which were prepared under hydrothermal condition in presence of ZnCl2. For this method, activated carbon/ZnO composites were prepared via heat treatment of hydrochars under inert environment and activated carbons were prepared by removing the ZnO in activated carbon/ZnO composites. The chemical structure of walnut shell, hydrochars, activated carbon/ZnO and activated carbon was investigated by Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction, thermogravimetric analysis and N2 adsorption/desorption measurements. It is found ZnCl2 plays multiple roles, i.e., helping to remove the oxygen-containing groups during hydrothermal stage, improving the surface area of activated carbon and acting as the precursor of ZnO in heat-treatment stage. The specific surface areas up to 818.9 and 1072.7 m2 g−1 have been achieved for activated carbon/ZnO composites and activated carbon, respectively. The activated carbon/ZnO as electrode materials for supercapacitors showed that specific capacitance of up to 117.4 F g−1 at a current density of 0.5 A g−1 in KOH aqueous solution can be achieved and keeps stable in 1000 cycles. - Highlights: • Hydrochars as intermediate to prepare activated carbon/ZnO composites. • Activated carbon/ZnO showed excellent electrochemical performance in supercapacitors. • Activated carbon with large surface area can be obtained by removing ZnO

  7. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.

    Science.gov (United States)

    Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro

    2016-10-01

    In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. PMID:27372249

  8. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    Science.gov (United States)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  9. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qiaoli [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092 (China); School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China)], E-mail: qiaolizh@yahoo.com.cn; Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China)], E-mail: linyongcheng@163.com; Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092 (China)

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe{sub 3}O{sub 4}), maghemite ({gamma}-Fe{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}) and goethite ({alpha}-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5 mg/L.

  10. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste

    Science.gov (United States)

    Zheng, Jieying; Zhao, Quanlin; Ye, Zhengfang

    2014-04-01

    In this study, the activated carbon fibers (ACFs) were prepared using cotton woven waste as precursor. The cotton woven waste was first partly dissolved by 80% phosphoric acid and then was pre-soaked in 7.5% diammonium hydrogen phosphate solution. Finally, carbonization and activation were proceeded to get ACF. The optimum preparation conditions, including carbonization temperature, carbonization time, activation temperature and activation time, were chosen by orthogonal design. Nitrogen adsorption/desorption test was conducted to characterize the prepared ACF's pore structure. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscope (ESEM) were employed to characterize its chemical properties and morphology. Adsorption of oilfield wastewater was used to evaluate its adsorption properties. The results show that the prepared ACF is in the form of fiber, with the sectional diameters of 11.7 × 2.6 μm and the surface area of 789 m2/g. XPS results show that carbon concentration of the prepared ACF is higher than that of the commercial ACF. When the prepared ACF dosage is 6 g/L, over 80% of COD and over 70% of chrominance can be removed after 24 h of adsorption at 18 °C. We demonstrated the catalytic growth of m-axial InxGa1-xN (0.10 ≤ x ≤ 0.17) nanocolumn arrays with high crystallinity on silicon substrates using metal-organic chemical vapor deposition with trimethylindium (TMIn), triethylgallium (TEGa), and ammonia as precursors. The high quality of InGaN nanocolumns (NCs) were believed to be due to the utilization of TEGa that achieved less carbon impurities and offered more comparable vapor pressure with that of TMIn at low temperature. In addition, these NCs were grown in non-polar m-axis, which the internal electric field of the InGaN that often deteriorates the device performances might be able to be eliminated. Furthermore, the bandgap of this InGaN can be modulated from

  11. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment

    OpenAIRE

    Hjaila, Kefah; Baccar, Rym; Sarrà, Montserrat; Gasol, C.M.; Blánquez, Paqui

    2013-01-01

    he life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 pres...

  12. PREPARATION OF MICROWAVE ABSORBING NICKEL-BASED ACTIVATED CARBON BY ELECTROLESS PLATING WITH PALLADIUM-FREE ACTIVATION

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2010-08-01

    Full Text Available Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM, X-ray energy dispersion spectroscopy (EDS, vibrating sample magnetometry (VSM, and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. The content of P and Ni was 2.73% and 97.27% in the coating. Compared with the untreated activated carbon, the real permeability μ′ and imaginary permeability μ″ of Ni-based activated carbon became greater, whereas the real permittivity ε′ and imaginary permittivity ε″ became smaller. Also, the plated activated carbon was magnetic, making it suitable for some special applications. In general, the method reported here might be a feasible procedure to coat activated carbon with other magnetic metals, which may find application in various areas.

  13. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Ünal Geçgel

    2013-01-01

    Full Text Available An activated carbon was prepared from pea shells and used for the removal of methylene blue (MB from aqueous solutions. The influence of various factors such as adsorbent concentration, initial dye concentration, temperature, contact time, pH, and surfactant was studied. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. The adsorption isotherm was found to follow the Langmuir model. The monolayer sorption capacity of activated carbon prepared from pea shell for MB was found to be 246.91 mg g−1 at 25 ∘C. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. Kinetic studies showed that the adsorption followed pseudo-second-order kinetic model. Various thermodynamic parameters such as , , and were evaluated. The results in this study indicated that activated carbon prepared from pea shell could be employed as an adsorbent for the removal of MB from aqueous solutions.

  14. A novel process for preparation of active carbon from sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V.; Gruber, R.; Kucherenko, V.A.; Guet, J.-M.; Khabarova, T.; Cohaut, N.; Heintz, O.; Rokosova, N.N. [Siberian Branch of the Russian Academy of Sciences, Kemerovo (Russian Federation). Inst. of Carbon Material Chemistry

    1998-05-01

    The paper reports the preparation of active carbons starting from sapropelitic coals. First a traditional route of manufacturing, coking and activation (820{degree}C) was carried out. The specific area (BET) of the activated semicokes of six sapropelitic coal samples varied from a few square meters to about five hundred (for Taimylir coal). Secondly, using Taimylir coal, a novel way of active carbon preparation was attempted combining low temperature modification and chemical activation. The modification was carried out using nitric acid-acetic anhydride mixture at room temperature and tested by swelling and weight uptake measurements. The modified coal samples were analyzed by thermogravimetry (TGA) and FT-IR spectroscopy. The chemical activation route included impregnation by an activant (KOH) and a subsequent heating (2 hr under argon) at selected temperatures ranging from 300 to 900{degree}C. Surface areas were determined by BET and SAXS methods. The chemical modification resulted in a new functional group formation and organic framework reorganization, which strongly affected the activation, as a value of 1200 m{sup 2} g{sup -1} was obtained after chemical activation. 11 refs., 4 figs., 4 tabs.

  15. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    Science.gov (United States)

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature. PMID:27232401

  16. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation.

    Science.gov (United States)

    Foo, K Y; Hameed, B H

    2011-10-01

    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.

  17. Phenol Adsorption on Nitrogen-enriched Activated Carbon Prepared from Bamboo Residues

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2013-12-01

    Full Text Available Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration. Adsorption equilibrium was achieved within 120 min at a phenol concentration of 250 mg/L. When the pH was 4 and 0.1 g of the carbon absorbent and 100 mL of phenol solution at 250 mg/L were used, the phenol adsorption of the ACs with melamine and urea modifications were 219.09 mg/g and 214.45 mg/g, respectively. Both were greater than the capacity of unmodified AC, which was 163.82 mg/g. The Langmuir isotherm adsorption equation well described the experimental adsorption isotherms. The adsorption kinetics was well explained by pseudo-second-order kinetics rather than the pseudo-first-order. In conclusion, the nitrogen-enriched activated carbon proposed as adsorbents of the phenol wastewater were shown to be effective, which also means that bamboo residues have promise as activated carbon precursors for liquid phase adsorbents for environmental protection.

  18. Effect of Activation Temperature and Heating Duration on Physical Characteristics of Activated Carbon Prepared from Agriculture Waste

    Directory of Open Access Journals (Sweden)

    Tham Yee Jun

    2010-01-01

    Full Text Available This study was conducted to determine the physical characteristics of activated carbon prepared from durian shell in varied heating durations from 10 min to 30 min and activation temperatures of 400C and 500C. Durian shells have been characterized in term of ultimate and proximate analysis, chemical composition and thermal behaviour with a view to be used as activated carbon precursor. Durian shell activated carbon was prepared by impregnating 10g of sample in 10% (v/v concentration of phosphoric acid for 24 h, followed by carbonization at 400C and 500C with different heating durations under nitrogen atmosphere. The results showed that various treatment conditions affect the percentage of yield, BET surface area, micropore volume, and average pore diameter. The highest surface area (SBET 1024 m2/g was obtained at 500C and 20 min of heating duration with 63% of yield and 0.21 cm3/g micropore volume.

  19. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    OpenAIRE

    Parvathi, C.; Maruthavanan, T.; S. Sivamani; Prakash, C

    2011-01-01

    The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution....

  20. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  1. TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA USING A TWO- STAGE ACTIVATION PROCESS

    Directory of Open Access Journals (Sweden)

    JOSEPH G. COLLIN

    2008-12-01

    Full Text Available Activated carbons from agro-industrial wastes; rice husk; were prepared by physical and chemical activation using phosphoric acid as the dehydrating agent. A two-stage activation process method was used; with semi-carbonisation stage at 200oC for 15 minutes as the first stage followed by an activation stage at 500oC for 45 minutes as the second stage. The precursor material with the impregnation agent was exposed straightaway to semi-carbonization and activation temperature unlike the specific temperature progression as reported in the literature. All experiments were conducted in a laboratory scale muffle furnace under static conditions in a self generated atmosphere covering process parameters such as impregnation ratios. We found that by using this method, the AC5 had the highest iodine number and methylene blue adsorption capacity which was 506.6 mg/g and 319.0 mg/g respectively.

  2. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    Institute of Scientific and Technical Information of China (English)

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  3. Preparation and Supercapacitive Properties of Fe2O3/Active Carbon Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LUO Pei-wen; YU Jian-guo; SHI Zhi-qiang; HUANG Hua; LIU Lang; ZHAO Yong-nan; LI Guo-dong; ZOU Yong-cun

    2012-01-01

    Abstract Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere.The as-prepared composites were studied by X-ray powder diffraction(XRD),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).The capacitive property of the composites was investigated by cyclic voltammetry(CV) and galvanostatic charge-discharge test.Physical characterizations show that the γ-Fe2O3 fine grains dispersed in the AC well,with a mean size of 21.24 nm.Electrochemical tests in 6 mol/L KOH solutions indicate that the as-prepared nanocomposites exhibited improved capacitive properties.The specific capacitance(SC) of Fe2O3/AC nanocomposites was up to 188.4 F/g that was derived from both electrochemical double-layer capacitance and pseudo-capacitance,which was 78% larger than that of pristine AC.A symmetric capacitor with Fe2O3/AC nanocomposites as electrode showed an excellent cycling stability.The SC was only reduced by a factor of 9.2% after 2000 cycles at a current density of 1 A/g.

  4. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    Science.gov (United States)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s. PMID:22524013

  5. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    Science.gov (United States)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  6. Preparation and characterization of activated carbons from impregnation pitch by ZnCl 2

    Science.gov (United States)

    Gañán-Gómez, J.; Macías-García, A.; Díaz-Díez, M. A.; González-García, C.; Sabio-Rey, E.

    2006-06-01

    Using an impregnation pitch from bituminous coal tar (OP) supplied by Industrias Químicas del Nalon Company as raw material, two phases (isotropic and anisotropic) have been obtained. The latter was used as precursor for the preparation of activated carbons. First, a chemical activation process was carried out with ZnCl 2 as activating agent. The process was conducted at different concentrations and temperatures and by means of impregnation with solid zinc chloride. Optimal values were obtained for samples prepared by using a ZnCl 2:pitch ratio equal to 3:1 (sample AZn3). Next, this sample was thermally treated at two different temperatures, i.e., 700 and 800 °C. A lose of specific surface area, microporosity and mesoporosity was observed with respect to sample AZn3, such a lose being more remarkable as temperature increased. Moreover, impregnation of the anisotropic phase of the original pitch with an aqueous solution of ZnCl 2 followed by thermal treatment resulted in a poorly developed surface area and porous texture, probably due to the presence of Zn complexes, which interfere with the activation process.

  7. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    International Nuclear Information System (INIS)

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m2/g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  8. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: preparation and characterizations.

    Science.gov (United States)

    Shi, Yanni; Han, Hao; Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi; Xing, Melcolm; Wu, Qilin

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields.

  9. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    International Nuclear Information System (INIS)

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo

  10. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanni [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Han, Hao [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Bayer Material Science China Co., Ltd, Shanghai 200120 (China); Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Xing, Melcolm [Department of Mechanical Engineering, Faculty of Engineering and Department of Biochemistry and Genetics, Faculty of Medicine P.I., Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba (Canada); Wu, Qilin, E-mail: wql@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo.

  11. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  12. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    International Nuclear Information System (INIS)

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity

  13. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    Science.gov (United States)

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate. PMID:27034157

  14. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    Directory of Open Access Journals (Sweden)

    Shidvash Dowlatshahi

    2014-11-01

    Full Text Available Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from aqueous solutions. Methods: The activated carbon was produced from the dried. Batch experiments were performed on real and synthetic samples at room temperature. The effect of pH, adsorbent dose, initial concentration, and contact time were studied, and the adsorption isotherms of heavy metals were determined. The removal efficiency was evaluated on real wastewater. Results: The maximum removal efficiency of heavy metals (copper, cadmium and lead by activated carbon adsorbent prepared from saffron leaves was obtained in pH 7. The optimum amount of adsorbent was 0.6 g, and the optimum contact times were 45 min for copper and cadmium ions and 90 min for lead ion, respectively. In these optimum conditions the removal efficiencies were 76.36%, 91.25% and 97.5%, respectively. The removal efficiencies of heavy metals from actual samples (copper industry and the battery industry in the optimum conditions were 82.25%, 69.95% and 91.23%, respectively. The results obtained showed the highest correlation with Langmuir isotherm model. Conclusion: Based on the results obtained, the activated carbon produced from saffron leaves has a good capability in removal of the metal ions from the aqueous solutions. Considering the availability of saffron leaves in Khorasan, its cost-effectiveness, and high uptake capacity, it can be applied as a proper absorbent to remove the heavy metals from industrial wastewater.

  15. Preparation of activated carbon with low ash content and high specific surface area from coal in the presence of KOH

    Institute of Scientific and Technical Information of China (English)

    XIE Qiang(解强); CHEN Qing-ru(陈清如); GONG Guo-zhuo(宫国卓); ZHANG Xiang-lan(张香兰); XU De-ping(许德平)

    2003-01-01

    An activated carbon with ash content less than 10% and specific surface area more than 1 600 m2/g was prepared from coal and the effect of K-containing compounds in preparation of coal-based activated carbon was investigated in detail in this paper. KOH was used in co-carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X-ray diffraction (XRD) technique, activation rates of chars with different contents of K-containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K-containing compounds such as K2CO3 and K2O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K-containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal-based activated carbon.

  16. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue.

    Science.gov (United States)

    Li, Yaxin; Zhang, Xian; Yang, Ruiguang; Li, Guiying; Hu, Changwei

    2016-01-01

    The treatment of dye wastewater by activated carbon (AC) prepared from rice husk residue wastes was studied. Batch adsorption studies were conducted to investigate the effects of contact time, initial concentration (50-450 mg/L), pH (3-11) and temperature (30-70 °C) on the removal of methylene blue (MB), neutral red, and methyl orange. Kinetic investigation revealed that the adsorption of dyes followed pseudo-second-order kinetics. The results suggested that AC was effective to remove dyes, especially MB, from aqueous solutions. Desorption studies found that chemisorption by the adsorbent might be the major mode of dye removal. Fourier transform infrared results suggested that dye molecules were likely to combine with the O-H and P=OOH groups of AC. PMID:26942535

  17. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte.

    Science.gov (United States)

    Kwon, Soon Hyung; Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun; Kim, Myung-Soo; Jung, Ji Chul

    2016-05-01

    Carbon aerogel was chemically activated with KOH using two different activation methods (conventional activation method and single-step activation method) to yield the nano-porous activated carbon aerogel. Both nano-porous activated carbon aerogels exhibited a better capacitive behavior than carbon aerogel in organic electrolyte. However, a drastic decrease in the specific capacitance with increasing current density was observed in the ACA_C (activated carbon aerogel prepared by a conventional activation method), which is a general tendency of carbon electrode for EDLC in organic electrolyte. Interestingly, the specific capacitance of ACA_S electrode (activated carbon aerogel prepared by a single-step activation method) decreased slowly with increasing current density and its CV curve maintained a rectangular shape well even at a high scan rate of 500 mV/s. The enhanced electrochemical performance of ACA_S at a high current density was attributed to its low ionic resistance caused by the well-developed pore structure with appropriate pore size for easy moving of organic electrolyte ion. Therefore, it can be concluded that single-step activation method could be one of the efficient methods for preparation of nano-porous activated carbon aerogel electrode for high-power EDLC in organic electrolyte.

  18. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte.

    Science.gov (United States)

    Kwon, Soon Hyung; Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun; Kim, Myung-Soo; Jung, Ji Chul

    2016-05-01

    Carbon aerogel was chemically activated with KOH using two different activation methods (conventional activation method and single-step activation method) to yield the nano-porous activated carbon aerogel. Both nano-porous activated carbon aerogels exhibited a better capacitive behavior than carbon aerogel in organic electrolyte. However, a drastic decrease in the specific capacitance with increasing current density was observed in the ACA_C (activated carbon aerogel prepared by a conventional activation method), which is a general tendency of carbon electrode for EDLC in organic electrolyte. Interestingly, the specific capacitance of ACA_S electrode (activated carbon aerogel prepared by a single-step activation method) decreased slowly with increasing current density and its CV curve maintained a rectangular shape well even at a high scan rate of 500 mV/s. The enhanced electrochemical performance of ACA_S at a high current density was attributed to its low ionic resistance caused by the well-developed pore structure with appropriate pore size for easy moving of organic electrolyte ion. Therefore, it can be concluded that single-step activation method could be one of the efficient methods for preparation of nano-porous activated carbon aerogel electrode for high-power EDLC in organic electrolyte. PMID:27483797

  19. Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials.

    Science.gov (United States)

    Fleker, Ohad; Borenstein, Arie; Lavi, Ronit; Benisvy, Laurent; Ruthstein, Sharon; Aurbach, Doron

    2016-05-17

    Metal organic frameworks (MOFs) have unique properties that make them excellent candidates for many high-tech applications. Nevertheless, their nonconducting character is an obstacle to their practical utilization in electronic and energy systems. Using the familiar HKUST-1 MOF as a model, we present a new method of imparting electrical conductivity to otherwise nonconducting MOFs by preparing MOF nanoparticles within the conducting matrix of mesoporous activated carbon (AC). This composite material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption measurements, and electron paramagnetic resonance (EPR) spectroscopy. We show that MOF nanoparticles grown within the carbon matrix maintain their crystalline characteristics and their surface area. Surprisingly, as a result of the composition process, EPR measurements revealed a copper signal that had not yet been achieved. For the first time, we could analyze the complex EPR response of HKUST-1. We demonstrate the high conductivity of the MOF composite and discuss various factors that are responsible for these results. Finally, we present an optional application for using the conductive MOF composite as a high-performance electrode for pseudocapacitors. PMID:27104367

  20. Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution.

    Science.gov (United States)

    Gonçalves, Maraisa; Guerreiro, Mário César; Ramos, Paulize Honorato; de Oliveira, Luiz Carlos Alves; Sapag, Karim

    2013-01-01

    The processing of coffee beans generates large amounts of solid and liquid residues. The solid residues (pulp, husk and parchment) represent a serious environmental problem and do not have an adequate disposal mechanism. In this work, activated carbons (ACs) for adsorption of organic compounds were prepared from coffee pulp by controlled temperature at different pulp/Na2HPO4 ratios (4:1, 2:1, 5:4 and 1:1). The N2 adsorption/desorption isotherms showed ACs with high quantities of mesopores and micropores and specific surface areas of 140, 150, 450 and 440 m(2)g(-1) for AC 4:1, AC 2:1, AC 5:4 and AC 1:1, respectively. The prepared material AC 5:4 showed a higher removal capacity of the organic contaminants methylene blue (MB), direct red (DR) and phenol than did a Merck AC. The maximum capacities for this AC are approximately 150, 120 and 120 mg g(-1) for MB, DR and phenol, respectively. Thus, a good adsorbent was obtained from coffee pulp, an abundant Brazilian residue.

  1. Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins with KOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H.; Wang, S.C.

    2000-03-01

    The influence of oxidation on the production of high-porosity carbons from phenol-formaldehyde resins with KOH activation were examined under various preparation conditions. The activation process principally consisted of KOH impregnation followed by carbonization. Experimental results showed that prior to carbonization treating the resins with oxygen at 120 C, either before or after KOH impregnation, enabled the enhancement of the yield of the carbon products. The porosity development was found to be hindered by conducting oxidation prior to the impregnation. For oxidation performed after the impregnation, at a low KOH/resin ratio the porosity was found to decrease upon oxidation, whereas the oxidation enhanced porosity development for activation performed at higher ratios. Varying the carbonization temperature and time did not show obvious influence on the effects of the oxidation.

  2. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene

    OpenAIRE

    Sevilla Solís, Marta; Fuertes Arias, Antonio Benito; Mokaya, R.

    2011-01-01

    [EN] Highly porous carbons have been successfully synthesized by chemical activation of polythiophene with KOH. The activation process was performed under relatively mild activation conditions, i. e., a KOH/polymer weight ratio of 2 and reaction temperatures in the 600–850 °C range. The porous carbons thus obtained possess very large surface areas, up to 3000 m2/g, and pore volumes of up to 1.75 cm3/g. The pore size distribution of these carbons can be tuned via modification of the activation...

  3. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  4. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    International Nuclear Information System (INIS)

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO4 as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu2+ ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO4 into insoluble manganese (IV) oxide (MnO2) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon

  5. Preparation,Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    YU,Hao; ZHENG,Jian-Bin

    2007-01-01

    A copper hexacyanoferrate modified ceramic carbon electrode(CuHCF/CCE)had been prepared by two-step sol-gel technique and characterized using electrochemical methods.The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs.SCE)in 0.050 mol·dm-3 HOAc-NaOAc buffer containing 0.30 mol·dm-3 KCI.The charge transfer coefficient (α) and charge transfer rate constant(Ks)for the modified electrode were calculated.The electrocatalytic activity of this modified electrode to hydrazine was also investigated,and chronoamperometry was exploited to conveniently determine the diffusion coefficient(D)of hydrazine in solution and the catalytic rate constant(Kcat).Finally,hydrazine was determined with amperometry using the resulting modified electrode.The calibration plot for hydrazine determination was linear in 3.0×10-6-7.5×10-4 mol·dm-3 with the detection limit of 8.0×10-7 mol·dm-3.This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods,such as renewable surface,good long-term stability,excellent catalytic activity and short response time to hydrazine.

  6. Removal of phenol by activated carbons prepared from palm oil mill effluent sludge

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Mariatul F.MANSOR; Radziah WAHID

    2006-01-01

    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely,thermal activation at 300, 500 and 800℃, and physical activation at 150℃ (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.

  7. On the preparation and characterization of chars and activated carbons from orange skin

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, J.M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. [Chemical Engineering Department, School of Industrial Engineering, Campus de Teatinos s/n, 29071, University of Malaga (Spain)

    2010-10-15

    Activated carbons were obtained by carbonization of orange skin waste and partial gasification with CO{sub 2}. The orange skin contains a significant amount of inorganic matter mainly potassium, calcium and phosphorus. CO{sub 2} gasification is catalyzed by potassium and calcium, resulting in carbons with a microporous structure. Thermal treatment up to 900 C applied to orange skin-derived activated carbons yields carbons with a highly developed porous structure, and a significant contribution of mesopores, due to the activation effect of potassium compounds. This porous structure is initially blocked by the inorganic matter that is removed by a subsequent acid wash, opening the porous structure of the final carbon; an activated carbon with a very wide porous structure and a specific surface area of around 1200 m{sup 2}/g was obtained. The activated carbon with high potassium content shows relatively high NO adsorption capacities in the presence of oxygen at 120 C, probably due to the catalytic effect of potassium on the oxidation of NO. The breakthrough times of the NO adsorption in the presence of oxygen at 120 C were predicted by the Bohart and Adams model with a relevant agreement between the calculated and the experimental times. (author)

  8. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water

    KAUST Repository

    Ding, Baojun

    2016-01-13

    A class of hierarchically porous carbons were prepared by a facile dual-templating approach. The obtained samples were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Brunaner-Emmett-Teller measurement and electrochemical work station, respectively. The porous carbons could possess large specific surface area, interconnected pore structures, high conductivity and graphitizing degree. The resulting materials were used to prepare integrated modified electrodes. Based on the experimental results, the as-prepared hierarchically porous graphite (HPG) modified electrode showed the best electroactive performances toward the detection of nitrite with a detection limit of 8.1 × 10-3 mM. This HPG electrode was also repeatable and stable for 6 weeks. Moreover, this electrode was used for the determination of nitrite in drinkable water, and had acceptable recoveries. © The Royal Society of Chemistry 2016.

  9. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  10. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted

  11. Preparation of activated carbon from dried pods of Prosopis cineraria with zinc chloride activation for the removal of phenol.

    Science.gov (United States)

    Nath, Kaushik; Panchani, Suresh; Bhakhar, M S; Chatrola, Sandip

    2013-06-01

    Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria-a novel and low-cost agrowaste material-were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg L(-1) of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg g(-1) at a temperature of 30 °C and 25 mg L(-1) initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg L(-1). The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.

  12. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  13. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K. [Analytical and Environmental Chemistry Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Wang, M.C., E-mail: mcwang@cyut.edu.tw [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China); Chien, S.W. Chang [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China)

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g{sup -1} for Pb(II), 21.2 mg g{sup -1} for Zn(II), 19.5 mg g{sup -1} for Cu(II), and 15.7 mg g{sup -1} for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  14. Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method

    Institute of Scientific and Technical Information of China (English)

    FANG Jianhui; CAO Zhiyuan; ZHANG Dengsong; SHEN Xia; DING Weizhong; SHI Liyi

    2008-01-01

    Ceria nanotubes with high CO conversion activity by means of carbon nanotubes as removable templates in the simple liquid phase process were fabricated under moderate conditions. The pristine CNTs were first pretreated by refluxing in a 30% nitric acid solution at 140 °C for 24 h, then dispersed in an ethanolic Ce(NO3)3·6H2O solution with ultrasonic radiation at room temperature for 1 h. Under vigorous stirring, NaOH solution was added drop by drop into the above ethanolic solution until the pH value was 10. The product was collected and repeatedly washed with ethanol and on drying at 60 °C, the CeO2/CNT composites were obtained. Then, the as-prepared composites were heated at 450 °C in an air atmosphere for 30 min to remove CNTs. The ceria nanotubes were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectrum (XPS). The results showed that the ceria nanotubes were polycrystalline face-centered cubic phase and were composed of lots of dense ceria nanoparticles. The diameter of ceria nanotubes was about 40-50 nm. Catalytic activity of the product for CO oxidation was carried out at the region of 30-300 °C in a U-shaped quartz reactor with feeding about 0.15 g of the catalyst, which was loaded on Al2O3 carrier. The inlet gas composition was 1.0% CO and 28% O2 with N2 as balance, and the rate of flow was kept at 40 ml/min. The catalytic products were analyzed by gas chromatography. The as-prepared CeO2 nanotubes showed higher CO oxidation activity, which indicated that the morphology of ceria products affected the catalytic performance. The ceria nanotubes supported on Al2O3 demonstrated that conversion temperature for CO oxidation to CO2 was lower than that for bulk catalysts.

  15. Preparation and characterization of activated carbon from castor de-oiled cake

    Directory of Open Access Journals (Sweden)

    Viviana M. Ospina-Guarín

    2014-01-01

    Full Text Available Biomass residues have been used to produce activated carbons. On this process, the activation method and the raw composition determine the properties as porosity and surface area of the charcoal. After the extraction of castor oil, there is a solid byproduct (cake of low added value, which was used in the production of activated carbon to add value to this waste. For this purpose two traditional methods were used, first, physical activation using as activating agents steam, CO2 and mixture of both, and additionally chemical activation using K2CO3 as the activating agent. Some activated carbons were characterized using N2 adsorption isotherms, BET surface areas varied between 255.98 (m2/g and 1218.43 (m2/g. By SEM and EDS analysis was possible to observe that materials obtained by the two types of activation are principally amorphous and morphological characteristics of the carbon obtained by physical activation are very different from those obtained by chemical activation. Finally, through impregnation of inorganic phases of Ni and Mo was revealed that the high dispersion characteristics, these carbonaceous materials will have potential to be used as catalyst support.

  16. Preparation of activated carbons from mesophase pitch and their electrochemical properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 ℃ is the proper temperature to obtain the maximum surface area and capacitance.

  17. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    OpenAIRE

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  18. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  19. Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres

    Energy Technology Data Exchange (ETDEWEB)

    Ncibi, M.C., E-mail: ncibi_mc@yahoo.com [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Jeanne-Rose, V. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Mahjoub, B. [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Jean-Marius, C. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Lambert, J.; Ehrhardt, J.J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS, Universites de Nancy, 405, rue de Vandoeuvre, F 56600 Villers-les-Nancy cedex (France); Bercion, Y. [Groupe de Technologie des Surfaces et Interfaces (GTSI), EA 2432, Faculte des Sciences Exactes et Naturelles, Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Seffen, M. [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Gaspard, S. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Industrial valorisation of low cost and renewable biomass as raw precursor of activated carbon for environmental applications is an interesting alternative to costly commercial activated carbons. In this study, the possible use of Mediterranean, Posidonia oceanica fibrous biomass, as a precursor for chars and physically activated carbons, is investigated. Firstly, the raw marine material was chemically and biochemically characterised throughout dry-basis elemental, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis. Then, several P. oceanica chars were prepared and characterised under different pyrolysis times and temperatures. In addition, physically activated carbons (PACs) were produced via water steam flow under various activation periods. The results showed that the pyrolysis induces the creation of pores at different levels with respect to the involved temperature. Thereafter, the physical activation tends to enhance the development of the porous structure. In that issue, the performed Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) analysis revealed that the prepared PACs have a mainly mesoporous inner morphology with a varying fraction of micropores.

  20. Activated Carbon Prepared From Orange Peels Coated With Titanium Oxide Nanoparticles: Characterization and Applications in the Decomposition of Nox

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-06-01

    Full Text Available In this work, we report the degradation of NOx using two catalysts prepared by coating activated carbon from orange peels with TiO2. This study compared the performance of TiO2-coated catalysts prepared by CVD (AC1/TiO2 and the sol-gel method (AC2/TiO2. The catalysts were characterized by X-ray diffraction, BET surface area and TEM. The photocatalytic activity was measured by studying the degradation of NOx in the vapor phase. The results show that the catalyst synthesized by the CVD method was more efficient in the decomposition of NOx. TEM and XRD revealed the presence of a mixture of the anatase and rutile phases, which favors the NOx decomposition process. Nitrogen isotherms showed that coating the nanoparticles with titanium oxide did not significantly change the surface area of the original activated carbon.

  1. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. PMID:24091159

  2. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    Science.gov (United States)

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  3. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  4. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Energy Technology Data Exchange (ETDEWEB)

    Angın, Dilek, E-mail: angin@sakarya.edu.tr [Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya (Turkey); Köse, T. Ennil, E-mail: ennilb@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey); Selengil, Uğur, E-mail: uselen@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey)

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m{sup 2}/g and 0.4952 cm{sup 3}/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin–Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG{sup o}, ΔH{sup o} and ΔS{sup o} were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from waste water.

  5. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Science.gov (United States)

    Angın, Dilek; Köse, T. Ennil; Selengil, Uğur

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m2/g and 0.4952 cm3/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin-Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG̊, ΔH̊ and ΔS̊ were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from wastewater.

  6. PREPARATION OF TiO2 PHOTOCATALYST ANCHORED ON ACTIVATED CARBON FIBERS AND ITS PHOTODEGRADATION OF METHYLENE BLUE

    Institute of Scientific and Technical Information of China (English)

    Pingfeng Fu; Yong Luan; Xuegang Dai

    2004-01-01

    TiO2 particulate photocatalyst anchored on activated carbon fibers (ACFs) was prepared by a molecular adsorption-deposition method. The TiO2 particles deposited on the carbon fibers formed a coating of about 100 nm in thickness. The photocatalyst prepared was characterized by means of SEM, EDS, XRD and UV-vis adsorption spectroscopy. Anatase-type TiO2 was uniquely developed, and the micrographic structure of ACFs was not damaged during preparation. The roomy space between adjacent carbon fibers could allow UV-light to penetrate into the felt-form photocatalyst to a certain depth, so that a three dimensional environment was formed for the photocatalytic reaction.Such TiO2/ACFs photocatalyst exhibited its photocatalytic reactivity in photodegradation of concentrated methylene blue(MB) solutions. The MB molecules in the bulk solutions was supposed to be condensed around TiO2 particles by adsorption by ACFs. Therefore, the photocatalyst possesses the combined effect of adsorption by activated carbon fibers and photocatalytic reactivity of anatase-type TiO2 on MB photodegradation.

  7. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  8. Removal of fluoride by thermally activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica) leaves.

    Science.gov (United States)

    Kumar, Sunil; Gupta, Asha; Yadav, J P

    2008-03-01

    The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.

  9. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    OpenAIRE

    Manonmani Subbian; Santhi Thirumalisamy

    2010-01-01

    The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were inves...

  10. Removal of malachite green from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption

    OpenAIRE

    Santhi, T.; Manonmani, S.; SMITH, T

    2010-01-01

    The use of low -cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the Annona squmosa seed for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated a...

  11. Treatment of semi-aerobic landfill leachate using durian peel-based activated carbon adsorption- Optimization of preparation conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Anuar Kamaruddin, Mohd Suffian Yusoff, Mohd Azmier Ahmad

    2012-01-01

    Full Text Available The treatability of semi-aerobic landfill leachate parameters using durian peel-based activated carbon (DPAC was investigated. An ideal experimental design was conducted based on central composite design (CCD using response surface methodology to evaluate individual and interactive effects of operational variables namely activation temperature, activation time and carbon dioxide (CO2 flow rate on treatment performance in terms of chemical oxygen demand (COD and colour removal efficiencies. The DPAC was prepared using physical activation method which consists of CO2 gasification. The adsorptions of COD and colour were described by Langmuir and Freundlich isotherm models. Based on the CCD, quadratic model was developed to correlate preparation variables to the two responses. The optimum DPAC preparation conditions were obtained using 800 °C activation temperature, 2.1 h activation time and 68.68 ml/s of CO2 flow rate. From the experimental work, the maximum removal of COD and colour obtained were 41.98 and 39.86%, respectively.

  12. Treatment of semi-aerobic landfill leachate using durian peel-based activated carbon adsorption- Optimization of preparation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian [School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Mohd Azmier [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-07-01

    The treatability of semi-aerobic landfill leachate parameters using durian peel-based activated carbon (DPAC) was investigated. An ideal experimental design was conducted based on central composite design (CCD) using response surface methodology to evaluate individual and interactive effects of operational variables namely activation temperature, activation time and carbon dioxide (CO2) flow rate on treatment performance in terms of chemical oxygen demand (COD) and colour removal efficiencies. The DPAC was prepared using physical activation method which consists of CO2 gasification. The adsorptions of COD and colour were described by Langmuir and Freundlich isotherm models. Based on the CCD, quadratic model was developed to correlate preparation variables to the two responses. The optimum DPAC preparation conditions were obtained using 800 C activation temperature, 2.1 h activation time and 68.68 ml/s of CO2 flow rate. From the experimental work, the maximum removal of COD and colour obtained were 41.98 and 39.86%, respectively.

  13. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.

    Science.gov (United States)

    Chen, Dengyu; Chen, Xiaojuan; Sun, Jun; Zheng, Zhongcheng; Fu, Kexin

    2016-09-01

    A lab-scale pyrolysis reactor was utilized to investigate the effect of pyrolysis temperature (300-700°C) on the yield, quality, and energy distribution of products issued from the pyrolysis polygeneration of pine nut shells. Afterward, activated carbon was prepared from biochar using the steam activation method. Pyrolysis temperatures ranging from 500 to 600°C were found to be optimal in inducing products with improved properties, such as higher heating values of non-condensable gas, lower water content and elevated heating values of bio-oil, and substantial fixed carbon content and greater specific surface area of biochar. In addition, it was noticed that the activation conditions had a significant effect on the yield and adsorption performance of the activated carbon. As a result, activated carbon with elevated specific surface area reaching 1057.8m(2)/g was obtained at the optimal conditions of 850°C activation temperature, 80min activation time, and 1.5 steam/biochar ratio. PMID:27289053

  14. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.

    Science.gov (United States)

    Chen, Dengyu; Chen, Xiaojuan; Sun, Jun; Zheng, Zhongcheng; Fu, Kexin

    2016-09-01

    A lab-scale pyrolysis reactor was utilized to investigate the effect of pyrolysis temperature (300-700°C) on the yield, quality, and energy distribution of products issued from the pyrolysis polygeneration of pine nut shells. Afterward, activated carbon was prepared from biochar using the steam activation method. Pyrolysis temperatures ranging from 500 to 600°C were found to be optimal in inducing products with improved properties, such as higher heating values of non-condensable gas, lower water content and elevated heating values of bio-oil, and substantial fixed carbon content and greater specific surface area of biochar. In addition, it was noticed that the activation conditions had a significant effect on the yield and adsorption performance of the activated carbon. As a result, activated carbon with elevated specific surface area reaching 1057.8m(2)/g was obtained at the optimal conditions of 850°C activation temperature, 80min activation time, and 1.5 steam/biochar ratio.

  15. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.

    Science.gov (United States)

    Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M

    2015-05-15

    Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked. PMID:25576198

  16. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    OpenAIRE

    Sumrit Mopoung; Phansiri Moonsri; Wanwimon Palas; Sataporn Khumpai

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carr...

  17. A simple preparation of carbon doped porous Bi2O3 with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: Carbon doped bismuth oxide with a porous structure was prepared by calcination of bismuth nitrate in glycol solution. The as-prepared samples show enhanced visible-light photocatalytic activity. - Highlights: • C-doped Bi2O3 with a porous structure is obtained by a simply calcination of Bi(NO3)3 in glycol. • The C-doped Bi2O3 exhibited much higher photocatalytic activity than the pure Bi2O3. • Carbon was incorporated into the lattice of Bi2O3 lattice. - Abstract: Carbon doped bismuth oxide (Bi2O3) with a porous structure is obtained by a simply calcination of bismuth nitrate pentahydrate (Bi(NO3)3⋅5H2O) in glycol solution. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV–Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) in an aqueous solution under visible-light radiation (λ > 420 nm). The results show that carbon was incorporated into the lattice of Bi2O3. The absorption intensity of C-doped Bi2O3 increases in the region of 450–530 nm and the absorption edge has an obvious shift to long wavelength. The C-doped Bi2O3 exhibited much higher photocatalytic activity than the pure one due to the synergetic effects of the porous structure and the improved absorption in the visible-light region

  18. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Ganji, Enseyeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Nanoporous activated carbons, as adsorbent for CO{sub 2} storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO{sub 2} adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g{sup -1}). It was found that in order to improve the highest capacity of CO{sub 2} adsorption for KOH-modified carbon (9.830-18.208mmol·g{sup -1}), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  19. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    International Nuclear Information System (INIS)

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO3)2/0.04 M H3PO4.12MoO3/4 M HNO3 solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  20. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Wood, T.E. [3M Company, St. Paul, MN, 55144 (United States); Croll, L.M.; Reynolds, J.H. [3M Canada Company, Brockville, Ontario, K6V 5V8 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada)

    2010-08-15

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO{sub 3}){sub 2}/0.04 M H{sub 3}PO{sub 4}.12MoO{sub 3}/4 M HNO{sub 3} solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  1. Performance of Electric Double Layer Capacitors using Active Carbons Prepared from Petroleum Coke by KOH and Vapor Re-Etching

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes isconsidered. Pet roleum coke was used for preparation of carbons with different porosities by KOH and vapor etchingwith catalysis of FeCl3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors.Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performanceof the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. Aspecific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with aspecific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance wasconducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitorwere also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstratedby powering successfully a simulated power load encountered in communication equipment.

  2. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material

    International Nuclear Information System (INIS)

    This work focuses on the preparation of AC (activated carbon) through a physical activation method using peat soil as a precursor, followed by the use of the AC as an inorganic framework for the preparation of SPCM (shape-stabilized phase change material). The SPCM, composed of n-octadecane as the core and AC pores as a framework, was fabricated by a simple impregnation method, with the mass fraction of n-octadecane varying from 10 to 90 wt.%. The AC has a specific surface area of 893 m2 g−1 and an average pore size of 22 Å. The field emission scanning electron microscope images and nitrogen gas adsorption-desorption isotherms shows that the n-octadecane was actually encapsulated into the AC pores. The melting and freezing temperatures of the composite PCM (phase change material) were 30.9 °C and 24.1 °C, respectively, and its corresponding latent heat values were 95.4 Jg−1 and 99.6 Jg−1, respectively. The composite shows a good thermal reliability, even after 1000 melting/freezing cycles. The present research provided a new SPCM material for thermal energy storage as well as some new insights into the design of composite PCM by tailoring the pore structure of AC derived from peat soil, a natural resource. - Highlights: • Activated carbon from peat soil was used as framework. • n-Octadecane/activated carbon composite was fabricated by impregnation method. • The thermal property could be tailor by adjusting pore size of activated carbon. • The shape-stabilized PCM (phase change material) have the potential to be used for thermal energy storage

  3. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    Science.gov (United States)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  4. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    Science.gov (United States)

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  5. Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution

    Directory of Open Access Journals (Sweden)

    J.M. Salman

    2014-01-01

    Full Text Available Palm oil fronds were used to prepare activated carbon using the physiochemical activation method, which consisted of potassium hydroxide (KOH treatment and carbon dioxide (CO2 gasification. The effects of variable parameters activation temperature, activation time and chemical impregnation ratios (KOH: char by weight on the preparation of the activated carbon and for the removal of pesticides: bentazon, carbofuran and 2,4-Dichlorophenoxyacetic acid (2,4-D were investigated. Based on the central composite design (CCD, two factor interaction (2FI and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for the removal of pesticides with carbon yield. From the analysis of variance (ANOVA, the most influential factor on each experimental design response was identified. The optimum conditions for preparing the activated carbon from oil palm fronds were found as follows: activation temperature of 750 °C, activation time of 2 h and chemical impregnation ratio of 2.38. The percentage error between predicted and experimental results for the removal of bentazon, carbofuran and 2,4-D were 8.2, 1.3 and 9.2%, respectively and for the yield of the palm oil frond activated carbon was 5.6.

  6. Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology.

    Science.gov (United States)

    Salman, J M; Abid, F M

    2013-01-01

    Palm-date pits were used to prepare activated carbon by physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of variable parameters, activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of activated carbon and for removal of pesticides: bentazon, carbofuran and 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from palm-date pits were found to be: activation temperature of 850 °C, activation time of 3 h and chemical impregnation ratio of 3.75, which resulted in an activated carbon yield of 19.5% and bentazon, carbofuran, and 2,4-D removal of 84, 83, and 93%, respectively.

  7. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    Science.gov (United States)

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  8. Preparation of activated carbon with high surface area for high-capacity methane storage

    Institute of Scientific and Technical Information of China (English)

    Bingsi Liua; Wenshuo Wanga; Na Wanga; Peter Chak Tong Aub

    2014-01-01

    Activated carbon (AC) was fabricated from corncob, which is cheap and abundant. Experimental parameters such as particle size of corncob, KOH/char weight ratio, and activation temperature and time were optimized to generate AC, which shows high methane sorption capacity. AC has high specific surface area (3227 m2/g), with pore volume and pore size distribution equal to 1.829 cm3/g and ca. 1.7-2.2 nm, respectively. Under the condition of 2◦C and less than 7.8 MPa, methane sorption in the presence of water (Rw=1.4) was as high as 43.7 wt%methane per unit mass of dry AC. The result is significantly higher than those of coconut-derived AC (32 wt%) and ordered mesoporous carbon (41.2 wt%, Rw=4.07) under the same condition. The physical properties and amorphous chaotic structure of AC were characterized by N2 adsorption isotherms, XRD, SEM and HRTEM. Hence, the corncob-derived AC can be considered as a competitive methane-storage material for vehicles, which are run by natural gas.

  9. Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    In the conditioning tasks of olive-tree a large amount of a woody residue is generated. Such a residue has been traditionally used as a domestic fuel. In the last decades, however, this kind of use has lost importance and the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. In this study, the optimization of the chemical activation method with phosphoric acid for the production of activated carbon has been analyzed. The results obtained clearly show that samples prepared at 350 and 400 C exhibit a discrete porous development. On the contrary, when the carbonization temperature increases above 450 C the presence of a well-developed mesoporosity is observed. The mercury intrusion curves indicate that the samples exhibit a noticeably developed mesopore volume as well as a wide variety of mesopores ranging from 40 up to 1100 Aa of diameter. If the appropriate conditions are used, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  10. Preparation and Characterization of Activated Carbon from Iraqi Khestawy Date Palm

    Directory of Open Access Journals (Sweden)

    Falah H. Hussein

    2015-01-01

    Full Text Available This work includes a synthesis of three types of the activated carbon (AC from three different positions from the same Iraqi Khestawy date palm. These three positions are the palm fronds (AC1, the date palm seeds (AC2, and the palm fiber (AC3. These three types of AC were synthesized by a physiochemical activation method using the same activator which was H3PO4. These materials were investigated using different techniques such as Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The adsorption activity of the synthesized AC samples was investigated by following the removal of both Bismarck brown G (BBG and reactive yellow dye 145 (RY145. Both the kinetics of adsorption and the removal percentage of these dyes were investigated from the batch tests in this study. Different reaction parameters and conditions for adsorption processes were investigated. Also an investigation of both Langmuir and Freundlich adsorption isotherms was considered. The different physical properties of these materials were undertaken such as the point zero charges of the synthesized samples (PZCs, the percentage of humidity, and the adsorption capacity also being investigated. The activity of these materials in the removal of BBG from the aqueous solution was as follows: AC1>AC2>AC3.

  11. Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: ► Preparation of ternary nanocomposites (ACTB/PANI) consisting of polyaniline (PANI), activated carbon, and TiO2(B) nanowires. ► Structural and electrochemical characterizations of ternary ACTB/PANI nanocomposites. ► Excellent cycle stability of ACTB/PANI based electrode. ► Tailoring the electrochemical performance by means of a composite construction. -- Abstract: We herein report the synthesis of ternary nanocomposites consisting of polyaniline (PANI), activated carbon, and TiO2(B) components, which involves the preparation of activated carbon/TiO2(B) nanowires (ACTB) using sonochemical–hydrothermal method, and their subsequent composites with PANI via in situ polymerization. The morphology and structure of ACTB/PANI ternary nanocomposites are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Morphology analysis shows that the porous network layer of PANI homogeneously coated on the outer surface of ACTB support. The electrochemical properties of the ternary nanocomposite as the electrode material for electrochemical capacitors are examined by cyclic voltammetry and galvanostatic charge/discharge test in an organic electrolyte (1.0 M LiClO4 in propylene carbonate). The results show that the ternary nanocomposites have a specific capacitance as large as 286 F g−1 in the potential range from −3 to 3 V (vs. SCE) at a charge–discharge current density of 1.0 A g−1, which is a significant improvement compared to those of the three separate components, demonstrating that the ACTB/PANI nanocomposites are promising materials for supercapacitor electrode

  12. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III Adsorption from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Sumrit Mopoung

    2015-01-01

    Full Text Available This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III adsorption were also studied. Fe(III adsorption was carried out by 30 mL column with 5–20 ppm Fe(III initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III adsorption test. It was shown that Fe(III was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g.

  13. Preparation and Characteristics of Activated Carbon from Wood Bark and Its Use for Adsorption of Cu (II

    Directory of Open Access Journals (Sweden)

    Jiahui ZHANG

    2014-12-01

    Full Text Available In this study, wood bark activated carbon (bark activated carbon, BAC were prepared by the method of steam activation at the activation temperature of 700 °C and 800 °C. The pore structures of BAC samples obtained were analysed via means of low temperature nitrogen adsorption. Iodine adsorption value and Cu (II ions adsorption capacity were also investigated. The results indicated that micropores and mesopores were abundant in BACs, which indicated a better adsorption effect in iodine and Cu (II ions adsorption capacities than wood bark carbon. The efficiency for the removal of Cu (II ions were carried out as a function of contact time. The optimal dosage of Cu (II ions by BAC700 and BAC800 samples is 5 g/L with an optimal time of 30 min. The kinetic studies of BACs revealed a better correlation with the Lagergren pseudo-second order model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6400

  14. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanqian; Liu, Lin; Cai, Yurong; Chen, Jianjun [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)

    2013-04-01

    Cuprous oxide (Cu{sub 2}O) nanocrystals have been successfully synthesized using copper acetate as precursors via a polyol process. The as-synthesized products were easily deposited on the surface of carbon nanofibres (CNFs) and then were characterized through XRD, FESEM, TEM and FTIR, etc. The photocatalytic performance of these composite films was evaluated using methyl orange as a model organic compound under visible light irradiation. Results showed that the shape of Cu{sub 2}O nanparticles could be changed from irregular nanoparticle to cubic, flower-like particle assembled by Cu{sub 2}O nanocubes with the change of the reaction conditions. All of these Cu{sub 2}O/CNFs composite films showed the satisfied photocatalytic activity to methyl orange even after 3 cycles of degradation experiment due to the protectable function of carbon fibre films to the Cu{sub 2}O nanocrystals. The Cu{sub 2}O/CNFs composite films may offer a feasible method for the potential application of Cu{sub 2}O nanocrystals in the treatment of organic contamination.

  15. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    Science.gov (United States)

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  16. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films

    International Nuclear Information System (INIS)

    Cuprous oxide (Cu2O) nanocrystals have been successfully synthesized using copper acetate as precursors via a polyol process. The as-synthesized products were easily deposited on the surface of carbon nanofibres (CNFs) and then were characterized through XRD, FESEM, TEM and FTIR, etc. The photocatalytic performance of these composite films was evaluated using methyl orange as a model organic compound under visible light irradiation. Results showed that the shape of Cu2O nanparticles could be changed from irregular nanoparticle to cubic, flower-like particle assembled by Cu2O nanocubes with the change of the reaction conditions. All of these Cu2O/CNFs composite films showed the satisfied photocatalytic activity to methyl orange even after 3 cycles of degradation experiment due to the protectable function of carbon fibre films to the Cu2O nanocrystals. The Cu2O/CNFs composite films may offer a feasible method for the potential application of Cu2O nanocrystals in the treatment of organic contamination.

  17. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization.

    Science.gov (United States)

    Kai, Takami; Mak, Goon Lum; Wada, Shohei; Nakazato, Tsutomu; Takanashi, Hirokazu; Uemura, Yoshimitsu

    2014-07-01

    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst.

  18. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization.

    Science.gov (United States)

    Kai, Takami; Mak, Goon Lum; Wada, Shohei; Nakazato, Tsutomu; Takanashi, Hirokazu; Uemura, Yoshimitsu

    2014-07-01

    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst. PMID:24813567

  19. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents.

    Science.gov (United States)

    Oliveira, Luiz C A; Pereira, Elaine; Guimaraes, Iara R; Vallone, Andrea; Pereira, Márcio; Mesquita, João P; Sapag, Karim

    2009-06-15

    Ferric chloride was used as a new activating agent, to obtain activated carbons (AC) from agro industrial waste (coffee husks). This material was compared with two samples from the same raw material: one of them activated by using the classical activating agent, zinc chloride, and the other, activated with a mixture of the two mentioned activating agents in the same mass proportion. The carbonaceous materials obtained after the activation process showed high specific surface areas (BET), with values higher than 900 m(2)g(-1). It is interesting to observe that the activation with FeCl(3) produces smaller pores compared to the activation with ZnCl(2). An important fact to emphasize in the use of FeCl(3) as activating agent is the activation temperature at 280 degrees C, which is clearly below to the temperature commonly employed for chemical or physical activation, as described in the bibliography. All the studied materials showed different behaviors in the adsorption of methylene blue dye and phenol from aqueous solutions. PMID:18996644

  20. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Chang Qigang [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lin Wei, E-mail: wei.lin@ndsu.edu [Department of Civil Engineering, North Dakota State University, Fargo, ND 58105 (United States); Ying Weichi [School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2010-12-15

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  1. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  2. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    Science.gov (United States)

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. PMID:26731310

  3. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K. PMID:27177317

  4. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  5. Preparation and Characterization of Three-dimensional Photocatalyst-TiO2 Particulate Film Immobilized on Activated Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    傅平丰; 栾勇; 戴学刚; 张建强; 张安华

    2006-01-01

    A novel three-dimensional photocatalyst, TiO2 particulate film immobilized on activated carbon fibers (TiO2/ACFs),was prepared by liquid phase deposittion. The photocatalyst was characterized by SEM, XRD, BET surface area and photodegradation of methylene blue solution. TiO2 particulate film, with a thickness of nearly 200 nm and grain sizes of 30~50 nm, was deposited on almost each carbon fiber. The inner space between adjacent fibers remained as unmodified ACFs,therefore, both UV illumination and polluted solutions were allowed to pass through the felt-form photocatalyst to form a three-dimensional environment for photocatalytic reactions. With BET surface areas of 400~600 m2/g, the TiO2/ACFs exhibited an enhanced adsorption of pollutants for photocatalysis. Comparative degradations indicated that photocatalytic activity of the TiO2/ACFs was slightly higher than that of Degussa P-25 TiO2. Two special properties, the three-dimensional structure and combined effects of ACFs' adsorption and titania's photodegradation, made contribution to high photocatalytic activity. Additionally, the TiO2/ACFs exhibited high stability and potentially application for practical usage.

  6. Optimization of Preparation Condition for Meso pores Activated Carbon based on Hevea Brasiliensis Seed Coat for the Removal of Remazol Brilliant Blue R Dye

    International Nuclear Information System (INIS)

    The conditions for the preparation of rubber (hevea brasiliensis) seed coat based activated carbon (RSCAC) treated with NaOH were optimized through response surface methodology (RSM). The effects of three preparation variables: the activation temperature, activation time and NaOH impregnation ratio (IR) on Remazol Brilliant Blue R (RBBR) removal from aqueous solutions and RSCAC yield were investigated. Based on the RSM, two quadratic models were respectively developed to correlate the preparation variables to the RBBR percentage removal and carbon yield. The significant factors on each experimental design response were identified from the analysis of variance (ANOVA). The optimum conditions for RSCAC preparation were obtained by using activation temperature of 700 degree Celsius, activation time of 1.0 h and IR of 1.0, which resulted in 70.82 % of RBBR removal and 24.93 % of RSCAC yield. (author)

  7. Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, F.J.; Granada, M.; Corti, H.R. [Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), General Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Vilella, I.M.J.; de Miguel, S.R.; Scelza, O.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE), Facultad de Ingenieria Quimica (Universidad Nacional del Litoral) - CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina); Troiani, H. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2009-10-15

    In this work nanoparticulated platinum catalysts have been prepared on carbon Vulcan XC-72 using three methods starting with chloroplatinic acid as a precursor: (i) formic acid as a reductor agent; (ii) impregnation method followed by reduction in hydrogen atmosphere at moderated temperature; and (iii) microwave-assisted reduction in ethylene glycol. The catalytic and size studies were also performed on a commercial Pt catalyst (E-Tek, De Nora). The characterization of the particle size and distribution was performed by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The characterizations of the catalytic and electrocatalytic properties of the catalysts were determined by studying the cyclohexane dehydrogenation reaction (CHD) and the behavior under cyclic voltammetry (CV) in sulfuric acid solutions. The measured electrochemical activity, along with the hydrogen chemisorption of the catalysts allows the estimation of effective particle sizes, which are much larger than those measured by TEM and XRD. The catalysts prepared by reduction with formic acid and ethylene glycol (microwave-assisted) show electrochemical activities very close to those of the commercial catalyst, and are almost insensitive to the Pt dispersion or Pt particle size. The chemical activity in CHD correlates well with the metallic dispersion determined by hydrogen chemisorption, indicating similar accesibility of H{sub 2} and cyclohexane to the catalyst surface. (author)

  8. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Science.gov (United States)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook

    2015-08-01

    Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25-40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  9. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    Science.gov (United States)

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  10. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 oC) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions

  11. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    Science.gov (United States)

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  12. Preparation of activated carbons from walnut shells by vacuum chemical activation%核桃壳真空化学活化制备活性炭

    Institute of Scientific and Technical Information of China (English)

    杨娟; 丘克强

    2012-01-01

    Activated carbons were prepared from walnut shells by vacuum chemical activation. The effects of system pressure, activation temperature and impregnation ratio on the properties (BET surface area, pore size distribution, iodine and methylene blue adsorption values, and surface characteristics) of activated carbon were studied. The results show that the BET surface area and total pore volume of activated carbon obtained at system pressure of 30 kPa have increased by 27% and 25% respectively compared with those of activated carbon prepared under atmospheric condition. Vacuum condition is beneficial to develop microporous structure, and mesopore tends to be well developed at high impregnation ratio. The activated carbon prepared at system pressure of 30 kPa, activation temperature of 450 ℃, and impregnation ratio of 2.0, possesses a BET surface area of 1 800 m2/g, a total pore volume of 1.176 cm3/g, an iodine adsorption value of 1 050 mg/'g. a methylene blue adsorption value of 315 mg/g and an isoelectric point of 9.15.%采用真空化学活化法,以核桃壳为原料,氯化锌为活化剂制备活性炭,探讨体系压力、活化温度、浸渍比对活性炭比表面积、孔径分布、碘值和亚甲基蓝值以及表面性质的影响.研究结果表明,30 kPa时制备的活性炭其比表面积和总孔体积比常压条件时分别提高了27%和25%;在低压条件下有利于微孔的形成,在高浸渍比的条件下有利于中孔的形成.在体系压力为30 kPa,活化温度为450℃,浸渍比为2.0时,所得活性炭的BET比表面积为1800 m2/g,总孔体积为1.176 cm3/g,等电点为9.15,碘吸附量为1050 mg/g,亚甲基蓝吸附量为315 mg/g.

  13. Preparation of new titanium nitride-carbon nanocomposites in supercritical benzene and their oxygen reduction activity in alkaline medium

    International Nuclear Information System (INIS)

    Highlights: • TiN/C/graphene composite (SIV) was synthesized using supercritical benzene medium. • SIV catalyst shows high ORR activity due to both TiN and graphene phases. • SIV improves ORR via a mainly 4-electron pathway to form water and around 16% H2O2. • SIV exhibits high stability due to reduce H2O2 and prevent surface poisoning. - Abstract: Titanium nitride-carbon nanocomposites are synthesized by the reaction of TiCl4 and NaN3 in supercritical benzene medium that also serves as a carbon source. The as-prepared precursors (SI, SII) are subjected to several heat treatments (SIII–SV). The synthesized nanoparticles are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The samples are tested as electrocatalyst for oxygen reduction reaction in an alkaline electrolyte. It is shown that the electrocatalytic properties of the synthesized nanoparticles are highly dependent on the heat treatment atmosphere and duration. The heat treatment under ammonia atmosphere at 1000 °C for 10 h (SIV) increased the ORR mass activity from −0.64 (SI) to −1.28 mA mg−1 (SIV) at −0.6 V vs. SCE. Moreover, the heat treated sample (SIV) shows almost twice ORR mass activity as commercial TiN. Rotating disk electrode (RDE) measurements exhibit ORR on commercial TiN proceeds via two parallel pathways including two and four electrons, resulting in almost 60% H2O2 production, while SIV sample improves ORR by reducing H2O2 formation to almost 16%. The high ORR activity and stability of the sample SIV are mainly due to (i) random layer structure of carbon that combines through a hybrid state with TiN nanoparticles, (ii) unstoichiometric nitrogen and oxygen doped into TiN lattice, and (iii) higher electrochemical surface area. Moreover, the possible pathways of carbon phase formation in vicinity of

  14. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Science.gov (United States)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  15. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  16. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling. PMID:26685062

  17. Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni

    2016-04-01

    Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.

  18. Preparation of N-doped ultramicropore-containing active carbons from waste soybean dreg by one-step carbonization/activation%炭活化一步法制备豆渣基极微孔活性炭

    Institute of Scientific and Technical Information of China (English)

    李大伟; 田原宇; 郝俊辉; 田斌; 李俊花; 车远军

    2015-01-01

    So far, some studies have been conducted on preparation of nitrogen-doped (N-doped) active carbon from N-containing biomasses using alkalis as activators. In these studies, the commonly used preparation method was activation with alkali after biomass carbonization. Compared with this method, the one-step carbonization/activation method was simple and apt to reduce energy consumption, but its application in the preparation of N-doped active carbon was not investigated. In this research, N-doped active carbon with ultramicropores was prepared from waste soybean dreg using K2CO3 as activator via one-step carbonization/activation technology. The effects of activation temperature on chemical composition, pore structure, and low-pressure CO2 adsorption performances of the active carbon were investigated. To prepare active carbon, waste soybean dreg with particle size of 0.15-0.90 mm was impregnated with K2CO3 aqueous solution at K2CO3/dreg dry-basis weight ratio of 2:1, and after mixing uniformly, the mixture was sealed and kept for 4 h. Then, it was dried in an oven at 110℃ till constant weight was achieved. Subsequently, the dried mixture was heated to 500-650℃ at an average heating rate of 6℃/minand then kept for 75 min. Afterwards, the heated mixture was washed with distilled water until the pH value reached about neutral, and then dried at 110℃ for 12 h to produce active carbon. The obtained samples were subsequently characterized; pore structure and CO2 adsorption performance were measured with volumetric adsorption analyzers, elemental composition was measured with an elemental analyzer, surface chemistry was measured with an X-ray photoelectron spectroscopy, and surface morphology was measured with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To gain an insight into the mechanism of pore formation, the soybean dreg and K2CO3-impregnated soybean dreg were pyrolyzed and analyzed using a thermogravimetric analyzer

  19. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    Manonmani Subbian

    2010-02-01

    Full Text Available The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated, and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. The optimum pH for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of each experiment. The adsorption of methylene blue followed the pseudo-second-order rate equation and fit the Langmuir, Freundlich, Dubinin-Radushekevich (D-R, and Tempkin equations well. Maximum removal of MB was obtained at pH 6 as 99.79% for adsorbent doses of 0.6 g/ 50 mL and 25 mg/L initial dye concentrations at room temperature. The maximum adsorption capacity obtained from the Langmuir equation was 46.73 mg g-1. The rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2 > 0.9677 with intraparticle diffusion as one of the rate-determining steps. Activated carbon developed from the peel of Cucumis sativa fruit can be an attractive option for dye removal from wastewater.

  20. Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation

    Directory of Open Access Journals (Sweden)

    Baolin Xing

    2016-01-01

    Full Text Available Photocatalysts comprising nanosized TiO2 particles on activated carbon (AC were prepared by a sol-gel method. The TiO2/AC composites were characterized by X-ray diffraction (XRD, thermogravimetric (TG analysis, nitrogen adsorption, scanning electron microscope (SEM, transmission electron microscope (TEM, and energy dispersive X-ray (EDX. Their photocatalytic activities were studied through the degradation of Rhodamine B (RhB in photocatalytic reactor at room temperature under ultraviolet (UV light irradiation and the effect of loading cycles of TiO2 on the structural properties and photocatalytic activity of TiO2/AC composites was also investigated. The results indicate that the anatase TiO2 particles with a crystal size of 10–20 nm can be deposited homogeneously on the AC surface under calcination at 500°C. The loading cycle plays an important role in controlling the loading amount of TiO2 and morphological structure and photocatalytic activity of TiO2/AC composites. The porosity parameters of these composite photocatalysts such as specific surface area and total pore volume decrease whereas the loading amount of TiO2 increases. The TiO2/AC composite synthesized at 2 loading cycles exhibits a high photocatalytic activity in terms of the loading amount of TiO2 and as high as 93.2% removal rate for RhB from the 400 mL solution at initial concentration of 2 × 10−5 mol/L under UV light irradiation.

  1. Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption

    International Nuclear Information System (INIS)

    Carbonaceous adsorbents with controllable surface areas were chemically activated with KOH at 780 deg. C from char that had been carbonized from cane pith at 450 deg. C. The pore properties including the BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons were characterized and derived using the t-plot method based on N2 adsorption isotherms. The activated cane pith carbons, with KOH/char ratios of 2-6, exhibited BET surface areas ranging from 912 to 2299 m2 g-1. The scanning electron microscopic (SEM) observations revealed that the surface morphology of honeycombed holes on all activated cane pith carbons was significantly influenced by the KOH/char ratio. The adsorption kinetics and equilibrium isotherms of acid blue 74, methylene blue, basic brown 1, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water at 30 deg. C on the activated carbons were studied. The adsorption kinetics were suitably described by a simplified kinetic model, the Elovich equation. All adsorption equilibrium isotherms were in agreement with the Langmuir equation, and were used to compare the covered area (S c/S p) of the activated carbons at different KOH/char ratios. The high-surface-area activated carbons were proven to be promising adsorbents for pollution control and for other applications

  2. Effect of Pre-oxidation on the Properties of Crushed Bituminous Coal and Activated Carbon Prepared Therefrom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper.Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons.A Uniform Design method was used to arrange the experiments, IR and adsorption experiments were used to characterize these oxidized coals, chars and activated carbon samples.The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K.Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g.The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.

  3. An optimization study on removal of Zn from aqueous solution by ultrasound assisted preparation of activated carbon from alkaline impregnated hazelnut shell

    International Nuclear Information System (INIS)

    Nowadays, ultrasound has gained importance in a wide variety of industrial fields especially in wastewater and sewage treatment. Ultrasound exhibits several beneficial effects in solid liquid systems by means of the cavitations phenomenon by causing the formation of many microcracks on the solid surface; thus, it increases the surface area between the reactants and cleans solid reactant or catalyst particle surfaces. In this study, activated carbon adsorbent for removing heavy metal cations such as Zn2+ from aqueous solutions has been prepared. For this purpose, KOH solution was impregnated into hazelnut shells under ultrasonic irradiation. After filtration, hazelnut shells have been carbonized under inert N2 atmosphere. The experiments were planned by statistical design methods. Finally, activated carbons were characterized by the evolution of their zinc adsorption capacity. Optimum preparation conditions were obtained by using constrained optimization program by means of the Matlab computer software. Activated carbon with the maximum adsorption capacity was further characterized by using scanning electron microscopy. The alkaline impregnation into hazelnut shells under ultrasonic irradiation was found to be beneficial for preparation of activated carbon for use as adsorbents to remove Zn2+ from aqueous solutions. (author)

  4. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  5. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.

    Science.gov (United States)

    Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

    2003-03-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment.

  6. Removal of Hg (II) from aqueous solution on powdered coal-based activated carbon: experiemental design of microwave assisted preparation, equilibrium and kinetic study

    International Nuclear Information System (INIS)

    Preparation of activated carbon from anthracite through microwave-assisted activation was optimized by response surface methodology (RSM). The satisfactory conditions were obtained as follows: 693 W of microwave power, 10 min of irradiation time and 1:1 of the ratio of KOH to coal, and the corresponding adsorbance of iodine and methylene blue (MB) were of 799.32 and 132.03 mg/g, respectively. The production was characterized using nitrogen adsorption isotherm, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The resultant powdered activated carbons were applied for removing Hg(II) from aqueous solution at different dosage of activated carbon, concentrations of Hg(II), adsorption temperature and pH. The Langmuir isotherm was excellently correlated to equilibrium data of Hg(II) adsorption, showing Langmuir adsorption capacities of Hg(II) was 145.41 mg/g. (author)

  7. 碳酸钾化学活化法制备土霉素菌渣活性炭研究%Preparation of Oxytetracycline Bacterial Residue Activated Carbon by Chemical Activation with Potassium Carbonate

    Institute of Scientific and Technical Information of China (English)

    周保华; 高勤; 郭斌; 朱能

    2012-01-01

    为了解决制药行业土霉素菌渣处置的难题,该文以土霉素菌渣为原材料,K2CO3为活化剂,采用化学活化法制备土霉素菌渣活性炭.通过电镜扫描和氮气吸附对较佳条件下制备的活性炭特性进行了表征.实验得出制备土霉素菌渣活性炭的较佳工艺条件为:活化温度800℃,活化时间3h,活化比1∶3.该活性炭的苯酚吸附值为215 mg/g,比表面积达1 593.09 m2/g,亚甲基蓝吸附值为117 mg/g.该活性炭孔结构丰富,主要以微孔为主,平均孔径为1.09 nm,微孔孔容为0.54 cm3/g,中孔孔容为0.27 cm3/g.%In order to solve the problem of oxytetracycline bacterial residue disposal of pharmaceutical industry,the activated carbons prepared from oxytetracycline bacterial residue with K2CO3 under chemical activation are investigated here. The properties of the activated carbons under better conditions are performed by sanning electron microscopy and Nitrogen adsorption. Experimental results show that the better process conditions of preparation for oxytetracycline bacterial residue activated carbons are 800 ℃ activation temperature,3 h activation time and 1:3 activation ratio. The phenol adsorption of these activated carbons is 215 mg/g,the special surface area is 1 593. 09 m2/g and the methylene blue adsorption is 117 mg/g. The activated carbons are affluent in pores, which are mainly micropores. The average pore size of the activated carbons is 1. 09 nm, and the micropore volume and mesopore volume are 0. 54 cm3/g and 0. 27 cmVg respectively.

  8. Preparation of potassium iron(III) hexacyanoferrate(II) supported on activated carbon and Cs uptake performance of the adsorbent

    International Nuclear Information System (INIS)

    Synthesis of potassium iron(III) hexacyanoferrate(II) (K/Fe-Fe(CN)6) in the pores of activated carbon (AC) was attempted by impregnating AC with K4[Fe(CN)6] and FeCl3, and the Cs uptake performance of the resulting adsorbent was examined. K/Fe-Fe(CN)6 supported on AC was prepared by varying the reaction conditions such as the supplied amounts and molar ratios of the reagents, and the Cs uptake performance was optimized. The impregnated product was characterized by XRD, EPMA, and porosimetry to elucidate the condition to which Fe4[Fe(CN)6]3 was filled in the AC pores. The K/Fe-Fe(CN)6-on-AC was immersed in seawater containing 0.075 mmol·dm-3 Cs and agitated for 1 day to obtain the Cs uptake. The Cs uptake was large at pH 10.5. The maximum Cs uptake was 10.4 μmol·g-1 at the equilibrium Cs concentration of 49 μmol·dm-3 and the distribution coefficient was 45.5 dm3·g-1 at the equilibrium concentration of 0.015 μmol·dm-3, respectively. When K/Fe-Fe(CN)6-on-AC was immersed in Cs-containing seawater, K+ ions in the adsorbent were completely exchanged for Na+ ions in seawater, and the added Cs+ ions were then substituted for the Na+ ions in the adsorbent. (author)

  9. Preparation and textural characterisation of activated carbon from vine shoots ( Vitis vinifera) by H 3PO 4—Chemical activation

    Science.gov (United States)

    Corcho-Corral, B.; Olivares-Marín, M.; Fernández-González, C.; Gómez-Serrano, V.; Macías-García, A.

    2006-06-01

    An abundant and low-cost agricultural waste as vine shoots ( Vitis vinifera) (VS), which is generated by the annual pruning of vineyards, has been used as raw material in the preparation of powder activated carbon (AC) by the method of chemical activation with phosphoric acid. After size reduction, VS were impregnated for 2 h with 60 wt.% H 3PO 4 solution at room temperature, 50 and 85 °C. The three impregnated products were carbonised at 400 °C. The product impregnated at 50 °C was heated either first at 150-250 °C and then at 400 °C or simply at 350-550 °C in N 2 atmosphere. The time of isothermal treatment after each dynamic heating was 2 h. The carbons were texturally characterised by gas adsorption (N 2, -196 °C), mercury porosimetry, and density measurements. FT-IR spectroscopy was also applied. Better developments of surface area and microporosity are obtained when the impregnation of VS with the H 3PO 4 solution is effected at 50 °C and for the products heated isothermally at 200 and 450 °C. The mesopore volume is also usually higher for the products impregnated and heated at intermediate temperatures.

  10. Preparation, surface characteristics, and electrochemical double-layer capacitance of KOH-activated carbon aerogels and their O- and N-doped derivatives

    Science.gov (United States)

    Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-12-01

    Carbon aerogels are obtained by carbonizing organic aerogels prepared by polycondensation reaction of resorcinol or pyrocatechol with formaldehyde. They are KOH-activated at two KOH/carbon ratios to increase pore volume and surface area. Selected samples are also surface-treated to introduce oxygen and nitrogen functionalities. The objectives are to investigate the effect of porosity and surface functionalities on the electrochemical capacitance of the carbon and activated carbon aerogels. Samples are characterized by N2 and CO2 adsorption at -196 and 0 °C, respectively, immersion calorimetry, temperature-programmed desorption, and X-ray photoelectron spectroscopy in order to determine their surface area, porosity, and surface chemistry. Two series of samples are obtained: one micro-mesoporous and the other basically microporous. A surface area up to 1935 m2 g-1 was obtained after KOH activation. Electrochemical double-layer capacitance was studied by cyclovoltammetry and chronopotentiometry with a three-electrode cell, using Ag/AgCl as reference electrode. Gravimetric capacitance at 0.125 A g-1 is related to N2 adsorption-measured micropore volume and mean size and to particle density. The highest gravimetric capacitance, 220 F g-1, is obtained with two O- and N-doped samples. Volumetric capacitance of 123 F cm-3, double the value generally needed for applications in small-volume systems, is obtained with a largely microporous oxygen-doped activated carbon aerogel.

  11. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    Science.gov (United States)

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment. PMID:26521558

  12. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation

    Directory of Open Access Journals (Sweden)

    Mohd Azmier Ahmad

    2014-08-01

    Full Text Available Pomegranate peel was converted into activated carbon using microwave induced and KOH activation techniques. The prepared activated carbon (PPAC was characterized using FTIR, TGA, SEM, and nitrogen-adsorption surface area (BET. BET measurements gave remarkable increase in both the surface area (941.02 m2/g and total pore volume (0.470 cm3/g. Various operational parameters such as pH, initial dye concentration, contact time and solution temperature in batch systems were investigated on the use of PPAC in the adsorption of remazol brilliant blue reactive (RBBR dye. At pH 2, the optimum dye removal was 94.36%. The amount of dye removed was dependent on initial dye concentration and solution temperature. Adsorption kinetics was found to follow pseudo-second-order kinetic model. Experimental data were analyzed using eight model equations: Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Radke Prausnite, Sips, Viet–Sladek and Brouers – Sotolongo isotherms and it was found that the Freundlich isotherm model fitted the adsorption data most with the highest correlation (R2≥0.99 and lowest normalized standard deviation, ∆qe. Both intra-particle and film diffusion governed the adsorption process. Thermodynamic parameters, such as standard Gibbs free energy (∆G0, standard enthalpy (∆H0, standard entropy (∆S0, and the activation energy (Ea were calculated. The adsorption of RBBR dye onto PPAC was found to be spontaneous and exothermic in nature. This study shows that the adsorption follows physisorption mechanism.

  13. Preparation of Co-Mo catalyst using activated carbon produced from egg shell and SiO2 as support – A hydrogenation study

    Directory of Open Access Journals (Sweden)

    Adeniyi Sunday Ogunlaja

    2010-12-01

    Full Text Available The preparation of a series of cobalt-molybdenum (Co-Mo catalysts supported on SiO2 and carbonized egg shells were investigated using standard procedures; the catalysts were further calcined at the 500 oC temperature to generate the internally consistent set, and the metal atoms content were varied in a regular manner. The ratio 1:4 (Co2+: Mo6+ by weight was employed for the various catalysts prepared. The carbonized egg shells were divided into two parts: the first part was leached with HNO3, as the other one was not leached. Activity tests were run using these catalysts containing leached and unleached carbon for the hydrogenation of methyl orange; the changes in absorbance regarding the unhydrogenated methyl orange at a wavelength of 460 nm were respectively 0.07 and 0.067 when the catalyst containing the leached carbonized egg shell (catalyst A and the catalyst containing the unleached activated carbon (catalyst B were used for the hydrogenation reaction. This confirms that catalyst A is more efficient in hydrogenating methyl orange than catalyst B.

  14. TiO2 Immobilized on Manihot Carbon: Optimal Preparation and Evaluation of Its Activity in the Decomposition of Indigo Carmine

    Directory of Open Access Journals (Sweden)

    Cynthia M. Antonio-Cisneros

    2015-01-01

    Full Text Available Applications of carbon-TiO2 materials have attracted attention in nanotechnology due to their synergic effects. We report the immobilization of TiO2 on carbon prepared from residues of the plant Manihot, commercial TiO2 and glycerol. The objective was to obtain a moderate loading of the anatase phase by preserving the carbonaceous external surface and micropores of the composite. Two preparation methods were compared, including mixing dry precursors and immobilization using a glycerol slurry. The evaluation of the micropore blocking was performed using nitrogen adsorption isotherms. The results indicated that it was possible to use Manihot residues and glycerol to prepare an anatase-containing material with a basic surface and a significant SBET value. The activities of the prepared materials were tested in a decomposition assay of indigo carmine. The TiO2/carbon eliminated nearly 100% of the dye under UV irradiation using the optimal conditions found by a Taguchi L4 orthogonal array considering the specific surface, temperature and initial concentration. The reaction was monitored by UV-Vis spectrophotometry and LC-ESI-(Qq-TOF-MS, enabling the identification of some intermediates. No isatin-5-sulfonic acid was detected after a 60 min photocatalytic reaction, and three sulfonated aromatic amines, including 4-amino-3-hydroxybenzenesulfonic acid, 2-(2-amino-5-sulfophenyl-2-oxoacetic acid and 2-amino-5-sulfobenzoic acid, were present in the reaction mixture.

  15. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chan Kim; Lee, Wan Jin; Yang, Kep Seung [Chonnam National Univ., Gwangju (Korea). Faculty of Applied Chemical Engineering; Choi, Yeong Og [Korea Inst. of Industrial Technology, ChonAn (Korea). Technical Textile Research Team

    2004-11-30

    The poly(amic acid) (PAA) solution was successfully electrospun at voltages between 13 and 15 kV, forming yellow webs of fibers with diameters of 2-3 {mu}m. The PAA web was then imidized with yield of about 81%. The imidized webs were carbonized in the temperature range from 700 to 1000 {sup o}C under a nitrogen atmosphere with yields greater than or equal to 53%. The flexible carbonized fiber web with the amorphous structure and the relatively high electrical conductivity of 2.5 S/cm at 1000 {sup o}C appears to be a good candidate material for the electrode of electrical double layer capacitors (EDLCs). The carbonized webs were activated under steam in the temperature range of 650-850 {sup o}C resulting surface specific surface area of 940-2100 m{sup 2}/g. The activated carbonized webs were tested electrochemically for the performances as electrodes of EDLC in 30 wt.% KOH aqueous solution. The specific capacitance was 175 F/g even at a high current density of 1000 mA/g. (Author)

  16. High-valued Utilization of China Fir Sawdust Extracted Essential Oil: Preparation of Granular Activated Carbons for n-Butane Adsorption

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-zhen; DENG Xian-lun; LIU Xiao-min

    2011-01-01

    [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil. [Method] In the field of fir essential oil extraction, the processed China fir sawdust was used to prepare low-valued products. The high-valued utilization of China fir sawdust extracted essential oil (CFSEEO), namely as a precursor to prepare granular activated carbons (GACs), was attempted. The materials were characterized by ultimate analysis, SEM and XRD. [Rusult] A butane working capacity (BWC) of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml. It was available to introduce the technology of extracting essential oil from the China fir sawdust (CFS) in the industrial production process of activated carbons with high BWC (12.0 -16.5 g/100 ml) and high surface area (2 000 -2 630m2/g) using phosphoric acid based on previous studies of the authors. [Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.

  17. A simple preparation of carbon doped porous Bi{sub 2}O{sub 3} with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Liu, Suqin [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Liang, Ying [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China)

    2014-09-01

    Graphical abstract: Carbon doped bismuth oxide with a porous structure was prepared by calcination of bismuth nitrate in glycol solution. The as-prepared samples show enhanced visible-light photocatalytic activity. - Highlights: • C-doped Bi{sub 2}O{sub 3} with a porous structure is obtained by a simply calcination of Bi(NO{sub 3}){sub 3} in glycol. • The C-doped Bi{sub 2}O{sub 3} exhibited much higher photocatalytic activity than the pure Bi{sub 2}O{sub 3}. • Carbon was incorporated into the lattice of Bi{sub 2}O{sub 3} lattice. - Abstract: Carbon doped bismuth oxide (Bi{sub 2}O{sub 3}) with a porous structure is obtained by a simply calcination of bismuth nitrate pentahydrate (Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O) in glycol solution. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV–Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) in an aqueous solution under visible-light radiation (λ > 420 nm). The results show that carbon was incorporated into the lattice of Bi{sub 2}O{sub 3}. The absorption intensity of C-doped Bi{sub 2}O{sub 3} increases in the region of 450–530 nm and the absorption edge has an obvious shift to long wavelength. The C-doped Bi{sub 2}O{sub 3} exhibited much higher photocatalytic activity than the pure one due to the synergetic effects of the porous structure and the improved absorption in the visible-light region.

  18. The differences of electrochemical performance between the purchased lead carbonate and the prepared lead carbonate

    Institute of Scientific and Technical Information of China (English)

    包有富

    2005-01-01

    The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn't contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate is smaller than that of the pur-chased lead carbonate.

  19. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    Science.gov (United States)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2016-09-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  20. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  1. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  2. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    LI Youdi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2008-01-01

    TiO2 nanoparUcle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatslytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  3. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    Science.gov (United States)

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively.

  4. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Directory of Open Access Journals (Sweden)

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  5. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    OpenAIRE

    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé

    2007-01-01

    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  6. Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor

    International Nuclear Information System (INIS)

    Electrochemical characteristics of an electrodeposited chlorogenic acid film on multi-wall carbon nanotubes glassy carbon electrode (CGA-MWCNT-GCE) and its role as a sensor for electrocatalytic oxidation of hydroxylamine are described. Cyclic voltammograms of the CGA-MWCNT-GCE indicate a pair of well-defined and nearly reversible redox couple with the surface confined characteristics at a wide pH range of 2.0-12.0. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of CGA adsorbed on MWCNT were calculated 0.48 and 44 ± 2 s-1 respectively. The CGA-MWCNT-GCE shows a dramatic increase in the peak current and/or a decrease in the overvoltage of hydroxylamine electrooxidation in comparison with that seen at a CGA modified GCE, MWCNT modified GCE and activated GCE. The kinetic parameters of electron transfer coefficient, α, the heterogeneous electron transfer rate constant, k', and exchange current, i0, for oxidation of hydroxylamine at the modified electrode surface were determined using cyclic voltammetry. Four linear calibration ranges and high repeatability with relative standard deviation of 4.6%, for a series of four successive measurements in 17.7 μM hydroxylamine, are obtained at the CGA-MWCNT-GCE using an amperometric method. Finally, the modified electrode was successfully used for determination of spiked hydroxylamine in two water samples.

  7. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

    Science.gov (United States)

    Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-01-01

    Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively.

  8. 低温预处理磷酸法制备活性炭%Preparation of activated carbon by phosphoric acid through low temperature pretreatment

    Institute of Scientific and Technical Information of China (English)

    吴开金; 林冠烽; 孙康; 陈涵; 陈志强; 官新宇

    2012-01-01

    Activated carbons were prepared by phosphoric acid activation from Chinese fir powder which was impregnated by phosphoric acid and pretreated at low temperature. The effect of pretreatment temperature, activation temperature, impregnation ratio, holding time and phosphoric acid concentration on the properties of the activated carbons were studied. The results showed that pretreatment at low temperature promoted the penetration of phosphoric acid into lignocellulose, enhanced the activation of phosphoric acid, and increased the adsorption capability of activated carbon. As the increasing of activation temperature, holding time and phosphoric acid concentration, the adsorption capability, specific surface area and pore volume of activated carbon were increased; with the increasing of impregnation ratio, the adsorption properties of activated carbon increased at a maximum value and then decreased. N2 adsorption isotherms showed that the increasing of activation temperature was benefited for surface area and pore volume. Under optimized experimental condition, the surface area, total pore volume and microporous volume of the samples were 1628.7 m2 · G-1,0.894 cm3 · G-1and 0.699 cm3 · G-1, respectively.%以磷酸浸渍杉木屑,并在低温下进行预处理,制备活性炭.探讨了预处理温度、活化温度、浸渍比、保温时间和磷酸浓度等因素对活性炭性能的影响.结果表明,低温预处理有利于磷酸在木质原料内部的渗透,促进磷酸的活化作用,提高活性炭的吸附性能;活化温度、保温时间和磷酸浓度对活性炭的吸附性能、比表面积和孔容积具有正向作用;随着浸渍比的增大,活性炭的吸附性能呈先升后降的趋势;N2吸附等温线分析表明,活化温度的升高有利于其比表面积和孔容积的提高.在较佳的实验条件下,活性炭的比表面积、总孔容积和微孔容积分别为1628.7 m2·g-1和0.894、0.699 cm3·g-1.

  9. Preparation and Characterization of the Activated Carbon-Nylon Beads: Novel Material for In Situ Microbe Sampler and Microcosm Experiment in Groundwater Environment

    Science.gov (United States)

    Liu, J.; Liu, H.

    2015-12-01

    The organic pollution of groundwater is a widespread problem in the word. It is significant to study the microbial community especially related to organic contaminant biodegradation and their variation with groundwater environment parameters, so as to evaluate the biodegradability of the organic contaminants and then make a right decision for bioremediation. One of good ways for this study is to build a microcosm in groundwater containing target contaminant, where microbes especially relating to biodegradation will grow in the microcosm and be collected for analysis. This research aims to prepare a novel material for in situ microbe sampler and microcosm experiment in groundwater environment. The novel material, namely, the activated carbon-nylon (AC-N) beads, was prepared using activated carbon and nylon as main raw materials. The material consists of 3-4mm diameter spherical beads (Fig.1A and Fig.2 A) which have an internal surface area greater than 500 m2 g-1. FT-IR spectra (Fig.3) indicated the composition of activated carbon and nylon due to the variation of the peaks at the near 1627 cm-1and 1558 -1538 cm-1 before and after complex reaction. The equilibrium adsorption capacity of benzene on the beads was 16.76 mg/g at the initial concentration of 100 mg/L. The adsorption kinetics was found to follow the pseudo-second-order kinetic model (Fig.4). The mechanism of the adsorption process was determined from the intraparticle diffusion model. Camera and SEM images (Fig.1 B and Fig.2 A and B) showed that the beads had an open and channel pore structures, the microbes might enter into and grow up in the beads (Fig.1 C and Fig.2 C). All these results showed that the AC-N beads could form the in situ microcosm of organic pollutants and microbes, which provided a promising prospect for assessing the biodegradability of the organic pollutants by intrinsic microbes in the groundwater.

  10. Effect of HNO{sub 3} treatment on the SO{sub 2} adsorption capacity of activated carbon prepared from Chinese low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Hang Wenhui; Wang ling; Li Shurong [China Coal Research Institute, Beijing (China)

    1999-11-01

    SO{sub 2} removal from flue gas by activated carbon and HNO{sub 3} treated activated carbon from Chinese low-rank coal was studied. SO{sub 2} adsorption on activated carbon is mainly chemisorption. There was shown to be a correlation between adsorption capacity and the number of active sites on the carbon surface. HNO{sub 3} treatment transforms C-H bonds in activated carbon into active sites, for removal of SO{sub 2}. 2 figs., 2 tabs.

  11. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.

    Science.gov (United States)

    Ma, Yuhui; Niu, Ruxuan; Wang, Xiaona; Wang, Qunhui; Wang, Xiaoqiang; Sun, Xiaohong

    2014-11-01

    This is the first study on the co-pyrolysis of spent substrate of Pleurotus ostreatus and coal tar pitch, and the activated carbon prepared from the pyrolytic char. Thermogravimetry (TG) analysis was carried out taking spent substrate, coal tar pitch and spent substrate-coal tar pitch mixture. The activation energies of pyrolysis reactions were obtained via the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods. The kinetic models were determined by the master-plots method. The activated carbons were characterised by N2-adsorption, Fourier transform infrared spectroscopy and X-ray diffraction. Experimental results demonstrated a synergistic effect happened during co-pyrolysis, which was characterised by a decreased maximum decomposition rate and an enhanced char yield. The average activation energies of the pyrolysis reactions of spent substrate, coal tar pitch and the mixture were 115.94, 72.92 and 94.38 kJ mol(-1) for the Flynn-Wall-Ozawa method, and 112.17, 65.62 and 89.91 kJ mol(-1) for the Kissinger-Akahira-Sunose method. The reaction model functions were f(α) = (1-α)(3.42), (1-α)(1.72) and (1-α)(3.07) for spent substrate, coal tar pitch and the mixture, respectively. The mixture char-derived activated carbon had a Brunauer-Emmett-Teller surface area up to 1337 m(2) g(-1) and a total pore volume of 0.680 cm(3) g(-1). Mixing spent substrate with coal tar pitch led to the creation of more micropores and a higher surface area compared with the single spent substrate and coal tar pitch char. Also, the mixture char-derived activated carbon had a higher proportion of aromatic stacking. This study provides a reference for the utilisation of spent substrate and coal tar pitch via co-pyrolysis, and their pyrolytic char as a promising precursor of activated carbon.

  12. Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(VI) removal%炭化米糠经臭氧活化制备活性炭及其去除Cr(VI)离子

    Institute of Scientific and Technical Information of China (English)

    Sivaraju Sugashini

    2015-01-01

    以臭氧为活化剂,炭化的米糠为原料制备出活性炭。采用氮吸附、SEM-EDAX 和FT-IR对样品进行表征。活性炭的比表面积由活化前的20 m2/g增加到380 m2/g。在臭氧活化过程中,吸附在炭材料上的二氧化硅变疏松,从而导致碳逸出。臭氧同时以氧分子和原子形式存在于炭表面。氧原子,作为强氧化剂,将炭表面氧化成酸性官能团如羧基、酮基和酚基。采用该活性炭吸附Cr (VI)离子,Cr (VI)离子的最大去除率(94%)的条件为:pH值2.0、浓度100 mg/L、吸附量0.2 g,时间2.5 h及转速300 r/min。采用吸附平衡和动力学模型探讨吸附机理,结果表明,吸附等温线符合Freundlich方程,吸附速率符合准二级动力学方程。吸附是自发的放热反应,可能与NaOH脱落而恢复Cr和碳有关。%Activated carbon ( AC) was prepared from carbonized rice husks using ozone as an activating agent. The AC was char-acterized by nitrogen adsorption, SEM-EDAX and FT-IR. The Brunauer-Emmett-Teller surface area of the carbons was increased from 20 to 380 m2/g by the activation. It was observed that the silica attached to the carbonaceous material is loosened, leading to a release of carbon during the ozone activation. Ozone exists as both molecular and atomic oxygen on the surface of carbon. Atomic oxygen, as a powerful oxidizing agent, oxidizes the carbon surface into acidic functional groups such as carboxylic, ketonic and phenolic. The rice husk AC was used for the adsorption of Cr (VI) ions. A maximum removal percentage (94%) of Cr (VI) ions was obtained for a 100 mg/L aqueous solution at the optimized conditions of pH value of 2. 0, adsorbent dosage of 0. 2 g, time of 2. 5 h and stirring speed of 300 r/min. Adsorption equilibrium and kinetic models were used to investigate the adsorption mecha-nism. It was found that the adsorption isotherms were well fitted by the Freundlich equation. The adsorption rate follows pseudo sec-ond order kinetics

  13. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  14. 磷酸-硫酸活化法制备木屑活性炭工艺%Preparation of Sawdust Active Carbon by Phosphoric Acid-Sulfuric Acid Activation

    Institute of Scientific and Technical Information of China (English)

    李学琴; 李翔宇; 亓伟; 时君友; 庞久寅; 杜洪双

    2015-01-01

    以林业废弃物杨木屑为原料,采用正交试验法探讨以磷酸为主活化剂,浓硫酸为辅助活化剂,在不同工艺条件下制备活性炭,测定其亚甲基蓝脱色力和碘的吸附值,考虑活化因素对活性炭得率和吸附性能的影响,确定最佳工艺参数.试验结果表明:磷酸-硫酸活化法制备木屑活性炭的最佳工艺条件为浸渍比1∶2.5,浸渍浓度60%,活化时间90 min,活化温度550℃.%The various process conditions of activated carbon were prepared from waste poplar sawdust by phosphoric acid-sulfuric acid activation which used phosphoric acid as main activator and concentrated sulfuric acid as auxiliary activator according to orthogonal test. The experiment determined the methylene blue decolorizing power and iodine adsorption value of activated carbon,the influence of activating factors on the yield and adsorption properties of activated carbon was studied. The experimental results showed that the optimum process conditions of preparation of sawdust active carbon by phosphoric acid-sulfuric acid activation are impregnation ratio 1 ∶ 2. 5, impregnation concentration 60%, activation time 90 min, activation temperature 550℃.

  15. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    Directory of Open Access Journals (Sweden)

    Marcelo Marques Tusi

    2007-06-01

    Full Text Available PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent of carbon source and time used in the synthesis.

  16. 玉米秸秆制备活性炭的吸附性能研究%Experiment on Adsorption Performance of Activated Carbon Prepared by Corn Straws

    Institute of Scientific and Technical Information of China (English)

    刘恩海; 刘圣勇; 王长忠; 潘嘉信; 赵坤正; 徐云婷; 苏之勇

    2016-01-01

    Objective] To study the adsorption performance of activated carbon prepared by corn straws.[ Methods] Activated carbon pre-pared by corn straws was taken as research object, adsorption performance simulation test equipment was set up, and the static weight method was used to measure the activated carbon adsorption capacity of methanol.Also, adsorption bed structure, adsorption bed containing different particle size carbon particle, activated carbon supplemented with different amounts of graphite powder and modified activated carbon adsorption performance impact on the system were studied.[Results] For the bed material containing the same kinds of carbon adsorption samples at the same temperature, the new adsorption bed A adsorption performance was significantly better than for bed B whose structure is not transformed;when it reached the same absorption capacity 0.22 g/g, bed A will absorb five minutes earlier;in the comparison test of different size and the same diameter of the activated carbon bed, for adsorption at the same temperature, the adsorption performance was significantly better than containing the same diameter, and achieved the same adsorption capacity 0.22 g/g, the adsorption was implemented 16 minutes ahead of time;add proper amount of activated carbon graphite in the bed can enhance thermal conductivity and strengthen adsorption properties;the op-timum dosage was 20% of total activated carbon; in the modified activated carbon test, after a weak acid solution soak charcoal, it can en-hance the adsorption performance, compared to the control group, the absorption was completed 3 minutes ahead of time when reaching 87. 1% of the balanced adsorption capacity.[Conclusion] This study is expected to provide reference for optimizing structural design of absorption bed and absorption type refrigeration system.%[目的]研究玉米秸秆制备活性炭的吸附性能。[方法]以玉米秸秆制备的粒状活性炭为研究对象,搭建了吸附性能模

  17. 高分子固-固相变材料的热性能%Preparation and Properties of Paraffin/Active Carbon Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    王忠; 陈立贵; 付蕾

    2012-01-01

    以活性炭颗粒(ACG)为吸附增强材料,高密度聚乙烯(HDPE)、聚乙二醇(PEG)为相变材料,采用物理共混法制备两种高分子固-固相变材料.利用差示扫描量热仪、导热系数测定仪、高温综合热分析仪对所得相变材料的热性能进行了研究.结果表明:入活性炭颗粒,可提高材料的导热系数和热稳定性.%The preparation and characterization of novel solid-solid phase change materials by blending was reported. The main materials were high density polyethylene, polyethylene glycol and active carbon granule. The composite were characterized by differential scanning calorimetry, Thermal conductivity device and thermo-gravimetric apparatus. The results indicated that the thermo-stability and the thermal conductivity of phase changed materials both increase after adding active carbon granule.

  18. Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell

    International Nuclear Information System (INIS)

    This paper established an in-situ synthesis strategy that the mixing solution of aniline, CNTs and CoCl2 was directly reduced to prepare polyaniline-cobalt-carbon nanotube (PANI-Co-CNT) electrocatalyst. Furthermore, this strategy was effectively modified by pretreating CoCl2 precursor with citric acid (CA), forming 2-4 nm cobalt nanoparticles uniformly distributed on PANI-CNT support with porous structure. The control experiments revealed various PANI states in the growth stage, further proposing the self-assembly mechanisms in these two routes with and without CA pretreatment. These two PANI-Co-CNT electrocatalysts were also checked by oxygen reduction reaction (ORR) in acid environment, to corroborate their basically 4-electron processes. Inspiringly, the large activity and stability for the pretreated route could be comparable with those of the advanced electrocatalysts. All these progresses lay a bottom-up approach for future electrocatalysts

  19. Preparation of thin carbon films (1963)

    International Nuclear Information System (INIS)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  20. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  1. 钼/活性炭渣油加氢催化剂的制备%Preparation of activated carbon supported molybdenum-based catalysts for hydroprocessing of residue

    Institute of Scientific and Technical Information of China (English)

    刘元东

    2012-01-01

    渣油加氢工艺是一种渣油深度加工技术,高性能渣油加氢催化剂的研发是其核心。本文以钼酸铵为活性组分前体,采用等体积法制备了钼/活性炭催化剂(Mo/AC),考察了制备条件如金属负载量、焙烧温度、溶液pH值等对催化剂的影响,利用XRD、SEM、XPS等手段对催化剂进行了表征。在浸渍时间4h,焙烧温度440℃条件下制备出负载量8%(以MoO3计)的Mo/AC催化剂,活性组分钼呈高度分散的单层分布,催化剂活性评价结果表明,渣油转化率可达79%,馏分油收率为75%,同时,生焦率控制在1.5%的较低水平上。%Residue hydroprocessing technology is a significant residue upgrading technology,and the development of catalysts with high performance is the core issue.In this paper,a novel activated carbon supported molybdenum-based catalyst(Mo/AC) for hydroprocessing of residue was prepared by the incipient wetness impregnation method using(NH4)6Mo7O24.4H2O as precursor.The effect of preparation conditions,including MoO3 loading,calcination temperature and pH value on catalytic activity was investigated.The catalyst was characterized by means of XRD,SEM,XPS,and the characterization results indicated that Mo atoms were monolayer-dispersed on the surface of activated carbon.Under the following conditions:impregnation time 4 h,calcination temperature 440 ℃,loading amount of MoO38%,the prepared Mo/AC catalyst achieved high levels of residue conversion(79%) and distillate yield(75%) and low coke yield(1.5%).

  2. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.

    Science.gov (United States)

    Ma, Xiaojun; Zhang, Fan; Zhu, Junyan; Yu, Lili; Liu, Xinyan

    2014-07-01

    Activated carbon fiber (C-WACF) with super high surface area and well-developed small mesopores were prepared by liquefied wood and uses wood charcoal (WC) as additive. The characterization and properties of C-WACF were investigated by XRD, XPS and N2 adsorption. Results showed the pore development was significant at temperatures >750°C, and reached a maximum BET surface area (2604.7 m(2)/g) and total pore volume (1.433 cm(3)/g) at 850°C, of which 86.8% was from the contribution of the small mesopores of 2-4 nm. It was also found that the mesopore volume and methylene blue adsorption of C-WACF were highly increased as the temperature increases from 750 to 850°C. Additionally, the reduction of graphitic layers, the obvious changes of functional groups and the more unstable carbons on the surface of C-WACF, which played important roles in the formation of mesopores, were also observed.

  3. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  4. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  5. 掺杂活性炭的制备及其电化学性能%Preparation and electrochemical properties of a doped activated carbon

    Institute of Scientific and Technical Information of China (English)

    黄铮铮; 肖承义; 毛朝辉; 杨晶晶; 刘恩辉

    2012-01-01

    利用聚苯胺(PANI)为原料,经炭化、水蒸气活化制备了一种氮氧原子掺杂的活性炭.利用扫描电子显微镜(SEM)观察材料的表面形貌;通过X射线光电子能谱(XPS)和Brunauer-Emmett-Teller法(BET)研究材料的表面化学状态和比表面积;采用循环伏安、恒流充放电和交流阻抗等测试手段表征其电化学性能.研究表明:经活化后、氮氧原子的含量增加、材料获得了良好的电化学性能.比电容达到220 F/g,并且在SA/g的电流密度下循环10000次后,容量几乎没有衰减,表明该材料具有良好的循环稳定性,是一种具有应用前景的超级电容器材料.%An activated carbon doped with nitrogen and oxygen was prepared from polianiline by carbonization and steam activation. Scanning electron microscope (SEM) was used to observe the morphology of the material. X-ray photoelectron spectroscopy (XPS) and brunauer-emmett-teller (BET) measurements were carried out for studying the surface chemical state and surface area of the carbon. The material was made into supercapacitor electrode to study the capacrtive performance by cyclic vottammograms, gah/anostatic charge/discharge and electrochemical impedance spectroscopy measurements. The results show that the concentration of N and O is improved after activation, resulting in good electrochemical property. The charge-discharge efficiency is high. The specific capacity of this material is up to 220 F/g, and it is hardly decreased after 10 000 cycles at the high current density of 5 A/g, which means that the carbon material has excellent cycle stability and may be a promising supercapacitor material.

  6. Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations

    Institute of Scientific and Technical Information of China (English)

    Hui-na YANG; Li-fen LIU; Feng-lin YANG; Jimmy C. YU

    2008-01-01

    TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by Ne to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at <200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brtmauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysisThe pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m2/g and 148 m2/g for samples deposited at 100 ℃ and 200 ℃ (using ACF1700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.

  7. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI).

    Science.gov (United States)

    Nethaji, S; Sivasamy, A; Mandal, A B

    2013-04-01

    Activated carbon prepared from corn cob biomass, magnetized by magnetite nanoparticles (MCCAC) was used for the adsorption of hexavalent chromium from aqueous solution. The adsorbent was characterized by SEM, TEM, XRD, VSM, surface functionality and zero-point charge. The iron oxide nanoparticles were of 50 nm sizes and the saturation magnetization value for the adsorbent is 48.43 emu/g. Adsorption was maximum at pH 2. Isotherm data were modeled using Langmuir, Freundlich and Temkin isotherm. The prepared MCCAC had a heterogeneous surface. The maximum monolayer adsorption capacity was 57.37 mg/g. Kinetic studies were carried out and the data fitted the pseudo second-order equation. The mechanism of the adsorption process was studied by incorporating the kinetic data with intraparticle diffusion model, Bangham equation and Boyd plot. The adsorption was by chemisorption and the external mass transfer was the rate-determining step. A micro column was designed and the basic column parameters were estimated. PMID:23500565

  8. Methods for preparation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Eduard G [D.I. Mendeleev Russian University of Chemical Technology, Moscow (Russian Federation)

    2000-01-31

    The most important methods of synthesis and purification of carbon nanotubes, a new form of material, are described. The prospects for increasing the scale of preparation processes and for more extensive application of nanotubes are evaluated. The bibliography includes 282 references.

  9. Removal of Direct Yellow-12 Dye from Water by Adsorption on Activated Carbon Prepared from Ficus Racemosa L.

    OpenAIRE

    Revathi, G.; Ramalingam, S; P. Subramaniam; A. Ganapathi

    2011-01-01

    The adsorption of direct yellow-12 dye (DY-12) by Atti leaf (Ficus racemosa) powder carbon (ATC) was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order kinetics. The adsorption capacity was found to be 6.7 mg dye per gram of the adsorbent. Acidic pH was favorable for the adsorption of DY-12. Desorption studies suggest t...

  10. Mesoporous activated carbons with metal-oxide particles prepared from Morwell coal; Morwell tan wo genryo to shita kinzoku sankabutsu tanji kasseitan no saiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, N.; Yamada, Y.; Shiraishi, M. [National Institute for Resources and Environment, Tsukuba (Japan); Kojima, S.; Tamai, H.; Yasuda, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-10-28

    The metal dependence of mesoporous activated carbons with various metal acetylacetonate (acac) particles prepared from Morwell coal was studied. In experiment, the mixture of Morwell coal and acac metal complexes were dissipated into tetrahydrofuran, and after agitation in Ar atmosphere, the solvent was removed by vacuum distillation. Coal specimens with Fe(acac)3, Ni(acac)2 and Co(acac)2 as acac complexes were activated by exchanging flow gas with water vapor after heat treatment in N2 gas flow at 900{degree}C. The pore sizes of the specimens were obtained from N2 adsorption isotherms by BET method and BJH method. Conditions of pores and metals in the specimens were examined by XRD measurement and TEM observation. The relation between the above conditions and pore characteristics obtained from adsorption experiment was also examined. As a result, the difference in mesopore ratio between the specimens and blank specimens was larger in the order of Fe, Co and Ni, and the effect of added metal complexes was also larger in this order. 3 refs., 3 figs., 3 tabs.

  11. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    Science.gov (United States)

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.

  12. 微波法稻壳制备活性炭研究%Preparation of activated carbon from rice husk by microwave method

    Institute of Scientific and Technical Information of China (English)

    孙建; 石庆朝; 黄琼

    2011-01-01

    Rice husk (RH) is the agricultural waste produced during rice processing. It's meaningful for circulareconomy development to use RH efficiently with high added-value. A microwave preparation technology ot commercial activated carbon with miniature holes was introduced, taking rice husk as raw material and ZnCl2 as the activating agent. This technology is a promising green chemical technique with short heating time and low energy consumption.%稻壳是稻米加工后产生的大宗农业废弃物,高效、高附加值利用稻壳,对促进循环经济发展具有重要意义。以稻壳为原料,氯化锌为活化剂,采用微波处理,制备出微细孔发达的商业级活性炭。微波法生物质制活性炭,加热时间短,能耗低,是具有商业前景的绿色化学工艺。

  13. Synthesis and Characterization of Iron-impregnated Pre-oxidized Activated Carbon Prepared by Microwave Radiation for As(V) Removal from Water

    Science.gov (United States)

    Yurum, Yuda; Yurum, Alp; Ozlem Kocabas, Zuleyha; Semiat, Raphael

    2013-04-01

    One of the most efficient ways to treat water is probably by adsorption and catalytic oxidation. Surely, for such a process to be economical, the catalyst and the adsorber should have a high catalytic activity and adsorption capacity, and be inexpensive. One of these materials is iron oxide, which is studied and used in areas like catalysis and environmental applications. It is known that synthesizing iron oxides in nano size enhances the catalytic activity. Pre-oxidized activated carbons impregnated with iron-based nanoparticles are prepared in a single step under hydrothermal conditions with microwave radiation. The hydrothermal treatment provides an important advantage by forming fine particles that can easily impregnate deep in to the porous support by the help of water. Their efficiency for the removal of As(V) from water was compared with the pure pre-oxidized activated carbon and iron oxide nanoparticles impregnated without microwave radiation. The synthesized nanomaterials with different iron oxide loadings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyzer. Iron loadings were calculated using flame atomic absorbance. Microwave radiation provided much faster iron impregnation on the active carbon surface. At the first stage of microwave radiation iron oxide impregnation is low but after 6 minutes, iron oxide nanoparticles of 100 nm size started to cover the surface homogeneously. Further treatment with microwave increased the size of particles and the amount of surface coverage. Additionally, with microwave hydrothermal treatment, relatively higher iron oxide loadings were achieved within 10 minutes. From the XRD characterization it was seen that at the first stage of radiation, iron deposited in the form of β-FeOOH, but after the first stage the structure became Fe2O3. While radiation increased the surface area of the material during the first stages, at the last stage

  14. 活性炭制备的新型节能工艺%New energy-saving process of the preparation of activated carbon

    Institute of Scientific and Technical Information of China (English)

    李丹凤; 梁俊; 王丹; 罗兴; 李涛; 杨景昌

    2012-01-01

    通过分析活性炭制备的传统节能工艺,从减小活性炭的制备成本出发,在原有的工艺基础上进行改进,提出一种新型的活性炭制备节能工艺.采用热量分析和(火用)分析法,对传统工艺和新工艺进行了模拟计算,考察了循环烟道气的流量、温度,炭化炉进气温度对新工艺(火用)效率的影响.结果表明,随着循环烟道气流量的增加,新工艺的(火用)效率先增大后保持不变;随着循环烟道气温度和炭化炉进气温度升高,新工艺的(火用)效率均先增大后降低.经模拟计算,传统节能工艺的(火用)效率为33.66%,而新节能工艺的(火用)效率为58.30%.传统工艺路线需向系统提供额外的热量,以保证产量,新工艺路线则只需在首次开车时向系统通入一定热量,后续生产阶段所需的热能完全由原料提供.%By analyzing the traditional prepared process of activated carbon, in the view of reducing the cost of preparation of activated carbon, a new energy-saving prepared process on the basis of traditional process was proposed. Thermal analysis and exergy analysis method were taken to the simulation of traditional process and new procedure, the influence of flow, temperature of cycle flue gas, the temperature of gas imported to carbonization furnace on the exergy efficiency were inspected. Results showed that with the circulation of recyclable flue gas increased, the exergy efficiency of new technology increased first and then remained at a certain level; as the temperature of recyclable flue gas rose, new process exergy efficiency first increased and then decreased. Meanwhile, new process exergy efficiency first increased and then unchanged with the rose of coking furnace temperature. Through simulation, the traditional craft and new technology exergy efficiency were 33. 66% and 58. 30% ,respectively. The traditional process routes were required to provide additional heat in order to ensure the production

  15. Preparation and Adsorptive Property of Mangosteen Activated Carbon%山竹壳活性炭的制备与吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    谈梦仙; 洪孝挺; 吕向红

    2016-01-01

    Activated carbons with different alkali/carbon ratios were prepared using the mangosteen skin. The sur-face and structural properties of samples were analyzed with SEM and BET. The specific surface area of the best one reached up to 2 961. 53 m2/g. Then the adsorption isotherms for rhodamine B and Pb2+, adsorption isotherm fit-ted two common models, Freundlich and Langmuir models were studied. The results show that adsorption isotherm to rhodamine B is best fitted with the Langmuir model, while Pb2+ is both fitted with the Freundlich and Langmuir mod-els. The adsorption capacities towards rhodamine B and Pb2+ reached to 1 222. 18 mg/g, 107. 07 mg/g, respectively.%以山竹壳为原料,采用氢氧化钾活化法制备了不同碱炭比的活性炭,通过扫描电子显微镜( SEM)和比表面积( BET)等对活性炭进行了物理性质表征.最优活性炭的比表面积高达2961.53 m2/g.对其进行罗丹明B和铅离子的吸附实验,并进行Langmuir和Freundlich吸附模型拟合,结果表明,山竹壳活性炭对罗丹明B的吸附更符合Lang-muir吸附等温模型,而铅离子的吸附符合2种吸附模型.另外,该活性炭对罗丹明B和铅离子的饱和吸附量分别达到1222.18 mg/g和107.07 mg/g.

  16. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    Science.gov (United States)

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds. PMID:22885596

  17. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    Science.gov (United States)

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds.

  18. 橡木锯屑制备直接碳燃料电池活性炭%STUDY ON THE PREPARATION OF ACTIVATED CARBON FOR DIRECT CARBON FUEL CELL WITH OAK SAWDUST

    Institute of Scientific and Technical Information of China (English)

    郭厚焜; 仲兆平; 张居兵; 金保昇

    2011-01-01

    The activated carbon for DCFC was prepared from oak sawdust by K2 CO3 as activator.The influences of the ratio of K2CO3 to carbon, activation temperature and activation time on adsorption properties were emphatically studied.Further more, the effect of HNO3 treatment on surface modification as well as ash removal and the effect of nickel catalyst on electrical conductivity were investigated.Additionally, the effect of HNO3 treatment on specific surface area and electrical conductivity was also discussed.The results showed that activated carbon with specific surface area of 1240m2/g and pore volume of 0.768m3/g could be produced when the ratio of KOH to carbon was 1; activation temperature is 900℃and activation time is 120min.It was found that the electrical conductivity could be well improved through nickel catalyst, the amounts of surface oxygen functional groups are increased and the ash content is decreased significantly through HNO3 treatment.Unfortunately, the specific surface area is decreased a little and the volume resistivity is increased evidently.%以橡木锯木屑为原料,K2CO3为研究活化剂,采用化学活化法制备DCFC用活性炭,着重考察了碱炭比、活化温度、活化时间对活性炭的比表面积、孔隙率的影响,同时采用HNO3浸渍对活性炭表面进行改性及镍负载对活性炭导电性能进行改善.研究结果表明:当碱炭比为1、活化温度为900℃、活化时间为120min时,活性炭比表面积达1240m2/g,孔容积为0.768m3/g;镍负载后的活性炭体积电阻率明显下降;HNO3浸渍后,活性炭表面含氧官能团增多,灰分明显减少,但比表面积有一定下降,而体积电阻率增加明显.

  19. 成型活性炭的制备及脱硫的影响因素分析%Preparation of Formed Activated Carbon and Desulfurization Influence Factor Analysis

    Institute of Scientific and Technical Information of China (English)

    刘瑾

    2014-01-01

    以粘胶基活性炭纤维与酚醛树脂分别作为吸附剂和粘接剂制备成型活性炭,通过脱硫实验,考察了炭化温度、活化温度、活化时间和原料配比因素对成型活性炭脱硫能力的影响。结果表明,于700℃下炭化60min,然后以CO2为活化剂,850℃下活化60min,制备出了较高吸附性能的成型活性炭产品。%Monolith activated carbon was prepared with phenolic resin as binder and activated carbon fiber as absorbent. Effect of experimental parameter including carbonization temperature, activation time and temperature and material ratio were investigated. The results showed that applied the equal proportion of activated carbon fiber and the phenolics as raw material, carbonized under 700℃for 1h, then activated with carbon dioxide under 850℃for 1h, the formed activated carbon product with high adsorption per-formance could obtained.

  20. Preparation of Microporous Activated Carbon from Raw Coconut Shell by Two-step Procedure%两步法制备椰壳基微孔活性炭

    Institute of Scientific and Technical Information of China (English)

    苏伟; 周理; 周亚平

    2006-01-01

    A novel two-step procedure was used to manufacture microporous activated carbon from raw coconut shell. In this process, the raw coconut shell was (1) heated in an inert environment to temperatures between 450℃ and 850℃, and reacted with oxygen ( po2 = 1.1 -5.3kPa) for some time, and (2) heated again in inert environment to activation temperature(850℃) to produce an activated carbon. Activated carbons with specific surface area greater than 700m2.g-1 were manufactured with a yield between 24% and 28%. It was shown that the carbon had a narrow distribution of pore size, possibly less than lnm, which was calculated by a simple method based on local density function theory.

  1. Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution

    Science.gov (United States)

    Ghaedi, Mehrorang; Tavallali, Hossein; Sharifi, Mahdi; Kokhdan, Syamak Nasiri; Asghari, Alireza

    2012-02-01

    In this research, the potential applicability of activated carbon prepared from Myrtus communis (AC-MC) and pomegranate (AC-PG) as useful adsorbents for the removal of Congo red (CR) from aqueous solutions in batch method was investigated. The effects of pH, contact time, agitation time and amount of adsorbents on removal percentage of Congo red on both adsorbents were examined. Increase in pH up to 6 for AC-MC and pH 7 for AC-PG increase the adsorption percentage (capacity) and reach equilibrium within 30 min of contact time. Fitting the experimental data to conventional isotherm models like Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich show that the experimental data fitted very well to the Freundlich isotherm for AC-MC and Langmuir isotherm for AC-PG. Fitting the experimental data to different kinetic models such as pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion mechanism showed the applicability of a pseudo second-order with involvement of intraparticle diffusion model for interpretation of experimental data for both adsorbents. The adsorption capacity of AC-PG and AC-MC for the removal of CR was found to be 19.231 and 10 mg g -1. These results clearly indicate the efficiency of adsorbents as a low cost adsorbent for treatment of wastewater containing CR.

  2. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2015-09-01

    Full Text Available Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS, and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.

  3. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    Science.gov (United States)

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well. PMID:21961696

  4. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  5. KOH活化法高比表面积竹质活性炭的制备与表征%Preparation and characterization of high specific surface area activated carbon from bamboo by chemical activation with KOH

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 张会平; 陈焕钦

    2006-01-01

    以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.%High specific surface area activated carbon was prepared from bamboo by chemical activation with KOH. The influence of activation parameters on the final products was investigated by varying the KOH/bamboo ratio, activation temperature and hold time. The samples were characterized by nitrogen adsorption isotherms at 77K. The specific surface area and pore volume of activated carbon were calculated by BET and t-plot method. The possible activation mechanism was also proposed. Under the experimental conditions, the optimum conditions for preparing high specific surface area activated carbon are at a KOH/precursor ratio of 1.0, an activation temperature of 800℃ and a hold time of 2h. With these experimental conditions, an activated carbon with a BET surface area of 2996m2/g and a total pore volume of 1.64cm3/g was produced. The product is a novel material for adsorption and for the application in electric double-layer capacitors.

  6. Preparation and Characterization of Calcium Carbonate Nanoparticles

    Science.gov (United States)

    Hassim, Aqilah; Rachmawati, Heni

    2010-10-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In this study, we prepared and characterized calcium carbonate nanoparticle to improve the solubility by using bottom-up method. The experiment was done by titrating calcium chloride with sodium carbonate with the addition of polyvinylpyrrolidone (PVP) as stabilizer, using ultra-turrax. Various concentrations of calcium chloride and sodium carbonate as well as various speed of stirring were used to prepare the calcium carbonate nanoparticles. Evaluations studied were including particle size, polydispersity index (PI) and zeta potential with particle analyzer, surface morphology with scanning electron microscope, and saturated solubility. In addition, to test the ability of PVP to prevent particles growth, short stability study was performed by storing nano CaCO3 suspension at room temperature for 2 weeks. Results show that using 8000 rpm speed of stirring, the particle size tends to be bigger with the range of 500-600 nm (PI between 0.2-0.4) whereas with stirring speed of 4000 rpm, the particle size tends to be smaller with 300-400 nm (PI between 0.2-0.4). Stirring speed of 6000 rpm produced particle size within the range of 400-500 nm (PI between 0.2-0.4). SEM photograph shows that particles are monodisperse confirming that particles were physically stable without any agglomeration within 2 weeks storage. Taken together, nano CaCO3 is successfully prepared by bottom-up method and PVP is a good stabilizer to prevent the particle growth.

  7. Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G

    Institute of Scientific and Technical Information of China (English)

    LI YouJi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2009-01-01

    Titanium dioxide coated on activated carbon(AC)with Fe ions doping(Fe-TiO2/AC)composite was prepared by an improved sol-gel method.The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution.The results show that in comparison with the agglomeration of pure TiO2,the TiO2 nanoparticles are well dispersed in the AC matrix,of which sizes are decreased with Fe ions doping.Additionally,the iron species on TiO2 of composite are Fe2O3 and FeO,which do not affect the crystalline structures of TiO2 nanopanicles.The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination prob ability of hole-electron paire.Compared with TiO2,0.3%Fe-TiO2,TiO2/AC,0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC,the 0.3%Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix.Furthermore,the kinetic constant(K=0.0229 min-1)of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC(0.0154 min-1)and 0.3% Fe-TiO2(0.0057 min-1)because coexistence of the AC end Fe ions has an enlarging effect on improving the photoactivity of TiO2.

  8. Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Titanium dioxide coated on activated carbon(AC) with Fe ions doping(Fe-TiO2/AC) composite was prepared by an improved sol-gel method.The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution.The results show that in comparison with the agglomeration of pure TiO2,the TiO2 nanoparticles are well dispersed in the AC matrix,of which sizes are decreased with Fe ions doping.Additionally,the iron species on TiO2 of composite are Fe2O3 and FeO,which do not affect the crystalline structures of TiO2 nanoparticles.The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination probability of hole-electron pairs.Compared with TiO2,0.3% Fe-TiO2,TiO2/AC,0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC,the 0.3% Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix.Furthermore,the kinetic constant(k=0.0229 min-1) of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC(0.0154 min-1) and 0.3% Fe-TiO2(0.0057 min-1) because coexistence of the AC and Fe ions has an enlarging effect on improving the photoactivity of TiO2.

  9. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Science.gov (United States)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  10. 采用碳酸钾活化法制备油茶壳活性炭%Preparation of activated carbon from the shell of Camellia oleifera Abel by the method of potassium carbonate activation

    Institute of Scientific and Technical Information of China (English)

    陈涵

    2013-01-01

    以油茶壳为原料,采用碳酸钾活化法制备活性炭.探讨了活化温度、浸渍比和保温时间对活性炭吸附性能的影响.结果表明,随着活化温度的提高和保温时间的延长,活性炭的得率不断下降,吸附性能呈先升后降的趋势.N2吸附-脱附等温线分析结果表明,活性炭具有发达的微孔结构,活化温度升高有利于中孔结构的发达.在较佳的实验条件下,活性炭的比表面积为1033.2 m2 ·g-1,总孔容积、微孔容积和中孔容积分别为0.662、0.500、0.162 cm3·g-1.%Effects of activation temperature, holding time and impregnation ratio on activated carbons were studied. The results showed that with the increase of activation temperature and holding time the yield of activated carbon decreased and the adsorption properties increased at the maximum value and then decreased. N2 adsorption-desorption isotherms showed that activated carbon possessed well-developed porous structure, and the increase of activation temperature was in favor of mesoporous volume. The result showed the surface area of the sample was 1033.2 m2·g-1, the total pore volume, microporous volume and mesoporous volume of sample were 0.662, 0.500, 0.162 cm3·g-1, respectively.

  11. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  12. 微波活化甘蔗渣合成活性炭及其电化学电容特性%Sugarcane Bagasse-Based Activated Carbons Prepared by Microwave Activation and Its Electrochemical Capacitive Performance

    Institute of Scientific and Technical Information of China (English)

    吴小中; 周晋; 邢伟; 禚淑萍

    2012-01-01

    Two series of activated carbon materials had been successfully prepared by microwave activation and tube furnace heating treatment, for which sugarcane bagasse and ZnClz were used as carbon resource and activating agent respectively. The electrochemical capacitive performance of activated carbon prepared by microwave activation was studied in aqueous and ionic liquid electrolytes. Nitrogen sorption determination shows that the pore structure is closely related to the concentration of activating agent, and the activating method shows rarely effect on the pore structure, while the microwave activation possesses significant advantage in heating efficiency and homogeneity. Structural characterization reveals that the pore size of activated carbons could be tuned from 2. 5 nm to 7. 0 nm as the concentration of ZnCl2 solution increases from 20 wt% to 60 wt%. As evidenced by electrochemical measurements, the pore size plays a crucial role for the capacitive performance of activated carbons in ionic liquid electrolyte, and the larger the pore size, the better the capacitance. Ionic liquid supercapacitor could deliver much higher energy density than aqueous supercapacitor. AC60 could deliver 9. 2 Wh/kg of energy density while maintaining 2. 5 kW/kg of power density.%以甘蔗渣为原料,ZnCl2为活化剂,分别采用微波加热活化和管式炉加热活化制备了一系列活性炭材料,并研究了微波活化法制备的活性炭在水或离子液体电解液体系中的电容特性.氮气吸附测试表明:活化剂的浓度与活性炭的孔结构密切相关,加热方式对孔径结构的影响不大,但微波活化法在加热效率和均匀性方面具有明显的优势.当活化剂的浓度从20 wt%增大到60 wt%时,活性炭的平均孔径从2.5 nm逐渐增大到7.0 nm.电化学测试表明:在离子液体中炭材料的电容性能与其孔径大小密切相关,孔径尺寸越大,其电容性能越好.离子液体电容器能提供远高于水

  13. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  14. Preparation of the activated carbon with high specific surface area from petroleum coke by KOH activation%氢氧化钾活化石油焦制备高比表面积活性炭

    Institute of Scientific and Technical Information of China (English)

    方建辉; 姚伯元; 韩福顺

    2011-01-01

    In this paper,a series of activated carbons with high specific surface area were prepared by using KOH as an activation agent and delayed petroleum coke as raw material.The effect of KOH/Coke ratio,activation temperature and activation time on the yield and iodine adsorption value was investigated by orthogonal test and further single factor experiments.The results indicated that the significant factor for iodine adsorption value was KOH/coke ratio.The iodine adsorption capacity can be improved by increasing KOH/coke ratio,extending the activation time and selecting the appropriate activation temperature.A activated carbon sample with specific surface area of 2775 m2/g and total pore volume of 2.888 cm3/g was prepared under the conditions of KOH/coke ratio 4∶1,activation temperature 750 ℃ and activation duration 120 min,respectively.%研究了以石油焦为原料,用氢氧化钾为活化剂制备高比表面积活性炭方法。通过正交实验与进一步的单因素实验考察了碱焦比、活化温度和活化时间对活性炭碘吸附值和活化收率的影响。实验结果表明碱焦比对活性炭碘吸附值影响最显著,增大碱焦比、延长活化时间和选择合适的活化温度能提高碘吸附能力。在碱焦比为4∶1,活化温度750℃和活化时间120 min条件下制备的活性炭BET比表面积可达2775 m2/g,总孔容为2.888 cm3/g。

  15. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol.

  16. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. PMID:25458692

  17. Preparation and Application of Fluorescent Carbon Dots

    Directory of Open Access Journals (Sweden)

    Jun Zuo

    2015-01-01

    Full Text Available Fluorescent carbon dots (CDs are a novel type of fluorescent nanomaterials, which not only possess the specific quantum confinement effects of nanomaterials due to the small size of nanomaterials, but also have good biocompatibility and high fluorescence. Meanwhile, fluorescence CDs overcome the shortcomings of high toxicity of traditional nanomaterials. Moreover, the preparation procedure of fluorescent CDs is simple and easy. Therefore, fluorescent CDs have great potential applied in photocatalysis, biochemical sensing, bioimaging, drug delivery, and other related areas. In this paper, recent hot researches on fluorescent CDs are reviewed and some problems in the progress of fluorescent CDs are also summarized. At last, a future outlook in this direction is presented.

  18. Dewatering Peat With Activated Carbon

    Science.gov (United States)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  19. Effect of Different Activation Methods on the Pore Structure of Activated Carbons Prepared from Pistachio Shells%不同活化方法对开心果壳活性炭的孔结构影响

    Institute of Scientific and Technical Information of China (English)

    陈虹霖; 宋磊

    2014-01-01

    以开心果壳为原料制备活性炭,通过在-196℃下测定活性炭的氮气吸附等温线,探讨 ZnCl2法、KCl法以及ZnCl2?KCl?H2 O联合活化法对活性炭孔结构的影响.研究表明:ZnCl2法制备的开心果果壳活性炭以微孔为主,采用40%ZnCl2溶液浸渍,在500℃下活化1.5 h后得到的活性炭的比表面积为630 m2·g-1;单独KCl活化法不能起到较好的活化效果;对于ZnCl2活化法和KCl活化法,增加水蒸气活化都能增强活化效果,尤其对KCl活化的增强效果最为明显,使其比表面积增大近9倍,但其孔结构仍是微孔为主;ZnCl2?KCl? H2 O联合活化法能有效增加活性炭的中孔,采用40%ZnCl2和6%KCl溶液浸渍,在900℃下活化1.5 h后得到的活性炭的中孔添加量为0.10 cm3·g-1,比表面为740 m2·g-1,中孔孔径集中在4 nm.%Activated carbons were prepared from Pistachio nut shells by using ZnCl2 ,KCl and ZnCl2?KCl?H2 O as activa-ting agents separately,and were tested at-1 9 6 ℃ to obtain the N2 adsorption isotherms to get the pore structure proper-ties.It showed that the pore structure of ZnCl2?activated carbons was mainly micropore,and the max BET area of the ac-tivated carbons was 630 m2 ·g-1 when impregnated with 40% ZnCl2 and activated at 500 ℃ for 1.5 h.While using KCl as activating agent alone,it could be hardly to obtain good activation effect.The activation effect was improved by intro-ducing vapor as the activating gas by using ZnCl2 and KCl as activating agent,which played a much more important played a much more important role on formation of new pores,especially for the method of KCl,and its BET area increased by a-bout 9 times,and the pore structure was mainly micropore.Mesopore was effectivlely donated by using ZnCl2?KCl?H2 O as a mixed activating agent.Under the condition of impregnating with 40% ZnCl2 and 6% KCl,the BET area of the acti-vated carbons was 740 m2 ·g-1 ,as well as the

  20. 酚醛树脂基磁性活性炭的制备及性能研究%Preparation and characterization of magnetic -activated carbon from phenolic aldehyde

    Institute of Scientific and Technical Information of China (English)

    刘晓琳; 解强; 张婷婷; 王燕; 杨明顺; 姜勇

    2011-01-01

    Magnetic activated carbons (MACs) were prepared from phenolic resin in the presence of ferrocene.Pore structures, adsorption capacity and magnetic properties of activated carbons were characterized by gas adsorption, liquid absorption and vibration magnetometer instruments. In addition, primary process parameters in magnetic activated carbon preparation,such as amount of ferrocene and activation time, were studied and optimized. Results show that ferrocene plays roles during the preparation of MAC in two respects, one is catalytic effect to regulate the pore distribution,and the other is magnetization agent to magnetize the resulted activated carbon. When 6% ferrocene is introduced into the raw material,the derived MAC behaves high adsorption and magnetic performances,i e iodine value is 1022. 03mg/g,methylene blue value is 99.8mg/g and the saturation magnetization of MAC reaches up to 24.85A · m2/kg,which is 24.9 times by the common activated carbon.%以酚醛树脂为原料、二茂铁作为添加剂,制备了磁性活性炭(magnetic activated carbon,MAC),并采用气体吸附、液相吸附和振动磁强仪等方法表征了活性炭的孔结构、吸附能力和磁特性.此外,对磁性活性炭制备过程中的二茂铁添加量、活化时间等主要工艺参数进行了研究和初步优化.结果表明,二茂铁对活性炭孔隙的产生具有促进作用,提高了活性炭的吸附性能,二茂铁添加剂还赋予活性炭磁性:添加6%二茂铁时MAC的碘值为1022.03mg/g,亚甲蓝值为137.6mg/g,比饱和磁化强度达到24.85A·m2/kg,是普通活性炭的24.9倍.

  1. Preparation and Microwave Absorbing Properties of an Electroless Ni-Co Coating on Multiwall Carbon Nanotubes Using [Ag(NH3)2]+ as Activator

    OpenAIRE

    Qiao-ling Li; Xiao-yong He; Yue-qing Zhang; Xiao-feng Yang

    2015-01-01

    Ni-Co-coated carbon nanotubes (CNTs) composites with different molar ratios of Ni/Co were synthesized using [Ag(NH3)2]+ as activator and H2PO2- as reductant, thereby replacing the conventional noble metal Pd salt activator and Sn2+ reductant. Scanning electron microscopy, X-ray diffraction, and X-ray energy dispersive spectrometry analyses demonstrated that the CNTs were deposited with a dense, uniform Ni-Co coating. The possible mechanism of the electroless method was studied, which indicate...

  2. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  3. Novel preparation of carbon-TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde-González, María P., E-mail: maria.elizalde.uap.mx@gmail.com; García-Díaz, Esmeralda; Sabinas-Hernández, Sergio A.

    2013-12-15

    Highlights: • Glycerol and TiOSO{sub 4}·xH{sub 2}O produced a carbon-anatase precursor in a one-step sol–gel reaction. • Ultrasound irradiation led to the formation of crystalline TiO{sub 2} prior to thermal treatment. • Carbon and TiO{sub 2} nanocrystals developed larger specific surface in composites. • Large band gap (3.6 eV) in TiO{sub 2} was obtained. • Benzenesulfonic acid identified by LC–MS among decomposition reaction intermediates of the dye Acid Orange 7. -- Abstract: Carbon-TiO{sub 2} sulfated composites were obtained from TiOSO{sub 4}·xH{sub 2}O and glycerol as the TiO{sub 2} and carbon sources, respectively. The precursor xerogels were prepared in a one-step ultrasonic-assisted sol–gel reaction, followed by thermal treatment at 400 °C under a nitrogen atmosphere to produce carbon-TiO{sub 2} sulfated composites. XRD, micro-Raman, SEM, and TEM studies showed that the composites consisted of nanocrystalline clusters of TiO{sub 2} and carbon. Ultrasonication in glycerol promoted the crystallinity of the xerogel precursors prior to thermal treatment. X-ray powder diffraction and Raman spectroscopy studies confirmed that glycerol also facilitated the formation of small crystallites. The band gaps of carbon-TiO{sub 2} composites with two different carbon loadings were found to be 3.06 eV and 2.69 eV. By contrast, the band gap of TiO{sub 2} prepared by our method was 3.53 eV. Calcination of the precursors led to an unusual increase in the specific surface and porosity of the composites compared to TiO{sub 2}. The photocatalytic activities of the prepared composites were tested in a decomposition assay of Acid Orange 7. The reaction was monitored by UV–vis spectrophotometry and by LC-ESI-(Qq)-TOF-MS-DAD. Some intermediate species were identified by LC-ESI-QTOF-MS.

  4. Preparation of carbon monoliths from orange peel for NOx retention

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available A series of monoliths are prepared from orange peels and chemically activated with H3PO4, KOH, ZnCl2, and water vapor without a binder. The monoliths were characterized by N2 adsorption-desorption isotherms at 77 K, Boehm titrations and XPS. Thereafter, monoliths were tested for their ability to establish NOx retention. The results show that the retention capacities of NOx were a function of the textural properties and chemistries. The carbons synthesized with ZnCl2 and KOH retained similar amounts of NOx.

  5. PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc.

  6. Characteristics of camellia shell pyrolysis products and optimization of preparation parameters of activated carbon%油茶壳热解产物特性及热解炭制备活性炭工艺优化

    Institute of Scientific and Technical Information of China (English)

    顾洁; 周建斌; 马欢欢; 马孟; 邢美腾

    2015-01-01

    为了探究热解终温对油茶壳热解产物特性的影响,实现油茶壳热解多联产产物的有效利用,该文研究了油茶壳300~700℃热解过程中气、液、固的得率,特性和能量分布规律,讨论了油茶壳热解炭制备活性炭的工艺条件。研究表明,随着热解终温的升高,生物质炭得率下降,不可凝气体得率上升,生物质油得率则呈现先上升后下降的变化趋势。生物质炭的能量产率高达47.21%~81.59%,是油茶壳热解的主要产物,随着热解终温的升高,其固定碳含量增大,比表面积先增加后减小,在600℃达到最高值278 m2/g。油茶壳活性炭制备的最佳工艺条件活化温度850℃,活化时间1.5 h,水蒸气用量与炭的比2.0,此条件下的活性炭得率为37.47%,碘吸附值为825 mg/g,BET比表面积为736 m2/g。该研究为油茶壳热解多联产工艺及产物的综合有效利用提供参考依据。%Biomass is a clean, abundant and renewable energy source with many ecological advantages. Camellia, as one of the most important economic forest resources in China, is a potential biomass source for energy demand. Camellia shell is the primary residue left over from camellia oil production. Currently, the majority of camellia shells haven't been converted into high-quality bio-fuels efficiently. To utilize the camellia shell waste, pyrolysis for poly-generation is a promising technology which converts biomass resource to solid char, liquid oil and biogas. This paper focused on the product yields, characteristics and energy distribution during camellia shell pyrolysis at the temperature ranging from 300 to 700℃, and the reaction of activated carbon prepared from camellia shell pyrolysis used water vapor activation, so as to explore the effects of temperature on the characteristics of camellia shell pyrolysis product, and achieve the comprehensive utilization of products derived from camellia shell pyrolysis

  7. Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors

    OpenAIRE

    Ruiz Ruiz, Vanesa; Blanco Rodríguez, Clara; Granda Ferreira, Marcos; Menéndez López, Rosa María; Santamaría Ramírez, Ricardo

    2007-01-01

    [EN] This work investigates the influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Studies were performed using the same activated carbon and polymer polyvynilidene fluoride (PVDF) in the same proportions (10 wt.% PVDF). Only the way in which these components were mixed was modified. The procedure for mixing the activated carbon and the polymer has a significant influence on the electrochemical behaviour of the electrode used in a supercapacit...

  8. Preparation and Electrochemical Performance of Coal-based Activated Carbons for Electric Double Layer Capacitor%双电层电容器用煤基活性炭的制备与电化学性能表征

    Institute of Scientific and Technical Information of China (English)

    邢宝林; 张传祥; 谌伦建

    2009-01-01

    High specific surface area coal-based activated carbons are prepared from Yongcheng anthracite using KOH as activator. The specific surface area, pore volume and pore size distribution of activated carbons are characterized by low temperature nitrogen adsorption. The electrochemical performance of activated carbons electrode material for electric double layer capacitor is tested by constant current charge-discharge, alternating current impedance and cyclic voltammetry. The result indicates that high specific surface area coal-based activated carbons can be prepared under the condition of the ratio of KOH to anthracite being 4 : 1, activation temperature being 800℃ and activation time being 1h, and the specific surface area is 3224m~2/g, total pore volume is 1.76cm~3/g and mesoporosity is 57.95%. In the 3mol/L KOH electrolyte, the specific capacitance of activated carbons electrode material is 324F/g, and it has excellent cyclic performance and low leakage current. The residual specific capacitance is more than 92% after 1000 cycles under the current density of 40mA/g.%以河南永城无烟煤为原料、KOH为活化剂制备了高比表面积的煤基活性炭,采用低温N_2吸附法对活性炭的比表面积、孔容及孔径分布进行了表征,并对其用作双电层电容器电极材料的电化学性能进行了系统测试.在KOH与煤的质量比为4:1、活化温度为800℃、活化时间为1h的条件下制备出的活性炭其比表面积高达3224m~2/g,总孔容达1.76cm~3/g,中孔率为57.95%.该活性炭电极在3mol/L KOH电解液中的比电容高达324F/g,且具有良好的循环性能,当电流密度为40mA/g时,经1000次循环后,比电容保持率超过92%,且其漏电流很小.

  9. A new method of preparing single-walled carbon nanotubes

    OpenAIRE

    Vivekchang, SRC; Govindaraj, A.

    2003-01-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spect...

  10. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  11. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  12. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  13. 磷酸法制备山楂籽粉末活性炭技术的研究%The Research on the Activated Carbon Preparation Technology from Hawthorn Seeds by the Method of Phosphoric Acid

    Institute of Scientific and Technical Information of China (English)

    王蕾; 李贤宇; 朱传合

    2015-01-01

    In this paper, the activated carbon preparation technology from hawthorn seeds was investigated. Firstly, the related factors that can influence the preparation of activated carbon were run. According to the Single-factor experiment, the optimal condition was established using Plackett-Burman design and Box-Benhnken design. The final result indicated that the best condition was impregnated time 37.3 h, L/P 1∶1.1, the density of phosphoric acid 72.8%, carbonized time1.6 h, carbonized temperature 500℃, the product yield and methylene blue decolorization were 41.11%, 14 mL, respectively.%运用响应面法对磷酸浸泡制备山楂籽粉末活性炭的工艺条件进行了优化。采用单因素试验、Plackett-Burman设计及Box-Behnken设计,确定了山楂籽粉末活性炭最佳制备条件:浸泡时间37.3 h、固液比1∶1.1(1 g山楂籽粉末∶1.1 mL磷酸)、磷酸浓度72.8%、碳化时间1.6 h,炭化温度500℃。该条件下山楂籽活粉末性炭的产率为41.11%,亚甲基蓝的吸附值为14 mL。

  14. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke

    Science.gov (United States)

    Awitdrus, Deraman, M.; Talib, I. A.; Farma, R.; Omar, R.; Ishak, M. M.; Taer, E.; Dolah, B. N. M.; Basri, N. H.; Nor, N. S. M.

    2015-04-01

    The green monoliths (GMs) were prepared from the mixtures of pre-carbonized fibers of oil palm empty fruit bunches (or self-adhesive carbon grains (SACG)) and green petroleum coke (GPC) with the mixing ratio of 0, 10, 30, 50 and 70 % GPC, respectively. The GMs were carbonized in N2 environment at 800°C to produce carbon monoliths (CM00, CM10, CM30, CM50 and CM70). The CMs were CO2 activated at 800°C for 1 hour to produced activated carbon monolith electrodes (ACM00, ACM10, ACM30, ACM50 and ACM70). For each percentage of GPC, three duplicate symmetrical supercapacitor cells were fabricated using these activated carbon monolith electrodes respectively, and the capacitive performance amongst the cells was compared and analyzed in order to observe the relationship between the capacitive performance and the physical properties (microstructure and porosity) of the ACMs electrodes containing varying percentage of GPC.

  15. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Leilei, Zhang, E-mail: zhangleilei1121@aliyun.com; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-09-15

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na{sup +} and CO{sub 3}{sup 2−} were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement.

  16. Preparation of Magnesium Carbonate Whisker from Magnesite Tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N; Chen, M [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Ni, H W, E-mail: chenm@smm.neu.edu.cn [Wuhan University of Science and Technology, Wuhan 430081 (China)

    2011-10-29

    Magnesium carbonate whisker was prepared by thermal decomposition of Mg(HCO{sub 3}){sub 2} solution that was prepared through hydration and carbonation of light burnt magnesia derived from magnesite tailings. The effects of thermal decomposition conditions on the morphology of magnesium carbonate crystal were investigated. The results showed that thermal decomposition product was MgCO{sub 3{center_dot}}3H{sub 2}O, and its crystal morphology was appreciably influenced by the additives added to Mg(HCO{sub 3}){sub 2} solution. Magnesium carbonate whiskers were successfully prepared when a kind of soluble magnesium salt was added, and magnesium carbonate whiskers with the length of 20 to 60{mu}m and aspect ratio of 10{approx}20 were obtained under the condition of 50deg. C thermal decomposition temperature and 200 rpm stirring intensity.

  17. 氮硫双掺杂活性炭材料的制备和电容性能%Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials

    Institute of Scientific and Technical Information of China (English)

    李朝辉; 李仕蛟; 周晋; 朱婷婷; 沈红龙; 禚淑萍

    2015-01-01

    In this work, N, S co-doped microporous carbon materials were successful y prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation. The morphology, pore texture, and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematical y studied in 6 mol∙L-1 KOH electrolyte. The maximum specific surface area of the prepared carbons was found to be 1849.4 m2∙g-1 with a porosity that mainly consisted of micropores. Nitrogen and sulfur contents varied from 1.6%to 2.5%and from 0.2%to 0.5%(atomic fraction (x)), respectively. The synergistic-positive effect of N, O, and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance. High specific capacitances of up to 200 F∙g-1 at 0.2 A∙g-1 were observed, response to an energy density of 6.9 Wh∙kg-1. At a power density of 10000 W∙kg-1, the energy density was found to be 4.1 Wh∙kg-1. The present work highlights the significance of this new strategy to prepare N, S co-doped carbon materials from renewable biomass.%以头发和蔗糖为原料,通过水热碳化和KOH活化两步法制备了氮硫双掺杂微孔炭材料.利用扫描电子显微镜,透射电子显微镜,氮气吸脱附,X射线光电子能谱,电子能谱和傅里叶交换红外光谱等手段系统表征了所制备活性炭材料的微观形貌,孔隙结构和表面化学性质.并在6 mol∙L-1 KOH溶液中研究了所制备活性炭材料的电容性能.氮气吸脱附测试表明,所制备活性炭材料的比表面积最高可达1849.4 m2∙g-1,孔道以微孔为主.所制备活性炭材料氮元素含量为1.6%-2.5%(原子

  18. Preparation of tea seed shell activated carbon and its electrochemical performance%茶籽壳质活性炭的制备及其电化学性能

    Institute of Scientific and Technical Information of China (English)

    田莹莹; 刘恩辉; 沈海杰; 向晓霞; 吴玉虎; 谢慧; 胡添添

    2012-01-01

    以茶籽壳为原料,以K2CO3作为活化剂,制备了新型活性炭。用氮气吸脱附法对活性炭的孔结梢进行了分析。以活性炭为电极材料,6mol/LKOH溶液为电解液组装成超级电容器,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能。结果表明,活化后的茶籽壳炭,其比表面积高达1272m^2/g,比电容高达150F/g,研究表明茶籽壳活性炭适用于超级电容器的电极活性材料。%Novel activated carbon has been prepared from tea seed shell by activation with K2CO3. The porosity of the activitated carbon sample was studied by the nitrogen adsorption at 77K. The supercapacitors were assembled with carbon electrode and electrolyte of 6mol/L KOH solution. Their electrochemical properties were investigated by galvanostatic charge/discharge, cyclic voltammogram and impedance spectrum. The results show that the specific surface area of the activated carbon is sharply increased after activation, the value is up to 1272m2/g, and the electrochemical performance is obviously improved, the specific capacitance is up to 150F/g, which suggests that it may be promising candidates for supercapacitors.

  19. [Preparation of nano zero-valent iron/Sargassum horneri based activated carbon for removal of Cr (VI) from aqueous solution].

    Science.gov (United States)

    Zeng, Gan-Ning; Wu, Xiao; Zheng, Lin; Wu, Xi; Tu, Mei-Ling; Wang, Tie-Gan; Ai, Ning

    2015-02-01

    Nanoscale zero-valent iron supported on Sargassum horneri activated carbon (NZVI/SAC) was synthesized by zinc chloride activation and incipient wetness method, and characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XRD confirmed the existence of nano zero-valent iron, and SEM revealed that the material consisted of mainly 30-150 nm spherical particles aggregated into chains of individual units. The valence state of iron conformed with the nuclear-shell model. The effects of NZVI loading on AC, pH and the initial concentration of Cr(VI) on the removal of Cr(VI) were investigated. The final Cr(VI) removal percentage was up to 100% under the following conditions: 30 degrees C, pH = 2, NZVI/SAC dosage of 2 g x L(-1) and the amounts of NZVI loaded on SAC of 30%. And the equilibrium time was 10 minutes. These results showed that NZVI/SAC could be potentially applied for removal of high concentration Cr(VI). By analyzing the chemical change of NZVI/ SAC, we demonstrated that Cr(VI) was mainly reduced to insoluble Cr (III) compound in the reaction when pH was less than 4, and adsorbed by NZVI and SAC when pH was over 4. PMID:26031079

  20. Preparation and Microwave Absorbing Properties of an Electroless Ni-Co Coating on Multiwall Carbon Nanotubes Using [Ag(NH32]+ as Activator

    Directory of Open Access Journals (Sweden)

    Qiao-ling Li

    2015-01-01

    Full Text Available Ni-Co-coated carbon nanotubes (CNTs composites with different molar ratios of Ni/Co were synthesized using [Ag(NH32]+ as activator and H2PO2- as reductant, thereby replacing the conventional noble metal Pd salt activator and Sn2+ reductant. Scanning electron microscopy, X-ray diffraction, and X-ray energy dispersive spectrometry analyses demonstrated that the CNTs were deposited with a dense, uniform Ni-Co coating. The possible mechanism of the electroless method was studied, which indicates that pure Ag0 acted as a nucleation site for subsequent Ni-Co-P deposition. Network vector analyzer measurements indicated that the composite with only Ni coated had an absorbing value of −12.6 dB and the composite with a Ni/Co ratio of four had the maximum wave absorption (−15.6 dB and the widest absorption bandwidth (800 MHz, RL < −10 dB, while the saturation magnetization (Ms was 4.28 emu·g−1 and the coercive force (Hc was 31.33 Oe.

  1. 催化活化法制备杉木基超高比表面积颗粒活性炭%Preparation of Granular Activated Carbon from China Fir with Super-high Surface Area by Catalysis Activation

    Institute of Scientific and Technical Information of China (English)

    朱光真; 邓先伦; 郭昊; 张燕萍

    2014-01-01

    以杉木屑为原料,在传统磷酸法工艺过程中添加辅助催化剂浓硫酸,制备超高比表面积颗粒活性炭。研究浓硫酸添加量、浸渍时间以及浸渍比对颗粒活性炭比表面积的影响。结果表明,浓硫酸添加量和浸渍时间在磷酸法制备超高比表面积颗粒活性炭中发挥着重要的作用,当浸渍时间为15 h、浓硫酸添加量为6%、浸渍比为2.1:1和浸渍时间为5 h、浓硫酸添加量为3%、浸渍比为2.1:1时,分别制备出比表面积为2825、2811 m2/g 的颗粒活性炭、总孔容分别为1.60、1.59 cm3/g,丁烷工作容量分别为154.8、157.3 g/L。%Super-high specific surface area granular activated carbon ( GAC) from China fir sawdust was prepared through adding concentrated sulfuric acid in the traditional technology by phosphoric acid activation method. Influences of different dosage of concentrated sulfuric acid, impregnation time and impregnation ratio on specific surface area was studied. The results showed that both of the dosage of concentrated sulfuric acid and impregnation time had great influence on specific surface area of GAC by phosphoric acid method. The GACs prepared under the conditions of impregnation time 15 h, dosage of concentrated sulfuric acid 6 %, impregnation ratio 2. 1:1 and impregnation time 5h, dosage of concentrated sulfuric acid 3 %, impregnation ratio 2. 1:1 gave the BET surface area of 2 825 and 2 811 m2/g, the total pore volume of 1. 60 and 1. 59 cm3/g, and butane working capacity (BWC) of 154. 8 and 157. 3 g/L, respectively.

  2. Preparation of U-Shape Carbon Stripper Foil

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Rong; FAN; Qi-wen; DU; Ying-hui

    2012-01-01

    <正>In an experiment for the Beijing Radioactive Ion-beam Facility, the self-supportting U-shape carbon foils are strongly required to serve as the stripper foils. The preparation procedures are as following. First, the carbon foils with thickness of about 60 μg/cm2 were deposited by the CAA (Controlled AC Arc-discharge) method onto the glass slides coated with betaine-saccharose as releasing agent. The parameters in preparation are listed in Table 1.

  3. Preparation of array of long carbon nanotubes and fibers therefrom

    Science.gov (United States)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  4. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    Science.gov (United States)

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  5. Method for the preparation of ferrous low carbon porous material

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  6. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  7. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Science.gov (United States)

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. PMID:24934321

  8. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Science.gov (United States)

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  9. Preparation of arrays of long carbon nanotubes using catalyst structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  10. Enhanced Photocatalytic Activity of C-TiO2 Thin Films Prepared by Magnetron Sputtering and Post-carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LUO Shengyun; YAN Bingxi; CAO Minjian; SHEN Jie

    2015-01-01

    TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant influence on film’s micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×1017 ion/cm2, which gives rise to a 150%increased photocurrent and degradation rate.

  11. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    OpenAIRE

    Izquierdo Pantoja, María Teresa; Yuso, A. M. de; Valenciano, Raquel; Rubio Villa, Begoña; Pino, María Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation...

  12. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Science.gov (United States)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  13. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  14. 海绵状活性炭/有机复合多孔材料的制备及其吸油性能%Preparation and oil absorption performance of sponge-like activated carbon/organic composites

    Institute of Scientific and Technical Information of China (English)

    马伟; 徐赛男; 陈克; 郭玉强; 赵峰惠; 陈永

    2015-01-01

    针对活性炭粉末和活性炭块体在吸油除污过程中,易沉积到水中,不利于吸附漂浮在水面上的油膜,同时难以回收再利用的问题. 首先对椰壳活性炭改性,以提高其吸油性能;再通过聚乙烯醇与甲醛聚合反应,并经发泡致孔,制备出可循环使用﹑具有三维网络孔结构的活性炭/有机复合材料. 通过正交实验方案设计,考察水﹑活性炭﹑稀硫酸(9%)﹑甲醛溶液(40%)﹑可溶性淀粉的量及反应温度对所制多孔复合材料吸附油水混合体系效果的影响. 相对于粉末活性炭和块体活性炭,所制柔性复合材料密度小(0.1977g/cm3),在使用过程中可以完全漂浮在水面上,有利于吸附漂浮的油膜,方便回收再利用.所制的多孔复合材料呈海绵状,具有丰富发达的多级孔结构,在最佳工艺条件下油吸附量达到活性炭的1. 5倍左右.%Activated carbons in powder and monolithic form easily form sediments in water, leading to the failure to adsorb an oil film on the water surface. To solve these problems, coconut shell activated carbons were modified to increase their oil-absorption ability and a 3D sponge-like activated carbon/organic composite was then prepared through polymerization of polyvinyl alcohol with formalin in the presence of a foaming agent and the modified activated carbon. The effects of the amounts of water, activated car-bon, dilute sulfuric acid (9%) and formaldehyde solution (40%), and reaction temperature on the oil adsorption performance of the composites were investigated. The composites had a hierarchical porous structure and floated on the water surface due to their low density (about 0. 197 7 g/cm3). A composite prepared under optimal conditions can adsorb approximately 1. 5 times as much oil as the original activated carbon. Its robust and flexible properties make it suitable for recycling during use.

  15. Use of sawdust Eucalyptus sp. in the preparation of activated carbons Utilização de serragem de Eucalyptus sp. na preparação de carvões ativados

    Directory of Open Access Journals (Sweden)

    Gabriela Martucci Couto

    2012-02-01

    Full Text Available Wood sawdust is a solid residue, generated in the timber industry, which is of no profitable use and can cause serious environmental problems if disposed inadequately. The aim of this study was to use the eucalyptus sawdust in the preparation of activated carbons AC and test them as adsorbents of methylene blue (MB and phenol, representative pollutants from aqueous effluents of various industries. The eucalyptus sawdust was characterized by instrumental analysis such as elementary analysis (CHNS-O, thermogravimetric analysis (TGA, infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The activated carbons were prepared by physical activation with carbon dioxide AC_CO2, (10º C min-1, 850º C, 1h and by chemical activation with potassium carbonate AC_K2CO3 (10º C min-1, 850º C, 3h. The AC_CO2 and AC_K2CO3 were characterized by CHN-O, TGA, FTIR, N2 adsorption/desorption (BET to evaluate the specific surface area and SEM. The resulting activated carbons were tested for their ability to adsorb MB and phenol in water. The activated carbons produced in this work were predominantly microporous and showed specific surface area of about 535 m² g-1. The AC_K2CO3 was more effective in the adsorption of MB (81 mg g-1 and phenol (330 mg g-1 than AC_CO2 (32 mg g-1 and 172 mg g-1, respectively, for MB and phenol.A serragem é um resíduo sólido, gerado na indústria madeireira, que não tem uso rentável e pode causar sérios problemas ambientais quando disposta inadequadamente. Neste estudo, objetivou-se utilizar a serragem de eucalipto na preparação de carvões ativados (AC e testá-los como adsorventes do corante azul de metileno (MB e fenol; moléculas que representam poluentes de efluentes industriais. A serragem de eucalipto foi caracterizada por análises instrumentais, tais como: análise elementar (CHNS-O, análise termogravimétrica (TGA, espectroscopia na região do infravermelho (FTIR e microscopia eletrônica de varredura (SEM

  16. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  17. Preparation of carbon-free TEM microgrids by metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  18. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  19. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions. PMID:19450927

  20. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    Science.gov (United States)

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  1. Preparation of Rapeseed Activated Carbon and Its Adsorption Performance for Methyl Orange%菜粕活性碳制备及其对甲基橙的吸附性能

    Institute of Scientific and Technical Information of China (English)

    李松; 聂萍; 朱文丽; 黎国兰

    2015-01-01

    A novel activated carbon(AC)was prepared from rapeseed by chemical activation method using H3 PO4 as activating agent,and was characterized by electron microscope(SEM)scanning and determination of the specific surface area,then the aqueous - solution - prepared AC was used as adsorbent for the adsorption of methyl orange. The prepared activated carbon has rich honeycomb - like structures,and its specific surface area is 1521. 2 m2 ·g - 1 and the average pore size is 1. 49 nm. The adsorption process followed pseudo - second - order kinetics, and equilibrium adsorption amounts calculated from the fitted equations are well in accordance with the experimental values. The absorption isothermals of methyl orange on the activated carbon obeyed the Langmuir isothermal equa-tion. The removal rate of methyl orange is above 90% under the following adsorption condition,methyl orange solu-tion is 100 mg·L - 1 ,the dose of adsorbent is 0. 3 g·L - 1 ,the value of pH is 3 and the reaction time is 2 hours. The aqueous - solution - prepared AC is an ideal absorption material for the removing of methyl orange.%以菜粕为原料,采用磷酸活化法制备了孔隙发达的活性碳,通过扫描电子显微镜和表面孔隙测定仪对样品进行了表征,考察了菜粕活性碳对水溶液中甲基橙的吸附性能.试验结果表明,制备的活性碳表面形成了具有发达的孔隙结构,比表面积为1521.2 m2/ g,平均孔径为1.49 nm.所制备的活性碳对甲基橙的吸附过程符合伪二级反应动力学方程,qe 的计算值与实测值有较高的一致性.采用 Freundlich 和 Langmuir 方程考察菜粕对甲基橙吸附等温线,实验结果显示吸附更符合 Langmuir 模型,在283、293和313 K 时,其最大吸附量(qm )分别为337、366和376 mg·g -1.甲基橙溶液初始浓度100 mg/ L,投加量为0.3 g/ L,pH 值为3,反应时间2 h 去除率可以达到90%以上,菜粕活性碳能有效去除水溶液中的甲基橙.

  2. Preparation of Carbon Nanotubes from Methane on Ni/Cu/A1 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Renzhong Wei; Fengyi Li; Yan Ju

    2005-01-01

    A series of Ni/Cu/Al catalyst samples were prepared by the co-precipitation method. Carbon nanotubes with large inner diameters are successfully synthesized from methane on Ni/Cu/Al catalyst by adding sodium carbonate. The effects of the copper content and amounts of sodium carbonate on the morphology and microstructures of carbon nanotubes were investigated by CO adsorption and TEM technique. The experimental results showed that copper can influence both the catalytic activity and catalyst life. Best result was obtained when the copper content was 15%. Addition of sodium carbonate favors the formation of carbon nanotubes with large inner diameters. The growth mechanism of carbon nanotubes with large inner diameter is discussed.

  3. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  4. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  5. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  6. PREPARATION OF ACTIVATED CARBON FROM PALM OIL SHELL BY CHEMICAL ACTIVATION WITH Na2CO3 AND ZnCl2 AS IMPRENATED AGENTS FOR H2S ADSORPTION

    Directory of Open Access Journals (Sweden)

    Kanokorn Hussaro

    2014-01-01

    Full Text Available Hydrogen Sulfide (H2S, rotten-egg is one of the major environmental pollutants having its sources in natural and anthropogenic activities. It’s had smell gas produced by anaerobic digestion in acid condition from organic and inorganic compounds containing sulphur, presents dual problems of its toxicity and foul ordour. One of methods of its removal is adsorption. Activated carbon is a widely used adsorbent in the treatment of air pollution. Adsorption type and capacity are primarily based on the physical properties of pores, namely the surface area. Convetionnally, activated carbon is produced from biomass residues, wood coal and agricultural residuces. Today, one promising approach for the production of cheap and efficient activated carbon is used of waste from palm oil mill industries, which is palm oil shell. Palm oil shell is available in large quantities of approximately 0.53 million tonnes annually in Thailand. Palm oil shell is a by-products of the palm oil industry and was used as a raw material in this study due to its high carbon content, high density and low ash content. Normally, H2S in biogas, which is found the range between as low as about 50-10,000 ppm depending on the feed material composition to prodction, can cause corrosion to engine and metal substance via of SO2 from combustion. H2S must be removed from biogas product prior to further utilization. Therefore, in these research the usage of palm oil shell is especially important due to its high value added for produced activated carbon adsorbent for H2S adsorption in biogas product. In this study, fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length was studied to observe the effect of char product: Chemical agent ratio (Na2CO3 and ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h on the chemical and physical properties

  7. Preparation for YMP backfill activities

    Energy Technology Data Exchange (ETDEWEB)

    Conca, J.

    1998-12-23

    Yucca Mountain activities for FY 1999 are anticipated to require specific information on the chemical and physical properties of the candidate getter materials and other backfill components necessary for defensible modeling of the source term, and possible controlling of the source term. There should be three tasks to this activity: at the end of this report is a draft test plan reflecting the present funding anticipated, the other tasks may be added as funding becomes available. (Task 1) The immobilization capacity of the getter materials for specific radionuclides. This task will primarily include column sorption tests of getter materials with solutions spiked with radionuclides. The getter materials will include Apatite II, MgO (with NaPO{sub 4} plus Ba,SrCO{sub 3} and soluble sulfate, with and without Apatite II), Gibbsite/Boehmite, and Hematite. Radionuclides will include Pu, U, Np, Am, Ra, Tc, and Th. Experiments will be performed under various anticipated repository conditions and with anticipated solution compositions. Occasional batch tests will be used to obtain specific K{sub d}s and other thermodynamic data. Solid and liquid analyses will be needed for characterization of the effluent concentrations from the columns to assess performance and for use in geochemical modeling. (Task 2) Intrinsic stability of the getter materials under repository conditions. The use of any candidate getter material will depend upon its anticipated lifetime in the backfill environment. Literature search for any existing data will be performed and augmented by solubility experiments on the getter materials. This is especially important for the reactive materials such as MgO and the soluble sulfates and phosphates that may be a limited lifetime in the backfill. It is also necessary to decide how much getter material to emplace. (Task 3) Diffusion of radionuclides across a Richards Barrier. The Richards Barrier, if emplaced, will act as a hydraulic diversion barrier for the

  8. Preparation and Characterization of a Calcium Carbonate Aerogel

    Directory of Open Access Journals (Sweden)

    Johann Plank

    2009-01-01

    Full Text Available We report on a facile method for the preparation of a calcium carbonate aerogel consisting of aggregated secondary vaterite particles with an approximate average diameter of 50 nm. It was synthesized via a sol-gel process by reacting calcium oxide with carbon dioxide in methanol and subsequent supercritical drying of the alcogel with carbon dioxide. The resulting monolith was opaque, brittle and had overall dimensions of 6×2×1 cm. It was characterized by X-ray powder diffraction, nitrogen adsorption method (BET, and scanning electron microscopy.

  9. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  10. Obtenção e caracterização de carbono ativado a partir de resíduos provenientes de bandas de rodagem Preparation and characterization of activated carbons from thread of tire waste

    Directory of Open Access Journals (Sweden)

    Irene T. S. Garcia

    2007-12-01

    Full Text Available Neste trabalho foi investigada a preparação de carbonos ativados através da pirólise de composições elastoméricas provenientes de resíduos de bandas de rodagem de pneus de automóveis. O material foi processado nas temperaturas de 500, 620 e 700 °C, em atmosfera de N2, utilizando-se o hidróxido de potássio como agente ativador. Os produtos resultantes foram caracterizados pela fisisorção de N2 a 77 K, através de isotermas de Brunauer, Emmet e Teller e por microscopia eletrônica de varredura. Esses carbonos ativados apresentam estruturas típicas de sólidos mesoporosos e a temperatura de pirólise tem grande influência na área específica e distribuição de volume de poros. O carbono ativado obtido a 700 °C apresentou maior área específica e estrutura porosa compacta. Esse material apresenta melhor desempenho frente à adsorção de azul de metileno, removendo até 1,0 x 10-1 g de corante por grama de carbono utilizado, em tempos inferiores a 300 s.In this work, the preparation of activated carbons through the pyrolysis of elastomers, arising from car threads of tire waste, was investigated. The material was processed at 500, 620 and 700 °C, under N2 atmosphere, by using potassium hydroxide as activating agent. The resulting products were characterized by physisorption of N2 at 77 K, through Brunauer, Emmet and Teller isotherms, and scanning electron microscopy. The carbons obtained display a characteristic structure of mesoporous materials and the pyrolysis temperature has strong influence on the specific area and porous volume distribution. The activated carbon obtained at 700 °C has high specific area and compact structure. It exhibited high performance for adsorption of methylene blue solution, removing 1.1 x 10-1 g of the dye per gram of carbon in less than 300 s.

  11. Preparation of graphitic carbon nitride by electrodeposition

    Institute of Scientific and Technical Information of China (English)

    LI Chao; CAO Chuanbao; ZHU Hesun

    2003-01-01

    The CNx thin film was deposited on Si(100) substrate from a saturated acetone solution of cyanuric trichloride and melamine (cyanuric trichloride/melamine=1︰1.5) at room temperature. X-ray diffraction (XRD) results showed that the diffraction peaks in the pattern coincided well with those of graphite-like carbon nitride calculated in the literature. The lattice constants (a=4.79 A, c=6.90 A) for g-C3N4 matched with those of ab initio calculations (a=4.74 A, c=6.72 A) quite well. X-ray photoelectron spectroscopy (XPS) measurements indicated that the elements in the deposited films were mostly of C and N (N/C=0.75), and N (400.00 eV) bonded with C (287.72 eV) in the form of six-member C3N3 ring. The peaks at 800 cm-1, 1310 cm-1 and 1610 cm-1 in the Fourier transform infrared (FTIR) spectrum indicated that triazine ring existed in the product. These results demonstrated that crystalline g-C3N4 was obtained in the CNx film.

  12. The preparation of calcium carbonate in an emulsified liquid membrane

    Science.gov (United States)

    Davey, R. J.; Hirai, T.

    1997-01-01

    A method for preparing 1 μm calcite rhombs in a double emulsion is described. This is the first report of the use of such a system for precipitation of a carbonate and may find application in a range of industrially important materials such as fillers and catalysts.

  13. Preparation of activated carbon supported catalysts and their application in residue hydroprocessing%活性炭负载型催化剂的制备及其在渣油加氢中的应用

    Institute of Scientific and Technical Information of China (English)

    刘元东; 宗保宁; 赵愉生; 赵元生; 范建光; 郜亮; 温朗友

    2011-01-01

    Residue hydroprocessing is a significant residue upgrading technology,and the development of catalysts with high performance is the core content.The latest research progress of activated carbon supported catalysts is introduced,including preparation method,activity and active phase.More attention should be paid to increasing mechanical strength,improving extrusion molding and keeping stability of catalyst in future research and development.%渣油加氢工艺是一项重要的渣油深度转化技术,高性能渣油加氢催化剂的研发是其核心。本文介绍了一种新型渣油加氢催化剂——金属/活性炭负载型催化剂,从催化剂制备方法、反应活性、活性相等多个方面,阐述了其在渣油加氢中的应用研究情况。提出应该从增强催化剂机械强度、改进催化剂成型工艺、提高催化剂稳定性等方面改进催化剂的性能。

  14. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  15. Produção e caracterização de carvão ativado produzido a partir do defeito preto, verde, ardido (PVA do café Production and characterization of activated carbon prepared from PVA defect coffee

    Directory of Open Access Journals (Sweden)

    Paulize H. Ramos

    2009-01-01

    Full Text Available The black, green and sour coffee defect (PVA contributes with 20% of the total coffee production. It should be separate from the normal coffee grains in order to improve the final quality of the beverage. In this way, the present work has the objective to use the PVA reject for the production of activated carbon. The activated carbon (CA was prepared from PVA defect using zinc chloride as activating agent. The prepared material (CA PVA was characterized and the adsorption tests were carried out using as organic models methylene blue (AM and reactive red (VR. The CA PVA revealed to be more efficient in the removal of the organic contaminants compared to a commercial activated carbon.

  16. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Directory of Open Access Journals (Sweden)

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  17. 酚醛基活性炭布的制备及电化学性能研究%Investigation of Preparation and Electrochemical Performance of Phenolic Resin Based Activated Carbon Cloth

    Institute of Scientific and Technical Information of China (English)

    耿煜; 宋燕; 钟明; 李鹏; 郭全贵; 刘朗

    2011-01-01

    以实验室自制的酚醛基纤维布为原料,以二氧化碳为活化剂制备了系列酚醛基活性炭布(Activated Carbon Cloths,ACCs),利用低温N2(77K)吸附法测定了所制活性炭布的孔结构,并将所制得活性炭布用做超级电容器电极材料,采用恒流充放电法和交流阻抗技术考察了所制模拟电容器的电化学性能(电解液:1 M(CH2 CH3)3CH3 NBF4/PC).结果表明:随着活性炭布的比表面积的增大,比电容也随之增大,其中ACC4样品在50mA· g-1的电流密度下达到135F·g-1.随着电流密度的增大,微孔对比电容的贡献下降而中孔的贡献增大,说明中孔有利于提高活性炭布的功率特性.随活化程度的加深,活性炭布的导电性下降,等效串联电阻增大.%Phenolic resin based Activated Carbon Cloths (ACCs) were prepared by carbon dioxide activation treatment, and were used as electrodes of supercapacitors. The pore structure and the electrochemical properties of the resultant ACCs were investigated by means of nitrogen adsorption, AC impedance and constant current discharge techniques. The relationship of pore structure and the electrochemical performance in 1M (CH2CH3)3CH3NBF4/PC were discussed in details. Results showed that the specific capacitance of the samples increase with the BET surface area,and the specific capacitance of ACC4 reached 135 F · g-1 at current density of 50mA · g-1. Besides, the contribution to the specific capacitance from micropores decreases while that of from mesopores increases with the increase of the current density. The conductivity of the sample decreased and the ESR increased with the enhancement of activation degree.

  18. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  19. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  20. 高锰酸钾活化法制备红麻秆芯活性炭及其表征%Preparation and characterization of activated carbon from kenaf core by potassium permanganate activation

    Institute of Scientific and Technical Information of China (English)

    陈燕丹; 陈卫群; 黄彪

    2012-01-01

    Potassium permanganate was used as a new effective chemical activator for production of activated carbon from kenaf core, with large specific surface area and highly developed microporous structure. The effects of activation temperature, impregnation ratio and activation rime on the iodine and methylene blue adsorption capacities of kenaf core derived activated carbon were evaluated to optimize the activation process. Fore characteristics, surface functional groups, micro-morphology and element content were investigated with N2 adsorption-desorption isotherms, FT-IR, FE-SEM and EDX analysis, respectively. The results showed that utilization of KMnO4 as an activating agent, at a rather low impregnation ratio, could be expected as a low-cost, efficient and green approach for manufacture at activated carbons.%以低浸渍比的KMnO4为活化剂高效活化红麻秆芯.制备了大比表面积和微孔结构发达的活性炭.探讨了活化温度、活化剂与原料的浸渍比、活化时间对活性炭的碘和亚甲基蓝吸附性能的影响.结果表明,低成本和高性能红麻秆芯活性炭的较佳制备条件为:浸渍比2%、活化温度800℃和活化时间120 min;该条件下活性炭的BET比表面积、总孔容、平均孔径分别为985.36m2·g-1、0.54 cm3·g-1和1.09nm.通过氮气吸附——脱附等温线、FT-IR、FE-SEM、EDX等手段对红麻秆芯活性炭的孔结构特征、表面官能团、显微形貌和元素组成进行了表征.结果显示,KMnO4活化法有望成为一种低成本、高效和环境友好的活性炭制备方法.

  1. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16ClN. SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The results show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm. The clay material slice mainly consists of two-dimensional aperture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im- proved.

  2. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZengZhi; YANG ChunWei; NIU JunJie

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16CIN.SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The re-sults show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm, The clay material slice mainly consists of two-dimensional ap-erture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im-proved.

  3. Preparation of anti-oxidative carbon fiber at high temperature

    Science.gov (United States)

    Kim, Bo-Hye; Kim, Su Yeun; Kim, Chang Hyo; Yang, Kap Seung; Lee, Young-Jun

    2010-11-01

    In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.

  4. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes.

    Science.gov (United States)

    Jung, Kyung-Hye; Ferraris, John P

    2016-10-21

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities. PMID:27632072

  5. Decoration of activated carbon nanotubes by assembling nano-silver

    Institute of Scientific and Technical Information of China (English)

    Chen-sha Li; Bin-song Wang; Ying-jie Qiao; Wei-zhe Lu; Ji Liang

    2009-01-01

    A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room tempera-ture was put forward. Activated carbon nanotubes were used as precursors for preparing silver-decorated nanotubes. The nature of the decorated nanotubes was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDX). The inert surfaces of carbon nanotubes were activated by introducing catalytic nuclei via an oxidation-sensitization-activation approach. Activated carbon nanotubes catalyzed the metal deposition specifically onto their surfaces upon immersion in electroless plating baths. The method produced nanotubes decorated with silver. The extent of silver decoration was found to be dependent on fabrication conditions. Dense nano silver assembled on nanotube surfaces could be ob-tained by keeping a low reaction rate in the solution phase. The results here show that this method is an efficient and simple means of achieving carbon nanotubes being assembled by nano metal.

  6. PREPARATION OF IODINE-INCLUDED CARBON USING RF PLASMA CVD

    Institute of Scientific and Technical Information of China (English)

    Y. Sakamoto; M. Takaya; T. Uchiyama

    2005-01-01

    For the aim of synthesis of the carbon-iodine compound, the preparation of iodine-included carbon using RF plasma CVD was studied. Iodine-included carbon was synthesized on Si substrate using ICP type RF plasma CVD apparatus. C2H5OH and I2 dissolved C2H5OH was used as reactant gases. As a result, surface morphologies of Iodine included carbon films showed fiat surfaces for each samples. On the structure of films estimated by Raman spectroscopy, amorphous carbon was recognized. And I2 peaks were observed in XPS spectra. As a result of friction test,friction coefficient of the sample growth with C2H5OH showed about 0.45. On the other hand,that of the sample with I2-C2H5OH showed about 0.3 and decrease of friction coefficient was recognized. Iodine inclusion for carbon materials can be achieved by RF plasma CVD using an I2-C2H5OH reactant. The coefficient of iodine-included carbon showed lower than of without iodine

  7. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  8. Attempts to prepare an all-carbon indigoid system

    OpenAIRE

    Şeref Yildizhan; Henning Hopf; Jones, Peter G

    2015-01-01

    First attempts are described to prepare a precursor for an all-carbon analog of indigo, the tetracyclic triene 4. Starting from indan-2-one (9) the α-methylene ketone 13 was prepared. Upon subjecting this compound to a McMurry coupling reaction, it dimerized to the bis-indene derivative 17, rather than providing the tetramethyl derivative of 4, the hydrocarbon 14. In a second approach, indan-1-one (18) was dimerized to the conjugated enedione 21 through the bis-1-indene dimer 19. All attempts...

  9. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  10. Microwave_assisted preparation of peanut shell_based activated carbons and their use in electrochemical capacitors%微波法制备电化学电容器用花生壳基活性炭

    Institute of Scientific and Technical Information of China (English)

    吴明铂; 李如春; 何孝军; 张和宝; 隋吴彬; 谭明慧

    2015-01-01

    Activated carbons ( ACs) were prepared from peanut shells by KOH activation under microwave heating and were used as electrode materials for electrochemical capacitors ( ECs) . The pore structure of the ACs was characterized by nitrogen adsorption andthe electrochemical performance by galvanostatic charge_discharge and cyclic voltammetry. Results show that the ACs’ specific surface area, total pore volume, specific capacitance, as well as energy density are maximized using anactivation time from 6 to 10 min or KOH/peanut shell mass ratio from 0. 6 to 2. 0 under otherwise identical conditions. When the KOH/peanut shell mass ra_tio was 1. 0, microwave power was 600 W and activation time was 8 min, the specific surface area of the resulting AC was 1 277 m2/g and its energy density was 8. 38 Wh/kg after 1 000 cycles. The KOH activation of peanut shells with microwave heating is an efficient approach for the rapid preparation of low cost ACs for ECs.%以花生壳为原料,氢氧化钾为活化剂,采用微波加热制备出活性炭,所制活性炭用于制备电化学电容器用电极材料。通过氮气吸附、恒流充放电及循环伏安对所制活性炭的孔结构及电化学性能进行研究。结果表明,活性炭的比表面积、总孔容、比电容以及能量密度在炭化时间(6_10 min)以及KOH与花生壳的质量比(0.6_2.0)的范围内存在最大值。当KOH/花生壳的质量比为1.0,微波功率为600W,活化时间8min,所制活性炭(AC1_600_8)比表面积达1277m2/g,并且经1000次循环后,其能量密度高达8.38 Wh/kg。因此采用微波加热、KOH活化是一种快速制备电化学电容器用活性炭的低成本方法。

  11. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  12. Preparation and Investigation of Diamond-like Carbon Stripper Foils

    Institute of Scientific and Technical Information of China (English)

    FAN; Qi-wen; DU; Ying-hui; ZHANG; Rong; XU; Guo-ji

    2013-01-01

    1 Preparation of DLC stripper foils For DLC stripper foils of about 5μg/cm2 thickness,the following methods were used.The DLC foils of about 4μg/cm2 thicknesses were produced by FCVA onto glass slides coated with betaine-saccharose as releasing agent,which was previously covered with the evaporated carbon layers of about 1μg/cm2

  13. Preparation of very long and open aligned carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  14. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    OpenAIRE

    Mirjalili Mohammad; Karimi Loghman

    2015-01-01

    Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs) by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide), type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl...

  15. Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode

    Institute of Scientific and Technical Information of China (English)

    Xin Zhuang; Yingjia Liu; Jian Chen; Hao Chen; Baolian Yi

    2014-01-01

    Ordered porous cabon with a 2-D hexagonal structure, high specific surface area and large pore volume was synthesized through a two-step heating method using tri-block copolymer as template and phenolic resin as carbon precursor. The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon. Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area. Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1. The improved capacity retention was obtained during the cell cycling as well.

  16. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  17. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Institute of Scientific and Technical Information of China (English)

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  18. Antimicrobial activity of preparation Bioaron C.

    Science.gov (United States)

    Gawron-Gzella, Anne; Michalak, Anna; Kędzia, Anna

    2014-01-01

    The antimicrobial activity of sirupus Bioaron C, a preparation, whose main ingredient is an extract from the leaves of Aloe arborescens, was tested against different microorganisms isolated from patients with upper respiratory tract infections. The experiments were performed on 40 strains: 20 strains of anaerobic bacteria, 13 strains of aerobic bacteria and 7 strains of yeast-like fungi from the genus Candida and on 18 reference strains (ATCC). The antimicrobial activity of Bioaron C (MBC and MFC) was determined at undiluted concentration. Bioaron C proved to be very effective against the microorganisms causing infections. At the concentration recommended by the producer, the preparation showed biocidal activity (MBC, MFC) against the strains of the pathogenic microorganisms, which cause respiratory infections most frequently, including, among others, Peptostreptococcus anaerobius, Parvimonas micra, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus anginosus, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa and Candida albicans, already after 15 min. The MIC of Bioaron C against most of the tested microorganisms was 5 to 100 times lower than the usually applied concentration. The great antimicrobial activity means that the preparation may be used in the prevention and treatment of infections of the upper respiratory tract. Bioaron C may be an alternative or complement to classical therapy, especially in children. PMID:25362808

  19. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  20. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    OpenAIRE

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  1. 碳掺杂的二氧化钛纳米管的制备及其可见光催化性能%Preparation and Visible Light Photocatalytic Activity of Carbon Doped Titanium Dioxide Nanotubes

    Institute of Scientific and Technical Information of China (English)

    李向清; 康诗钊; 唐韵秋; 李国栋; 穆劲

    2013-01-01

    Urea was used as a precursor of carbon to prepare carbon doped TiO2 nanotubes.The products obtained were characterized with Brunauer-Emmett -Teller surface area measurement (BET),X-ray diffraction (XRD) ,transmission electron microscopy (TEM) ,energy dispersive X-ray fluoresence spectroscopy ( EDX) ,X-ray photoelectron spectroscopy (XPS) ,solid diffuse reflection UV-Vis spectroscopy (DRS) and fluorescence spectroscopy.The results showed that the visible light photocatalytic activity of the TiO2 nanotubes was improved obviously after doping C.In addition,the influences of doping amount of C,calcination temperature,dosage of catalyst and pH on the photocatalytic degradation activity of the TiO2 nanotubes were investigated.The degradation efficiency of rodamine B could reach 91% under 3 h visible light irradiation when the amount of doping C was 5.3% ,calcination temperature was 400℃ ,dosage of catalyst was 1.5 g/L,pH of solution was 5.%以尿素作为碳元素前驱体对TiO2纳米管进行掺杂,采用比表面积测定、X射线衍射、透射电子显微镜、能量色散X射线荧光光谱、X射线光电子能谱、固体漫反射紫外-可见吸收光谱和荧光光谱对产物进行了表征.结果表明,以尿素作为前驱体可制备C掺杂的TiO2纳米管,C掺杂后,TiO2纳米管的可见光催化活性明显提高.此外,研究了C掺杂量、煅烧温度、催化剂用量和pH值对TiO2纳米管光催化降解活性的影响,发现当C的掺杂量为5.3%、催化剂用量为1.5 g/L、溶液的pH值为5时,在其催化作用下,可见光光照3h后罗丹明B的降解率可达到91%.

  2. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  3. Porous texture evolution in Nomex-derived activated carbon fibers.

    Science.gov (United States)

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  4. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo, E-mail: Leewave@126.com [Institute of Biomaterials and Living Cell Imaging Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China) and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China); Liao Xiaoling [Institute of Biomaterials and Living Cell Imaging Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Zheng Li [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China); He Huawei [Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050 (China); Wang Hong [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China); Fan Hongsong, E-mail: hsfan68@hotmail.com [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China); Zhang Xingdong [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2012-05-01

    Microwave sintering using the activated carbon as embedding material was applied in preparation of porous A-type carbonated hydroxyapatite ceramics with nano(nCHA) and submicron (mCHA) structure. By examining the linear shrinkages and the compressive strengths of samples at different temperatures, a suitable microwave sintering temperature was achieved. The microwave sintering method was successfully used to prepare A-type CHA with nano or submicron structure, and the mechanism of the formation of A-type carbonate groups was discussed also. Compared with the samples prepared by the conventional sintering method (mHA), the nCHA bioceramics synthesized by the microwave sintering approach had smaller grain size and more uniform microstructure, and showed a compressive strength similar to the conventional samples. In vitro dissolution test proved that nCHA exhibits better degradation property in comparison to pure HA. Rat osteoblasts were cultured with nCHA, mCHA and mHA to evaluate their biocompatibility, and nCHA showed significant enhancement of cells in attachment, proliferation and differentiation. In conclusion, carbonate groups can be easily introduced to HA crystal structure using the activated carbon as embedding material, and microwave sintering is an effective and simple method in preparing A-type CHA with a nanostructure. Results from this in vitro biological study suggest that porous A-type carbonated hydroxyapatite nanoceramics may be a much better candidate for clinical use in terms of bioactivity. - Highlights: Black-Right-Pointing-Pointer We prepared porous A-type carbonated hydroxyapatite nanoceramics with microwave sintering. Black-Right-Pointing-Pointer We examined physico-chemical characterization and osteoblast response. Black-Right-Pointing-Pointer The nanoceramics have a comparable compressive strength to samples with conventional sintering method. Black-Right-Pointing-Pointer The nanoceramics enhance degradation property, osteoblast

  5. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  6. Preparation and characterization of activated carbon fiber material modified by CuO%活性炭纤维负载CuO改性及其性能表征

    Institute of Scientific and Technical Information of China (English)

    李海红; 薛慧; 杨清

    2016-01-01

    CuO/ACF electrode materials were prepared using activated carbon fiber (ACF) felt with HCl pretreatment as raw materials, which were loaded with copper oxide (CuO) by impregnation-burning method with Cu(NO3)2solution as the precursor. Physical and chemical properties of the ACF before and after loaded CuO samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area and pore size analysis, and fourier transform infrared spectroscopy (FTIR); the changes of electrochemical performance of the samples were analyzed by using electrochemical workstation. The results show that CuO/ACF electrode materials are successfully prepared. Specific surface area and total pore volume of CuO/ACF decrease by 31.94% and 33.95%, respectively. The surface oxygen groups increase, with obvious Cu—O bonds after loading with the metal oxides. The mass fraction of Cu in CuO/ACF is 13.7%; and the specific capacitance has an increase of 17.95% in comparison with original ACF after loading with CuO. CuO/ACF materials can be used as an electrode material for the removal of the inorganic ions in wastewater.%以Cu(NO3)2溶液作为前躯体,采用浸渍–煅烧法对盐酸预处理后的活性炭纤维(activated carbon fiber,ACF)毡进行负载氧化铜化学改性,制备CuO/ACF电极材料。通过扫描电镜(SEM)、X射线光电子能谱仪(XPS)、比表面积及孔径分析仪以及傅立叶变换红外光谱仪(FTIR)对ACF及其负载CuO后的形貌与结构、元素组成、比表面积、孔径等进行观察与分析,并利用电化学工作站测试其电化学性能。结果表明:经过负载 CuO 化学改性的CuO/ACF 电极材料,比表面积及孔容较改性前分别下降31.94%和33.95%,表面含氧基团增多,出现明显的 Cu—O键,CuO/ACF电极材料中Cu元素的质量分数为13.7%;负载CuO后比电容升高17.95%,电吸附性能提高。CuO/ACF材料可作为电极材料用于去

  7. Preparation of Two Kinds of Ultra-fine Activated Carbon Fibers and Adsorption of Formaldehyde on Them%两种超细活性碳纤维的制备及其甲醛吸附性能

    Institute of Scientific and Technical Information of China (English)

    余阳; 周美华; 吴小倩

    2011-01-01

    Two kinds of ultra-fine activated carbon fibers (UFACF-1 and UFACF-2) were prepared from ultra-fine preoxidized fiber mat via electric heating and microwave heating method, at the same relative humidity, the gaseous formaldehyde adsorption performance on the prepared ultra-fine activated carbon fibers was studied. The morphology and structural evolvement of ultra-fine preoxidized fiber during thermal treatment were characterized by field emission-scanning electron microscopy, FTIR spectroscopy and surface area and pore size analyses. UFACF-1 and UFACF-2 had differences in fiber morphology, structure and the formaldehyde adsorption performance, the surface area and the total pore volume of UFACF-1 were 805.25m2 · g-1 and 0. 366cm3 · g-1, and UFACF-2 were 733.32m2 · g-1 and 0. 386cm3 · g-1, respectively. UFACF-1 showed higher formaldehyde adsorption capacity than UFACF-2; UFACF-1 contained carbonyl and hydroxyl functional groups, which could have potential applications in removal of indoor formaldehyde.%以超细预氧化纤维毡为原料,采用电加热和微波加热方法制备两种超细活性碳纤维吸附剂(UFACF-1、UFACF-2),在相同湿度条件下,对两种超细活性碳纤维的甲醛吸附性能进行测定;采用场发射扫描电镜、傅里叶变换红外-拉曼光谱仪、全自动比表面和孔径分布分析仪对两种超细活性碳纤维吸附剂的纤维形态、结构、比表面积、孔容和孔径分布进行表征;两种超细活性碳纤维在纤维形态、结构和甲醛吸附性能上均有差别,其中,UFACF-1比表面积为805.25mz·g-1,总孔容为0.366cm3·g-1,UFACF-2比表面积为733.32m2·g-1,总孔容为0.386cm3·g-1,UFACF-1甲醛吸附性能优于UFACF-2;UFACF-1含有大量极微孔和含氧官能团,对于室内甲醛处理,是一种有应用潜力的新型吸附材料.

  8. Process for preparing tapes from thermoplastic polymers and carbon fibers

    Science.gov (United States)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  9. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  10. Thermal conductivity of hard carbon prepared from C 60 fulleren

    Science.gov (United States)

    Smontara, A.; Biljaković, K.; Starešinić, D.; Pajić, D.; Kozlov, M. E.; Hirabayashi, M.; Tokumoto, M.; Ihara, H.

    1996-02-01

    We report measurements of thermal conductivity in 30-350 K range of hard fullerene-based carbon. The material has been prepared from C 60 fullerene under pressure and has an unusual combination of large hardness and relatively high electrical conductivity. Its thermal conductivity is about 5.5 W/mk at room temperature and decreases almost linearly in the investigated temperature range. The data obtained bear resemblance to the thermal properties of amorphous materials. It is consistent with the structural investigation that allows one to suggest the existence of short-range crystalline order in this transformed substance.

  11. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  12. Multi-physical field coupling simulation of TCVI process for preparing carbon/carbon composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which included convection, conduction, diffusion, densification reactions in the pores and the evolution of the porous medium. The multi-physical field coupling model was solved by finite element method (FEM) and iterative calculation. The time evolution of the fluid, temperature and preform density field were obtained by the calculation. It is indicated that convection strongly affects the temperature field. For the preform of carbon/carbon composites infiltrated for 100 h by TCVI, the radial average densities from simulation agrees well with those from experiment. The model is validated to be reliable and the simulation has capability of forecasting the process.

  13. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    OpenAIRE

    N. Boukmouche; N. Azzouz; L. Bouchama; J.P. Chopart; Y. Bouznit

    2014-01-01

    In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated car...

  14. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO2/ AC was found to be two times better than the removal by immobilised AC or immobilised TiO2 alone. In 4 hours and with the concentration of 10 ppm, TiO2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  15. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    Science.gov (United States)

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials. PMID:27155234

  16. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  17. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  18. Preparation of carbon-nitride bulk samples in the presence of seed carbon-nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I. [Korea University of Technology and Education, Chonan (Korea, Republic of); Zorov, N. B. [Moscow State University, Moscow (Russian Federation)

    2004-05-15

    A procedure was developed for preparing bulk carbon-nitride crystals from polymeric alpha-C{sub 3}N{sub 4.2} at high pressure and high temperature in the presence of seeds of crystalline carbon-nitride films prepared by using a high-voltage discharge plasma combined with pulsed laser ablation of a graphite target. The samples were evaluated by using X-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrated that the nitrogen composition in the alpha-C{sub 3}N{sub 4.2} material, which initially contained more than 58 % nitrogen, decreased during the annealing process and reached a common, stable composition of approx 45 %. The thermobaric experiments were performed at 10 - 77 kbar and 350 - 1200 .deg. C.

  19. VPO catalysts synthesized on substrates with modified activated carbons

    International Nuclear Information System (INIS)

    VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 deg. C) and hard (50% H2O2, 350 deg. C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.

  20. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  1. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    Science.gov (United States)

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. PMID:25595622

  2. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  3. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Science.gov (United States)

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  4. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    International Nuclear Information System (INIS)

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  5. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  6. Preparation and mechanical properties of chitosan/carbon nanotubes composites.

    Science.gov (United States)

    Wang, Shao-Feng; Shen, Lu; Zhang, Wei-De; Tong, Yue-Jin

    2005-01-01

    Biopolymer chitosan/multiwalled carbon nanotubes (MWNTs) nanocomposites have been successfully prepared by a simple solution-evaporation method. The morphology and mechanical properties of the chitosan/MWNTs nanocomposites have been characterized with field emission scanning electron microscopy (SEM), bright field transmission electron microscopy (TEM), optical microscopy (OM), wide-angle X-ray diffraction (XRD), and tensile as well as nanoindentation tests. The MWNTs were observed to be homogeneously dispersed throughout the chitosan matrix. When compared with neat chitosan, the mechanical properties, including the tensile modulus and strength, of the nanocomposites are greatly improved by about 93% and 99%, respectively, with incorporation of only 0.8 wt % of MWNTs into the chitosan matrix. PMID:16283728

  7. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mirjalili Mohammad

    2015-06-01

    Full Text Available Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide, type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl. The morphologies of the CNTs–polymer composite fibres were studied by scanning electron microscopy. Thermal behaviours and mechanical properties of the CNTs–polymer composite fibres were investigated using differential scanning calorimetry and tearing tester, respectively. The results reveal that using CNTs had tangible effect on electrical, thermal and mechanical properties of the melt spun fibres. Also, polyamide had a better dispersion of CNTs and correspondingly lower surface resistivity.

  8. Preparation and Properties of Carbon Fiber Chiral Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; HUANG Zhixin; WANG Guoqing

    2008-01-01

    The chiral materials were prepared by using the carbon fiber helices as chiral inclusions,and the composite of Fe3O4 and polyaniline as matrix.The electromagnetic properties,including the rotation angles,the axial ratios and the complex chirality parameters,were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range.The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed.The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.

  9. Preparation and Photocatalytic Properties of SnO2 Coated on Nitrogen-Doped Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2012-01-01

    Full Text Available SnO2 nanoparticles coated on nitrogen-doped carbon nanotubes were prepared successfully via a simple wet-chemical route. The as-obtained SnO2/CNx composites were characterized using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2/CNx for degradation Rhodamine B under UV light irradiation was investigated. The results show that SnO2/CNx nanocomposites have a higher photocatalytic activity than pure SnO2 and SnO2/CNTs nanocomposites. This enhanced photoresponse indicates that the photoinduced electrons in the SnO2 prefer separately transferring to the CNx, which has a high degree of defects. As a consequence, the radiative recombination of the electron-hole pairs is hampered and the photocatalytic activity is significantly enhanced for the SnO2/CNx photocatalysts.

  10. 磺化石墨烯/活性炭复合电极的制备及其不对称电容器脱盐%Preparation of Sulfonated Graphene/Activated Carbon Composite Electrode for Asymmetric Capacitive Deionization

    Institute of Scientific and Technical Information of China (English)

    卢淼; 刘建允; 王世平; 程健

    2014-01-01

    在还原剂 NaBH4存在下,采用对氨基苯磺酸重氮盐与氧化石墨(GO)表面共价键合制备磺化石墨烯(GP-SO3 H).傅里叶变换红外光谱(FTIR)证明磺酸基团在石墨烯表面接枝.采用扫描电子显微镜(SEM)研究了磺化石墨烯的表面形貌.以磺化石墨烯为添加剂,制备了磺化石墨烯/活性炭(GP-SO3 H/ AC)复合电极.循环伏安及阻抗分析结果表明,该复合电极的电容特性及导电性有明显改善.以活性炭电极为对电极组装了不对称电容器(GP-SO3 H/ AC| AC),研究了该不对称电容器的电化学脱盐性能.与对称电容器(AC | AC)相比,不对称电容器中由于电极内磺酸基团对反离子的屏蔽作用,电容器的电流效率达到89.4%以上,脱盐量提高2.4倍,单个循环脱盐量达到10.87 mg/ g.%Sulfonated graphene( GP-SO3 H) was prepared by grafting reaction of sulfonated diazoniun salt. The sulfonated graphene was characterized by Fourier transform infrared spectrometry( FTIR) and scanning electron microscopy(SEM), respectively. The experimental results indicate that the sulfonic groups have been grafted onto graphene oxide. The sulfonated graphene / activated carbon composite electrode(GP-SO3 H/ AC) was prepared by mixing 10% ( mass fraction) GP-SO3 H as dopant. Compared with AC electrode, this composite electrode exhibits an ideal double layer capacitive behavior and high conductivity, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. The hybrid capacitor was assembled by the resultant GP-SO3 H/ AC as negative electrode and AC as counter electrode for capacitor deionization(CDI). Under the constant current charging-discharging condition, the salt removal amount of 10. 87 mg / g in single cycle was obtained, about 2. 4 times that of the normal AC capacitor. And the current efficiency was improved dramatically owing to the facile adsorption of sulfonic groups to cations, and the shielding effect of sulfonic groups

  11. Preparation of carbon brushes with thermosetting resin binder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon brushes with a resin binder were prepared according to an industrial process and the effects of the molding pressure, grains size and cure temperature on the properties of brush samples were discussed. The results show that the bulk density,bending strength and Rockwell hardness increase, while resistivity decreases with increasing molding pressure. Cure temperature has much more influence on the properties of brushes than molding pressure and grains size. Isothermal differential scanning calorimetry(DSC) was used to estimate the degree of cure of resin binder and a novel method of using the true density to measure the degree of cure of resin binder was presented and discussed briefly. Based on optimal process parameters carbon brushes were manufactured, durability tests for brushes were carried out on an alternate current motor and scanning electron microscope(SEM)was adopted to observe the morphology of worn surface of brushes. The results show that a luster oxide film can be formed on the surface of brushes and their service life reaches 380 h.

  12. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    Institute of Scientific and Technical Information of China (English)

    P. STEFANOV; D. GARLANOV; G. VISSOKOV

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc gen-erated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 104 K, while its power density, which is directly transferred onto the electrode (anode), is ~ 2 kW/mm2. The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  13. Selection of pecan shell based activated carbons for removal of organic and inorganic impurities from simulated well-water

    Science.gov (United States)

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify its surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soakin...

  14. Attempts to prepare an all-carbon indigoid system

    Directory of Open Access Journals (Sweden)

    Şeref Yildizhan

    2015-03-01

    Full Text Available First attempts are described to prepare a precursor for an all-carbon analog of indigo, the tetracyclic triene 4. Starting from indan-2-one (9 the α-methylene ketone 13 was prepared. Upon subjecting this compound to a McMurry coupling reaction, it dimerized to the bis-indene derivative 17, rather than providing the tetramethyl derivative of 4, the hydrocarbon 14. In a second approach, indan-1-one (18 was dimerized to the conjugated enedione 21 through the bis-1-indene dimer 19. All attempts to methylenate 21 failed, however. When 19 was treated with the Tebbe reagent, the dimer 23 was produced, presumably through a Cope reaction of the intermediately generated isomer 22. The bis-indene derivative 23 can be alkylated with 1,2-dibromoethane to produce a 1:1 mixture of the spiro compounds 24 and 25. Although 9 could be reductively dimerized to 30, the conversion of this olefin to 14 failed.

  15. Conceptualizing the System of Preparing Future Pedagogues for Innovation Activity

    OpenAIRE

    Yurii S. Tyunnikov

    2015-01-01

    Overcoming existing difficulties in the preparation of future pedagogues for innovation activity is associated, among other things, with the issue of conceptualizing it. This article provides a conceptual rationale for preparation for innovation activity. The author describes the preparation as an integral system, defines its educational priorities, functional/role characteristics, educational resources and ways of distributing them, and project scopes for educational technology.

  16. New Activated Carbon with High Thermal Conductivity and Its Microwave Regeneration Performance

    Institute of Scientific and Technical Information of China (English)

    GU Xuexian; SU Zhanjun; XI Hongxia

    2016-01-01

    Using a walnut shell as a carbon source and ZnCl2 as an activating agent, we resolved the temperature gradient problems of activated carbon in the microwave desorption process. An appropriate amount of silicon carbide was added to prepare the composite activated carbon with high thermal conductivity while developing VOC adsorption-microwave regeneration technology. The experimental results show that the coefficient of thermal conductivity of SiC-AC is three times as much as those of AC and SY-6. When microwave power was 480 W in its microwave desorption , the temperature of the bed thermal desorption was 10℃ to 30℃below that of normal activated carbon prepared in our laboratory. The toluene desorption activation energy was 16.05 kJ∙mol-1, which was 15% less than the desorption activation energy of commercial activated carbon. This study testified that the process could maintain its high adsorption and regeneration desorption performances.

  17. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Science.gov (United States)

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.

  18. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Dinesh [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)]. E-mail: dm_1967@hotmail.com; Singh, Kunwar P. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Singh, Vinod K. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  19. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    Science.gov (United States)

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices.

  20. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    Science.gov (United States)

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. PMID:27420389

  1. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  2. Preparation and Utilization of Kapok Hull Carbon for the Removal of Rhodamine-B from Aqueous Solution

    OpenAIRE

    P. S. Syed Shabudeen; R. Venckatesh; S. Pattabhi

    2006-01-01

    A carbonaceous sorbent prepared from the indegeneous agricultural waste (which is facing solid waste disposal problem) Kapok Hull, by acid treatment was tested for its efficiency in removing basic dyes. Batch kinetic and isotherm experiments were conducted to determine the sorption and desorption of the Rhodamine-B from aqueous solution with activated carbon. The factors affecting the rate processes involved in the removal of dye for initial dye concentration, agitation time, and carbon dose ...

  3. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  4. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  5. Hard carbon nitride and method for preparing same

    Science.gov (United States)

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  6. Preparation of novel composite activated carbon with high applicability to microwave and its regeneration under microwave radiation%新型微波适应型复合活性炭的研制及其微波再生性能

    Institute of Scientific and Technical Information of China (English)

    潘能婷; 苏展军; 莫家乐; 奚红霞; 夏启斌; 李忠

    2011-01-01

    微波再生技术被广泛认为是一种高效、节能的绿色再生技术.本文通过引入高热导率物质--膨胀石墨制备出新型微波适应型复合活性炭,解决目前活性炭在微波脱附过程中存在的温度梯度问题,同时开发VOCs活性炭吸附-微波再生技术.结果表明,制得的复合活性炭具有与普通商业活性炭相当的吸附性能,且其热导率提高6倍.同时,其甲苯脱附活化能为18.08 kJ·mol-1,低于其在商业活性炭上的微波脱附活化能(24.84 kJ·mol-1)25%以上;相同微波功率下,其脱附床层温度低于实验室制备的普通活性炭10~30℃.所制备的高热导率复合活性炭不仅具有良好的吸附性能,而且具有很好的微波适应性.%Microwave regeneration technology is recognized as a high-efficiency and energy-saving regeneration technology. In this study, in order to decrease the temperature gradient in adsorbent beds under microwave radiation, a novel composite activated carbon with high thermal conductivity was prepared by adding expanded graphite and its regeneration under microwave radiation was investigated. The results show that the thermal conductivity of the composite activated carbon is about 6 times higher than that of the traditional commercial activated carbon while its adsorption capacity decreases a little. And the temperature difference in the composite activated carbon bed under microwave radiation is 10-30℃, less than that in the commercial activated carbon bed. The activation energy for desorption of toluene on the composite activated carbon (18.08 kJ · mol-1) is smaller than that on the industrial activated carbons (24. 84 kJ · mol-l) . Thus the composite activated carbon with high thermal conductivity not only has good adsorption properties, but also has good applicability to microwave radiation.

  7. INFLUENCE OF BIOLOGICALLY ACTIVE AGENTS ON A STRUCTURAL STATE AND THE ENZYMATIC ACTIVITY OF BLACK ORDINARY CARBONATED SOIL

    Directory of Open Access Journals (Sweden)

    Lychman V. A.

    2014-04-01

    Full Text Available The results of a long-term research of the influence of various biologically active agents (a humic preparation Lignogumat and microbiological Baikal EM fertilizer on a structural state and the enzymatic activity of ordinary carbonated black soil are presented. It has been established that biologically active substances contribute to increased enzymatic activity, humus and improve the soil structure

  8. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    International Nuclear Information System (INIS)

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  9. Preparation, characterization and applications of functionalized carbon nano-onions

    Science.gov (United States)

    Sreeramoju, Mahendra K.

    Carbon nano-onions (CNOs) discovered by Ugarte in 1992 are multi-layered fullerenes that are spherical analogs of multi-walled carbon nanotubes with diameters varying from 6 nm to 30 nm. Among the various methods of synthesis, CNOs prepared by graphitization of nanodiamonds (N-CNOs) and underwater electric arc of graphite rods (A-CNOs) are the subject of our research. N-CNOs are considered as more reactive than A-CNOs due to their smaller size, high curvature and surface defects. This dissertation focuses on structural analysis and surface functionalization of NCNOs with diameters ranging from 6---10 nm. Synthetic approaches such as oleumassisted oxidation, Freidel-Crafts acylation and Billups reductive alkylation were used to functionalize N-CNOs to improve their dispersion properties in aqueous and organic solvents. Functionalized N-CNOs were characterized using various techniques such as TGA, TG-MS, Raman spectroscopy and pH-titrimetry. We designed an experimental method to isolate polycyclic aromatic adsorbates formed on the surface of oleum oxidized N-CNOs (ON-CNOs) and characterized them. A-CNOs, on the other hand are bigger than N-CNOs with diameters ranging from 20---40 nm. In this dissertation, we discuss the preparation of graphene structures by unzipping of A-CNOs using KMnO4 as oxidizing agent. These graphene structures were characterized using powder X-ray diffraction, TGA, BET nitrogen adsorption/desorption studies and compressed powder conductivity. This dissertation also focuses on lithiation/delithiation studies of N-CNOs, ACNOs and A-CNO-derived graphene structures to use them as negative electrode materials in lithium-ion batteries. The cycling performances of these materials at a charge/discharge rate of C/10 were discussed. The cycling performance of N-CNOs was tested at faster charge/discharge rate of C. KEYWORDS: Nano-onions, oleum-assisted oxidation, Friedel-Crafts acylation, graphene, lithium ion batteries.

  10. Hydrogenation of ortho-nitrochlorobenzene on activated carbon supported platinum catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Cheng-jun; YIN Hong; CHEN Zhi-rong

    2005-01-01

    Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene.The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.

  11. Organic solvent regeneration of granular activated carbon

    Science.gov (United States)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  12. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal treatm...

  13. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  14. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO{sub 2} gas resource

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F., E-mail: fwen323@163.com [Key Lab. of Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou 570228 (China); School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Zhang, C. [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Xie, D.; Sun, H.; Leng, Y.X. [Key Lab. of Advanced Technologies of Materials, Ministry of Education, Chengdu 610031 (China)

    2013-07-15

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO{sub 2} as carbon and oxygen source. By changing the ratio of CO{sub 2}/O{sub 2}, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst.

  15. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO2 gas resource

    International Nuclear Information System (INIS)

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO2 as carbon and oxygen source. By changing the ratio of CO2/O2, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst

  16. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  17. Surface functional groups and redox property of modified activated carbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  18. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  19. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. PMID:22370231

  20. Studies on the Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate):Ⅰ. Catalytic Activity of Metal Acetate in Transesterification of Ethylene Carbonate with Dimethyl Terephthalate

    Institute of Scientific and Technical Information of China (English)

    Dan ZHANG; Shu Yong JIA; Yue WANG; Jie YAO; Yi ZENG; Gong Ying WANG

    2006-01-01

    A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.

  1. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material

    International Nuclear Information System (INIS)

    Highlights: • The spent graphite material is utilized to prepare carbon nano-fragments (CNFs). • The preparation procedure is based on chemical oxidation and ultrasonic crushing. • The as-prepared graphene-like CNFs are systemically characterized. • The CNFs exhibit high electrocatalytic and electrochemical energy-storage properties. - Abstract: A graphene-like nanomaterial, carbon nano-fragments (CNFs), is obtained using the graphite anodes of spent lithium-ion batteries (LIBs) as carbon source, and its morphology, structure, functional groups, and reactivity are characterized to evaluate the properties and potential applications. The interlayer space increase, layer distortion, and remnant lithium of the waste lithium-intercalated graphite are utilized to prepare the oxidized CNFs (ox-CNFs) through a chemical oxidation and ultrasonic crushing process. These ox-CNFs exhibit a size distribution of 15 nm to 2 μm and excellent hydrophilicity, and disperse well in an aqueous suspension. Under the hydrothermal condition at 180 °C for 12 h, the ox-CNFs are converted into a suspension of reduced CNFs (re-CNFs), or a cylindrical aggregate when the concentration exceeds 2 mg·mL−1. The spectroscopic results demonstrate that there are abundant edges, defects, and functional groups existing on the CNFs, which affect their reactive, electronic, and electrochemical properties. Thereinto, the vacuum-dried ox-CNFs film can be converted from an insulator to a conductor after a chemical reduction by hydroiodic acid. And the re-CNFs modified glass carbon electrode (re-CNFs/GCE) exhibits enhanced electrocatalytic activity of about 8 times than the GCE to the oxidation reaction of dopamine. Furthermore, with the addition of the carboxylic ox-CNFs in aniline, the CNFs/polyaniline composite discharges a capacitance of 356.4 F·g−1 at 2 mV·s−1, an increase of 80.5% compared to the polyaniline. This preparation entails not only novel carbon nanomaterials but also an

  2. Preparation and antibacterial property of silver decorated carbon microspheres

    International Nuclear Information System (INIS)

    Carbon microspheres (CMSs) were prepared by glucose hydrothermal method. The effects of glucose concentration and reaction time on the size and morphology of CMSs were studied. CMSs with surface area of 642.5 m2/g and pore size of 0.8 nm were exploited to design hybrid material of CMSs with Ag decoration by radio frequency plasma (RF plasma). A series of investigations using X-ray diffraction, UV–vis spectrometry, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was carried out to characterize the Ag decorated CMSs. RF plasma was employed to reduce Ag+ ions to metallic nano-particles with the particle size of 10–20 nm and form a clean metal-support (Ag-CMSs) interface. The mechanism for the structure formation of Ag decorated CMSs was discussed. Plasma produced Ag/CMSs showed antibacterial property and proved suitable for potential biological and environmental applications.

  3. Preparation of photoluminescent carbon dots-embedded polyelectrolyte microcapsules

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Yang; Liming Peng; Jie Zong; Yihua Zhu

    2013-01-01

    Two types of photoluminescent carbon dots (CDs)-embedded polyelectrolyte (PE) microcapsules were successfully prepared via the layer-by-layer (LbL) assembly approach on sacrificial templates.For the first type,the PE microcapsules with CDs embedded in the cavity were produced from assembly of five pairs of poly(sodium 4-styrensulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on CDs-pre-loaded meso-porous silica.For the second type,the PE microcapsules with CDs embedded in the wall were made of CDs and PAH,which were derived from SiO2 particles as templates.Microscope images confirmed the introduction of CDs into the two CDs-embedded microcapsules.These two microcapsules also retained the optical properties of free CDs.Photoluminescence spectra revealed that the two types of microcapsules had excitation-dependent photoluminescence behavior.When the excitation wavelength changed from 280 to 340 nm,photoluminescence emission peak of the PE microcapsules with CDs embedded in the cavity shifts from 369 to 377 nm,while for microcapsules with CDs embedded in the wall,emission peak shifts from 367 to 390 nm.Due to low toxicity,good hydrophilicity and photoluminescence properties of CDs,these two kinds of photo-luminescent microcapsules have competitive potential for application in carriers for imaging,drug delivery and biosensors.

  4. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    Science.gov (United States)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  5. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuanhe; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Li, Xiang; Liu, Yongfeng; Pan, Hongge, E-mail: hgpan@zju.edu.cn

    2014-09-01

    Highlights: • Mesohollow and microporous carbon fibers were prepared via electrospinning and carbonization. • Sulfur (S) incorporated into the porous fibers by thermal heating in 60 wt.%, forming composite. • S fills fully in the micropores and partially in the mesohollows of the carbon fibers. • The composite shows high capacity and capacity retention as cathode material for Li–S batteries. • Mesohollow and microporous structure is effective in improving the property of S cathode. - Abstract: Mesohollow and microporous carbon nanofibers (MhMpCFs) were prepared by a coaxial electrospinning with polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) as outer and inner spinning solutions followed by a carbonization. The carbon fibers were thermal treated with sublimed sulfur to form S/MhMpCFs composite, which was used as cathode material for lithium–sulfur batteries. Electrochemical study shows that the S/MhMpCFs cathode material provides a maximum capacity of 815 mA h/g after several cycles of activation, and the capacity retains 715 mA h/g after 70 cycles, corresponding to a retention of 88%. The electrochemical property of the S/MhMpCFs composite is much superior than the S-incorporated solid carbon fibers prepared from electrospinning of single PAN. The mechanism of the enhanced electrochemical property of the S/MhMpCFs composite is discussed.

  6. Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications

    OpenAIRE

    Hao, Wenming

    2014-01-01

    Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon a...

  7. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  8. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. PMID:24721493

  9. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  10. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance

    Science.gov (United States)

    Wang, Shan; Wang, Kang; Wang, Xitao

    2016-11-01

    Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578 K for 3 h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5 h at 833 K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

  11. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  12. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Science.gov (United States)

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  13. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoliang, E-mail: sxl@whut.edu.cn [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang Sheng; Dong Xuebin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO{sub 2}) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO{sub 2} composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area.

  14. Endo- and exohedral carbon nanotube hybrids: Preparation and spectroscopic characterisation

    Science.gov (United States)

    Cambre, Sofie

    One of the most fascinating properties of carbon nanotubes (CNTs) is that their external surface as well as their inner hollow space can be used to adsorb or encapsulate various molecules, thereby creating so-called exo- and endohedral nanohybrids that combine the properties of the individual components with new functionalities which originate from the interaction between both materials. In this thesis, different endo- and exohedral CNT-hybrids are investigated by means of a range of spectroscopic techniques, in particular UV/Vis absorption, steady-state and time-resolved fluorescence, resonant Raman scattering (RRS) and electron paramagnetic resonance (EPR). The solubilisation of the CNTs with bile salt surfactants, yielding highly concentrated solutions of individually isolated CNTs in water, is investigated with spin-probe EPR. The spin-probe is incorporated inside the micellar layer wrapping the CNTs and the dynamics and orientation of this spin-probe is studied by EPR. In this thesis it is demonstrated that the encapsulation of water in pre-opened CNTs can be probed by resonant Raman scattering of the radial breathing modes of the CNTs. The frequencies of these modes, as well as the electronic resonances of the CNTs are shifted upon water-filling. Therefore it was possible to set up a technique to quantitatively monitor the opening/closing and water-filling of CNTs after different chemical and mechanical treatments. Exohedral porphyrin/CNT hybrids were prepared and investigated by EPR. It was found that metallic CNTs are stronger pi-acceptors than semiconducting CNTs. After solubilising the nanohybrids using bile salts, we obtained, for the first time, the isolated nanohybrids in solution in the pure form. The absorption spectrum of these porphyrins in the nanohybrids is strongly red shifted compared to the free porphyrin absorption. In addition also a quasi-complete quenching of the porphyrin fluorescence is observed. Finally endohedral CNT hybrids, using

  15. Conceptualizing the System of Preparing Future Pedagogues for Innovation Activity

    Directory of Open Access Journals (Sweden)

    Yurii S. Tyunnikov

    2015-03-01

    Full Text Available Overcoming existing difficulties in the preparation of future pedagogues for innovation activity is associated, among other things, with the issue of conceptualizing it. This article provides a conceptual rationale for preparation for innovation activity. The author describes the preparation as an integral system, defines its educational priorities, functional/role characteristics, educational resources and ways of distributing them, and project scopes for educational technology.

  16. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  17. A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes:Preparation, characterization and electrochemical capacitive performance

    Institute of Scientific and Technical Information of China (English)

    Huili Fan; Fen Ran∗; Xuanxuan Zhang; Haiming Song; Wenxia Jing; Kuiwen Shen; Lingbin Kong; Long Kang

    2014-01-01

    Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90%capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt%in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.

  18. Preparation and characterization of carbon nanofiber-polymide composites

    Science.gov (United States)

    Li, Xiaobing

    interact with polymer. However, XPS indicated that approximately one percent of the carbon atoms on the CNF surface reacted with diamine, which was derivatized from scarce reactive oxygen groups available on the OCNFs. Polyimide based composites were produced using either blending CNFs assisted by sonication or in-situ polymerization. Pristine fibers, oxidized fibers and fibers functionalized with PDA and polyimide oligomer were incorporated into the polyimide matrix, respectively. The goal was to investigate the effect of surface functional groups and the approach to form composite on the dispersion of fibers in the matrix and on the tensile strength and thermal mechanical properties. Scanning electron microscope (SEM) images showed that pristine fibers had poor dispersion in which agglomerations and a bottom-settled layer of fibers were observed, while there were few agglomerations of any other type of fibers formed in the matrix. Blending in hot DMAc and in-situ polymerization were found to disperse fibers well in the polyimide matrix. Functionalized fiber-PI composites exhibited improvement in glass transition temperature (Tg), modulus and tensile strength. In addition, the impact of fiber loadings from 0.5% to 5.0% by weight in composite was investigated. There was about a 10°C increase in Tg even at very low fiber concentration of 0.5 wt%. The modulus of the composites prepared in this study was as high as 130% of that of base PI. While functionalized fibers effectively enhanced the modulus and tensile strength of composites, pristine fibers exhibited little reinforcement to the host PI at low concentration (0.5 wt% and 1.5 wt%) and adversely affected the properties of composite at high loading of 5.0 wt%, indicating better compatibility and interfacial interaction in the case of functionalized fibers embedded.

  19. Production and characterization of activated carbon from indigenous coal (lakhra coal)

    International Nuclear Information System (INIS)

    In the present study, indigenous coal has been exploited for the preparation of activated carbon by physical. activation and characterization of if was done by using available techniques. Physical activation involved two steps; Carbonization and CO; activation. For different temperatures, carbonization was carried out for 4 hours in an oven and it was observed that percent yield and iodine number was maximum at 600 degree C. The carbonized material of 600 C was activated at different intervals of time and different temperatures for constant flow of CO/sub 2/; (activating gas). The optimum temperature and time for CO/sub 2/; activation was observed to be 750 C and 3 hours respectively, which gave lower percent yield of active carbon but of higher iodine number and methylene blue values. (author)

  20. Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite = Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates

    Directory of Open Access Journals (Sweden)

    Viviane Dias Medeiros Silva

    2005-07-01

    Full Text Available Tendo como objetivo a redução de custos do processo de fabricação dehidrolisados protéicos, estudou-se neste trabalho a imobilização da pancreatina, por adsorção, em carvão ativado e em alumina. Para isso, foram testadas diferentes condições de imobilização (30, 60 e 90min a 25°C, e 12h a 5°C. Para verificar a taxa de imobilização, determinou-se indiretamente a enzima não adsorvida nos suportes. Ao se utilizar o carvão ativado, não foi observada diferença significativa entre as condições testadas, tendo-se obtido 100% de imobilização enzimática. Para a alumina, a melhor condição foi a de 90min, na qual se obteve 37% de imobilização. A medida do grau de exposição da fenilalanina, pela espectrofotometria derivada segunda, foi empregada para a determinação da estabilidade operacional da enzima, tendo sido mostrado que a imobilização em carvão ativado e emalumina permitiu a reutilização da pancreatina por até 5 vezes e 2 vezes, respectivamente.Immobilization of pancreatin in activated carbon and in alumina was studied for producing protein hydrolysates, in order to reduce the process costs. Different immobilization conditions were tested (30, 60 and 90min at 25°C, and 12h at 5°C. For estimating the immobilization rate the amount of the non-adsorbed enzyme on the supports was indirectly determined. When activated carbon was used, no significant difference was observed among the tested conditions, obtaining 100% of enzymatic immobilization. In case of alumina, the best condition showed to be the 90min treatment which produced 37% of immobilization. The evaluation of the degree of exposition ofphenylalanine, by second derivative spectrophotometry, was used for the determination of the enzyme operational stability, and showed that the immobilization in activated carbon and in alumina allowed the reusability of the pancreatin for 5 times and 2 times,respectively.

  1. Preparation and characterization of active carbon material modified by TiO2%活性炭负载TiO2改性处理及其性能表征

    Institute of Scientific and Technical Information of China (English)

    李海红; 张超; 董军旗; 李红艳

    2015-01-01

    Activated carbon (AC) was loaded with TiO2 by using sol-gel method after a pretreatment process, and the physical and chemical properties of the activated carbon before and after loaded with TiO2 nanoparticles were characterized by using Scanning Electron Microscopy (SEM), Energy Dispersion Spectrum analyzer (EDS), Brunauer-Emmett-Teller gas adsorption method (BET), thermal gravimetric analysis (TG-DTG), and Fourier Transform Infrared spectroscopy (FTIR) respectively. Electrochemical properties were characterized by electrochemical workstation and electrical adsorption deionization tests. The results show that the optimal temperature is 450℃, and there is flocculent or granulate TiO2 in the surface and pores of TiO2/AC composite under the temperature. The mass fraction of titanium element in the TiO2/AC complex is about 24.91%, and TiO2crystal is anatase type. Meanwhile, Ti—O bonds are found on the surface of the activated carbon material after loaded with TiO2. The specific surface area significantly decreases by 23.1% and its specific capacitance increases by 16.4% in comparison with original activated carbon, and its electrical adsorption efficiency also increses. TiO2/AC composite material can be used as an electrode material for the removal of the inorganic ions in wastewater.%采用溶胶–凝胶法对盐酸预处理后的活性炭(activated carbon,AC)进行负载TiO2改性处理,利用扫描电镜(SEM)、能谱分析(EDS)、比表面积及孔径测试(BET)、热重分析(TG/DTG)、傅立叶红外光谱分析(FTIR)等对负载TiO2前后的活性炭结构与理化性能进行表征,并利用电化学工作站测试其电化学性能。结果表明,凝胶的最佳煅烧温度为450℃,制得的TiO2/AC复合体表面及孔道中有絮状或颗粒状的TiO2存在,Ti元素含量(质量分数)为24.91%,晶体类型为锐钛矿型;同时,TiO2/AC表面形成一些Ti—O键的含氧官能团。活性炭负载TiO2改性后,比表面积降低23

  2. Carbon composition with hierarchical porosity, and methods of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T; Dai, Sheng

    2014-10-21

    A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.

  3. Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis

    Directory of Open Access Journals (Sweden)

    Zafour-Hadj-Ziane A.

    2013-09-01

    Full Text Available The application of magnetic particles technology for the development of new nanomaterials has received considerable attention in recent years. In this context, the objective of this study is firstly, to prepare new catalytic materials that gather the strong adsorption capacities of carbon nanotubes and magnetic properties of iron, it concerns nanocomposites based on a mixture of carbon nanotubes in a very small amounts and iron oxide. Secondly we want to appear their capacities in catalytic oxidation reactions of phenol. Synthesis under the optimal conditions was carried out at different pH. And the characterization of this new nanomaterial reveals a good specific surface area BET, the identification of carbon nanotubes within the matrix was performed by infrared spectroscopy and transmission electron microscopy. The use of this new material as a catalytic support in catalytic oxidation reactions of phenol indicates the high selectivity of this latter and a yield better than this obtained with iron oxide supported by activated carbon. The good catalyst regeneration of the new catalysis and the improvement in their properties are the interesting parameters for the new type nanomaterials.

  4. Activated carbon monoliths for methane storage

    Science.gov (United States)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  5. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  6. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  7. PREPARATION OF MULTI-WALLED CARBON NANOTUBES USING NiO CATALYST SYNTHESIZED BY HYDROTHERMAL METHOD

    Institute of Scientific and Technical Information of China (English)

    Y.J. Zhu; Y.L. Chen; X.M. Xue; Y.M. Chen; C.Y. Wu; T.C. Kuang; S.H. Li; H. Y. Zhang

    2003-01-01

    The Ni(OH)2/SiO2 binary colloid was prepared using Ni(NO3)2.6H2O and (C2H5 O)4SiO4 as starting materials and was used to form NiO/SiO2 composite powder by hydrothermal method and desiccant method in open air respectively. Multiwalled carbon nanotubes (MWCNTs) were synthesized respectively by chemical vapor deposition using the NiO/SiO2 catalyst prepared by different methods. The phase and morphology of the catalysts and the morphology, output yield and purity of MWCNTs were compared by XRD, TEM and SEM. The results show that the catalyst powder prepared by hydrothermal method, compared with that by desiccant method, is smaller, better dispersion and has stronger catalytic activity. Pure MWCNTs with smaller tube diameter and narrow range could be obtained at a high yield using that NiO/SiO.2 powder prepared by hydrothermal method as catalyst.

  8. Production and Characterization of Activated Carbon from Çanakkale-Çan Lignite by KOH and ZnCl2 Activation

    Directory of Open Access Journals (Sweden)

    Filiz Karacan

    2014-01-01

    Full Text Available Activated carbon was produced from Çanakkale-Çan lignite using potassium hydroxide (KOH and zinc chloride (ZnCl2 as activating agent. The influence of carbonization temperatures (500-900 0C and different chemical reagents (KOH and ZnCl2 on the pore development and the yield of the prepared activated carbon were investigated. The resultant activated carbons were characterized in terms of the yield, BET surface area, pore volumes, micropore and mesopore fraction. Results showed that increasing the carbonization temperature, the yield decreased, while surface area and micro-porosity increased. Maximum surface area was about 1092 m2/g at 900 0C with KOH activation and carbonization duration of 1 h. The surface area of char obtained from carbonization of lignite sample without impregnation by chemical reagent was 157 m2/g at 900 0C. From these data, it has been showed that in order to produce activated carbons with high surface area and porosity, thermal activation (without impregnation itself is not sufficient. The prepared activated carbon was compared with commercial activated carbon. Surface area and micropore fraction of activated carbons obtained from both KOH and ZnCl2 activation much larger than those of the commercial activated carbon.

  9. Electrical Conductivity Of Carbon Pellets Prepared From Mixtures Of Pyropolymers From Oil Palm Bunches and Petroleum Green Coke

    Science.gov (United States)

    Deraman, M.; Awitdrus, Talib, I. A.; Omar, R.; Jumali, M. H.; Ishak, M. M.; Saad, S. K. M.; Taer, E.; Saman, M. M.; Farma, R.; Yunus, R. M.

    2010-12-01

    Green pellets (GPs), prepared at different compression pressures (cs = 6, 7.5 and 12 metric tonne) from mixtures containing self-adhesive carbon grains (sacg) from the oil palm empty fruit bunch (EFB) and different percentages (pr = 0 to 90%) of a non self-adhesive powder of petroleum green coke (ppgc), were carbonized (800° C) and activated with CO2 to produce carbon pellets (CPs). The measured electrical conductivity (σ) of the CP for all cs showed a curve having a minimum value at pr around 50%, indicating that the conducting phase displays a nonlinear σ- pr relationship. A significant increase in the σ due to CO2 activation was observed. For a sufficienctly high cs, an existence of a pr range in which the σ varies linearly with the density was also observed. These results provide some new information for modifying the electrical conductivity of carbon derived from the sacg from EFB or other types of biomass.

  10. Effects of Citric Acid Concentration and Activation Temperature on the Synthesis of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fengyi Li; Minwei Wang; Rongbin Zhang; Renzhong Wei; Niancai Peng

    2004-01-01

    A series of Ni-La-Mg catalyst samples were prepared by citric acid complex method, and carbon nanotubes were synthesized by catalytic decomposition of CH4 on these catalysts. The effects of the citric acid concentration and the activation temperature on catalytic activity were investigated by CO adsorption,TEM and XRD techniques. The experimental results showed that the particle size of the catalysts prepared through gel auto-combustion varied with the concentration of citric acid. Therefore carbon nanotubes with different diameters were obtained correspondingly. The effect of activation temperature on the activity of catalyst was negligible from 500 to 700 ℃, but it became pronounced at lower or higher temperatures.

  11. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. A novel method for preparation of hollow and solid carbon spheres

    Indian Academy of Sciences (India)

    Boyang Liu; Dechang Jia; Jiancun Rao; Qiangchang Meng; Yingfeng Shao

    2008-10-01

    Hollow and solid carbon spheres were prepared by the reaction of ferrocene and ammonium carbonate in a sealed quartz tube at 500°C. The morphology and microstructure of the product were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The carbon spheres are amorphous and their diameters range from 0.8–2.8 m. The shell thickness of the hollow carbon spheres is not uniform and ranges from 100–180 nm. It is suggested that ammonium carbonate is crucial for the formation of carbon spheres and its amount also influences the morphology of the product. The method may be suitable for large scale preparation of carbon spheres.

  13. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance

    International Nuclear Information System (INIS)

    Graphical abstract: Hierarchical porous carbon with 3D macroporous structure is prepared via a facile method and displays high lithium ion storage capacity and rate capability. - Highlights: • Hierarchical porous carbon is prepared from lignin via a facile method. • KOH acts both as activating agent and template in the preparation process. • Lignin based hierarchical porous carbon displays high lithium storage capacity. • Lignin based hierarchical porous carbon displays stable cycling stability. - Abstract: Hierarchical porous carbon derived from lignin (denoted as LHPC) was prepared via a facile method. In this method, KOH acts both as activating agent and template. The obtained LHPC was composed of unique 3D macroporous network with mesopores and micropores decorated on carbon walls. LHPC was further applied as the anode material of lithium ion battery and displayed a stable, high capacity of 470 mAh g−1 after 400 galvanostatic charge-discharge cycles at a current density of 200 mA g−1. Furthermore, LHPC displayed high cycling stability and perfect rate capability. This facile method for the preparation of LHPC offers a new route for the preparation of a series of hierarchical porous carbons for the application in supercapacitors, fuel cells, lithium ion batteries, etc

  14. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    Science.gov (United States)

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  15. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  16. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  17. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  18. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste

    Institute of Scientific and Technical Information of China (English)

    HUANG Yaji; JIN Baosheng; ZHONG Zhaoping; ZHONG Wenqi; XIAO Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal.A three-stage activation process (drying at 200℃,pyrolysis in N2 atmosphere,followed by CO2 activation) was used for the production of activated samples.The effects of carbonization temperature (400-600 ℃),activation temperature (700-900 ℃),and activation time (1-2.5 h) on the physicochemieal properties (weight-loss and BET surface) of the prepared carbon were investigated.Adsorptive removal of mercury from real flue gas onto activated carbon has been studied.The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (HgV:38.7% vs.53.5%,HgO:50.5% vs.68.8%),although its surface area is around 10 times smaller,89.5 m2/g vs.862 m2/g.The low cost activated carbon can be produced from chicken waste,and the procedure is suitable.

  19. Preparation of hollow-fibre composite carbon-zeolite membranes

    NARCIS (Netherlands)

    Smith, S.P.J.; Linkov, V.M.; Sanderson, R.D.; Petrik, L.F.; O'Connor, C.T.; Keizer, K.

    1995-01-01

    Carbon membranes, produced by thermo-oxidative stabilization of polyacrylonitrile (PAN) precursors, were used as porous supports for continuous zeolite layers to give composite zeolite-carbon membranes. Different zeolite growth techniques were used, and the membranes were characterized by means of s

  20. The preparation of 248CmF 3 deposits on self-supported carbon foils

    Science.gov (United States)

    Aaron, W. S.; Petek, M.; Zevenbergen, L. A.

    1987-06-01

    Another target preparative technique was recently added to the Isotope Research Materials Laboratory's (IRML) capabilities for custom target fabrication. In support of super-heavy-ion physics experiments, methods and equipment were developed for the preparation of 248CmF 3 deposits on carbon foils. The starting material was obtained as either a chloride or nitrate solution, converted to the flouride, and evaporated on carbon foil substrates. Deposits ranging from 40 to 570 μg/cm 2 were prepared as a 12-mm-diam spot on 45- to 60-μg/cm 2 self-supported carbon foils. The deposits were then overcoated with approximately 10 μg/cm 2 of carbon to minimize contamination problems during target handling. The high cost of 248Cm ($100/μg) and its limited availability were the key constraints in the development of preparative technology beyond the inherent radioactivity of 248Cm.

  1. Removal of Phenol from Water by Carbon Adsorbents Prepared by Pyrolysis of Sorghum and Millet Straws in Ortho Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    A.O. Lawal

    2011-06-01

    Full Text Available The aim of this study is to determine the suitability of sorghum and millet straws as precursors for carbon adsorbents with capabilities for removing phenol from contaminated water. Phenol compounds react with chlorine in water to produce chlorophenols which have very low threshold odour concentrations in domestic water supply. Activated carbon adsorbents were prepared from millet and sorghum straws by chemical activation with phosphoric acid and used for the removal of aqueous phenol. The abilities of the carbon adsorbents to remove phenol from contaminated water were determined by aqueous phase phenol adsorption. Equilibrium concentrations of phenol were monitored, using Cole UV7504 Spectrophotometer at a wavelength of 269 nm. The adsorption data fitted the Freundlich isotherm and indicated multilayer adsorption of aqueous phenol on the carbon beds. The maximum adsorption capacities of the granular activated carbon from the cellulosic precursors were 80.36 and 82.34 mg/g of carbon from millet and sorghum straws respectively. The results suggest the suitability of the carbon adsorbents in community water detoxification protocols to remove phenol.

  2. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-06-01

    Full Text Available We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g. We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  3. Studies relevant to the catalytic activation of carbon monoxide. Technical progress report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  4. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.

    Science.gov (United States)

    Elazari, Ran; Salitra, Gregory; Garsuch, Arnd; Panchenko, Alexander; Aurbach, Doron

    2011-12-15

    A route for the preparation of binder-free sulfur-carbon cathodes is developed for lithium sulfur batteries. The method is based on the impregnation of elemental sulfur into the micropores of activated carbon fibers. These electrodes demonstrate good electrochemical performance at high current density attributed to the uniform dispersion of sulfur inside the carbon fiber. PMID:22052740

  5. Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: •Nitrogen-doped three-dimensional hierarchically porous carbon is synthesized under mild condition. •The N-3DHPC shows the hierarchical porosity and the surface nitrogen-doping. •The high specific capacitance of 308.4 F g−1 is achieved. •The energy density of N-3DHPC supercapacitor is still as high as 9 Wh kg−1 even at 5000 W kg−1. -- Abstract: A novel nitrogen-doped three-dimensional hierarchically porous carbon (N-3DHPC) has been designed and prepared by the carbonization of polyaniline (PANI) covered on the three-dimensional macroporous carbon (3DMC), followed by KOH activation to generate micropores and mesopores on the wall of macropores. The pore structure, morphology and surface physicochemical properties of the carbon samples are characterized by nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and elemental analysis. The N-3DHPC inherits the morphology of the pristine 3DMC and processes a hierarchically porous structure with a high specific area of 1084.0 m2 g−1 and some nitrogen-doped species on the surface. The electrochemical behaviors of the N-3DHPC are characterized by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) test, electrochemical impedance spectroscopy (EIS) and cycle life measurement. The results show that the N-3DHPC obtains high specific capacitance of 308.4 F g−1 at a current density of 1 A g−1. Moreover, the N-3DHPC supercapacitor exhibits excellent rate performance, low resistance, high energy density of 10.7 Wh kg−1 at the power density of 500 W kg−1 and excellent cyclic stability with the specific capacitance retention of 96 % even after 10000 cycles, thus the N-3DHPC will be a promising electrode material for supercapacitors

  6. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.

    Science.gov (United States)

    Hameed, B H; Tan, I A W; Ahmad, A L

    2008-10-30

    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C. PMID:18329169

  7. Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er{sup 3+}:YFeO{sub 3}-doped TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dianxun [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Feng, Liang [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Zhang, Jianbin [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Dong, Shuangshi, E-mail: dongshuangshi@gmail.com [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Zhou, Dandan [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Lim, Teik-Thye [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Er{sup 3+}:YFeO{sub 3} could be as upconversion luminescence. Black-Right-Pointing-Pointer Er{sup 3+}:YFeO{sub 3}/TiO{sub 2}-SAC possessed the photocatalytic capability under visible light. Black-Right-Pointing-Pointer Photocatalytic degradation followed the Langmiur-Hinshelwood kinetics. Black-Right-Pointing-Pointer Photocatalyst possessed good physical stability to sheer force at studied range. Black-Right-Pointing-Pointer Washing-calcination and pickling-calcination treatments can regenerate. - Abstract: A novel spherical activated carbon (SAC) supported and Er{sup 3+}:YFeO{sub 3}-doped TiO{sub 2} visible-light responsive photocatalyst (Er{sup 3+}:YFeO{sub 3}/TiO{sub 2}-SAC) was synthesized by a modified sol-gel method with ultrasonic dispersion. It was characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), powder X-ray diffractometer (XRD) and UV-vis diffuse reflectance spectrophotometer (DRS). The photocatalytic activity of Er{sup 3+}:YFeO{sub 3}/TiO{sub 2}-SAC was evaluated for degradation of methyl orange (MO) under visible light irradiation. The effects of calcination temperature and irradiation time on its photocatalytic activity were examined. The experimental results indicated that Er{sup 3+}:YFeO{sub 3} could function as an upconversion luminescence agent, enabling photocatalytic degradation of MO by TiO{sub 2} under visible light. The Er{sup 3+}:YFeO{sub 3}/TiO{sub 2} calcinated at 700 Degree-Sign C showed the highest photocatalytic capability compared to those calcinated at other temperatures. The photocatalytic degradation of MO followed the Langmuir-Hinshelwood kinetic model. Although the photocatalyst showed a good physical stability and could tolerate a shear force up to 25 Multiplication-Sign 10{sup -3} N/g, its photocatalytic activity decreased over a four-cycle of reuse in concentrated MO solution, indicating that the decreased activity was ascribed to the

  8. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  9. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Science.gov (United States)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  10. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  11. Administrative activities in the phase of preparation

    International Nuclear Information System (INIS)

    Details of the licensing procedure in the FRG: site selection, necessary documents for application, selection of a safety level for the plant in question, organization of the licensing authority, consultant and expert activities. (HP)

  12. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  13. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    OpenAIRE

    Zhong Zheng; Shan Zhao; Shijie Dong; Lianjie Li; Anchun Xiao; Sinian Li

    2015-01-01

    Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope s...

  14. Preparation and characterization of carbon-enriched coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, B.; Izquierdo, M.T.; Mayoral, M.C.; Bona, M.T.; Martinez-Tarazona, R.M. [CSIC, Zaragoza (Spain)

    2008-09-15

    Carbon-enriched fractions have been obtained from two coal fly ash (FA) samples. The FA came from two pulverized-coal fired power stations (Lada and Escucha, Spain) and were collected from baghouse filters. Sieving was used to obtain carbon-enriched fractions, which were further subjected to two beneficiation processes: acid demineralization using HCl and HF, and oil agglomeration using soya oil-water. Yield in weight after sieving, unburned carbon content, and several physicochemical characteristics, of the obtained fractions were used to compare the performance of the beneficiation methods. Low carbon concentration was obtained by sieving. particularly in the case of Escucha FA. However, after acid demineralization or oil agglomeration, fractions containing unburned carbon in a range of 63% to 68% were obtained. These fractions showed differences in mineral phase composition and distribution depending on the FA and oil the beneficiation method used. The textural properties of the obtained fractions varied as a function of their carbon content and the beneficiation method used. However, no significant differences in morphology of the carbonaceous particles were found

  15. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm3 to 0.52 g.cm3. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g-1), while O. martiana contained the highest lignin content (40.7 g.100g-1). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (Vmicro) was between 0.33cm3.g-1 - 0.40cm3.g-1, while the mesopore volume(Vmeso) was between 0.05 cm3.g-1 - 0.07 cm3.g-1. The BET specific surface exceeds 1000 m2.g-1. All these values compared favourably with high grade commercial active carbons. (author)

  16. Carbon nanomaterials: Biologically active fullerene derivatives.

    Science.gov (United States)

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  17. Adsorption of cationic dye methylene blue onto activated carbon obtained from horse chestnut kernel

    OpenAIRE

    Momčilović Milan Z.; Purenović Milovan M.; Miljković Milena N.; Bojić Aleksandar Lj.; Ranđelović Marjan S.

    2011-01-01

    Horse chestnut kernel was used as the precursor for the preparation of powdered activated carbon using phosphoric acid as the activating agent. Batch adsorption experiments for the adsorption of cationic dye methylene blue from aqueous solutions were carried out using the obtained carbon as adsorbent. Equilibrium and kinetic experiments were conducted. The equilibrium data were fitted with the Langmuir, Freundlich and Temkin theoretical isotherm models. The best results was obtained in ...

  18. Alumina-Activated Carbon Composite as Adsorbent of Procion Red Dye from Wastewater Songket Industry

    OpenAIRE

    Poedji Loekitowati Hariani; Fatma Fatma; Zulfikar Zulfikar

    2015-01-01

    Alumina-activated carbon composite has been synthesized and studied for adsorption procion red dye. Composite was prepared by precipitation method aluminium hydroxide on the surface of activated carbon followed by calcinations. The Fourier transform Infra Red (FTIR), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) and Brunaeur Emmet Teller (BET) surface are being used to characterize the adsorbent. Batch adsorption experiments were carried out for the adsorption of...

  19. Antioxidant activity of Chinese ant extract preparations.

    Directory of Open Access Journals (Sweden)

    Zhao,Yi

    1995-12-01

    Full Text Available Chinese ant extract preparations (CAEP are a Chinese traditional medicine which is mainly used as a health food or drink for the treatment of rheumatism, rheumatoid arthritis, chronic hepatitis, sexual hypofunction, and antiaging in China. The effects on free radicals were examined by electron spin resonance spectrometry using the spin trapping agent 5.5-dimethyl-1-pyrroline-1-oxide (DMPO. Superoxide radicals (3.35 x 10(15 spins/ml were quenched 50% by the extract at 0.5 mg/ml. The CAEP extract at 0.7 mg/ml inhibited 50% of hydroxyl radicals (52.0 x 10(15 spins/ml generated by the Fenton reaction. Against DPPH radical, the scavenging action of CAEP was observed at 1.8 mg/ml of the extract and 50% of the DPPH radicals (8.14 x 10(15 spins/ml were quenched. In vitro tests showed that CAEP inhibited the production of thiobarbituric acid-reactive substances, an index of lipid peroxidation, in rat brain homogenate.

  20. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  1. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  2. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  3. Polyherbal preparation for anti-diabetic activity: A screening study

    OpenAIRE

    Noopur Srivastava; Gaurav Tiwari; Ruchi Tiwari

    2010-01-01

    Objective: To screen the Polyherbal preparation for anti-diabetic activity in rats. Materials and Methods: The blood glucose lowering activity of the Polyherbal preparation-I (1:1:1 of Wheat germ oil, Coriandrum sativum and Aloe vera) was studied in normal rats after oral administration at doses of 1.0 and 2.0 ml/kg and Polyherbal preparation-I, II (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 2:2:1), and III (Wheat germ oil, fresh juice of C. sativum and Aloe vera ...

  4. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    OpenAIRE

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  5. Proximate analysis for determination of micropores in granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  6. Production of activated carbon from microalgae

    OpenAIRE

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  7. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption%橡胶木屑基活性炭-聚氨酯复合材料的制备及其微波吸收性能

    Institute of Scientific and Technical Information of China (English)

    Azizah Shaaban; Sian-Meng Se; Imran Mohd Ibrahim; Qumrul Ahsan

    2015-01-01

    采用 ZnCl2对橡胶木屑进行化学活化制备出活性炭。 ZnCl2与橡胶木屑的浸渍质量比为1.0-2.0,活化温度为500℃,时间为60 min。通过扫描电镜、X射线衍射和BET比表面分析仪探讨浸渍比例对活性炭孔结构的影响。结果表明,当浸渍比为1.5:1时,样品的比表面积和孔径分别为1301 m2/g 和0.37 cm3/g。通过化学发泡工艺将不同质量分数(1%,2%,3%,5%,8%)的活性炭填充至聚氨酯中制备出聚氨酯复合材料。在1-5 GHz频率范围内,复合材料吸收微波。随着活性炭含量增加,在1-3 GHz范围内,介电常数(ε’)和回波损耗增加。活性炭含量为8%时复合材料的介电常数达到最大值3.0。在1.8 GHz时,复合材料的回波损耗为10 dB。在-2.5 GHz,电磁屏蔽效率大于3 dB。与传统聚合物材料如填加金属的聚氨酯和聚酯相比,所制复合材料呈微波段吸收,可作为电磁屏蔽材料。%Activated carbons were prepared from rubber wood sawdust by chemical activation using ZnCl2 as an activation agent at 500 ℃ for 60 minutes with ZnCl2/dried rubber wood sawdust mass ratios from 1. 0 to 2. 0. Flat polyurethane ( PU) composites filled with the activated carbons were prepared by a chemical foaming method using different loading amounts of the activated car-bons to investigate their complex permittivity and the microwave absorption properties for use in electromagnetic interference ( EMI) shielding. It was found that the best activated carbon is obtained at a ratio of 1. 5, which has the highest Brunauer-Emmett-Teller surface area and a micropore volume of 1 301 m2/g and 0. 37 cm3/g, respectively. With increasing activated carbon content, the di-electric constant (ε’ ) and the return loss increase in the frequency range of 1-3 GHz. The composite filled with 8% activated car-bon has a maximum dielectric constant of 3. 0 and its return loss is above 10 dB at the global system mobile phone frequency of 1. 8 GHz. Its EMI

  8. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. PMID:26856444

  9. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Jie; LAI Yan-qing; SONG Hai-sheng; ZHANG Zhi-an; LIU Ye-xiang

    2006-01-01

    Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor. The surface area and the pore structure of activated carbon were analyzed by Nitro adsorption method. The electrochemical properties of the activated carbons were determined using two-electrode capacitors in 6 mol/L KOH aqueous electrolytes. The influences of activated temperature and mass ratio ofKOH to C on the pore structure and electrochemical property of porous activated carbon were investigated in detail. The reasons for the changes of pore structure and electrochemical performance of activated carbon prepared under different conditions were also discussed theoretically. The results indicate that the maximum specific capacitance of 240 F/g can be obtained in alkaline medium, and the surface area, the pore structure and the specific capacitance of activated carbon depend on the treatment methods; the capacitance variation of activated carbon cannot be interpreted only by the change of surface area and pore structure, the lattice order and the electrolyte wetting effect of the activated carbon should also be taken into account.

  10. Preparation of self-supporting carbon thin films

    CERN Document Server

    Lommel, B; Kindler, B; Klemm, J; Steiner, J

    2002-01-01

    For heavy-ion beam experiments, self-supporting carbon thin films are needed as targets, stripper foils and as backings (Nucl. Instr. and Meth. A 334 (1993) 69) for materials which cannot be produced self-supporting. Using resistance evaporation under high vacuum, self-supporting carbon foils with a thickness of 5 mu g/cm sup 2 and a diameter of 10 mm, a thickness of 10 mu g/cm sup 2 and a diameter of 50 mm up to a thickness of 50 mu g/cm sup 2 and a diameter of 300 mm can be obtained. Due to the energy impact of the heavy-ion beam, the amorphous carbon is restructured into textured graphite, as was found already by Dollinger et al. (Nucl. Instr. and Meth. A 303 (1991) 79). The discuss the production process as well as the change of the layer structure caused by the energy deposit.

  11. Characteristics of an activated carbon monolith for a helium adsorption compressor

    NARCIS (Netherlands)

    Lozano-Castello, D.; Jorda-Beneyto, M.; Cazorla-Amoros, D.; Linares-Solano, A.; Burger, J.F.; Brake, ter H.J.M.; Holland, H.J.

    2010-01-01

    An activated carbon monolith (ACM) with a high helium adsorption/desorption capacity, high density, low pressure drop, low thermal expansion and good mechanical properties was prepared and applied successfully in a helium adsorption compressor as a part of a 4.5 K sorption cooler. The activated carb

  12. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is a method of depositing islands of catalyst with a predetermined density, wherein in said method comprises the steps of: obtaining a diffusion barrier covered nano patterned surface comprising a plurality of plateaus, having a density of plateaus dependent on the predetermined density...... patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  13. Densification and microstructure of carbon/carbon composites prepared by chemical vapor infiltration using ethanol as precursor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).

  14. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    Indian Academy of Sciences (India)

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  15. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  16. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-01

    Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m2 g-1) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g-1 at 0.5 A g-1 and still 120 F g-1 at a high rate of 30 A g-1. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg-1 and 4.03 Wh kg-1 with the corresponding power densities of 108 W kg-1 and 6.49 kW kg-1, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  17. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  18. Less-costly activated carbon for sewage treatment

    Science.gov (United States)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  19. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    International Nuclear Information System (INIS)

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  20. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zhong Zheng

    2015-01-01

    Full Text Available Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope spectroscopy, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that the nickel-copper bilayers coated on single-walled carbon nanotubes possessed higher purity of unoxidized copper fine-grains than copper monolayers.

  1. Preparation of carbon nanotube composite material with metal matrix by electroplating

    Institute of Scientific and Technical Information of China (English)

    AN Bai-gang; LI Li-xiang; Li Hong-xi

    2005-01-01

    It is demonstrated that the nickel can be deposited directly on the surface of carbon nanotubes without pre-sensitization by Sn2+ and Pd2+ in a watt bath containing suspended nanotubes by electroplating. The nickel is deposited as spherical nanoparticle on the nanotubes. By increasing reaction time, the carbon nanotube is fully coated with nickel. A probable model, which represents the formation process of carbon nanotube-nickel composites by electroplating, is presented. The results show that this method is efficient and simple for preparing carbon nanotube-metal composite.

  2. CO2 Activated Carbon Aerogel with Enhanced Electrochemical Performance as a Supercapacitor Electrode Material.

    Science.gov (United States)

    Lee, Eo Jin; Lee, Yoon Jae; Kim, Jeong Kwon; Hong, Ung Gi; Yi, Jongheop; Yoon, Jung Rag; Song, In Kyu

    2015-11-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde in ambient conditions. A series of activated carbon aerogels (ACA-X, X = 1, 2, 3, 4, 5, and 6 h) were then prepared by CO2 activation of CA with a variation of activation time (X) for use as an electrode material for supercapacitor. Specific capacitances of CA and ACA-X electrodes were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples, ACA-5 h showed the highest BET surface area (2574 m2/g) and the highest specific capacitance (100 F/g). It was found that CO2 activation was a very efficient method for enhancing physicochemical property and supercapacitive electrochemical performance of activated carbon aerogel.

  3. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S. [Extremadura Univ., Badajoz (Spain). Dept. de Fisica Aplicada

    2011-02-15

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  4. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  5. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  6. Preparation and characterization of Polyacrylonitrile/ Manganese Dioxides- based Carbon Nanofibers via electrospinning process

    Science.gov (United States)

    Che Othman, F. E.; Yusof, N.; Jaafar, J.; Ismail, A. F.; Hasbullah, H.; Abdullah, N.; Ismail, M. S.

    2016-06-01

    This research reports the production of precursor polyacrylonitrile (PAN)/ manganese dioxide (MnO2) nanofibers (NFs) via electrospinning method followed by stabilization and carbonization processes. Nowadays, electrospinning has become a suitable method in manufacturing continuous NFs, thus it is employed to fabricate NFs in this study. The microstructural properties and adsorption competencies of the produced NFs were also studied. The NFs were prepared by electrospinning the polymer solution of Polyacrylonitrile (PAN) and Manganese Dioxide (MnO2) in, N, N-Dimethylformamide (DMF) solvent. The factors considered in this study were various polymer PAN/MnO2 concentrations which will significantly affect the specific surface area, fiber morphology and the diameter of the NFs prepared. Subsequently, heat treatment is applied by setting up the stabilization temperature at 275 °C and carbonization temperature at 800 °C with constant dwelling time (30 min). Nitrogen gas at constant rate 0.2 L/min was used for stabilization and carbonization with the stabilization rate (2 °C/min) and carbonization rate (5 °C/min). The carbon nanofibers (CNFs) produced were characterized using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) surface area and Fourier Transmission Infrared Spectroscopy (FTIR). It was found that the PAN/MnO2 CNFs were successfully produced with the carbonization temperature of 800 °C. The prepared PAN/MnO2 CNFs prepared showed an enhanced in specific surface area about two times compared to it precursor NFs.

  7. Preparation and separation of DNA-wrapped carbon nanotubes.

    Science.gov (United States)

    Ao, Geyou; Zheng, Ming

    2015-01-01

    Purification of single-chirality single-wall carbon nanotubes (SWCNTs) from their synthetic mixture is a prerequisite for many applications. DNA-controlled carbon nanotube (CNT) purification has evolved over a decade along with other separation techniques utilizing different types of dispersing agents such as surfactants and polymers. The size of single-stranded DNA (ssDNA) libraries affords practically unlimited ways of coating SWCNTs. Recent developments in separating surfactant-dispersed SWCNTs by polymer aqueous two-phase (ATP) extraction has enabled rapid and efficient SWCNT separation on a larger volume scale. Applying the ATP separation method to DNA-SWCNT hybrids opens a new route for effective sorting of nanotubes into each and every single-chirality species. Here, we report protocols for purifying as many as 15 single-chirality nanotube species from a synthetic mixture based on the separation of DNA-SWCNTs by the aqueous two-phase (ATP) method.

  8. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    Science.gov (United States)

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis. PMID:26695263

  9. Isotropic and high density carbon made from carbonaceous powder prepared by distillation under reduced pressure

    International Nuclear Information System (INIS)

    It is attempted to produce high density, high strength and isotropic carbon made from carbonaceous powder. The carbonaceous powder was prepared by carbonization of coal-tar pitch at a temperature of 440 - 5000C and subsequent distillation under reduced pressure. The distillation was performed at a temperature of 300 - 5000C below the carbonization temperature. In some cases additional quinoline extraction was carried out on the powder. Green carbon body was formed without binder pitch under isostatic pressure at room temperature. The body was heat-treated at a temperature of 1100 - 28000C. Bulk density, weight loss, shrinkage, strength, lattice parameter, crystallite size and BAF of the obtained carbon body were measured. It is confirmed that high density, high strength and isotropic carbon made from the carbonaceous powder and the following results were obtained. 1) BS (benzene soluble) fraction, β-resin (benzene insoluble and quinoline soluble) fraction and QI (quinoline insoluble) fraction were able to fractionate by distillation under reduced pressure. Concentration gradient of each fraction seems to exist in the carbonaceous powder. 2) Using the powder prepared by a lower temperature of the carbonization and/or the distillation, the carbon body had higher bulk density and higher strength. 3) The β-resin fraction had the effects of increasing the green density and enhancing the shrinkage of carbon body during the heat treatment. (author)

  10. Optically monitored wet chemical preparation of SEIRA active metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Enders, Dominik; Nakayama, Tomonobu [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Nanoscale Quantum Conductor Array Project, ICORP, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 (Japan); Nagao, Tadaaki; Aono, Masakazu [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Nanoscale Quantum Conductor Array Project, ICORP, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 (Japan); WPI Center for Materials Nanoarchitectonics (MANA), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2008-07-01

    The use of wet chemical methods for the preparation of surface enhanced infrared absorption (SEIRA) active nanostructures has gained much interest in the last years because of its easiness, simplicity, and the low time consumption compared to the known ultra high vacuum based methods. We present a two-step wet-chemical preparation method of plasmonic SEIRA active nanostructures. While in the first step spherical Au nanoparticles are deposited on the SiO{sub 2}/Si surface, these nanoparticles are grown in the second step to form elongated tabular islands close to the percolation threshold. In situ monitoring of the preparation process by IR spectroscopy ensures the control of film morphology during the preparation process and enables the reproducible fabrication of highly sensitive SEIRA films. A comparison of our Au films with SEIRA inactive Au films shows, that in IR spectra of octadecanethiol, the CH stretching vibrational peaks are enhanced by several orders of magnitude.

  11. Synthesis of high surface area carbon adsorbents prepared from pine sawdust-Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption.

    Science.gov (United States)

    Álvarez-Torrellas, S; Muñoz, M; Zazo, J A; Casas, J A; García, J

    2016-12-01

    Chemically activated carbon materials prepared from pine sawdust-Onopordum acanthium L. were studied for the removal of diclofenac and naproxen from aqueous solution. Several carbons, using different proportions of precursors were obtained (carbon C1 to carbon C5) and the chemical modification by liquid acid and basic treatments of C1 were carried out. The textural properties of the carbons, evaluated by N2 adsorption-desorption isotherms, revealed that the treatments with nitric acid and potassium hydroxide dramatically reduced the specific surface area and the pore volume of the carbon samples. The surface chemistry characterization, made by thermal programmed decomposition studies, determination of isoelectric point and Boehm's titration, showed the major presence of lactone and phenol groups on the activated carbons surface, being higher the content when the acidic strength of the carbon increased. Diclofenac and naproxen kinetic data onto C1 carbon followed pseudo-second order model. The adsorption equilibrium isotherms of C1 and the modified carbons were well described by both Sips and GAB isotherm equations. The highest adsorption capacity was found for naproxen onto C1 activated carbon, 325 mg g(-1), since the liquid acid and basic functionalization of the carbon led to a severe decreasing in the adsorption removal of the target compounds. PMID:27604753

  12. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    Science.gov (United States)

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%.

  13. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  14. Vibration damping with active carbon fiber structures

    Science.gov (United States)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  15. Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage

    Institute of Scientific and Technical Information of China (English)

    Dabin Wang; Zhen Geng; Cunman Zhang; Xiangyang Zhou; Xupeng Liu

    2014-01-01

    Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt%at 40 bar and -196◦C. The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.

  16. Carbon nanotube prepared from carbon monoxide by CVD method and its application as electrode materials

    Institute of Scientific and Technical Information of China (English)

    AN Yuliang; YUAN Xia; CHENG Shinan; GEN Xin

    2006-01-01

    Carbon nanotubes with larger inner diameter were synthesized by the chemical vapor deposition of carbon monoxide (CO) on iron catalyst using H2S as promoting agent.It is found that the structure and morphology of carbon nanotubes can be tailored, to some degree, by varying the experimental conditions such as precursor components and process parameters.The results show that the presence of H2S may play key role for growing Y-branched carbon nanotubes.The products were characterized by SEM, TEM, and Raman spectroscopy, respectively.Furthermore, the obtained carbon nanotubes were explored as electrode materials for supercapacitor.

  17. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets

    Institute of Scientific and Technical Information of China (English)

    El-Said Ibrahim El-Shafey; Haider Al-Lawati; Asmaa Soliman Al-Sumri

    2012-01-01

    A chemically prepared carbon was synthesized from date palm leaflets via sulphuric acid carbonization at 160℃.Adsorption of ciprofloxacin (CIP) from aqueous solution was investigated in terms of time,pH,concentration,temperature and adsorbent status (wet and dry).The equilibrium time was found to be 48 hr.The adsorption rate was enhanced by raising the temperature for both adsorbents,with adsorption data fitting a pseudo second-order model well.The activation energy,Ea,was found to be 17 kJ/mol,indicating a diffusion-controlled,physical adsorption process.The maximum adsorption was found at initial pH 6.The wet adsorbent showed faster removal with higher uptake than the dry adsorbent,with increased performance as temperature increased (25-45℃ ).The equilibrium data were found to fit the Langmuir model better than the Freundlich model.The thermodynamic parameters showed that the adsorption process is spontaneous and endothermic.The adsorption mechanism is mainly related to cation exchange and hydrogen bonding.

  18. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  19. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  20. Characterization by SEM, TEM and Quantum-Chemical Simulations of the Spherical Carbon with Nitrogen (SCN Active Carbon Produced by Thermal Decomposition of Poly(vinylpyridine-divinylbenzene Copolymer

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2009-09-01

    Full Text Available Amorphous Spherical Carbon with Nitrogen (SCN active carbon has been prepared by carbonization of poly(vinylpyridine-divinylbenzene (PVPDVB copolymer. The PVPDVB dehydrogenation copolymer has been quantum chemically (QC simulated using cluster and periodic models. Scanning electron microscopy (SEM, transmission electron microscopy (TEM and energy dispersive X-ray (EDX studies of the resulting product have conformed the QC computation results. Great structural similarity is found both at the nano- and micro-levels between the N-doped SCN carbon and its pure carbonic SKS analog.

  1. Polyherbal preparation for anti-diabetic activity: A screening study

    Directory of Open Access Journals (Sweden)

    Noopur Srivastava

    2010-01-01

    Full Text Available Objective: To screen the Polyherbal preparation for anti-diabetic activity in rats. Materials and Methods: The blood glucose lowering activity of the Polyherbal preparation-I (1:1:1 of Wheat germ oil, Coriandrum sativum and Aloe vera was studied in normal rats after oral administration at doses of 1.0 and 2.0 ml/kg and Polyherbal preparation-I, II (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 2:2:1, and III (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 1:2:2 on alloxan-induced diabetic rats, after oral administration at doses of 1.0 and 2.0 ml/kg. Blood samples were collected from the tail vein method at 0, 0.5, 1, 2, 4, 8, 12, and 24 h in normal rats and in diabetic rats at 0, 1, 3, 7, 15, and 30 days. Blood plasma glucose was estimated by the GOD/POD (glucose oxidase and peroxidase method. The data was compared statistically using the one-way ANOVA method followed by the Dunnett multiple component test. Statistical significance was set at P<0.05. Results: The Polyherbal preparation-I produced significant (P<0.05 reduction in the blood glucose level of normal rats and Polyherbal preparation-I, II, and III produced significant (P<0.01 reduction in the blood glucose level of diabetic rats during 30 days study and compared with that of control and Glibenclamide. Conclusion: The Polyherbal preparation-I showed a significant glucose lowering effect in normal rats and Polyherbal preparation-I, II, and III in diabetic rats. This preparation is going to be promising anti-diabetic preparation for masses; however, it requires further extensive studies in human beings.

  2. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    Directory of Open Access Journals (Sweden)

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  3. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    F Gaslain; J Parmentier; V Valtchev; J Patarin [Laboratoire de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu Universite de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, (France); C Vix Guterl [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 15 rue Jean Starky, 68057 Mulhouse Cedex (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  4. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  5. Facile preparation of superhydrophobic surface with high adhesive forces based carbon/silica composite films

    Indian Academy of Sciences (India)

    Ruanbing Hu; Guohua Jiang; Xiaohong Wang; Xiaoguang Xi; Rijing Wang

    2013-11-01

    Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was modified by SiO2 using the hydrolysis reaction of tetraethylorthosilicate at room temperature. It is not only a facile method to create a superhydrophobic surface, but also helps to form a multi-functional surface with high adhesive forces.

  6. Preparation and characterization of aligned carbon nanotubes coated with titania nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YU Hongtao; ZHAO Huimin; QUAN Xie; CHEN Shuo

    2006-01-01

    Well-aligned carbon nanotubes coated with titania (TiO2) were prepared by atmospheric pressure chemical vapor deposition (APCVD), and the sequential experiments including carbon nanotubes preparation, air-oxidation purification and titania nanoparticles coating were performed at different temperatures in the same reactor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XRD), and energy- dispersive X-ray spectra (EDX) demonstrated the well-aligned nanotubes and TiO2 nanoparticles in close proximity and the average diameter of TiO2 nanoparticles was 11.5 nm.

  7. The preparation of functionalized single walled carbon nanotubes as high efficiency DNA carriers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The positively charged single walled carbon nanotubes (SWNTs+) were prepared by conjugating with -CONH-C6H12-NH3+.The double strand DNA (dsDNA) chains were loaded onto SWNTs+ via the electrostatic interactions. SWNTs+ shows improved loading efficiency (353.5 μg/mg) toward dsDNA compared with that of charged free single walled carbon nanotubes (SWNTs)(82.9 μg/mg).

  8. The regeneration of polluted activated carbon by radiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wu Minghong; Bao Borong [Shanghai Institute of Nuclear Research, Academia Sinica, Shanghai (China); Zhou Ruimin; Zhu Jinliang; Hu Longxin [Shanghai University, Shanghai (China)

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption.

  9. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    Science.gov (United States)

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials.