WorldWideScience

Sample records for activated carbon modified

  1. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  2. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  3. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  4. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  5. Cellulose: A review as natural, modified and activated carbon adsorbent.

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  6. Enhanced adsorption of quaternary amine using modified activated carbon.

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  7. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  8. CO2 adsorption on chemically modified activated carbon.

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  9. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  10. Surface functional groups and redox property of modified activated carbons

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  11. Thermal analysis of activated carbons modified with silver metavanadate

    Goscianska, Joanna; Nowicki, Piotr; Nowak, Izabela [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland); Pietrzak, Robert, E-mail: pietrob@amu.edu.pl [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Preparation of the activated carbons from waste materials as new supports for AgVO{sub 3}. Black-Right-Pointing-Pointer Decomposition of AgVO{sub 3} to V{sub 2}O{sub 5} and Ag{sup 0} for the samples 1 and 3 wt.% Ag-V is observed. Black-Right-Pointing-Pointer Samples containing 5 wt.% Ag-V decompose to vanadyl species as intermediate compounds. - Abstract: The effect of silver metavanadate doping on physicochemical properties and thermal behaviour of the activated carbons obtained from waste materials was investigated. The carbonaceous supports were subjected to carbonisation at 400 or 600 Degree-Sign C. The samples carbonised at 600 Degree-Sign C have much more developed surface area and porous structure than the analogous samples obtained at 400 Degree-Sign C. Impregnation of activated carbons with silver metavanadate leads to a decrease in their surface area and pore volume. According to thermal analysis (TG, DTG) in the samples containing 1 and 3 wt.% of silver metavanadate, AgVO{sub 3} is fully decomposed to do vanadium oxide and Ag, with no intermediate products, while in the samples containing 5 wt.% AgVO{sub 3}, this salt is decomposed to vanadyl species as intermediate compounds at 350 Degree-Sign C before the formation of V{sub 2}O{sub 5} at 500 Degree-Sign C. Moreover, in all samples impregnated with silver metavanadate the nanoparticles of silver undergo crystallisation leading to reduction of Ag{sup +} ions from the vanadium salt to Ag{sup 0}.

  12. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  13. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  14. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  15. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  16. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  17. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution

    Mohammad Hassan Mahaninia; Paria Rahimian; Tahereh Kaghazchi

    2015-01-01

    Activated carbons were prepared by two chemical methods and the adsorption of Cu (II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration, and pHzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also, adsorption mechanism and effect of pH on the adsorption of Cu (II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu (II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.

  18. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  19. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  20. Removal NO with non-thermal plasma assisted catalyst modified activated carbon from coal

    Chen, M.G. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering; Anhui Univ. of Science and Technology, Huainan, Anhui (China). School of Chemical Engineering; Takashima, T.; Mizuno, A. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering

    2010-07-01

    Non-thermal plasma can produce a significant number of free electrons, ions, reactive free radicals and a variety of free particles in excited states, containing a large number of active atomic oxygen (O) and higher activity energy so it can increase the chemical reaction rate. An effective way to generate the non-thermal plasma is through dielectric barrier discharge (DBD). There are three types of dielectric barrier discharge reactors: wire (or bar)-cylinder; wire-plate; and plate-plate structure. This paper examined the effect of gas concentration, space velocity, catalyst loading volume, and the input voltage on the removal ratio of nitric oxide (NO) in the process of non-thermal plasma assisted with modified activated carbon from coal. A form of bar-cylinder reactor was used and combined with a catalyst of modified activated carbon from coal. The catalyst was packed between the bar and the cylinder in the fixed bed reactor. It was concluded that a non-thermal plasma assisted catalyst which modifies activated carbon from coal is an effective way to remove NO, and the input voltage, gas concentration, gas space velocity and the catalyst packed weight has a certain degree of impact on the NO removal ratio. 17 refs., 7 figs.

  1. Preparation,Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode

    YU,Hao; ZHENG,Jian-Bin

    2007-01-01

    A copper hexacyanoferrate modified ceramic carbon electrode(CuHCF/CCE)had been prepared by two-step sol-gel technique and characterized using electrochemical methods.The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs.SCE)in 0.050 mol·dm-3 HOAc-NaOAc buffer containing 0.30 mol·dm-3 KCI.The charge transfer coefficient (α) and charge transfer rate constant(Ks)for the modified electrode were calculated.The electrocatalytic activity of this modified electrode to hydrazine was also investigated,and chronoamperometry was exploited to conveniently determine the diffusion coefficient(D)of hydrazine in solution and the catalytic rate constant(Kcat).Finally,hydrazine was determined with amperometry using the resulting modified electrode.The calibration plot for hydrazine determination was linear in 3.0×10-6-7.5×10-4 mol·dm-3 with the detection limit of 8.0×10-7 mol·dm-3.This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods,such as renewable surface,good long-term stability,excellent catalytic activity and short response time to hydrazine.

  2. Extraction of scandium from red mud by modified activated carbon and kinetics study

    ZHOU Hualei; LI Dongyan; TIAN Yajun; CHEN Yunfa

    2008-01-01

    Activated carbon (AC) was modified by tri-butyl phosphate (TBP) for selectively extracting scandium from red mud and characterized by BET (Brunauer-Emmett-Teller) surface area. The modified AC had a preferential adsorption to scandium. The influences of adsorbent dosage, adsorption temperature, and time on adsorption capacity and selectivity to scandium were examined. An optimum adsorbent dosage (~6.25g/L), adsorption temperature (308K), and adsorption time (40min) were figured out. A pseudo-second-order kinetics model was employed for describing the adsorption process of scandium.

  3. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  4. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater.

  5. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.

    Zhang, Chuanjun; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2016-08-01

    In this study, TiO2 powder was used as the additive to directly blend with raw bituminous coal and coking coal for preparing modified activated carbon (Ti/AC) by one-step carbonization-activation method. The Ti/AC samples were prepared through blending with different ratios of TiO2 (0-12 wt%) and their desulphurization performance was evaluated. The results show that the desulphurization activity of all Ti/AC samples was higher than that of the blank one, and the highest breakthrough sulphur capacity was obtained at 200.55 mg/g C when the blending ratio of TiO2 was 6 wt%. The Brunauer-Emmett-Temer results show that the micropores were dominant in the Ti/AC samples, and their textual properties did not change evidently compared with the blank one. The X-ray photoelectron spectroscopy results show that the loaded TiO2 could influence the relative content of surface functional groups, with slightly higher content of π-π* transitions groups on the Ti/AC samples, and the relative contents of C=O and π-π* transitions groups decreased evidently after the desulphurization process. The X-ray diffraction results show that the anatase TiO2 and rutile TiO2 co-existed on the surface of the Ti/AC samples. After the desulphurization process, TiO2 phases did not change and Ti(SO4)2 was not observed on the Ti/AC samples, while sulphate was the main desulphurization product. It can be assumed that SO2 could be catalytically oxidized into SO3 by TiO2 indirectly, rather than TiO2 directly reacted with SO2 to Ti(SO4)2.

  6. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  7. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  8. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  9. Self-regeneration of activated carbon modified with palladium catalyst for electrochemical.dechlorination

    2007-01-01

    Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously remove chlorinated pollutants and in situ regenerate the spent catalyst. Activated carbon modified with palladium catalyst (AC-Pd) was prepared for electrochemical dechlorination. For the 4-chlorophenol wastewater of initial concentration 200 mg L-1, the removal efficiency could nearly reach 100% in less than 30 min. Catalytic activity of AC-Pd catalyst was preserved effectively even in consecutive cycling run without special regeneration. *OH radicals, generated by electrochemical reaction, played a critical role in self-regeneration of AC-Pd. High catalytic activity of spent AC-Pd catalyst provided an attractive alternative in wastewater treatment.

  10. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  11. Microstructure and activation characteristics of Mg-Ni alloy modified by multi-walled carbon nanotubes

    Aminorroaya, Sima; Liu, Hua Kun [Institute for Superconducting and Electronic Materials, University of Wollongong, Fairy Meadow, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Cho, Younghee; Dahle, Arne [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2010-05-15

    An Mg-6 wt% Ni alloy was fabricated by a casting technique and the drilled chips ball-milled by high energy ball milling to be examined for their hydrogenation modified with multi-walled carbon nanotubes (MWCNTs). The activation characteristics of ball-milled alloy are compared with those of the materials obtained by ball milling with 5 wt% MWCNTs for 0.5, 1, 2, 5 and 10 h. MWCNTs enhanced the absorption kinetics considerably in all cases. The hydrogen content of the modified powder with MWCNTs reached maximum hydrogen capacity within 2 min of exposure to hydrogen at 370 C and 2 MPa pressure. X-ray diffraction analysis provided evidence that no carbon-containing phase was formed during milling. However, milling with MWCNTs reduced the crystallite size, even if the milling was carried out for only an hour. The rate-controlling steps of the hydriding reactions at different milling times were determined by fitting the respective kinetic equations. Evidence is provided that nucleation and growth of hydrides are accelerated drastically by a homogenous distribution of MWCNTs on the surface of the ball-milled powders. We show that MWCNTs are very effective at promoting the hydriding/dehydriding kinetics, as well as in increasing the hydrogen capacity of the magnesium alloy. (author)

  12. Synthesis and characterization of carbon modified TiO{sub 2} nanotube and photocatalytic activity on methylene blue under sunlight

    Li, Yinchang [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Wang, Yongqian, E-mail: cugwyq@126.com [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Zhejiang Research Institute, China University of Geosciences, Hanzhou 311305 (China); Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China)

    2015-07-30

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO{sub 2} was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O{sub 2} and formed superoxide anion (O{sub 2}{sup −}). H{sub 2}O around the TiO{sub 2} was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO{sub 2} was modified by carbon, the same is that the electrons of C{sup 4+} would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O{sub 2}{sup −} and OH·. The oxidability of O{sub 2}{sup −} and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO{sub 2} and H{sub 2}O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO{sub 2} nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO{sub 2} nanotube is smaller than that of pristine TiO{sub 2} nanotube, indicating the fact that carbon modifying leads to the increase of TiO{sub 2} crystallinity. TiO{sub 2} nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO{sub 2} nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed.

  13. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  14. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  15. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zheng, Di; Zhang, Yitao

    2016-10-01

    A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N2 adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the -NO2 has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  16. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  17. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  18. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun, E-mail: dydu666@yahoo.com.cn

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (q{sub max}) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g{sup −1} at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50–16.58 mg g{sup −1}). Notably, the q{sub max} increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  19. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g-1 at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50-16.58 mg g-1). Notably, the qmax increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  20. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  1. [Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent].

    Zheng, Wen-Jing; Lin, Jian-Wei; Zhan, Yan-Hui; Fang, Qiao; Yang, Meng-Juan; Wang, Hong

    2013-11-01

    Surfactant-modified activated carbon (SMAC) was prepared by loading cetylpyridinium chloride (CPC) onto activated carbon and used as adsorbents to remove nitrate from aqueous solution. The SMAC was effective for removing nitrate from aqueous solution. The SMAC exhibited much higher nitrate adsorption capacity than that of the unmodified activated carbon. The nitrate adsorption capacity for SMAC increased with increasing the CPC loading. The adsorption kinetics of nitrate on SMAC followed a pseudo-second-order kinetic model. The equilibrium adsorption data of nitrate on SMAC could be described by the Langmuir isotherm model. Based on the Langmuir isotherm model, the maximum nitrate adsorption capacity for SMAC with CPC loading amount of444 mmol per 1 kg activated carbon was determined to be 16.1 mg x g(-1). The nitrate adsorption capacity for SMAC decreased with the increasing solution pH. The presence of competing anions such as chloride, sulfate and bicarbonate reduced the nitrate adsorption capacity. The nitrate adsorption capacity for SMAC slightly decreased with the increasing reaction temperature. Almost 95% of nitrate molecules adsorbed on SMAC could be desorbed in 1 mol x L(-1) NaCl solution. The main mechanisms for the adsorption of nitrate on SMAC are anionic exchange and electrostatic attraction. The results of this work indicate that SMAC is a promising adsorbent for removing nitrate from aqueous solution.

  2. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  3. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode.

  4. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration☆

    Qin Lu; Haiyan Wu; Haoyan Li; Dianhai Yang

    2015-01-01

    A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L−1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

  5. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  6. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  7. Simultaneous removal of NO x and SO2 by low-temperature selective catalytic reduction over modified activated carbon catalysts

    Liu, Ye; Ning, Ping; Li, Kai; Tang, Lihong; Hao, Jiming; Song, Xin; Zhang, Guijian; Wang, Chi

    2017-03-01

    A series of modified porous activated carbon (AC) catalysts prepared by impregnation were investigated for the low-temperature (≤250°C) selective catalytic reduction (SCR) of NO x with NH3 with simultaneous removal of SO2. The effects of various preparation conditions and reaction conditions on NO and SO2 conversions were observed, such as support type, active components, copper loading, calcination temperature and presence of H2O and O2. The modified AC catalysts were characterized by BET, XRD, TG and TPX methods. The activity test results showed that the optimal catalyst is 15% Cu/WCSAC which can provide 52% NO conversion and 68% SO2 conversion simultaneously at 175°C with a space velocity of 30000 h‒1, and the optimal calcination temperature was 500°C. The presence of H2O could inhibit NO conversion and promote the SO2 conversion. The effect of O2 (0-5%) was evaluated, and the NO and SO2 conversions were best when the concentration of O2 was 3%. Research demonstrated that Cu/WCSAC catalyst was a kind of potential catalysts due to the amorphous phase, high specific areas and high active ability.

  8. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  9. An Ionic Liquid Bulk-Modified Carbon Paste Electrode and Its Electrocatalytic Activity toward p-Aminophenol

    ZHANG Ya; ZHENG Jian-Bin

    2007-01-01

    An ionic liquid bulk-modified carbon paste electrode (M-CPE) has been fabricated by using 1-heptyl-3-methylimidazolium bromide as a modifier. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to evaluate the electrocatalytic activity of the proposed electrode by choosing p-aminophenol (p-AP) as a model compound. Both at a bare carbon paste electrode (CPE) and the M-CPE, p-AP yielded a pair of redox peaks was 0.233 V, while at the M-CPE the AEp was decreased to 0.105 V. Furthermore, the current response to p-AP at the M-CPE was 10.2 times of that at the CPE by DPV. The electron transfer rate constant (ks) of p-AP at the M-CPE was 13.3 times of that at the CPE. Under the optimal condition, a linear dependence of the catalytic current versus advantages of simple prapartion, surface renewal, good reproducibility and good stability. It has been used to determine p-AP in simulated wastewater samples.

  10. Simultaneous determination of ranitidine and metronidazole in pharmaceutical formulations at poly(chromotrope 2B modified activated glassy carbon electrodes

    Xiaobo Li

    2014-09-01

    Full Text Available A simple and sensitive electrochemical method for the simultaneous and quantitative detection of ranitidine (RT and metronidazole (MT was developed, based on a poly(chromotrope 2B modified activated glassy carbon electrode (PCHAGCE. The PCHAGCE showed excellent electrocatalytic activity toward the reduction of both RT and MT in 0.1 mol/L phosphate buffer solution (pH 6.0. The peak-to-peak separations for the simultaneous detection of RT and MT between the two reduction waves in cyclic voltammetry were increased significantly from ∼0.1 V at activated GCE, to ∼0.55 V at PCHAGCE. By differential pulse voltammetry techniques, the reduction peak currents of RT and MT were both linear over the range of 1.0 × 10−5–4.0×10−4 mol/L. The detection limits (S/N = 3 were 5.4 × 10−7 mol/L and 3.3 × 10−7 mol/L for RT and MT, respectively. The modified electrode was successfully applied to the determination of RT and MT in pharmaceutical preparations and human serum as real samples with stable and reliable recovery data.

  11. Modified Sol-Gel Synthesis of Carbon Nanotubes Supported Titania Composites with Enhanced Visible Light Induced Photocatalytic Activity

    Quanjie Wang

    2016-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT enhanced MWCNT/TiO2 nanocomposites were synthesized by surface coating of carbon nanotube with mixed phase of anatase and rutile TiO2 through a modified sol-gel approach using tetrabutyl titanate as raw material. The morphological structures and physicochemical properties of the nanocomposites were characterized by FT-IR, XRD, DTA-TG, TEM, and UV-Vis spectra. The results show that TiO2 nanoparticles with size of around 15 nm are closely attached on the sidewall of MWCNT. The nanocomposites possess good absorption properties not only in the ultraviolet but also in the visible light region. Under irradiation of ultraviolet lamp, the prepared composites have the highest photodegradation efficiency of 83% within 4 hours towards the degradation of Methyl Orange (MO aqueous solution. The results indicate that the carbon nanotubes supported TiO2 nanocomposites exhibit high photocatalytic activity and stability, showing great potentials in the treatment of wastewater.

  12. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  13. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  14. The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi; Liu, Ziqi; Huang, Kan

    2016-01-01

    A nano urchin-like NiCo2O4 has been successfully synthesized via a facile and scalable hydrothermal method. A NiCo2O4 modified active carbon air cathode was designed, optimized and fabricated. The maximum power density of the microbial fuel cell with newly developed cathode is 2.28 time higher than bare active carbon and is comparable to the commercial available Pt/C, reaching 1730 ± 14 mW m-2. The modified active carbon showed remarkable improvement in activity towards the oxygen reduction reaction, which was due to the lower charger transfer, lower activation barrier, and higher exchange current density. Electrochemical evaluation showed a direct four-electron the oxygen reduction reaction on NiCo2O4 modified active carbon, compared to a two-stage process on bare active carbon. The non-precious NiCo2O4 could be considered as a promising alternative to the costly Pt.

  15. Removal of arsenate and 17alpha-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers.

    Hristovski, Kiril D; Nguyen, Hanhphuc; Westerhoff, Paul K

    2009-03-01

    Activated carbon fibers (ACF) were modified with iron (hydr)oxide and studied to determine their suitability to remove arsenate and 17alpha -ethinyl estradiol (EE2) from water. Two synthesis methods, one involving aqueous KMnO(4) pretreatment followed by Fe(II) treatment, and the other involving reaction with Fe(III) in an organic solvent followed by NaOH treatment, were used to produce modified ACF media containing 5.9% and 8.4% iron by dry weight, respectively. Scanning electron microscopy (SEM) and Electron dispersion X-ray (EDX) techniques indicated slightly higher iron content near the outer edges of the fibers. Pseudo-equilibrium batch test experimental data at pH = 7.0 +/- 0.1 in 5 mM NaHCO(3) buffered ultrapure water containing approximately 100 micro g(As)/L and approximately 500 micro gEE2/L were fitted with the Freundlich isotherm model (q = K x C(E)(1/n)). The adsorption capacity parameters (K) were approximately 2586 (micro gAs/gFe)(L/micro gAs)(1/n) and approximately 425 (micro gAs/gFe)(L/micro gAs)(1/n)), respectively, for the KMnO(4)/Fe(II) and Fe(III)/NaOH treated media. The KMnO(4)/Fe(II) media exhibited a lower adsorption capacity at 99% EE2 removal than did the Fe(III)/NaOH treated media (1.3 mgEE2/g -dry -media vs. 1.8 mgEE2/g -dry -media). The arsenate adsorption intensity parameters (1/n) for both modified ACF media were < 0.29, implying very favorable adsorption, which suggests that this type of media may be suitable for single point -of -use applications in which arsenic and organic co-contaminants require simultaneous removal and the depth of the packed bed is the key factor.

  16. The loading of coordination complex modified polyoxometalate nanobelts on activated carbon fiber: a feasible strategy to obtain visible light active and highly efficient polyoxometalate based photocatalysts.

    Lu, Tingting; Xu, Xinxin; Li, Huili; Li, Zhenyu; Zhang, Xia; Ou, Jinzhao; Mei, Mingliang

    2015-02-01

    To enhance the photocatalytic properties of coordination complex modified polyoxometalates (CC/POMs) in the visible light region, its nanobelts (CC/POMNBs) were loaded on activated carbon fiber (ACF) through a simple colloidal blending process. The resulting coordination complex modified polyoxometalate nanobelts loaded activated carbon fiber composite materials (CC/POMNBs/ACF) exhibited dramatic photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation. Optical and electrochemical methods illustrated the enhanced photocatalytic activity of CC/POMNBs/ACF, which originates from the high separation efficiency of the photogenerated electrons and holes on the interface of the CC/POMNBs and ACF, which results from the synergistic effects between them. In the composite material, the role of ACF could be described as a photosensitizer and a good electron transporter. Furthermore, the influence of the mass ratio between the CC/POMNBs and ACF on the photocatalytic performance of the resulting composite material was discussed, and an ideal value to obtain highly efficient photocatalysts was obtained. The results suggested that the loading of CC/POMNBs on the surface of ACF would be a feasible strategy to enhance their photocatalytic activity.

  17. Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide

    Erhan Canbay; Hayati Türkmen; Erol Akyilmaz

    2014-05-01

    This paper reports on the preparation and advantages of novel amperometric biosensors in the presence of hydrophobic ionic liquid (IL), 1-methyl-3-butylimidazolium bromide ([MBIB]). Carbon paste bio-sensor has been constructed by entrapping horseradish peroxidase in graphite and IL mixed with paraffin oil as a binder. The resulting IL/graphite material brings new capabilities for electrochemical devices by combining the advantages of ILs composite electrodes. Amounts of H2O2 were amperometrically detected by monitoring current values at reduction potential (–0.15 V) of K3Fe(CN)6. Decrease in biosensor responses were linearly related to H2O2 concentrations between 10 and 100 M with 2 s response time. Limit of detection of the biosensor were calculated to be 3.98 M for H2O2. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, interference effects of some substances on the biosensor response, reproducibility and storage stability were carried out. The promising results are ascribed to the use of an ionic liquid, which forms an excellent charge-transfer bridge and wide electrochemical windows in the bulk of carbon paste electrode.

  18. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode.

    Madrakian, Tayyebeh; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87V and 1.1V vs. Ag/AgCl for MPM and an oxidation peak at 0.87V vs. Ag/AgCl for MPA in phosphate buffer solution of pH5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0×10(-6) to 1.6×10(-4)molL(-1) and 2.5×10(-6)molL(-1) to 6.0×10(-5)molL(-1) for MPM and MPA, respectively. The detection limit was found to be 9.0×10(-7)molL(-1) and 4.0×10(-7)molL(-1) for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples.

  19. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  20. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  1. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  2. Studies on Mercury Adsorption on Bromine Modified Activated Carbon%溴素改性活性炭汞吸附特性研究

    周强; 冒咏秋; 段钰锋; 朱纯; 佘敏; 洪亚光

    2014-01-01

    在固定床实验台上进行了1% NH4Br改性活性炭汞吸附实验.利用吸附动力学模型从动力学角度探讨了汞吸附速率控制步,汞吸附活化能与初始汞吸附速率.结果表明:150℃时,1% NH4Br改性活性炭脱汞能力显著增强,其原因是改性后活性炭表面活性位点(Br)明显增加,强化了化学吸附作用.但低温时,化学吸附增强作用不明显.汞在改性活性炭表面的吸附活化能为29.69 kJ/mol,说明吸附以物理吸附为主,化学吸附为辅.改性活性炭的初始汞吸附速率随温度增加而增加.活性位吸附是汞吸附速率控制步,外部传质控制也影响整个汞吸附过程,吸附遵循Langmuir吸附等温方程.%An experimental study on mercury adsorption of 1% NH4Br modified activated carbon was carried out in a fixed-bed reactor.Adsorption kinetic models were used to investigate mercury adsorption rate controlling step,adsorption activation energy and initial mercury adsorption rate from the kinetic point of view.The results show that mercury adsorption capacity of modified activated carbon increases significantly at 150℃ due to addition of active site (Br) on activated carbon surface,which improves chemisorption.However,performance of chemisorption at low flue gas temperature is not dominant.The activation energy of mercury adsorption on modified activated carbon surface is 29.69 kJ/mol,which illustrates that mercury adsorption is mainly physisorption but enhanced by chemisorption.The initial mercury adsorption rate of modified activated carbon increases with temperature elevation.Mercury adsorption on active sites is the adsorption rate controlling step and external mass transfer also plays an important role.Mercury adsorption on modified activated carbon follows the Langmuir isotherm equation.

  3. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  4. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    Shadrinov N. V.

    2016-01-01

    Full Text Available The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  5. Improving Adsorption Capacity of Modified Activated Carbon by Wastewater Contained Manganese%含锰废水改性活性炭吸附性能研究

    刘广兵; 谭文轶

    2012-01-01

    在实验室条件下,采用含锰废水浸泡改性活性炭,测定了改性活性炭基本吸附性能.实验测得原始活性炭的碘吸附质量比为95.07 mg/g,活性炭的SO2吸附质量比为95.51 mg/g.而经过含锰废水浸泡不同天数后的改性活性炭的碘吸附质量比分别为:(1 d)118.43mg/ g,(2 d)118.36mg/g,(3 d)160.69 mg/g和(4 d)133.17mg/g;它们对SO2的吸附质量比分别为(1 d)149.53 mg/ g,(2 d)122.14 mg/g,(3 d)117.12mg/g和(4 d)1 10.09 mg/g.这些实验结果表明,采用含锰废水改性活性炭的表面化学性质后可以提高活性炭的碘值和吸附能力,同时含锰废水得到再利用.%In this paper,activated carbon was modified by being immersed in wastewater contained manganese under laboratory conditions,and the basic adsorption capability of the modified activated carbon had been determined. The value of iodine adsorption of the original activated carbon was 95.07 mg/g and SO2 adsorption capacity was 95.51 mg/g,respectively. After immersed in wastewater contained manganese in different days,the value of iodine adsorption of the modified activated carbon were 118.43 mg/g (one day),118.36 mg/g (two days),160.69 mg/g (three days) and 133.17 mg/g (four days),respectively. The SO2 adsorption capacity were 149.53 mg/g (one day),122.14 mg/g (two days),117.12 mg/g (three days) and 110.09 mg/g (four days),respectively. The results show that after modified the surface chemical properties of activated carbon immersed in wastewater contained manganese,the value of iodine adsorption and adsorption capacity of activated carbon have been improved,and the wastewater contained manganese was reused at the same time.

  6. Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature.

    Levasseur, Benoit; Gonzalez-Lopez, Eugene; Rossin, Joseph A; Bandosz, Teresa J

    2011-05-01

    Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.

  7. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Grijalba, Alexander Castro; Martinis, Estefanía M. [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Lascalea, Gustavo E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina)

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L{sup −1} and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L{sup −1} of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS.

  8. Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons%相对湿度对甲醛在改性活性炭上吸附的影响

    李晶; 李忠; 刘冰; 夏启斌; 奚红霞

    2008-01-01

    This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carried out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.

  9. Adsorption of Carbon Dioxide on Activated Carbon

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  10. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation.

    El-Salamony, R A; Amdeha, E; Ghoneim, S A; Badawy, N A; Salem, K M; Al-Sabagh, A M

    2017-03-01

    Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO2. TiO2 supported on AC (xTiO2-AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, SBET, field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO2-AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO2-AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.

  11. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.

    Shaban, Yasser A; El Sayed, Mohamed A; El Maradny, Amr A; Al Farawati, Radwan Kh; Al Zobidi, Mousa I

    2013-04-01

    The photocatalytic degradation of phenol in seawater was investigated under UV and natural sunlight using visible light active carbon modified (CM)-n-TiO2 nanoparticles, synthesized via a sol-gel method. Carbon modification of n-TiO2 was performed using titanium butoxide, carbon-containing precursor, as a source of both carbon and titanium. For comparison, unmodified n-TiO2 was also synthesized by hydrolysis and oxidation of titanium trichloride in the absence of any carbon source. The presence of carbon in CM-n-TiO2 nanoparticles was confirmed by energy dispersive spectroscopy (EDS) analysis. Carbon modification was found to be responsible for lowering the bandgap energy from 3.14eV for n-TiO2 to 1.86eV for CM-n-TiO2 which in turn enhanced the photocatalytic activity of CM-n-TiO2 towards the degradation of phenol in seawater under illumination of UV light as well as natural sunlight. This enhanced photoresponse of CM-n-TiO2 is in agreement with the UV-Vis spectroscopic results that showed higher absorption of light in both UV and visible regions. The effects of catalyst dose, initial concentration of phenol, and pH were studied. The highest degradation rate was obtained at pH 3 and catalyst dose of 1.0gL(-1). The data photocatalytic degradation of phenol in seawater using CM-n-TiO2 were successfully fitted to Langmuir-Hinshelwood model, and can be described by pseudo-first order kinetics.

  12. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  13. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice.

  14. A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices.

    Tcheng, T K; Gillette, M U

    1996-11-01

    The fabrication and characteristics of a novel multiunit recording electrode and modified brain slice chamber suitable for long-term recording from brain slices are described. The electrode consisted of an electrolyte-filled glass micropipette with a 20-50 microns thick wax-coated bundle of 5-micron diameter carbon fibers extending 2.5 cm from the tapered end and an AgCl-coated silver wire inserted into the open end and connected to a preamplifier. Both ends of the electrode were sealed with wax to prevent evaporation of the electrolyte. The brain slice was maintained over this extended period in an interface-type brain slice chamber modified to completely surround the slice with medium. Using this electrode, regular 24-h oscillations of spontaneous multiunit activity were recorded for 3 days from a single location in a 500 microns thick rat suprachiasmatic nucleus brain slice. Preliminary data suggest that this novel carbon fiber bundle electrode will be a favorable alternative to traditional metal electrodes for long-term recording of multiunit activity from brain slices.

  15. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells

    Zhang, Peng; Li, Kexun; Liu, Xianhua

    2014-10-01

    Highly active and low-cost electrocatalysts are of great importance for large-scale commercial applications of microbial fuel cells (MFCs). In this work, we prepared an activated carbon (AC) air cathode containing electrodeposited γ-MnO2 using a potentiostatic method. The results indicated that carnation-like MnO2 crystals were bound to the surface of the AC air cathode after a deposition time of 10 min, which greatly improved the performance of the cathode. BET analysis results demonstrated that the electrodeposition of MnO2 decreased the micropore surface area of the cathode but increased the mesopore surface area. When compared with a bare AC air cathode, the electrodeposited MnO2 cathode exhibited higher catalytic activity for oxygen reduction reaction. The maximum power density of the MFC equipped with the electrodeposited MnO2 AC air cathode was 1554 mW m-2, which is 1.5 times higher than the control cathode.

  16. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi{sub 2}WO{sub 6}

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn

    2015-03-30

    Graphical abstract: - Highlights: • Silver and mesoporous carbon co-modified Bi{sub 2}WO{sub 6} (Ag/Bi{sub 2}WO{sub 6}/CMK-3) composite was prepared. • Photocatalytic activity of Bi{sub 2}WO{sub 6} was remarkably enhanced by co-modification of silver and mesoporous carbon. • The degradation rate of MB can reach ca. 95.1% under visible light irradiation. • The Ag/Bi{sub 2}WO{sub 6}/CMK-3 composite has good stability and potential application prospects. - Abstract: Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi{sub 2}WO{sub 6} and CMK-3/Bi{sub 2}WO{sub 6} photocatalysts were synthesized by hydrothermal method, and then Ag/Bi{sub 2}WO{sub 6} and Ag/Bi{sub 2}WO{sub 6}/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV–vis, TEM (HR-TEM), SEM, N{sub 2} physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi{sub 2}WO{sub 6}, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi{sub 2}WO{sub 6}. The photocatalytic activity of Ag/Bi{sub 2}WO{sub 6}/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi{sub 2}WO{sub 6} and Ag/Bi{sub 2}WO{sub 6} under comparable conditions, and Ag/Bi{sub 2}WO{sub 6}/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi{sub 2}WO{sub 6} was also investigated.

  17. The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB, a cationic surfactant

    M Leili

    2016-01-01

    Full Text Available Background and Objectives: Furfural is one of the toxic chemical compounds used in many industries such as petrochemical, food, paper products, pharmaceutical, etc., due to having some characteristics. Therefore, furfural could be found at different concentrations in the effluent from these industries and can enter the environment. Hence, the aim of this study was the assessment the efficiency of a low cost bentonite modified with cationic surfactant in the removal of furfural from aqueous solution. Material and Methods: In this experimental study, bentonite was purchased from one of the Mines of Zanjan Province, Iran and then the efficiency of bentonite modified with the cationic surfactant CTAB (CTAB-Bent was assessed in the adsorption of furfural from aqueous solution. Activated carbon (AC was also purchased as commercial grade. Results: Under optimum conditions, the removal efficiency of AC and CTAB-Bent was about 52 and 66%, respectively. For both adsorbents used in this study, the increase of contact time and sorbent dosage resulted in increasing the removal efficiency, but the removal efficiency was decreased with the increase of furfural initial concentrations. Regarding pH, the removal efficiency was the highest in relative acidic and neutral environment, (60 and 69% for AC and CTAB-Bent respectively. The kinetics studies revealed that the highest correlation coefficients were obtained for the pseudo-second order rate kinetic model. Adsorption data from both adsorbents was also fitted with Langmuir isotherm.   Conclusion: It was found that modified bentonite with CTAB as a natural adsorbent could have better efficiencies compared with activated carbon in the furfural removal, although more contact times is needed.

  18. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2017-02-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  19. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2016-12-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  20. Adsorption of Perfluorooctanesulfonate(PFOS) onto Modified Activated Carbons%改性活性炭对水中PFOS的吸附去除研究

    童锡臻; 石宝友; 解岳; 王东升

    2012-01-01

    Modified coal and coconut shell based powdered activated carbons(PACs) were prepared by FeCl3 and medium power microwave treatment,respectively.Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate(PFOS) onto original and modified PACs.Based on pore structure and surface functional groups characterization,the adsorption behaviors of modified and original PACs were compared.The competitive adsorption of humic acid(HA) and PFOS on original and modified coconut shell PACs were also investigated.Results showed that both Fe^3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs,but the changing effects were different.The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved.While the adsorption of modified coal-based activated carbons declined.The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same,and the time of reaching adsorption equilibrium was about 6 hours.In the presence of HA,the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.%分别用FeCl3及中功率微波对煤质和椰壳2种粉末活性炭进行改性.序批式实验研究了活性炭改性前后对全氟辛烷磺酸(PFOS)的吸附特性.结合活性炭改性前后表面化学官能团和孔结构的变化特征,探讨了不同改性方式对PFOS吸附去除的影响效应以及天然有机物中的主要组成成分腐殖酸对PFOS在原炭及改性炭上的竞争吸附效应.结果表明,Fe^3+及中功率微波处理对煤质炭和椰壳炭的孔结构和表面性质都有影响,但变化趋势不同.椰壳活性炭经Fe^3+及中功率微波改性后对PFOS的吸附量明显提高,而煤质活性炭经改性后对PFOS的吸附量出现下降.改性椰壳活性炭与原

  1. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  2. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Grijalba, Alexander Castro; Martinis, Estefanía M.; Lascalea, Gustavo E.; Wuilloud, Rodolfo G.

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L- 1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L- 1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea.

  3. Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes.

    Cheng, Xin; Guo, Hongguang; Zhang, Yongli; Liu, Yang; Liu, Hongwei; Yang, Ying

    2016-05-01

    The aim of this study was to develop a new approach for the activation of persulfate (PS) based on carbon nanotubes (CNTs). Fe/S modified carbon nanotubes (Fe/S-CNTs) were synthesized via impregnation-precipitation in the aqueous-phase synthesis method. The morphologies and chemical states of the catalysts were characterized and 2,4-dichlorophenol (2,4-DCP) was selected to investigate the degradation performance using Fe/S-CNTs with PS. The results reveal that the Fe/S-CNTs catalysts can significantly accelerate the removal of 2,4-DCP compared to single PS or PS/CNTs. The catalytic capacity is also enhanced by S modification and is affected by the solution pH. The iron loading content, PS concentration and catalyst dosage could play important roles in the degradation. A non-radical process of 2,4-DCP degradation is demonstrated for the first time in the results of the radical scavengers and chloride ionic, as well as persulfate decomposition. It is suggested that PS is first bonded with the sp(2)-hybridized system and activated by iron oxide particles and iron-sulfur complexes, then it reacts rapidly with the adsorbed 2,4-DCP.

  4. High anti-inflammatory activity of harpagoside-enriched extracts obtained from solvent-modified super- and subcritical carbon dioxide extractions of the roots of Harpagophytum procumbens.

    Günther, M; Laufer, S; Schmidt, P C

    2006-01-01

    Solvent-modified carbon dioxide extractions of the roots of Harpagophytum procumbens have been investigated with respect to extraction efficiency and content of harpagoside, and compared with a conventional extract. The effects of pressure, temperature, type and concentration of the modifier have been examined. Two extraction steps were necessary in order to achievehigh anti-inflammatory harpagoside-enriched extracts. The first extraction step was carried out in the supercritical state using carbon dioxide modified with n-propanol to remove undesired lipophilic substances. The main extraction was performed either in the supercritical or in the subcritical state with carbon dioxide modified with ethanol. The supercritical fluid extraction resulted in extracts containing up to 30% harpagoside. The subcritical extracts showed a harpagoside content of ca. 20%, but the extraction yield was nearly three times greater compared with supercritical conditions. The total harpagoside recovery resulting from the sum of the extract and the crude drug residue was greater than 99% in all experiments. The conventional extract and two carbon dioxide extracts were tested for in-vitro inhibition of 5-lipoxygenase or cyclooxygenase-2 biosynthesis. Both carbon dioxide extracts showed total inhibition on 5-lipoxygenase biosynthesis at a concentration of 51.8 mg/L. In contrast, the conventional extract failed to show any inhibition of 5-lipoxygenase biosynthesis.

  5. Adsorption of H{sub 2}S or SO{sub 2} on an activated carbon cloth modified by ammonia treatment

    Boudou, J.P.; Chehimi, M.; Broniek, E.; Siemieniewska, T.; Bimer, J. [University of Paris, Paris (France)

    2003-07-01

    The aim of this research is to investigate how ammonia treatment of the surface can influence the activity of a viscose-based activated carbon cloth (ACC) for the oxidative retention of H{sub 2}S and SO{sub 2} in humid air at 25{sup o}C. Surface basic nitrogen groups were introduced either by treatment with ammonia/air at 300{sup o}C or with ammonia/steam at 800{sup o}C. The pore structure of the samples so prepared was examined by adsorption measurements. Changes in the surface chemistry were assessed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and temperature programmed desorption (TPD). The change of ACC activity could not be merely attributed to surface nitrogen groups but to other changes in the support. Ammonia/steam treatment improved ACC performance the most, not only by introducing nitrogen surface groups, but also by extending the microporosity and by modifying the distribution of surface oxygen groups. Successive adsorption-regeneration cycles showed important differences between oxidative retention of H{sub 2}S and SO{sub 2} and the subsequent catalyst/support regeneration process.

  6. Photothermal effects of immunologically modified carbon nanotubes

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  7. Adsorption of fluoride in aqueous solutions using KMnO{sub 4}-modified activated carbon derived from steam pyrolysis of rice straw

    Daifullah, A.A.M. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Yakout, S.M. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)]. E-mail: yakout_2004@yahoo.com; Elreefy, S.A. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    2007-08-17

    Fluoride in drinking water above permissible levels is responsible for human and skeletal fluorosis. In this study, activated carbons (AC) prepared by one-step steam pyrolysis of rice straw at 550, 650, 750 deg. C, respectively, were modified by liquid-phase oxidation using HNO{sub 3}, H{sub 2}O{sub 2} and KMnO{sub 4}. Characterization of these 12 carbons was made by their surface area, porosity, acidity, basicity, pH{sub pzc}, pH and ability to remove fluoride anion. Based on the data of the latter factor, the RS{sub 2}/KMnO{sub 4} carbon was selected. Along with batch adsorption studies, which involve effect of pH, adsorbate concentration, adsorbent dosage, contact time, temperature, and Co-ions (SO{sub 4} {sup 2-}, Cl{sup -}, Br{sup -}). The effects of natural organic matter (NOM) were also made to remove the fluoride from natural water. On the basis of kinetic studies, specific rate constants involved in the adsorption process using RS{sub 2}/KMnO{sub 4} carbon was calculated and second-order adsorption kinetics was observed. Equation isotherms such as Langmuir (L), Freundlich (F), Langmuir-Freundlich (LF) and Dubinin-Radushkevich (DR) were successfully used to model the experimental data. From the DR isotherm parameters, it was considered that the uptake of F{sup -} by RS{sub 2}/KMnO{sub 4} carbon proceeds by an ion-exchange mechanism (E = 10.46 kJ mol{sup -1}). The thermodynamic parameters of fluoride sorption were calculated and the sorption process was chemical in nature. The ability of RS{sub 2}/KMnO{sub 4} to remove F{sup -} from Egyptian crude phosphoric acid (P{sub 2}O{sub 5} = 48.42%) was tested and the adsorption capacity of F{sup -} in H{sub 3}PO{sub 4} was greater than that in distilled water. This is may be due to fluoride adsorption enhanced at lower pH of crude acid.

  8. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  9. Electroanalysis using modified hierarchical nanoporous carbon materials.

    Rodriguez, Rusbel Coneo; Moncada, Angelica Baena; Acevedo, Diego F; Planes, Gabriel A; Miras, Maria C; Barbero, Cesar A

    2013-01-01

    The role of the electrode nanoporosity in electroanalytical processes is discussed and specific phenomena (slow double layer charging, local pH effects) which can be present in porous electrode are described. Hierarchical porous carbon (HPC) materials are synthesized using a hard template method. The three dimensional carbon porosity is examined using scanning electron microscopy on flat surfaces cut using a focused ion beam (FIB-SEM). The electrochemical properties of the HPC are measured using cyclic voltammetry, AC impedance, chronoamperometry and Probe Beam Deflection (PBD) techniques. Chronoamperometry measurements of HPC seems to fit a transmission line model. PBD data show evidence of local pH changes inside the pores, during double layer charging. The HPC are modified by in situ (chemical or electrochemical) formation of metal (Pt/Ru) or metal oxide (CoOx, Fe3O4) nanoparticles. Additionally, HPC loaded with Pt decorated magnetite (Fe3O4) nanoparticles is produced by galvanic displacement. The modified HPC materials are used for the electroanalysis of different substances (CO, O2, AsO3(-3)). The role of the nanoporous carbon substrate in the electroanalytical data is evaluated.

  10. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  11. N-Modified Carbon-Based Materials: Nanoscience for Catalysis.

    Prati, Laura; Chan-Thaw, Carine E; Campisi, Sebastiano; Villa, Alberto

    2016-10-01

    Carbon-based materials constitute a large family of materials characterized by some peculiarities such as resistance to both acidic and basic environments, flexibility of structure, and surface chemical groups. Moreover, they can be deeply modified by simple organic reactions (acid-base or redox) to acquire different properties. In particular, the introduction of N-containing groups, achieved by post-treatments or during preparation of the material, enhances the basic properties. Moreover, it has been revealed that the position and chemical nature of the N-containing groups is important in determining the interaction with metal nanoparticles, and thus, their reactivity. The modified activity was addressed to a different metal dispersion. Moreover, experiments on catalysts, showing the same metal dispersion, demonstrated that the best results were obtained when N was embedded into the carbon structure and not very close to the metal active site.

  12. CVD carbon powders modified by ball milling

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  13. 改性磁种-活性炭工艺处理油污染深井地下水%Treatment of oil polluted ground water by modified magnetic seed-activated carbon process

    曹雨平; 邓阳清; 刘亚凯

    2011-01-01

    Oil polluted groundwater was collected from Hougao 3# deep well, Qilu Petrochemical Corporation,the method of modified magnetic seed-activated carbon process was established and performed on these water samples to investigated the effect of demulsifier (PAC) dosage, modified magnetic seed dosage and activated carbon dosage on the oil removal efficiency. Results showed that the modified magnetic seed-activated carbon process presented perfect performance for oil removal and the optimum dosage for PAC, modified magnetic seed and activated carbon was 50,100, 200 mg/L respectively. After treated under these optimum conditions, mass concentration of oil in polluted ground water could decrease below 1 mg/L, given the average oil removal efficiency of 96.7%, which could meet the requirement of “Urban Sewage Reuse and Utilization, Industrial Water Quality Standard” (GB/T 19923-2005). The modified magnetic seed could be recycled and used again, which could reduce the second pollution and save the treatment cost.%采用改性磁种-活性炭工艺处理油污染深井地下水,考察了破乳剂、改性磁种及活性炭投加量对除油效果的影响,并在最佳除油条件下对原水进行除油效果验证.结果表明,采用改性磁种-活性炭工艺处理油污染深井地下水效果较为明显,出水含油质量浓度在1 mg/L以下,除油率平均达96.7%,出水满足(GB/T 19923-2005)要求;改性磁种可回收再利用,既减少二次污染,又降低成本.

  14. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine.

    Salimi, Abdollah; Abdi, Kamaleddin

    2004-05-28

    The electroless sol-gel technique was used for the construction of nickel hexacyanoferrat (NiHCF) modified carbon composite electrodes (CCEs).This involves two steps: formation of a carbon ceramic electrode fabricated by nickel powder and then immersing the electrode into a sodium- hexacyanoferate solution for the immobilization of NiHCF films. The cyclic voltammety of the resulting modified CCEs prepared under optimum conditions, shows a well defined surface redox couple due to the [Ni(II)Fe(III/II)(CN)(6)](-2/-1) system. The effect of different alkali metal cations in supporting electrolyte on the behavior of the modified electrode were studied. The charge transfer coefficient (alpha) and charge transfer rate constant (k(s)) for modified films were calculated. Hydrazine and hydroxylamine have been chosen as a model to elucidate the electocatalytic ability and analytical parameters of NiHCF modified CCE prepared by one and two-step sol-gel techniques and these compounds determined amperometically at the surface of modified electrodes. The latter shows a good electocatalytic activity towards the oxidation of hydrazine and hydroxylamine in the pH range 3-8 in comparison with CCEs modified by homogeneous mixture of graphite powder, Ni(NO(3))(2) and Na(2)[Fe(CN)(6)], (one-step sol-gel technique). Furthermore, the catalytic rate constant, linear dynamic range, limit of detection, and sensitivity for hydrazine and hydroxylamine detections were evaluated and compared with CCEs prepared with one-step sol-gel method. The modified CCEs containing NiHCF shows good repeatability, short response time, t 90%<3s, long term stability (3 months) and excellent catalytic activity. Furthermore, the method of preparation is rapid and simple and the modified electrodes are renewed by simple mechanical polishing and immersing in [Na(3)Fe(CN](6)] solution.

  15. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study.

    Reddaiah, K; Madhusudana Reddy, T; Venkata Ramana, D K; Subba Rao, Y

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm(3) phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10(-7) mol/dm(3) and 6.312 × 10(-7) mol/dm(3) respectively with a dynamic range from 1 × 10(-6) to 1.8 × 10(-5) mol/dm(3). The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE.

  16. Investigation on Adsorption Refrigeration Characteristics of Modified Activated Carbon-Isobutane Pair%改性活性炭-异丁烷吸附制冷性能研究

    吴琦; 马列军; 万意; 殷宇; 崔群; 王海燕

    2015-01-01

    The activated carbon surface was modified by ammonia solution. The changes in surface morphology and pore structure of the activated carbon were characterized. The effects of modification conditions on the content of surface functional groups and iodine value were studied. The adsorbed isobutane amount of modified activated carbon was tested. The performance of the activated carbon-isobutane pair for direct regenerative adsorption refrigeration cycle was investigated. The results show that the feasible modification conditions were the ammonia solution concentration of 14 wt%, the temperature of 25oC, and the modification time of 12 h. In comparison with the original activated carbon, the basic functional groups and adsorption capacity for the activated carbon-isobutane were increased by 45.7% and 10.8%, respectively. The adsorption capacity of the modified activated carbon-isobutane pair for direct regenerative adsorption refrigeration cycle was improved by 30.8%than that of the original activated carbon.%本文对活性炭表面进行氨水改性,对改性前后活性炭表面形貌和孔结构进行表征,测定氨水改性条件对活性炭表面基团含量及碘值的影响,研究改性活性炭对异丁烷的平衡吸附量,考察改性活性炭-异丁烷工质对的直接再生吸附制冷循环性能。结果表明:氨水改性较适宜条件为氨水浓度14 wt%、温度25℃、时间12 h;氨水改性活性炭表面碱性基团含量提高了45.7%,改性活性炭对异丁烷吸附量增加10.8%;改性活性炭-异丁烷工质对直接再生吸附制冷循环吸附量比未改性活性炭提高30.8%。

  17. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.

  18. Adsorption of chromium (Ⅵ) in wastewater by acid-modified activated carbons%酸改性活性炭对废水中六价铬吸附效果的研究

    李江兵; 夏明; 丁纯梅; 袁军

    2013-01-01

    Objective To study the adsorption of Cr ( VI ) by acid-modified activated carbons. Methods Activated carbons were modified under different conditions, such as acids species (nitric acid, sulfuric acid, phosphoric acid), acid concentration(10%, 30% and 50%), modification time(2, 4 and 6 h) and temperature(20, 40 and 60 °C). The adsorption of Cr (VI) on original and modified activated carbons were analyzed by orthogonal experiment. Results Adsorption efficiency of activated carbons for Cr ( VI ) ranked as following: acids species >acid' s concentration >modification time >modification temperature. Under the optimum conditions ,such as 10% sulfuric acid, adsorption at 60 ℃ for 4 h, the maximum removal efficiency of Cr (VI) was 77.63% which was higher than the unmodified activated carbon (53.02%). Conclusion The modified activated carbons have a favorable adsorbing effect on Cr(VI).%目的 研究酸改性活性炭对水中Cr(Ⅵ)的吸附效果.方法 分别采用不同酸种类(硝酸、硫酸和磷酸)、酸浓度(10%,30%,50%)、改性时间(2、4、6h)和改性温度(20、40、60℃)对活性炭材料表面进行改性处理,采用正交试验测定活性炭改性前、后对水中Cr(Ⅵ)的吸附效果.结果 酸改性活性炭对水中Cr(Ⅵ)吸附效果能力的影响程度依次为酸种类>酸浓度>改性时间>改性温度.在最佳条件(于60℃、以10%硫酸氧化4h)下,酸改性活性炭对水中Cr(Ⅵ)的吸附率为77.63%,较改未性活性炭(53.02%)有所提高.结论 酸改性活性炭对水中Cr(Ⅵ)有较好地吸附效果.

  19. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study

    Reddaiah, K. [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Madhusudana Reddy, T., E-mail: tmsreddysvu@gmail.com [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Venkata Ramana, D.K. [Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongbuk 780 714 (Korea, Republic of); Subba Rao, Y. [DST-PURSE Centre, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh (India)

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm{sup 3} phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10{sup −7} mol/dm{sup 3} and 6.312 × 10{sup −7} mol/dm{sup 3} respectively with a dynamic range from 1 × 10{sup −6} to 1.8 × 10{sup −5} mol/dm{sup 3}. The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. - Highlights: • The poly-AzrS/MWCNTs/GCE showed good sensitivity towards DA sensing. • The sensor reduced the overoxidation potentials for DA. • This electrode was successfully used for simultaneous sensing of DA and 5-HT. • The electrode was effectively used for the determination of DA in pharmaceutical formulations.

  20. Copper modified carbon molecular sieves for selective oxygen removal

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  1. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation.

  2. 新型胺化介孔炭的制备及其对Pb(II)的吸附%Preparation of amine-modified mesoporous activated carbon and its adsorption of lead (II) from aqueous solution

    李坤权; 杨美蓉; 王燕锦; 贾佳祺; 郑正

    2014-01-01

    Biomass-based mesoporous carbons were prepared from bagasse by microwave assisted H3PO4 activation. Polyamine groups were modified on the prepared carbon channels’ surfaces by nitric acid oxidation followed by reaction with ethylenediamine. The influence of initial concentration, temperature, carbon dose on the adsorption capacity, characteristic and thermodynamics of Pb (II) on the modified mesoporous carbon was investigated. The results showed that nitrogen-containing groups such as amido and imido group were successfully grafted on the surface of mesoporous carbon. The introduction of nitrogen-containing polyamine groups greatly enhanced the separation of Pb (II) from aqueous solution. The Langmuir Pb (II) adsorption capacity on the polyamine-modified carbon reached nearly 180mg/g, which was 1.5times of that on the untreated mesoporous carbon. The removal rate of Pb (II) from aqueous solution was significantly improved on the polyamine-modified carbon. Almost 100%of Pb (II) was adsorbed on the modified carbon with Pb (II) initial concentration less than 60mg/L. The adsorption amount of Pb (II) was increased with increasing temperature. The adsorption behavior and thermodynamic data suggested that the polyamine-modified material had a heterogeneous surface energy distribution, the adsorption was a spontaneous endothermic process, and chemical reaction could be involved and play an important role.%采用微波辅助磷酸活化制备了高中孔率蔗渣基介孔炭,并通过硝酸氧化和乙二胺聚合在其孔道内修饰了含氮多胺基团,探索了溶液浓度、温度、吸附剂剂量等对改性介孔炭的Pb(II)吸附性能、行为和热力学特性的影响.结果表明,蔗渣基介孔炭较宽的孔道结构可通过乙二胺缩水聚合反应在其表面接枝酰胺、仲胺等含氮基团;胺化改性增强化了介孔炭对水溶液中Pb(II)的固定作用,改性后介孔炭对Pb(II)的吸附量高达180mg/g,是改性前介孔炭的1.5倍;

  3. Synthesis of mesoporous carbon as electrode material for supercapacitor by modified template method

    ZHAO Jia-chang; LAI Chun-yan; DAI Yang; XIE Jing-ying

    2005-01-01

    The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capacitance of the mesoporous carbons increase with the increase of mass ratio of silica sol to carbon source (glucose). A modified template method, combining silica sol template method and ZnCl2 chemical activation method, was proposed to improve the mass specific capacitance of the mesoporous carbon with an improved BET surface area. The correlation of rate capability and pore structure was studied by constant current discharge and electrochemical impedance spectroscopy. A commercially available microporous carbon was used for comparison. The result shows that mesoporous carbon with a larger pore size displays a higher rate capability. Mesoporous carbon synthesized by modified template method has both high mass specific capacitance and good rate capability.

  4. Inexpensive Ipomoea aquatica Biomass-Modified Carbon Black as an Active Pt-Free Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium

    Yaqiong Zhang

    2015-09-01

    Full Text Available The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R and FeCl3·6H2O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe–N/C catalyst exhibits higher electrocatalytic activity for ORR, longer durability and higher tolerance to methanol compared to a commercial Pt/C catalyst (40 wt % in an alkaline medium. In particular, Fe–N/C presents an onset potential of 0.05 V (vs. Hg/HgO for ORR in an alkaline medium, with an electron transfer number (n of ~3.90, which is close to that of Pt/C. Our results confirm that the catalyst derived from I. aquatica and carbon black is a promising non-noble metal catalyst as an alternative to commercial Pt/C catalysts.

  5. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical.

  6. Reprogramming cellular signaling machinery using surface-modified carbon nanotubes.

    Zhang, Yi; Wu, Ling; Jiang, Cuijuan; Yan, Bing

    2015-03-16

    Nanoparticles, such as carbon nanotubes (CNTs), interact with cells and are easily internalized, causing various perturbations to cell functions. The mechanisms involved in such perturbations are investigated by a systematic approach that utilizes modified CNTs and various chemical-biological assays. Three modes of actions are (1) CNTs bind to different cell surface receptors and perturb different cell signaling pathways; (2) CNTs bind to a receptor with different affinity and, therefore, strengthen or weaken signals; (3) CNTs enter cells and bind to soluble signaling proteins involved in a signaling pathway. Understanding of such mechanisms not only clarifies how CNTs cause cytotoxicity but also demonstrates a useful method to modulate biological/toxicological activities of CNTs for their various industrial, biomedical, and consumer applications.

  7. Making Activated Carbon by Wet Pressurized Pyrolysis

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  8. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-05-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery.

  9. Adsorption of some transition metal ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Paunka St. Vassileva; Albena K. Detcheva [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of General and Inorganic Chemistry

    2010-03-15

    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  10. Adsorption of Some Transition Metal Ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Vassileva, P.S.; Detcheva, A.K. [Bulgarian Academy of Science, Sofia (Bulgaria)

    2010-07-01

    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  11. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  12. Active containment systems incorporating modified pillared clays

    Lundie, P. [Envirotech (Scotland) Ltd., Aberdeen (United Kingdom)]|[Environmental Resource Industries Disposal Pty Ltd., Perth (Australia); McLeod, N. [Envirotreat Ltd., Kingswinford (United Kingdom)

    1997-12-31

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation.

  13. Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes

    Tingliang Xia; Hongmei Bi; Keying Shi

    2010-05-01

    The NO electro-oxidation was investigated at various single-wall carbon nanotubes (SWCNTs) modified electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the glassy carbon electrode, the SWCNTs modified electrodes possess higher electro-catalytic activity to NO electro-oxidation. CV results indicate that the peak current density of NO electro-oxidation at the SWCNT-COOH (SWCNTs with carboxyl groups) modified electrode is the highest and the peak potential is the most negative among the four kinds of electrodes. EIS indicates that the charge transfer resistance of NO electro-oxidation at the SWCNT-COOH modified electrode is the least. The determined factors (charge transfer and mass transfer of diffusion) of NO electro-oxidation are different in varied potential region. The mechanism of NO electro-oxidation reaction at the SWCNTs modified electrodes is also discussed.

  14. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  15. Modified carbon nanotubes and methods of forming carbon nanotubes

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  16. Electrochemical capacitor improvement fabricated by carbon microfiber composite with admicellar-modified carbon nanotube

    Pongprayoon, Thirawudh; Ayutthaya, Montira Seneewong-Na; Poochai, Chatwarin

    2017-02-01

    Conventional electrochemical capacitors are usually made from activated carbon microfiber electrode, which has relatively low electrochemical capacitance. To improve performance of electrochemical capacitor, carbon nanotube (CNT) was used to incorporate in carbon microfiber. Firstly, CNT was coated with ultra-thin polyacrylonitrile (PAN) film coating using the admicellar polymerization technique to improve its dispersion in PAN matrix. Secondly, the mix solution of admicellar-modified CNT (Ad-CNT) and PAN in N,N-dimethylformamide (DMF) was prepared to produce microfiber by electrospinning. Lastly, microfiber was collected as a sheet, which was then stabilized and carbonized to be used as an electrode. The fabricated electrode using Ad-CNT/PAN was analyzed by SEM and TEM. SEM images show that the microfiber was uniform with approximately 2 μm average diameter. TEM images display well alignment and good dispersion of Ad-CNT in the matrix. The electrode made from Ad-CNT/PAN exhibited a high specific capacitance of 125 F g-1 at a scan rate of 3 mV s-1 (based on cyclic voltammetry) and 82 F g-1 at a specific current of 1 A g-1 (based on galvanostatic charge/discharge). The percentage of relative specific capacitance retention of the prepared electrode was 70% after 1000 cycles. The results clearly show that the Ad-CNT played an effective role in improving dispersion in electrode leading to increase in electrical conductivity as well as electrical capacitance of the capacitor.

  17. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident.

  18. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  19. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  20. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.

    Karnicka, Katarzyna; Miecznikowski, Krzysztof; Kowalewska, Barbara; Skunik, Magdalena; Opallo, Marcin; Rogalski, Jerzy; Schuhmann, Wolfgang; Kulesza, Pawel J

    2008-10-01

    The ability of such a common redox mediator as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to undergo sorption on carbon surfaces is explored here to convert multiwalled carbon nanotubes (CNTs) into a stable colloidal solution of ABTS-modified carbon nanostructures, the diameters of which are approximately 10 nm (as determined by transmission electron microscopy). Subsequently, inks composed of fungal laccase (Cerrena unicolor) mixed with the dispersion of ABTS-modified CNTs and stabilized with Nafion, were deposited on glassy carbon and successfully employed to the reduction of oxygen in McIlvain buffer at pH 5.2. For comparison, the systems utilizing only ABTS-free CNTs and laccase as well as ABTS-modified CNTs did not show appreciable activity toward the oxygen reduction. The three-dimensionally distributed ABTS-modified CNTs are expected to improve the film's overall conductivity and to facilitate electrical connection between the electrode and the enzyme. The network film of ABTS-modified CNTs is rigid, and it is characterized by charge propagation capabilities comparable to the conventional redox polymers. The whole concept of utilization of CNTs modified with ultrathin films of redox mediators in the preparation of efficient bioelectrocatalytic films seems to be of general importance to electroanalytical chemistry and to the development of biosensors.

  1. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  2. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-04-01

    The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  3. Platinum-polyaniline-modified carbon fiber electrode for the electrooxidation of methanol

    WU Kezhong; MENG Xu; WANG Xindong; LI Jingling

    2005-01-01

    Platinum was electrodeposited onto a polyaniline-modified carbon fiber electrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in the level of platinum u tilization currently achieved in electrocatalyric systems. This electrode preparation consists of a two-step procedure: first electropolymerization of aniline onto carbon fiber and then electrodeposition of platinum. The catalytic activity of the platinum-polyaniline-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a bare carbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current of methanol on Pt/PAni/C is 50.7 mA.cm-2, which is 6.7 times higher than 7.6 mA.cm-2 on the Pt/C.Scanning electron microscopy was used to investigate the dispersion of the platinum particles of about 0.4 μm.

  4. Separating proteins with activated carbon.

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  5. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  6. 磷酸法活性炭的三聚氰胺表面改性及其电化学性能研究%Electrochemical Properties of Phosphoric Acid Activated Carbon Modified by Melamine

    陈继锡; 左宋林; 王永芳; 郝婧

    2016-01-01

    为了考察磷酸法活性炭作为双电层电容器电极材料的可行性,通过浸渍三聚氰胺后在500、700、900℃下热处理的方法对活性炭进行了表面改性,分别得到改性活性炭 AC-N-500、AC-N-700、AC-N-900,考察不同热处理温度对活性炭表面氮元素结合状态的影响,及其对磷酸法活性炭作为双电层电容器电极材料的电化学性能的影响。采用氮气吸附、元素分析、X射线光电子能谱及电化学测试等方法分析表征活性炭的孔隙结构、元素组成、表面官能团存在形式以及电化学性能。结果表明:随着热处理温度的升高,改性活性炭氮元素含量逐渐下降,由AC-N-500的8.49%下降为AC-N-900的4.16%;三聚氰胺改性活性炭比表面积和总孔容明显降低。改性活性炭中氮元素主要以N-6(吡啶型)、N-5(吡咯型)、N-Q(季氮型)、N-X(氮氧型)4种形式存在;随着热处理温度的升高,N-6和N-5型官能团的比例略微减少并部分转变为N-Q。改性活性炭AC-N-700可制备出比电容达203 F/g(扫描电压1 mV/s)的活性炭电极材料,减小电极与电解液间的阻力有利于离子的渗入和电荷的传导,表明磷酸法活性炭具有作为双电层电容器电极材料的潜力。%Phosphoric acid activated carbon, modified by impregnating melamine, was heated at 500, 700,and 900℃ to obtain AC-N-500, AC-N-700 and AC-N-900. The feasibility of these activated carbon for electrode material of electric double layer capacitor ( EDLC) were investigated. The effects of heat temperatures on the nitrogen-containing surface functional groups and the electrochemical properties of the modified activated carbons were also investigated. Nitrogen adsorption, elemental analysis, X-ray photoelectric spectroscopy, and electrochemical workstation were employed to analyze the pore structure, element contents, nitrogen-containing surface functional groups and electrochemical properties of the activated carbons

  7. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  8. Remove food dye (Acid Red 18 by using activated carbon of sunflower stalk modified with Iron nanoparticles Fe3O4 from aqueous solutions

    Ali Namazi Zoweram

    2016-06-01

    Full Text Available Background and Objective: acid pale yellow dye(AY-6, acid yellow 23 (AY-23 and Acid Red 18 (AR-18 are of the most important dyes among artificial dyes that are used to create the colors orange and red. They are used in confectionery, beverage making, chips, corn, cereals, cake mixes, sports drinks, ice cream, candy, gelatins, pickles, Yakhmaks, fermented foods, prescription drugs and tablet, chewing gum, pudding, fruit juice, mustard sauce, soda, cosmetics, and other products.However, about 10-20% of the dye is lost during the manufacturing process and as a result large amounts of food dye enter the wastewater that must be refined. Absorption by using natural absorbents has found a significant usage among the methods of removal and treatment of colored wastewaters. For this purpose, activatedcarbon was produced from sunflower plantstalk in this study. It was modified by iron nanoparticles to recover and separate absorbent from aqueous solutions. Dye Acid Red 18 of Azo dyes was used in a laboratory environment to assess the efficiency, which is widely used in food and textile industries. Materials and Methods:The present study was done experimentally in laboratory scale, with the aim to examine the efficacy of removal of Acid Red 18 dye from aqueous solutions by using activatedcarbon produced from sunflower stalk, and modified with iron nanoparticles. Various parameters such as initial concentration of colored material, adsorbent material dosage, PH, and contact time were investigated in a batch system. Findings:The present study results show dye removal efficiency of 98.6% at a concentration of 25 milligrams per liter with 0.5 g adsorbent dosage and contact time of 120 minutes at a pH equal to 3. Conclusion: Based on the results obtained from the study it can be concluded activatedcarbon produced from sunflower stalk as an agricultural wastes has relatively good efficiency in absorption of acid red18 dye from aqueous solutions.

  9. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  10. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-01

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  11. 树脂基改性球形活性炭的汽油吸附脱硫性能研究%STUDY ON GASOLINE ADSORPTIVE DESULFURIZATION OF RESIN-BASED MODIFIED SPHERICAL ACTIVATED CARBON

    范俊刚; 兰海叶; 张志刚; 李文秀

    2014-01-01

    Strong acidic polystyrene-based cation exchange resin (D001)was used as carbonization precursor to prepare metal-loaded modified spherical activated carbons (SACs)for fuel adsorptive desul-furization. The modification procedures included metal loading through metallic cation exchange in met-al-containg salt solutions (Cu2+ ,Ni2+ ,Fe3+ nitrates),carbonized by calcinations followed by activation with CO2. TG-DTG,XRD,SEM and BET characterizations show that after carbonization and modifica-tion the SACs remain the spherical shape having large pore volume and specific surface area. The metal-lic particle disperses over the carbonized surface as the activated centers for adsorptive desulfurization.The desulfurization capacities of SACs were investigated by model gasoline composed of thiophene dis-solved in cyclohexane. The results reveal that the effect of the type of metal loaded on adsorption capaci-ty was the order Fe>Ni>Cu. The adsorption capacity decreases with temperature rising from 20 ℃ to 60 ℃. The first-order and second-order kinetic equations both fit the adsorption mass transfer process well. The SACs can be regenerated by ultrasonic ethanol solvent elution and heat treatment. After 3 times regeneration,the reactivated carbon still has a good adsorption capability of thiophene.%使用 D001型阳离子交换树脂为炭化前躯体,于 Cu2+,Ni2+,Fe3+的硝酸盐溶液中浸渍进行阳离子交换负载金属离子,N2气氛下焙烧炭化后利用 CO2高温活化,制得负载金属的改性球形活性炭吸附剂。TG-DTG,XRD,SEM,BET 等表征结果表明,树脂炭化制得的改性活性炭球形结构保持良好,孔体积及比表面积较大,负载金属构成选择性吸附活性位。利用噻吩的环己烷溶液作为模拟汽油考察改性球形活性炭的吸附脱硫性能,结果表明:负载金属种类对吸附容量的影响由强到弱的顺序依次为 Fe>Ni>Cu,室温下噻吩的饱和吸附容量随

  12. Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry

    BEITOLLAHI, Hadi; Mohadesi, Alireza; MAHANI, Saeedeh KHALILIZADEH

    2012-01-01

    A highly sensitive method was investigated for the simultaneous determination of dopamine (DA), uric acid (UA), and tryptophan (TRP) using a multiwall carbon nanotubes/5-amino-3',4'-dimethoxy-biphenyl-2-ol modified carbon paste electrode (5ADMBCNPE). The 5ADMBCNPE displayed excellent electrochemical catalytic activities towards the oxidation of DA, UA, and TRP. The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV), which showe...

  13. Adsorption characteristics of activated carbon hollow fibers

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  14. Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode

    Qiang ZHAO; Lun Hui GUAN; Zhen Nan GU; Qian Kun ZHUANG

    2005-01-01

    Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at --0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.

  15. Behavior of phenol adsorption on thermal modified activated carbon☆

    Dengfeng Zhang; Peili Huo; Wei Liu

    2016-01-01

    Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon (AC) samples after thermal modification were prepared by using muffle furnace. The phenol ad-sorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC sam-ples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the exper-imental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach 144.93 mg·g−1 which is higher than that of the raw sample, i.e. 119.53 mg·g−1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.

  16. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.

  17. C5-Modified nucleosides exhibiting anticancer activity.

    Lee, Yoon-Suk; Park, Sun Min; Kim, Hwan Mook; Park, Song-Kyu; Lee, Kiho; Lee, Chang Woo; Kim, Byeang Hyean

    2009-08-15

    We describe (i) a simple method for the synthesis of C5-modified nucleosides from 5-iodo-2'-deoxyuridine and (ii) their activity against six types of human cancer cell lines (HCT15, MM231, NCI-H23, NUGC-3, PC-3, ACHN). We generated nitrile oxides in situ from oximes using a commercial bleaching agent; their cycloadditions with 5-ethynyl-2'-deoxyuridine yielded isoxazole derivatives possessing activity against the cancer cell lines. We synthesized several azides from benzylic bromides and their click reactions with 5-ethynyl-2'-deoxyuridine provided triazole derivatives.

  18. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland); Wittstock, Gunther, E-mail: gunther.wittstock@uni-oldenburg.d [Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Science (CIS), Department of Pure and Applied Chemistry, D-26111 Oldenburg (Germany); Opallo, Marcin, E-mail: mopallo@ichf.edu.p [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland)

    2010-08-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  19. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    Korolev Evgeniy Valer'evich

    2015-04-01

    Full Text Available Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

  20. Electrocatalytic amperometric determination of amitrole using a cobalt-phthalocyanine-modified carbon paste electrode.

    Chicharro, Manuel; Zapardiel, Antonio; Bermejo, Esperanza; Moreno, Mónica; Madrid, Elena

    2002-07-01

    Cobalt-phthalocyanine-modified carbon paste electrodes are shown to be excellent indicators for electrocatalytic amperometric measurements of triazolic herbicides such as amitrole, at low oxidation potentials (+0.40 V). The detection and determination of amitrole in flow injection analysis with a modified carbon paste electrode with Co-phthalocyanine is described. The concentrations of amitrole in 0.1 M NaOH solutions were determined using the electrocatalytic oxidation signal corresponding to the Co(II)/Co(III) redox process. A detection limit of 0.04 microg mL(-1) (4 ng amitrole) was obtained for a sample loop of 100 microL at a fixed potential of +0.55 V (vs. Ag/AgCl) in 0.1 M NaOH and a flow rate of 4.0 mL min(-1). Furthermore, the modified carbon paste electrodes offers reproducible responses in such a system, and the relative standard deviation was 3.3% using the same surface, 5.1% using different surface, and 6.9% using different pastes. The performance of the cobalt-phthalocyanine-modified carbon paste electrodes is illustrated here for the determination of amitrole in commercial formulations. The response of the electrodes is stable, with more than 80% of the initial retained activity after 50 min of continuous use.

  1. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  2. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects.

  3. MODIFIED PERIODONTAL EXPLORER FOR EXPANSION SCREW ACTIVATION

    Srinivasan

    2012-08-01

    Full Text Available INTRODUCTION: Accidents with expansion screw activation keys are r eported in the literature 1,2 . A simple method to prevent such accident is to use a modified periodontal explorer as a key for expansion screw activation. A no.17 per iodontal explorer (fig 1 is cut at its first terminal bend (fig 2. The second section is bent m ore vertically to the long axis of the shaft (fig 3. This part which is tapered and stiff enough to ac tivate the screw is tried extra orally into the screw. It is further trimmed in such a way that onl y a mm of instrument can project through the screw hole (fig 4. Now a safe key for activating t he maxillary expansion screw is ready to use (fig 5. Once the patient’s parent or guardian succes sfully repeat the activation procedure in office, the instrument can be given to them for hom e use

  4. Electrical Resistance and Magnetoresistance of Modified Carbon Nanotubes

    T.A. Len

    2014-11-01

    Full Text Available The paper presents the results of the experimental studies of the magnetoresistance and electrical resistance of carbon nanotubes modified with iron and iron oxide. A comprehensive study of the processes, which act with change in the temperature of modified CNTs, is performed. Joint analysis of the structural studies and electrical transport characteristics is enabled to explain new and interesting results. It is established that modification with iron has little effect on the electrical resistance. On the other hand, modification is strongly reflected on the ferromagnetic resistance anisotropy. It is shown that the localization mechanism and anisotropic magnetoresistance are manifested in magnetoresistance. Anisotropic magnetoresistance arises due to the features of magnetization of ferromagnetic phase in an external magnetic field.

  5. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  6. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  7. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  8. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  9. Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis

    WANG,Xiu-Li(王秀丽); KANG,Zhen-Hui(康振辉); WANG,En-Bo(王恩波); HU,Chang-Wen(胡长文)

    2002-01-01

    A kind of inorganic- organic hybrid 18-molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18O62 @4H2O) was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displayed a high electrocatalytic activity towards the reduction of nitrite,bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.

  10. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  11. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  12. Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofibers: Application to detection of Bisphenol A

    N.Achargui

    2016-12-01

    Full Text Available The electrochemical behavior of carbon paste electrode modified with carbon nanofibers has been studied using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS and scaning electron microscopy. The response of modified electrodein ferroferricyanidesolutionshows reversible behavior and significant increment in current value compared to the bare CPE indicating that CNFs act as efficient electron mediator to catalyze reactions at the surface. The modified electrode has been used to study the electrochemical response of bisphenol Ausing different electrochemical techniques such as cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry and square wave voltammetry. The oxidation peak of BPA was observed at about 0.53 V in phosphate buffer solution at pH 6.7. The oxidation peak current of BPA varied linearly with concentration over a wide range of 5µmol L-1 to 400 µmol L-1 and the detection limit of this method was found to be 0.55 µmol L-1

  13. Research on catalytic hydrolysis of carbonyl sulfide and carbon disulfide over ZrO2 modified activated carbon%氧化锆负载型活性炭催化水解COS和CS2

    刘强; 柯明; 于沛; 胡海强; 宋昭峥

    2016-01-01

    以椰壳活性炭为载体,采用浸渍法制备ZrO2负载型活性炭催化剂,利用BET,XRD,XPS等手段对催化剂进行表征,考察了ZrO2负载量、焙烧温度、相对湿度、氧含量、反应温度、气态空速等因素对催化剂催化水解COS和CS2的影响。表征结果显示,反应后生成的硫和硫酸盐沉积在活性炭上,堵塞了活性炭的微孔,毒化了活性中心,从而使水解转化率下降。实验结果表明,w(ZrO2)=5.0%、焙烧温度500℃条件下制备的催化剂,在反应温度60℃、相对湿度19%、氧含量为1.0%(φ)、气态空速5000 h-1、COS质量浓度1.6 mg/L、CS2质量浓度0.1 mg/L时具有较高的同时水解COS和CS2的活性;COS和CS2同时水解转化率最高,100%转化率分别持续630 min和570 min。%A series of coconut shell-based active carbon catalysts loaded by ZrO2 were prepared by incipient-wetness impregnation method and characterized by BET,XRD,XPS. The effects of ZrO2 contents,calcinations temperatures,reaction temperature,O2 content,relative humidity and gas GHSV were also discussed respectively.The characterization results showed that the reaction products were sulfur and sulfate ion,which accumulated on the activated carbon’s surface and had negative effects on the catalyst by poisoning the active hydroxyl groups. The experimental results showed that catalysts with 5.0%(w) ZrO2 calcined at 500℃ had superior activity for the simultaneous catalytic hydrolysis of COS and CS2. The optimal purification properties reach at reaction temperature of 60℃, oxygen content of 1.0%(φ) and relative humidity of 19%,GHSV was 5 000 h-1,the concentration of COS and CS2 were 1.6 mg/L and 0.1 mg/L,100% COS conversion and CS2conversion are observed for about 630 min and 570 min respectively.

  14. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  15. A novel palygorskite-modified carbon paste amperometric sensor for catechol determination

    Kong Yong [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China); Key Lab of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China); Chen Xiaohui; Wang Wenchang [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China); Chen Zhidong, E-mail: czd_chen@yahoo.com.cn [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China)

    2011-03-04

    A palygorskite-modified carbon paste electrode (CPE) was constructed using graphite powder mixed with palygorskite particles. Compared with the unmodified CPE, the resulting palygorskite-modified CPE remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Therefore, the palygorskite exhibits catalytic activity to catechol and significantly improves the determining sensitivity. The electrocatalytic activity of palygorskite is attributed to its high adsorption capability and the -OH groups on its surface, which plays an important role in the electron transfer between the modified CPE and the catechol in the solution. The sensor shows a linear response range between 5 and 100 {mu}M catechol with a correlation coefficient of 0.998. The detection limit was calculated as 0.57 {mu}M (s/n = 3).

  16. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  17. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  18. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  19. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    2013-02-12

    1000 mg of commercially available carbon powder (Cabot Vulcan XCR72R) was placed into the barrel and the chamber was evacuated to approximately 1 × 10−6...unmodified and N-modified Vulcan were obtained on a Philips CM200 TEM. X-ray Photoelectron Spectroscopy (XPS) analysis of the synthesized catalysts was done...durability cycles Pt-Ru/ Vulcan 73 3.3 × 10−5 24 51 10 Pt-Ru/N- Vulcan 55 2.9 × 10−5 17 60 40 Pt-Ru/C JM 5000 69 3.0 × 10−5 20 48 17 tials higher than 0.7 V

  20. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  1. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  2. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  3. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  4. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  5. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric.

    Qian, Hui; Kucernak, Anthony R; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P

    2013-07-10

    A novel multifunctional material has been designed to provide excellent mechanical properties while possessing a high electrochemical surface area suitable for electrochemical energy storage: structural carbon fiber fabrics are embedded in a continuous network of carbon aerogel (CAG) to form a coherent but porous monolith. The CAG-modification process was found to be scalable and to be compatible with a range of carbon fiber fabrics with different surface properties. The incorporation of CAG significantly increased the surface area of carbon fiber fabrics, and hence the electrochemical performance, by around 100-fold, resulting in a CAG-normalized specific electrode capacitance of around 62 F g(-1), determined by cyclic voltammetry in an aqueous electrolyte. Using an ionic liquid (IL) electrolyte, the estimated energy density increased from 0.003 to 1 Wh kg(-1), after introducing the CAG into the carbon fiber fabric. 'Proof-of-concept' multifunctional structural supercapacitor devices were fabricated using an IL-modified solid-state polymer electrolyte as a multifunctional matrix to provide both ionic transport and physical support for the primary fibers. Two CAG-impregnated carbon fabrics were sandwiched around an insulating separator to form a functioning structural electrochemical double layer capacitor composite. The CAG-modification not only improved the electrochemical surface area, but also reinforced the polymer matrix surrounding the primary fibers, leading to dramatic improvements in the matrix-dominated composite properties. Increases in in-plane shear strength and modulus, of up to 4.5-fold, were observed, demonstrating that CAG-modified structural carbon fiber fabrics have promise in both pure structural and multifunctional energy storage applications.

  6. Methane adsorption on activated carbon

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  7. Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.

    Manisankar, P; Sundari, Pl Abirama; Sasikumar, R; Palaniappan, Sp

    2008-09-15

    The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.

  8. Minimizing activated carbons production cost

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  9. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  10. Hydrogen storage: a comparison of hydrogen uptake values in carbon nanotubes and modified charcoals

    Miao, H.-Y.; Chen, G. R.; Chen, D. Y.; Lue, J. T.; Yu, M. S.

    2010-11-01

    We compared the hydrogen uptake weight percentages (wt.%) of different carbonized materials, before and after modification, for their application in hydrogen storage at room temperature. The Sievert's method [T.P. Blach, E. Mac, A. Gray, J. Alloys Compd. 446-447, 692 (2007)] was used to measure hydrogen uptake values on: (1) Taiwan bamboo charcoal (TBC), (2) white charcoal (WC), (3) single-walled carbon nanotubes (SWCNTs) bought from CBT Inc. and (4) homemade multi-walled carbon nanotubes (MWCNTs) grown on TBC. Modified samples were coated with a metal catalyst by dipping in KOH solutions of different concentrations and then activated in a high temperature oven (800 °C) under the atmospheric pressure of inert gas. The results showed that unmodified SWCNTs had superior uptake but that Taiwan bamboo charcoal, after modification, showed enhanced uptake comparable to the SWCNTs. Due to TBC's low cost and high mass production rate, they will be the key candidate for future hydrogen storage applications.

  11. Behavior of pure and modified carbon/carbon composites in atomic oxygen environment

    Xiao-chong Liu; Lai-fei Cheng; Li-tong Zhang; Xin-gang Luan; Hui Mei

    2014-01-01

    Atomic oxygen (AO) is considered the most erosive particle to spacecraft materials in low earth orbit (LEO). Carbon fiber, car-bon/carbon (C/C), and some modified C/C composites were exposed to a simulated AO environment to investigate their behaviors in LEO. Scanning electron microscopy (SEM), AO erosion rate calculation, and mechanical property testing were used to characterize the material properties. Results show that the carbon fiber and C/C specimens undergo significant degradation under the AO bombing. According to the effects of AO on C/C-SiC and CVD-SiC-coated C/C, a condensed CVD-SiC coat is a feasible approach to protect C/C composites from AO degradation.

  12. Antitumor activity of chemical modified natural compounds

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  13. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  14. Grafting of activated carbon cloths for selective adsorption

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  15. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  16. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified

  17. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications.

    Bian, Chunli; Zeng, Qingxiang; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu

    2010-08-01

    A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

  18. Activated, coal-based carbon foam

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  19. Activated, coal-based carbon foam

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  20. Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates

    Jahan-Bakhsh Raoof; Sayed Reza Hosseini; Seyedeh Zeinab Mousavi-Sani

    2015-01-01

    A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2− anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.

  1. Simulations of phenol adsorption on activated carbon and carbon black

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  2. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  3. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  4. Design of activated carbon/activated carbon asymmetric capacitors

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  5. OXIDATION AND CHARACTERIZATION OF ACTIVE CARBON AG-5

    Tatiana Goreacioc

    2015-06-01

    Full Text Available The surface chemistry of the commercial active carbon AG-5 has been modified by oxidation with concentrated nitric acid. The structural changes caused by oxidative treatment were estimated on the basis of nitrogen adsorption-desorption isotherms and thermal analysis. Boehm titration method and infrared spectral analysis have been used in order to evaluate surface chemistry characteristics of active carbon samples. After oxidation process the amount of total acidic groups on oxidized active carbon surface (AG-5ox increases by about 6 times in comparison with unmodified sample (AG-5. The concentration of the acidic groups on the oxidized active carbon surface (AG-5ox was in the following order: strong acidic >>> weak acidic > phenolic.

  6. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Wei Yang; Ruiying Luo; Zhenhua Hou

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68...

  7. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    Ghorbani-Bidkorbeh, Fatemeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of)

    2010-03-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 muL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 muM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 muM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  8. A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes

    Zhao, Weiyun; Fam, Derrick Wen Hui; Yin, Zongyou; Sun, Ting; Tan, Hui Teng; Liu, Weiling; Iing Yoong Tok, Alfred; Boey, Yin Chiang Freddy; Zhang, Hua; Hng, Huey Hoon; Yan, Qingyu

    2012-10-01

    Carbon monoxide (CO) is a highly toxic gas that can be commonly found in many places. However, it is not easily detected by human olfaction due to its colorless and odorless nature. Therefore, highly sensitive sensors need to be developed for this purpose. Carbon nanotubes (CNTs) have an immense potential in gas sensing. However, CNT-based gas sensors for sensing CO are seldom reported due to the lack of reactivity between CO and CNTs. In this work, O2 plasma modified CNT was used to fabricate a CNT gas sensor. The plasma treated CNTs showed selectively towards CO, with the capability of sensing low concentrations of CO (5 ppm) at room temperature, while the pristine CNTs showed no response. UV spectra and oxygen reduction reaction provided evidence that the difference in sensing property was due to the elimination of metallic CNTs and enhancement of the oxygen reduction property.

  9. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine

    Luque, Guillermina L.; Ferreyra, Nancy F. [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Granero, Adrian [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Departamento de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Rio Cuarto (Argentina); Bollo, Soledad [Laboratorio de Bioelectroquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, P.O. Box 233, Santiago (Chile); Rivas, Gustavo A., E-mail: grivas@fcq.unc.edu.ar [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-10-30

    This work reports the electrochemical response of the complex between dsDNA and PEI formed in solution and at the surface of glassy carbon electrodes (GCE) modified with a dispersion of multi-walled carbon nanotubes in polyethylenimine (CNT-PEI). Scanning Electron Microscopy and Scanning Electrochemical Microscopy demonstrate that the dispersion covers the whole surface of the electrode although there are areas with higher density of CNT and, consequently, with higher electrochemical reactivity. The adsorption of DNA at GCE/CNT-PEI is fast and it is mainly driven by electrostatic forces. A clear oxidation signal is obtained either for dsDNA or a heterooligonucleotide of 21 bases (oligoY) at potentials smaller than those for the oxidation at bare GCE. The comparison of the behavior of DNA before and after thermal treatment demonstrated that the electrochemical response highly depends on the 3D structure of the nucleic acid.

  10. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  11. Influence of nano-dispersive modified additive on cement activity

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  12. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  13. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes

    Yuan Zhuobin

    2003-12-01

    Full Text Available The direct electrochemistry of glucose oxidase (GOD was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs. A pair of welldefined redox peaks was obtained for GOD with the reduction peak potential at –0.465 V and a peak potential separation of 23 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that GOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide(FAD of the GOD adsorbate. The electron transfer rate of GOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Verified by spectral methods, the specific enzyme activity of GOD adsorbates at the SWNTs appears to be retained.

  14. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples.

  15. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  16. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  17. 改性活性炭-甲醇工质对吸附性能的研究%Research on Adsorption Performance of Modified Activated Carbon-Methanol Pairs

    李娜; 李成祥; 王德昌

    2015-01-01

    本文根据活性炭在吸附制冷系统中所处的环境特点,制备了多个试样,通过实验的方式表征了这些试样的 pH 值、吸附量及失重率等参数,并获得了吸附等温曲线和热重/微商热重(TG/DTG)曲线.通过数据对比可知,被大气粉尘或铜离子 Cu2+污染及高浓度酸碱的浸泡会降低活性炭-甲醇的吸附性能,低浓度酸碱浸泡会提高活性炭-甲醇的吸附性能,蒸馏水对活性炭-甲醇的吸附性能无影响.此外,经大气污染和酸碱浸泡后的活性炭热稳定性下降.%According to the environmental characteristics of the activated carbon in adsorption refrigeration system, some samples are prepared, and their characteristics, such as the pH, adsorption capacity and weight loss-rate are tested by experiments. The isotherm adsorption curves and TG-DTG (Thermal Gravity Differential thermal gravity)curves are obtained as well. The comparison of those data shows that, the adsorption performance of activated carbon-methanol will decrease after the samples are polluted by atmospheric dust or copper ions, as well as immersed in the high concentration acid or alkali solution; while the adsorption performance of activated carbon-methanol will increase after the samples are soaked in low concentration acid or alkali solution; distilled water has no effect on the adsorption performance of activated carbon-methanol. In addition, the thermal stability of the activated carbon will decline with atmospheric dust pollution and soak in acid or alkali solution.

  18. Modified carbon black materials for lithium-ion batteries

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  19. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  20. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine.

    Navaee, Aso; Salimi, Abdollah; Teymourian, Hazhir

    2012-01-15

    In the present study, the graphene nanosheets (GNSs) modified glassy carbon (GC) electrode is employed for simultaneous determination of morphine, noscapine and heroin. To the best of our knowledge this is the first report of the simultaneous determination of these three important opiate drugs based on their direct electrochemical oxidation. Field emission scanning electron microscopy (FESEM) technique is utilized in order to study the surface morphology of the modified electrode. The modified electrode shows excellent electrocatalytic activity toward oxidation of morphine, noscapine and heroin at reduced overpotentials in wide pH range. In the performed experiments, differential pulse voltammetric determination of morphine, noscapine and heroin yields calibration curves with the following characteristics; linear dynamic range up to 65, 40 and 100 μM, sensitivity of 275, 500 and 217 nA μM(-1) cm(-2), and detection limits of 0.4, 0.2 and 0.5 μM at 3S(B), respectively. Fast response time, signal stability, high sensitivity, low cost and ease of preparation method without using any specific electron-transfer mediator or specific reagent are the advantageous of the proposed sensor. The modified electrode can be used for simultaneous or individual detection of three major narcotic components, heroin, noscapine and morphine at micromolar concentration without any separation or pretreatment steps.

  1. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  2. A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor.

    Deng, Liu; Guo, Shaojun; Zhou, Ming; Liu, Ling; Liu, Chang; Dong, Shaojun

    2010-06-15

    We present here a facile and efficient route to prepare silk derived carbon mat modified with Au@Pt urchilike nanoparticles (Au@Pt NPs) and develop an Escherichia coli (E. coli)-based electrochemical sensor using this material. Silk is a natural protein fiber, and it is abundant with kinds of functionalities which are important in the development of the derived material. The S-derived carbon fiber mat have amino, pyridine and carbonyl functional groups, these natural existent functionalities allow the Au@Pt NPs to self-assemble on the carbon fiber surface and provide a biocompatible microenvironment for bacteria. The Au@Pt NPs modified S-derived carbon fiber is sensitive to detect the E. coli activities with a low detection limit, where glucose is used as a prelimiltary substrate to evaluate them. The performance of Au@Pt/carbon fiber mat based biosensor is much better than that of commercial carbon paper based biosensor. The high sensitivity of this biosensor stems from the unique electrocatalytic properties of Au@Pt urchilike NPs and quinone groups presented in S-derived carbon fiber. This biosensor is also tested for detection of organophosphate pesticides, fenamiphos. The relative inhibition of E. coli activity is linear with -log[fenamiphos] at the concentration range from 0.5mg/L to 36.6 mg/L with lowest observable effect concentration (LOEC) of 0.09 mg/L. The Au@Pt NPs modified S-derived carbon fiber mat possesses high conductivity, biocompatibility and high electrocatalytic activity and be can used as advanced electrode materials for microbial biosensor improvement. The microbial biosensor based on this material shows potential applications in environmental monitoring.

  3. Studies of activated carbon and carbon black for supercapacitor applications

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  4. Selection of pecan shell based activated carbons for removal of organic and inorganic impurities from simulated well-water

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify its surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soakin...

  5. Petrographic evaluation of xylite activated carbon

    Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania); Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania)

    2007-08-01

    Xylites are promising materials for activated carbon manufacturing due to their low rank, low inorganic content, and structural characteristics similar to the strong consistence of wood. These are similar to the classical adsorbents used for waste water purification, and available and profitable in the long term. This study has been undertaken to provide by means of petrographic data, new information on the porous structure development in chars during direct heating carbonization and physical activation. The xylite petrographic composition is very important, mainly due to the existence of structured wooden material - textinite with round and elongated cells - that influences the development of the structure and texture during carbonization and activation. The charcoal microstructure reveals some interesting aspects about the carbonization process with regard to evolution, efficiency and pore development. In the xylite activated carbon, the adsorption surface development by means of the highly porous system depends on the type of petrographical components, raw material grain size, and carbonization parameters. (author)

  6. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine

    Xiao-ping HONG; Yah ZHU; Yan-zhen ZHANG

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoⅡTAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described.This electrode showed a very attractive performance by combining the advantages of Co11TAPc,MWCNTs,and Nafion.Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode,the electrocatalytic activity of poly(CoⅡTAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential,high current responses,and good anti-fouling performance.The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L.

  7. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  8. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon

    ZHOU Ji-kui; QIN Wen-qing; NIU Yin-jian; LI Hua-xia

    2006-01-01

    The immobilization of Thiobacillus ferrooxidans on the activated carbon particles as support matrix was investigated. Cycling batch operation results in the complete oxidation of ferrous iron in 8 d when the modified 9 K medium is set to flow through the mini-bioreactor at a rate of 0.104 L/h at 25 ℃. The oxidation rate of ferrous iron with immobilized T. ferrooxidans is 9.38 g/(L·h). The results show that the immobilization of T. ferrooxidans on activated carbon can improve the rate of oxidation of ferrous iron. The SEM images show that a build-up of cells of T. ferrooxidans and iron precipitates is formed on the surface of activated carbon particles.

  9. Surface characteristics of modified carbon nanotubes and its application in lead adsorption from aqueous solution

    2003-01-01

    Carbon nanotubes (CNT) were modified by nitric acid oxidation. Infrared spectroscopy (IR) demonstrated that hydroxyl (-OH) and carbonyl (-C== O) functional groups were introduced to the surface of modified CNT. Micrometrics ASAP 2000 measurement showed that the surface area of modified CNT was slightly increased. Furthermore, the Pb2+ adsorption behavior on the surface of modified CNT has been investigated. The results indicate that the modified CNT has an exceptional adsorption capability for Pb2+ removal. The adsorption isotherms are well described by the Langmuir equation under test temperatures and the kinetics level is three.

  10. The Analysis of Activated Carbon Regeneration Technologies

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  11. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode

    Bukkitgar, Shikandar D.; Shetti, Nagaraj P., E-mail: dr.npshetti@gmail.com

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4 × 10{sup −5}–1 × 10{sup −7} M and detection limit and quantification limit were calculated to be 2.04 nM and 6.18 nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. - Highlights: • Electrochemical oxidation of 5-fluorouracil has been investigated for first time at methylene blue modified carbon paste electrode • The electrode process was irreversible and diffusion controlled • Probable electrochemical mechanism was proposed which involved two proton and two electron transfer reaction • The LOD and LOQ values were calculated to be 2.04 nM and 6.18 nM, respectively, with good selectivity and sensitivity. • Proposed method was applied to 5-Fluorouracil determination in pharmaceutical and spiked human urine samples.

  12. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  13. Desorption of toluene from modified clays using supercritical carbon dioxide

    Carneiro D. G. P.

    2004-01-01

    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  14. Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor.

    Zaib, M; Saeed, A; Hussain, I; Athar, M M; Iqbal, M

    2014-12-15

    A novel biosensor based on carbon paste electrode modified with Porphyridium cruentum biomass was developed for the determination of As(III) in contaminated water. As(III) was first biosorbed-accumulated on the electrode surface at open circuit potential and then stripped off by applying anodic scan range of -0.8 to +0.8 V using differential pulse anodic stripping voltammetric technique. The best result was obtained at pH 6.0 with 0.1M HNO3 solution as stripping medium, allowing biosorption-accumulation time of 8 min using 5% P. cruentum biomass in graphite-mineral oil paste. Linear range for As(III) detection with the modified electrode-biosensor was observed between 2.5 and 20 µg L(-1). The FTIR spectrum of P. cruentum biomass confirmed the presence of active functional groups that participate in the binding of As(III). Scanning Electron Microscopy (SEM) indulged the surface morphology of modified electrode-biosensor before and after As(III) adsorption. Similarly, Atomic Force Microscopy (AFM) showed that the average roughness of the modified electrode decreased indicating the successful incorporation of P. cruentum biomass. Efficiency of the biosensor in the presence of different interfering metal (Na(+), K(+), Ca(2+), and Mg(2+)) ions were also evaluated. The application of P. cruentum modified biosensor was successfully used for the detection of As(III) in the binary metal (Fe(3+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), and Pb(2+)) contaminated system. The accuracy of application of biosorption based biosensor for the detection of As(III) is as low as 2.5 µg L(-1).

  15. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  16. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  17. Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites.

    Zhang, Qingbo; Jiang, Dawei; Liu, Li; Huang, Yudong; Long, Jun; Wu, Guangshun; Wu, Zijian; Umar, Ahmad; Guo, Jiang; Zhang, Xi; Guo, Zhanhu

    2015-12-01

    A kind of graphene oxide (GO) modified sizing agent was used to improve the interfacial properties of carbon fibers/epoxy composites. The surface topography of carbon fibers was investigated by scanning electron microscopy (SEM). The surface compositions of carbon fibers were determined by X-ray photoelectron spectroscopy (XPS) and the interfacial properties of composites were studied by interlaminar shear strength (ILSS). The results show that the existence of GO increases the content of reactive functional groups on carbon fiber surface. Thus it enhances the interfacial properties of carbon fibers/epoxy composites. When GO loading in sizing agents is 1 wt%, the ILSS value of composite reaches to 96.2 MPa, which is increased by 27.2% while comparing with unsized carbon fiber composites. Furthermore, the ILSS of composites after aging is also increased significantly with GO modified sizing agents.

  18. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  19. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  20. Biosafety of non-surface modified carbon nanocapsules as a potential alternative to carbon nanotubes for drug delivery purposes.

    Alan C L Tang

    Full Text Available BACKGROUND: Carbon nanotubes (CNTs have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs, single-walled carbon nanotubes (SWCNTs, carbon nanocapsules (CNCs, and C ₆₀ fullerene (C ₆₀. The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.

  1. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  2. Sensitive Voltammetric Determination of Captopril Using a Carbon Paste Electrode Modified with Nano-TiO2/Ferrocene Carboxylic Acid

    Jahan Bakhsh RAOOF; Reza OJANI; Mehdi BAGHAYERI

    2011-01-01

    A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix.The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods.The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values.Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV.The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques.A calibration curve in the range of 0.03 to 2400μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3σ) under the optimized conditions.The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.

  3. Nanowire modified carbon fibers for enhanced electrical energy storage

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  4. Validity of the modified Reynolds equation for incompressible active lubrication

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2016-01-01

    The modified Reynolds equation for active lubrication has been the cornerstone around which the theoretical investigations regarding actively lubricated bearings have evolved over the years. Introduced originally in 1994, it enables to calculate in a simplified manner the bearing pressure field...... are essential for designing and operating bearings featuring the active lubrication system....

  5. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  6. Role of activated carbon on micropollutans degradation by different radiation processes

    Inmaculada Velo Gala

    2015-04-01

    Full Text Available The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent

  7. Polynuclear Nickel Hexacyanoferrate/Graphitized Mesoporous Carbon Hybrid Chemically Modified Electrode for Selective Hydrazine Detection

    Palani Barathi; Annamalai Senthil Kumar; Minnal Ranjan Babu Karthick

    2011-01-01

    A hybrid polynuclear nickel hexacyanoferrate (NiHCFe)/graphitized mesoporous carbon- (GMC-) modified glassy carbon electrode (GCE/NiHCFe@GMC) has been prepared by a sequential method using electrodeposited Ni on a GMC-modified glassy carbon electrode (GCE/Ni@GMC) as a template and [Fe(CN)6]3− as an in-situ chemical precipitant, without any additional interlinking agent. Physicochemical and electrochemical characterizations reveal the presence of NiHCFe units within the porous sites of the GM...

  8. Lightning Damage of Carbon Fiber/Epoxy Laminates with Interlayers Modified by Nickel-Coated Multi-Walled Carbon Nanotubes

    Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi

    2017-02-01

    The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.

  9. Electromagnetism and Absorptivity of the Modified Micro-coiled Chiral Carbon Fibers

    Zheng Tianliang; Wang Yuehong; Zheng Kuangyu; Li Qian; Tao Ye

    2007-01-01

    Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m2.

  10. Modified Silica Nanofibers with Antibacterial Activity

    Ivana Veverková

    2016-01-01

    Full Text Available This study is focused on development of functionalized inorganic-organic nanofibrous material with antibacterial activity for wound dressing applications. The nanofibers combining poly(vinyl alcohol and silica were produced by electrospinning from the sol and thermally stabilized. The PVA/silica nanofibers surface was functionalized by silver and copper nanoparticles to ensure antibacterial activity. It was proven that quantity of adsorbed silver and copper nanoparticles depends on process time of adsorption. According to antibacterial tests results, this novel nanofibrous material shows a big potential for wound dressing applications due to its significant antibacterial efficiency.

  11. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  12. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M.A. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2008-10-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ethanol was determined amperometrically at -0.3 V vs. SCE at pH 7.5. Electrocatalytic effects of MWCNT were observed with respect to unmodified carbon film electrodes. The sensitivity obtained was 20 times higher at carbon film/MWCNT-based biosensors than without MWCNT. (author)

  13. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  14. The Kolb Model Modified for Classroom Activities.

    Svinicki, Marilla D.; Dixon, Nancy M.

    1987-01-01

    The experiential learning model of Kolb provides a framework for examining the selection of a broader range of classroom activities than is in current use. Experiential learning cycle, experiential learning as instructional design, and student as actor versus student as receiver are discussed. (MLW)

  15. Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

    Liu, Wei; Wu, Liang; Zhang, Xiaohua; Chen, Jinhua [Hunan Univ., Changsha (China)

    2014-01-15

    The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 μM, 0.7-440 μM and 3.0-365 μM, respectively, and the detection limits (S/N = 3) are 0.03 μM, 0.11 μM and 0.38 μM, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

  16. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  17. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    Mohammadzadeh Safoora; Fouladgar Masoud

    2013-01-01

    A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE) was prepared to study the electrocatalytic activity of dopamine (DP) in the presence of homocysteine (HCy) and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1), and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46), and rate constant (kh = 7.44×102 dm3 mol-1 s-1) were also determined using electroch...

  18. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Koh Sing Ngai; Wee Tee Tan; Zulkarnain Zainal; Ruzniza Mohd Zawawi; Joon Ching Juan

    2015-01-01

    A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni) nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE) surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE w...

  19. Formation of TiO2 Modified Film on Carbon Steel

    Laizhou SONG; Shizhe SONG; Zhiming GAO

    2004-01-01

    A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min,dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.

  20. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  1. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    Zhongfu Zhao and Jan Gou

    2009-01-01

    Full Text Available Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS. Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  2. APPLICATION OF IMPREGNATED ALMOND SHELL ACTIVATED CARBON BY ZINC AND ZINC SULFATE FOR NITRATE REMOVAL FROM WATER

    A. Rezaee, H. Godini, S. Dehestani, A. Khavanin

    2008-04-01

    Full Text Available In this study impregnated almond shell activated carbon by Zn° and ZnSO4 were used as adsorbent with a particle size of 10-20 mesh. The objective of this research was to determine the ability of impregnated activated carbon in nitrate removal. The modified activated carbon had 1mm effective size, with a uniformity coefficient of 1.18. Potassium nitrate solution was used in batch adsorption experiments for nitrate removal from water. The effects of nitrate concentration, activated carbon dosage and time of contact were studied. Experimental data showed that modified activated carbon by Zn° and ZnSO4 was more effective than virgin almond activated carbon for nitrate removal. The maximum nitrate removal was 64%-80% and 5%-42% for modified activated carbon and virgin activated carbon, respectively. While virgin activated carbon used, nitrate-N decreased from 20 to 15mg/L in 30min reaction. The final nitrate concentration was not in the standard range of WHO recommendations for water quality; while impregnated activated carbons were used, nitrate drcreased to <10mg/L. Maximum removal was over 16-17mg nitrate-N per 1g activated carbon for impregnated activated carbon. The experiments were conducted at pH=6.2, 20ºC and initial concentrations of 20mg/L nitrate-N. Increase in modified activated carbon dosage increased the nitrate removal efficiency. The equilibrium time was found to be 45min for modified activated carbon.

  3. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Gui-Ying Jin; Hui Li; Wan-Bang Xu

    2012-01-01

    Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3) was 2.0 ×10^9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8 102.5%. The proposed method is simple, cheap and highly efficient.

  4. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

    Amare, Meareg; Admassie, Shimelis

    2012-05-15

    4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.

  5. MODIFIED SCREEN-PRINTED CARBON ELECTRODES WITH TYROSINASE FOR DETERMINATION OF PHENOLIC COMPOUNDS IN SMOKED FOOD

    V. Dragancea

    2010-12-01

    Full Text Available A screen-printed carbon electrode modified with tyrosinase (SPCE-Tyr/Paa/Glut has been developed for the determination of phenol concentration in real samples. The resulting SPCE-Tyr/Paa/Glut was prepared in a one-step procedure, and was then optimized as an amperometric biosensor operating at 0 mV versus Ag/AgCl for phenol determination in flow injection mode. Phenol detection was realized by electrochemical reduction of quinone produced by tyrosinase activity. The possibility of using the developed biosensor to determine phenol concentrations in various smoked products (bacon, ham, chicken and salmon was also evaluated. Gas chromatography (GC method was used for result validation obtained in flow injection mode using amperometric biosensor. The result showed good correlation with those obtained by flowinjection analysis (FIA.

  6. The Transport Properties of Activated Carbon Fibers

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  7. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  8. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  9. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  10. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  11. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  12. Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance

    ZHOU Jie; YANG Yong-rong; REN Xiao-hong; STAPF Siegfried

    2006-01-01

    Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.

  13. Granular Activated Carbon Performance Capability and Availability.

    1983-06-01

    Kinetics of Activated Carbon Adsorption Journal of Water Polution 47(4) Aoril 1975 Control Federation 4-t9 Wnitna) G Aoalied Polarography for...proposed models for kinetics of adsorption of pink water organics by activated carbon. Both models are basically similar in nature and propose that...include formulation of a complete model of the pink water system based upon existing data. This model would then serve to reduce the amount of

  14. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  15. Strain-modified RKKY interaction in carbon nanotubes

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  16. Surface characteristics of carbon fibers modified by direct oxyfluorination.

    Seo, Min-Kang; Park, Soo-Jin

    2009-02-01

    The effect of oxyfluorinated conditions on the surface characteristics of carbon fibers was investigated. Infrared (IR) spectroscopy results indicated that the oxyfluorinated carbon fibers showed carboxyl/ester groups (CO) at 1632 cm(-1) and hydroxyl groups (OH) at 3450 cm(-1) and had a higher OH peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results for the fibers also showed that oxyfluorination introduced a much higher oxygen concentration onto the fiber surfaces than fluorination with F(2) only. Additionally, contact-angle results showed that the surface was better wetted by following oxyfluorination and that the polarity of the surface was increased by increasing the oxyfluorination temperature.

  17. Surface characterization of silver and palladium modified glassy carbon

    Aleksandra A Perić-Grujić; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2007-12-01

    In this work, the influence of silver and palladium on the surface of undoped, boron doped and phosphorus doped glassy carbon has been studied. The silver and palladium concentrations in solution, after metal deposition, were measured by atomic absorption spectrophotometer. The morphology of metal coatings was characterized by scanning electron microscopy. In order to investigate the nature and thermal stability of surface oxygen groups, temperature-programmed desorption method combined with mass spectrometric analyses, was performed. The results obtained have shown that silver and palladium spontaneously deposit from their salt solutions at the surface of glassy carbon samples. Silver deposits have dendrite structure, whilst palladium forms separate clusters. The highest amount of both silver and palladium deposits at the surface of sample containing the highest quantity of surface oxide complexes. It has been concluded that carboxyl groups and structure defects are responsible for metal reduction. Calculated desorption energies have shown that the surface modification by metal deposition leads to the formation of more stable surface of undoped and doped glassy carbon samples.

  18. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  19. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  20. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode

    Ali Taherkhani; Hassan Karimi-Maleh; Ali A.Ensafi; Hadi Beitollahi; Ahmad Hosseini; Mohammad A.Khalilzadeh; Hassan Bagheri

    2012-01-01

    A carbon paste electrode (CPE) chemically modified with multiwall carbon nanotubes and ferrocene (FC) was used as a selective electrochemical sensor for the simultaneous determination of trace amounts of cysteamine (CA) and folic acid (FA).This modified electrode showed very efficient electrocatalytic activity for the anodic oxidation of CA.The peak current of differential pulse voltammograms of CA and FA increased linearly with their concentration in the ranges of 0.7-200 μmol/L CA and 5.0-700 μmol/L FA.The detection limits for CA and FA were 0.3 μmol/L and 2.0 μ mol/L,respectively.The diffusion coefficient (D) and transfer coefficient (α) of CA were also determined.These conditions are sufficient to allow determination of CA and FA both individually and simultaneously.

  1. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode.

    Zhang, Lei; Tian, Dan-Bi; Zhu, Jun-Jie

    2008-11-01

    TiO(2) nanoparticles were homogeneously coated on multiwalled carbon nanotubes (MWCNTs) by hydrothermal deposition, and this nanocomposite might be a promising material for myoglobin (Mb) immobilization in view of its high biocompatibility and large surface. The glassy carbon (GC) electrode modified with Mb-TiO(2)/MWCNTs films exhibited a pair of well-defined, stable and nearly reversible cycle voltammetric peaks. The formal potential of Mb in TiO(2)/MWCNTs film was linearly varied in the range of pH 3-10 with a slope of 48.65 mV/pH, indicating that the electron transfer was accompanied by single proton transportation. The electron transfer between Mb and electrode surface, k(s) of 3.08 s(-1), was greatly facilitated in the TiO(2)/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were also studied, and the apparent Michaelis-Menten constant is calculated to be 83.10 microM, which shows a large catalytic activity of Mb in the TiO(2)/MWCNTs film to H(2)O(2). The modified GC electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant Mb-TiO(2)/MWCNTs modified glassy carbon electrode exhibited fast amperometric response to hydrogen peroxide reduction, long term life and excellent stability. Finally the activity of the sensor for nitric oxide reduction was also investigated.

  2. Nanospace engineering of KOH activated carbon.

    Romanos, J; Beckner, M; Rash, T; Firlej, L; Kuchta, B; Yu, P; Suppes, G; Wexler, C; Pfeifer, P

    2012-01-13

    This paper demonstrates that nanospace engineering of KOH activated carbon is possible by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. High specific surface areas, porosities, sub-nanometer (activation temperature. The process typically leads to a bimodal pore size distribution, with a large, approximately constant number of sub-nanometer pores and a variable number of supra-nanometer pores. We show how to control the number of supra-nanometer pores in a manner not achieved previously by chemical activation. The chemical mechanism underlying this control is studied by following the evolution of elemental composition, specific surface area, porosity, and pore size distribution during KOH activation and preceding H(3)PO(4) activation. The oxygen, nitrogen, and hydrogen contents decrease during successive activation steps, creating a nanoporous carbon network with a porosity and surface area controllable for various applications, including gas storage. The formation of tunable sub-nanometer and supra-nanometer pores is validated by sub-critical nitrogen adsorption. Surface functional groups of KOH activated carbon are studied by microscopic infrared spectroscopy.

  3. 聚吡咯修饰活性炭电极的电容去离子应用研究%Application of polypyrrole modified activated carbon electrode to capacitive deionization

    徐克; 肖书彬; 阮国岭

    2012-01-01

    The polypyrrole/activated carbon(Ppy/AC) composite electrode has been fabricated by chemical oxidative polymerization. And the mass ratio of pyrrole(py) and AC has also been investigated to improve the capacitive deionization performance of composite electrodes. The experimental results show that Ppy could significantly improve the specific capacitance of composite electrodes. But the enlargement of active material loading would make the specific capacitance of composite electrodes decrease obviously, despite the increase of capacitance in this process. At the optimal mass ratio of pyrrole and AC (0.4: 1) ,the composite electrodes show relatively higher capacitance and specific capacitance, which could efficiently improve the capacitive deionization performance of composite electrodes.%采用化学氧化法制备了聚吡咯(PPy)/活性炭(AC)复合电极,并通过在制备过程中优化吡咯(py)与AC的质量比,提升复合电极的电容去离子性能.实验结果显示,PPy可有效提升复合电极的比电容,但在活性材料负载量增大时,电极充放电电容快速增大的同时,比电容明显下降;当m(py):m(AC)=0.4:1时,复合电极在高活性物质负载量下仍然显示出较高的充放电电容和比电容,有效提升了复合电极的电容去离子性能.

  4. Antimicrobial Activity of Carbon-Based Nanoparticles

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  5. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  6. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran)

    2008-08-15

    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of {beta}/{beta} crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 x 10{sup -6} cm{sup 2} s{sup -1} in agreement with the values obtained from CV measurements. (author)

  7. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  8. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  9. Influence of amount of graphite and modifying agent on the properties of periclase-carbon refractories

    Борисенко, Оксана Миколаївна

    2016-01-01

    One of the main components of periclase-carbon materials is graphite, which provides high thermal conductivity and slag resistance of refractories. However, at temperatures of 600 °C it begins to oxidize. To prevent oxidation it is proposed to modify the sol-gel graphite by composition based on nickel salts for further formation of NiO coating on its surface, which will provide additional protection. An influence of graphite amount and its modifier agent on physical and mechanical properties ...

  10. A Multiwall Carbon Nanotube-chitosan Modified Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid

    Ling Yan JIANG; Chuan Yin LIU; Li Ping JIANG; Guang Han LU

    2005-01-01

    A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peak by 212 mY. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine can be determined selectively with the carbon nanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity and stability.keywords: Nanotube-chitosan modified electrode, dopamine, ascorbic acid.

  11. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor

    Hiroaki Matsuura; Yosuke Yamawaki; Kosuke Sasaki; Shunichi Uchiyama

    2013-01-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes.First,the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution,and next,this electrode was electroreduced in sulfuric acid.The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE.A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen.The typical current vs.time curve was obtained by the repetitive measurement of the dissolved hydrogen.These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca.10sec).A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration.This indicates that the developed coulometfic method can be used for the determination of the dissolved hydrogen concentration.

  12. Carbonate sediment dynamics and compartmentalisation of a highly modified coast: Geraldton, Western Australia

    Tecchiato, Sira; Collins, Lindsay; Stevens, Alexandra; Soldati, Michela; Pevzner, Roman

    2016-02-01

    The coastal zone off Geraldton in temperate Midwestern Australia was investigated to identify sediment dynamics and sediment budget components of two main embayments. An integrated analysis of hydrodynamics, geomorphology, sediments and habitat data was required to overcome a lack of previous examinations of sediment dynamics in the region. The seaward extent of the nearshore transport system was assessed. An improved understanding of coastal sediment dynamics and its relationship to coastal stability and assets was also achieved. The system is complex, with biogenic sediment input, as well as carbonate dune and river-derived sediments. Coastal erosion at Geraldton is mitigated by nourishment activities which require sand bypassing. Natural and artificial sediment sinks were identified, and are mainly located in the northern embayment where beach erosion is more significant. A dredged shipping channel needed to provide access to port facilities modifies the local sediment dynamics. This study provides new information for managing the Geraldton coast, which may be applicable to similar regions of Western Australia and carbonate coasts elsewhere.

  13. Linear polymer separation using carbon-nanotube-modified centrifugal filter units.

    Krawczyk, Tomasz; Marian, Karolina; Pawlyta, Mirosława

    2016-02-01

    The separation of linear polymers such as polysaccharides and polyethylene glycol was performed with modified commercial centrifugal filter units. The deposition of a 0.16-0.35 μm layer of modified carbon nanotubes prevented permeation of linear polymers of molecular weight higher than 20 000 Da through the membrane. It allowed facile purification of solution of 0.1 g of polymer samples from small molecules within 25 min by using a bench-top centrifuge. The structure of modified carbon nanotubes was optimized in order to achieve good adhesion to the low binding regenerated cellulose surface and low solubility in aqueous solutions after deposition. The best modification of carbon nanotubes was oxidation and subsequent amide formation of diethanolamine. Introduction of acetic acid groups using sodium chloroacetate worked equally well. The modified filter could be used multiple times without the decrease of the efficiency. The carbon nanotubes layer was stable in aqueous solutions in a pH range of 1-7. The proposed method provides a convenient way of purification of modified polymers in research areas such as drug delivery or macromolecular probes synthesis.

  14. Industrial testing of property-modified prebaked carbon anode for aluminum electrolysis

    肖劲; 丁凤其; 李劼; 邹忠; 胡国荣; 刘业翔

    2003-01-01

    Aiming at reducing energy and carbon consumption and enhancing current efficiency of aluminum electrolysis, a batch of property-modified prebaked carbon anodes prepared in industrial production were applied to 160 kA prebaked anode aluminum electrolysis cells in a domestic aluminum company. The industrial statistical data show that, the property-modified anodes can averagely reduce carbon consumption 11.6 kg per ton aluminum and energy consumption 106.1 kW*h, further more, enhance current efficiency 0.72%. The industrial testing results prove that this kind of new type of prebaked anodes has remarkable effect of saving energy, reducing carbon consumption and enhancing current efficiency of aluminum electrolysis.

  15. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Chuanxiang Zhang; Haijun Tao; Yuming Dai; Xiancong He; Kejie Zhang

    2014-01-01

    Se-modified ruthenium supporting on carbon (Sex–Ru/C) electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG) in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS) presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR) performance was improved by appearance of selenium oxides.

  16. Antimony trifluoride-modified carbon paste electrode for electrochemical stripping analysis of selected heavy metals

    Stočes, Matěj; Hočevar, Samo B.; Švancara, Ivan

    2011-01-01

    In this article, a new typ of non-mercury metal-based electrode, antimony trifluoridebulk- modified carbon paste electrode (SbF3-CPE) is for the first time reported and examined for electrochemical stripping analysis of selected heavy metal ions at their trace concentration level. In the role of bulk modifier and a source of antimony film generated in state nascenti, SbF3 in a content of 3% (w/w) in the carbon paste mixture was the ultimate choice. All important experimental parameters hav...

  17. Activated coconut shell charcoal carbon using chemical-physical activation

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  18. Production and characterization of granular activated carbon from activated sludge

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  19. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Yunzhou Shi; Biao Wang

    2014-01-01

    Carbon fiber (CF)/cellulose (CLS) composite papers were prepared by papermaking techniques and hot-melting fibers were used for modification. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show ...

  20. Electroanalysis of cationic species at membrane-carbon electrodes modified by polysaccharides. Bioaccumulation at microorganism-modified electrodes.

    Lojou, E; Bianco, P

    2000-05-01

    Membrane-carbon electrodes modified with polysaccharides suspensions entrapped between a dialysis membrane and the carbon surface were used for electroanalysis of various cationic species. Cationic complexes of ruthenium and cobalt, metallic cations (Cu(2+), Fe(3+), UO(2)(2+)) as well as methylviologen were considered. By investigating various parameters (concentration of the suspension, pH) binding of the cations by the polysaccharides was demonstrated. Comparison of cations uptake by different kinds of polysaccharides such as alginic acid, polygalacturonic acid, pectin, dextran and agar was performed. This study has been extended to natural biomaterials, alga and lichen, which are known to contain polysaccharides. The interest of the membrane-electrode strategy is described.

  1. Electrochemical performance of coal-based activated carbon electrodes modified by copper nitrate for supercapacitor%硝酸铜改性超级电容器用煤基活性炭电极材料的电化学性能

    马亚芬; 谌伦建; 邢宝林; 徐冰; 黄光许; 张传祥

    2012-01-01

    Coal-based activated carbon(AC) was prepared from Indonesia lignite by KOH as activator. In order to improve electrochemical properties of AC, the AC was modified by means of soaking in copper nitrate solution and subsequent pyrolysis. The specific surface area and pore distribution of activated carbons before and after modification were studied by nitrogen adsorption at 77 K, the crystallite structure and surface morphology of activated carbons were characterized by SEM and XRD. Moreover, the wettability and electrochemical performance of activated carbon electrodes were researched by contact angle and constant current charge-discharge, cyclic voltammograms, alternating current impedance, respectively. The results indicate that the portion pores of modified AC , especially the micropores, are blocked by the oxides produced from the Cu ( NO3 ) 2 decomposition, the specific surface and total pore volume decrease, the rate of mesopores increases. Meanwhile, the oxides loaded on AC by copper nitrate modification not only improves the wettability of AC to electrolyte, but also produces an obvious pseudo-capacitance effect, the specific capacitance of modified AC can be enhanced. Based on this study, the optimum concentration of Cu( NO3 )2 solution was 2% ,the specific capacitance of modified AC electrode can be reached up to 322 F/g, and the electrochemical performance can be improved.%以印尼褐煤为原料、KOH活化法制备的煤基活性炭,采用硝酸铜溶液浸渍-高温热解法对其进行改性处理,低温N2吸附法对改性前后活性炭的孔结构进行表征,SEM和XRD对改性前后活性炭的表面形态和微晶结构进行表征,并测定KOH对活性炭的润湿性及活性炭电极的恒流充放电、循环伏安、交流阻抗等电化学性能.结果表明:硝酸铜改性可能使部分孔隙(尤其是微孔堵塞)的比表面积和孔容积降低,但中孔率有所提高;硝酸铜改性可以提高KOH溶液对活性炭的润湿性,在

  2. Preparation and characterization of activated carbon fiber material modified by CuO%活性炭纤维负载CuO改性及其性能表征

    李海红; 薛慧; 杨清

    2016-01-01

    CuO/ACF electrode materials were prepared using activated carbon fiber (ACF) felt with HCl pretreatment as raw materials, which were loaded with copper oxide (CuO) by impregnation-burning method with Cu(NO3)2solution as the precursor. Physical and chemical properties of the ACF before and after loaded CuO samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area and pore size analysis, and fourier transform infrared spectroscopy (FTIR); the changes of electrochemical performance of the samples were analyzed by using electrochemical workstation. The results show that CuO/ACF electrode materials are successfully prepared. Specific surface area and total pore volume of CuO/ACF decrease by 31.94% and 33.95%, respectively. The surface oxygen groups increase, with obvious Cu—O bonds after loading with the metal oxides. The mass fraction of Cu in CuO/ACF is 13.7%; and the specific capacitance has an increase of 17.95% in comparison with original ACF after loading with CuO. CuO/ACF materials can be used as an electrode material for the removal of the inorganic ions in wastewater.%以Cu(NO3)2溶液作为前躯体,采用浸渍–煅烧法对盐酸预处理后的活性炭纤维(activated carbon fiber,ACF)毡进行负载氧化铜化学改性,制备CuO/ACF电极材料。通过扫描电镜(SEM)、X射线光电子能谱仪(XPS)、比表面积及孔径分析仪以及傅立叶变换红外光谱仪(FTIR)对ACF及其负载CuO后的形貌与结构、元素组成、比表面积、孔径等进行观察与分析,并利用电化学工作站测试其电化学性能。结果表明:经过负载 CuO 化学改性的CuO/ACF 电极材料,比表面积及孔容较改性前分别下降31.94%和33.95%,表面含氧基团增多,出现明显的 Cu—O键,CuO/ACF电极材料中Cu元素的质量分数为13.7%;负载CuO后比电容升高17.95%,电吸附性能提高。CuO/ACF材料可作为电极材料用于去

  3. Industrial preparation and performance testing of property-modified prebaked carbon anodes for aluminum electrolysis

    肖劲; 李劼; 邹忠; 胡国荣; 赖延清; 刘业翔

    2003-01-01

    On the base of filtering composite additives in laboratory, the industrial property-modified prebaked car-bon anodes containing composite additives were prepared in factory. The performance tests show that this kind ofanodes not only have the same excellent physical performance as common (contrasting) ones used in aluminum elec-trolysis production at the present time, but also have better chemical and electrochemical performance than that ofthe common ones. Furthermore, the industrial preparation of the property-modified prebaked anode lays the founda-tion of electrolysis test. It can be forecasted that property-modified anodes will have good behavior in aluminum elec-trolysis production.

  4. Biodegradable chelant EDDS([ S,S]-ethylenediamine disuccinic acid) modified vermiculite and activated carbon and their adsorption performance for Fe(Ⅱ)%生物可降解络合剂[ S,S]-乙二胺二琥珀酸改性蛭石和活性炭及其对Fe(Ⅱ)的吸附性能

    史海波; 祝建中; 陈胜鲁; 吉栋梁; 曹阳; 陈冠寰

    2014-01-01

    In this paper, activated carbon and vermiculite were used to adsorb Fe (Ⅱ) ions, to form a heterogeneous Fenton reaction system with H2 O2 . Modified vermiculite and activated carbon were prepared by coating chelating agent EDDS onto their surface with the simple physical methods like heating, boiling, drying. In the study, the influence of pH, temperature, initial concentration and reaction time on the adsorption performance of the material for Fe(Ⅱ) were investigated. The results showed that EDDS improved Fe(Ⅱ) ion adsorption capacity of both activated carbon and vermiculite. And pH, temperature and the initial Fe(Ⅱ) concentration had a great influence on the adsorption capacity. Adsorption isotherm fitting results showed that adsorption behavior of the Fe(Ⅱ) ion on the modified activated carbon and vermiculite materials conformed to the Langmuir adsorption. The adsorption capacity was improved with a large adsorption coefficient, attributing to the strong complexing action of the metal ions with EDDS modified onto the surface of the activated carbon and vermiculite.%提出将Fe(Ⅱ)离子吸附络合稳定于活性炭、蛭石表面,再与H2 O2组成新的非均相Fenton反应体系,通过加热、煮沸、干燥等简单的物理方法成功地将螯合剂EDDS([S,S]-乙二胺二琥珀酸)修饰到蛭石和活性炭表面,对蛭石和活性炭进行改性。主要研究了包括pH、温度、初始浓度、反应时间对材料吸附性能的影响。研究表明,在相同条件下EDDS改性可以提高活性炭和蛭石对Fe(Ⅱ)离子的吸附容量,溶液pH、温度、初始浓度对吸附有较大影响。吸附等温线的拟合结果表明,Fe(Ⅱ)离子在 EDDS 修饰的活性炭和蛭石上吸附行为符合Langmuir 吸附,其饱和吸附量都有所提高,且具有较大的吸附系数,这是由于修饰在活性炭和蛭石表面的EDDS 和金属离子形成强烈的络合作用所致。

  5. Design of Dendrimer Modified Carbon Nanotubes for Gene Delivery

    PAN Bi-feng; BAO Chen-chen; GAO Feng; HE Rong; SHU Meng-jun; MA Yong-jie; CUI Da-xiang; XU Ping; CHEN Hao; LIU Feng-tao; LI Qing; HUANG Tuo; YOU Xiao-gang; SHAO Jun

    2007-01-01

    Objective: To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Methods: Antisense survivin oligonucleotide was anchored onto polyamidoamine dendrimer grafted carbon nanotubes to form dendrimer-CNT-asODN complex and the complex was characterized by Zeta potential, AFM, TEM, and 1% agarose gel electrophoresis analysis. Dendrimer-CNT-asODN complexes were added into the medium and incubated with MCF-7 cells. MTT method was used to detect the effects of asODN and dendrimer-CNT-asODN on the growth of MCF-7 cells. TEM was used to observe the distribution of dendrimer-CNT-asODN complex within MCF-7 cells. Results: Successful synthesis of dendrimer-CNT-asODN complexes was proved by TEM, AFM and agarose gel electrophoresis. TEM showed that the complexes were located in the cytoplasm, endosome, and lysosome within MCF-7 cells. When dendrimer-CNT-asODN (1.0 μmol/L) and asODN (1.0 μmol/L) were used for 120 h incubation, the inhibitory rates of MCF-7 cells were (28.22±3.5)% for dendrimer-CNT-asODN complex group, (9.23±0.56)% for only asODN group, and (3.44±0.25)% for dendrimer-CNT group. Dendrimer-CNT-asODN complex at 3.0 μmol/L inhibited MCF-7 cells by (30.30±10.62)%, and the inhibitory effects were in a time- and concentration- dependent manner. Conclusion: Dendrimer-CNT nanoparticles may serve as a gene delivery vector with high efficiency, which can bring foreign gene into cancer cells, inhibiting cancer cell proliferation and markedly enhancing the cancer therapy effects.

  6. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

    Nader Sheibani

    2013-07-01

    Full Text Available Direct electron transfer of hemoglobin (Hb was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs and gold nanoparticles (AuNPs nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis, transmission electron microscopy (TEM and Fourier transform infrared (FTIR methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.

  7. Transition metal-modified polyoxometalates supported on carbon as catalyst in 2-(methylthio)-benzothiazole sulfoxidation

    Romina A Frenzel; Gustavo P Romanelli; Mirta N Blanco; Luis R Piz

    2015-01-01

    Polyoxometalates with lacunary Keggin structure modified with transition metal ions [PW11O39M(H2O)]5−, where M = Ni2+, Co2+, Cu2+ or Zn2+, were synthesized and supported on activated carbon to obtain the PW11MC catalysts. Using FT-IR and DTA-TGA it was concluded that the [PW11O39M(H2O)]5− species are interacting with the functional groups of the support, and that thermal treatment leads to the loss of the coordinatively bonded water molecules without any noticeable anion degradation. The activity and selectivity of the catalysts in the sulfoxidation reaction of 2-(methylthio)-benzothiazole, an emerging environmental pollutant, were evaluated. The reaction was carried out in acetonitrile as solvent using H2O2 35% p/v as a clean oxidant. The conversion values decreased in the following order: PW11NiC > PW11CuC > PW11CoC > PW11ZnC, with selectivity to sulfoxide higher than 69%. The catalyst could be reused without appreciable loss of the catalytic activity at least three times. The materials were found to be efficient and recyclable catalysts for 2-(methylthio)-benzothiazole sulfoxidation in order to obtain a more biodegradable product than the corresponding substrate.

  8. Converting Poultry Litter into Activated Carbon

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  9. New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride

    Nawal Ahmad Alarfaj

    2016-12-01

    Full Text Available The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ. This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA to form dorzolamide-phosphotungstate (DRZ-PT as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE. The fabricated conventional carbon paste sensor (sensor I, as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II and carbon nanotubes (sensor III, have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade−1 over concentration ranges of 1.0 × 10−5–1.0 × 10−2, 1.0 × 10−6–1.0 × 10−2, and 5.0 × 10−8–1.0 × 10−2 mol·L−1 with lower detection limits of 5.0 × 10−6, 5.0 × 10−7, and 2.5 × 10−9 mol·L−1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods.

  10. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision.

  11. Novel estradiol sensors based on carbon nanotube multilayer modified gold hair microelectrodes

    Jun Hui Xu; Cheng Guo Hu; Sheng Shui Hu

    2009-01-01

    Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-by-layer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0×10~(-8) mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.

  12. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material, m

  13. Complement activation promotes muscle inflammation during modified muscle use

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  14. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  15. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  16. A novel activated carbon for supercapacitors

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  17. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine.

    Li, Yonghong; Liu, Xinsheng; Liu, Xiaoying; Mai, Nannan; Li, Yuandong; Wei, Wanzhi; Cai, Qingyun

    2011-11-01

    A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).

  18. Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes

    SHI Qiao-cui; ZENG Wen-fang; ZHU Yunu

    2009-01-01

    Platinum-decorated carbon nanotubes (CNT-Pt) were produced by the chemical reduction method. A novel modified electrode was fabricated by intercalated CNT-Pt in the surface of waxed graphite, which provided excellent electro-catalytic activity and selectivity for both oxidation and reduction of hydrogen peroxide. The current response of the modified electrode for hydrogen peroxide was very rapid and the detection limits in amperometry are 2.5×10-6 mol/L at reduction potential and 4.8×10-6 mol/L at oxidation potential. It was desmonstrated that the electrode with high electro-activity was a suitable basic electrode for preparing enzyme electrode.

  19. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  20. Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes

    João Restivo; Raquel P. Rocha; Adrián M. T. Silva; José J. M. Órfão; Manuel F. R. Pereira; José L. Figueiredo

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in or-der to incorporate different heteroatoms on the surface. O-, S-and N-containing groups were suc-cessfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation pro-cesses:catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.

  1. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  2. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  3. Enhanced Effect of O/N Groups on the Hg0 Removal Efficiency over the HNO3-Modified Activated Carbon%硝酸改性活性炭上氧/氮官能团对脱汞性能的促进作用

    佟莉; 徐文青; 亓昊; 周璇; 刘瑞辉; 朱廷钰

    2015-01-01

    HNO3-modified activated carbon (AC) was prepared to determine its mercury removal ability on a fixed-bed reactor. In this study, the HNO3-modified AC was found to be effective for mercury removal in simulated flue gas. The original sample, the HNO3-modified sample and the production sample were characterized by elemental analysis, Brunauer-Emmett-Tel er (BET) specific surface area measurements, scanning electron microscopy (SEM), Raman spectra, Boehm titrations, temperature programmed desorption (TPD) technique, and X-ray photoelectron spectroscopy (XPS). The results show that HNO3 treatment increases the content of oxygen and nitrogen on the AC. Compared with the physical characteristics of HNO3-modified AC, the effects of its chemical characteristics on mercury removal are more significant. The Hg0 is mainly oxidized to HgO by the HNO3-modified AC. The oxygen functional groups, possibly carbonyls, esters or anhydrides were found to be the adsorption sites for mercury removal, and these groups were reduced to hydroxyl groups or ether groups. The N-functional groups, possibly pyrrolic tautomers, were found to be the active catalytic sites. The mechanism for Hg0 removal by HNO3-modified activated carbon is proposed based on the characterization results.%采用硝酸氧化手段对活性炭进行了表面处理,并在固定床反应器上测试了其脱除单质汞的性能。研究表明,在模拟烟气中硝酸改性活性炭能有效脱除单质汞。采用元素分析、Brunauer-Emmett-Tel er (BET)比表面积、扫描电子显微镜(SEM)、拉曼(Raman)光谱、Boehm滴定、程序升温脱附(TPD)和X射线光电子能谱(XPS)等手段研究了活性炭表面官能团对其脱汞性能的影响。结果表明:硝酸氧化处理能同时增加活性炭表面含氧官能团和含氮官能团的含量。与改性活性炭的物理性质相比,其化学性质对脱汞性能的影响更大,单质汞主要被改性活性炭氧化为HgO而去除。在脱汞

  4. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    Tuzovskaya, I.; Pacheco Benito, S.; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, L.; Meer, van der T.H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  5. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria.

    Wang, Yazhen; Li, Qing; Hu, Shengshui

    2005-02-01

    A novel chemically modified electrode based on the multiwall carbon nanotubes (MWNTs) film-coated carbon fiber ultramicroelectrode (CFUE) has been described for the determination of nitric oxide radical (.NO). The electrochemical behaviors of MWNTs-modified CFUE have been characterized in 0.2 mmol L(-1) K(4)Fe(CN)(6) and 0.1 mol L(-1) KCl solution. The Nafion film was used to avoid some electroactive interferences. The amount of Nafion was optimized, and some possible interferents [such as nitrite (NO(2)(-)), nitrate (NO(3)(-)), ascorbate, dopamine (DA), l-arginine (l-Arg), etc.] were tested and evaluated. The oxidation peak current of .NO increases significantly at the MWNT/Nafion-modified CFUE, in contrast to that at the bare and the Nafion-modified CFUE, and the oxidation peak potential is at 0.78 V (vs. SCE), which can be used for the detection of .NO. The oxidation peak current is linearly with the concentration of .NO from 2x10(-7) to 8.6x10(-5) mol L(-1), and the detection limit is 2x10(-8) mol L(-1). The liver mitochondria in Carassius auratus were isolated and .NO release from mitochondria was monitored by using this ultramicroelectrode system.

  6. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  7. The Deposition of Gold Nanoparticles Onto Activated Carbon

    Jaworski W.

    2014-10-01

    Full Text Available This work reports the results of spectrophotometric, dynamic light scattering (DLS and microscopic (SEM studies of the gold nanoparticles (AuNPs deposition on activated carbon (AC surface modified with primary (ethanolamine and secondary (diethylenetriamine and triethylenetetramine amines. It was found that this method is efficient for deposition of AuNPs from aqueous solution. However, nanoparticles change their morphology depending on the kind of amine used in experiments. On the AC surface modified with ethanolamine, the uniform spherical AuNPs were formed. In case of diethylenetriamine and triethylenetetramine application, the agglomerates of AuNPs are present. The diameter of individual AuNPs did not exceed 15 nm and was bigger as compared with the diameter of particles present in precursor solution (ca. 10 nm.

  8. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  9. Characteristics of Nonafluorobutyl Methyl Ether (NFE) Adsorption onto Activated Carbon Fibers and Different-Size-Activated Carbon Particles.

    Tanada; Kawasaki; Nakamura; Araki; Tachibana

    2000-08-15

    The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated

  10. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  11. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  12. High activity carbon sorbents for mercury capture

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  13. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    2013-01-01

    Two kinds of typical activated carbons (coal based AC and coconut shell based AC) were modified in a flow of N2 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperature N2 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases ...

  14. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  15. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT and new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.

  16. Catalytic activity of carbons for methane decomposition reaction

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2005-05-15

    Catalytic decomposition of methane is an environmentally attractive approach to CO{sub 2}-free production of hydrogen. The objective of this work is to evaluate catalytic activity of a wide range of carbon materials for methane decomposition reaction and determine major factors governing their activity. It was demonstrated that the catalytic activity of carbon materials for methane decomposition is mostly determined by their structural and surface properties. Kinetics of methane decomposition reaction over disordered (amorphous) carbons such as carbon black and activated carbon were determined. The mechanism of carbon-catalyzed methane decomposition reaction and the nature of active sites on the carbon surface are discussed in this paper.

  17. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  18. A study of single-walled carbon nanotubes modified by organics of the phthalocyanine category

    2008-01-01

    Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was disclosed that the spectral intensity and the intensity of the peaks in the fluorescent spectra dropped remarkably. This shows that the single-walled carbon nanotubes have absorbed a large number of phenoxy phthalocyanines. Raman analysis revealed that in the Raman spectra, the position of the main peaks of the single-walled carbon nanotubes after absorption moved in the direction of long waves. The analysis suggests that the movement of the Raman spectra results from the change in the state of the single-walled carbon nanotubes before and after absorption.

  19. A hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode.

    Chen, Huihui; Zhang, Zhe; Cai, Dongqing; Zhang, Shengyi; Zhang, Bailin; Tang, Jilin; Wu, Zhengyan

    2011-10-30

    A novel strategy to fabricate hydrogen peroxide (H(2)O(2)) sensor was developed by electrodepositing Ag nanoparticles (NPs) on a glassy carbon electrode modified with natural nano-structure attapulgite (ATP). The result of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability to reduce H(2)O(2). The good catalytic activity of the sensor was ascribed to the ATP that facilitated the formation and homogenous distribution of small Ag NPs. The resulted sensor achieved 95% of the steady-state current within 2s and had a 2.4 μM detection limit of H(2)O(2).

  20. Carbon-dot organic surface modifier analysis by solution-state NMR spectroscopy

    Philippidis, Aggelos; Spyros, Apostolos, E-mail: aspyros@chemistry.uoc.gr; Anglos, Demetrios [University of Crete, NMR Laboratory, Department of Chemistry (Greece); Bourlinos, Athanasios B. [University of Ioannina, Physics Department (Greece); Zboril, Radek [Palacky University in Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Giannelis, Emmanuel P. [Cornell University, Department of Materials Science and Engineering (United States)

    2013-07-15

    Carbon dots (C-dots) represent a new class of carbon-based materials that were discovered recently and have drawn the interest of the scientific community, particularly because of their attractive optical properties and their potential as fluorescent sensors. Investigation of the chemical structure of C-dots is extremely important for correlating the surface modifier composition with C-dot optical properties and allow for structure-properties fine tuning. In this article, we report the structural analysis of the surface modifiers of three different types of C-dot nanoparticles (Cwax, Cws, and Csalt) by use of 1D- and 2D-high-resolution NMR spectroscopy in solution. We unambiguously verify that the structure of the modifier chains remains chemically unchanged during the passivation procedure, and confirm the covalent attachment of the modifiers to the nanoparticle core, which contributes no signal to the solution-state NMR spectra. To our knowledge, this is the first study confirming the full structural assignment of C-dot organic surface modifiers by use of solution NMR spectroscopy.

  1. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  2. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  3. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode.

    Santhosh, Padmanabhan; Senthil Kumar, Nagarajan; Renukadevi, Murugesan; Gopalan, Anantha Iyengar; Vasudevan, Thiyagarajan; Lee, Kwang-Pill

    2007-04-01

    A glassy carbon electrode modified with a coating of polypyrrole (Ppy) exhibited an attractive performance for the detection and determination of a non-steroidal and non-narcotic analgesic compound, ketorolac tromethamine (KT). Cyclic voltammetry, differential pulse and square wave voltammetry were used in a combined way to identify the electrochemical characteristics and to optimize the conditions for detection. For calibrating and estimating KT, square-wave voltammetry was mainly used. The drug shows a well-defined peak at -1.40 V vs. Ag/AgCl in the acetate buffer (pH 5.5). The existence of Ppy on the surface of the electrode gives higher electrochemical active sites at the electrode for the detection of KT and preconcentrate KT by adsorption. The square-wave stripping voltammetric response depends on the excitation signal and the accumulation time. The calibration curve is linear in the range 1 x 10(-11) to 1 x 10(-7) M with a detection limit of 1.0 x 10(-12) M. Applicability to serum samples was also demonstrated. A detection limit of 1.0 ng ml for serum was observed. Square-wave voltammetry shows superior performance over UV spectroscopy and other techniques.

  4. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    Muthukumar, Thangavelu [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India); Prabhavathi, Sundaram [Department of Biotechnology, SRM University, Kattankulathur, Chennai 603 203 (India); Chamundeeswari, Munusamy [St. Joseph' s College of Engineering, Sholinganallur, Chennai 600119 (India); Sastry, Thotapalli Parvathaleswara, E-mail: sastrytp@hotmail.com [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India)

    2014-03-01

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM.

  5. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid

    Fereshteh Chekin; Samira Bagheri; Sharifah Bee Abd Hamid

    2015-12-01

    A simple approach for the preparation of gelatin functionalized reduced graphene oxide nanosheet (Gel-RGONS) by chemical reduction of graphene oxide (GO) using gelatin as both reducing agent and stabilizing agent in an aqueous solution was developed. The morphology and structure of the Gel-RGONS were examined by X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy and Raman spectroscopy. Gelatin acted as a functionalizing reagent to guarantee good dispersibility and stability of the r in distilled water. Moreover, a new electrochemical sensor was developed based on Gel-RGONS modified glassy carbon electrode (Gel-RGONS/GCE). Gel-r exhibits excellent electrocatalytic activity to gallic acid (GA) oxidation. The experimental conditions such as pH, adsorption time and scan rate were optimized for the determination of GA. Under optimum conditions, the sensor responded linearly to GA in the concentration of 1.0 × 10−6 to 1.1 × 10−4 M with detection limit of 4.7 × 10−7 M at 3 using linear sweep voltammetry (LSV). The method has been successfully applied to the determination of GA in sample of black tea.

  6. Determination of Trace Thiocyanate by a Chitosan-Modified Glassy Carbon Electrode

    2002-01-01

    A chitosan-modified glassy carbon electrode(CMGCE) was employed for the determination of thiocyanate. The measurement was carried out by means of anodic stripping voltammetry. The effects of several experimental parameters, such as pH, the amount of modifier, deposition potential and deposition time were studied for analytical application, respectively. A liner response was obtained in the concentration range of 3.5×10-8-9.3×10-7 g/mL of SCN-. The detection limit was found to be 1.9×10-8 g/mL. The method was satisfactorily used to detect SCN- in saliva.

  7. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Mohammed Zidan; Tan Wee Tee; A. Halim Abdullah; Zulkarnain Zainal; Goh Joo Kheng

    2011-01-01

    A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE) was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditio...

  8. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid/Multi-Walled Carbon Nanotubes Composite Film

    Ji-Lie Kong

    2010-09-01

    Full Text Available A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid/multi-walled carbon nanotubes composite film [poly(4-ABA/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 ´ 10−9 to 1.0 ´ 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay.

  9. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    Zheng, Meixia; Gao, Feng [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Cai, Xili [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Jiang, Shulian; Huang, Lizhang [Zhangzhou Product Quality Supervision and Inspection Institute, Zhangzhou 363000 (China); Gao, Fei [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2013-04-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k{sub s}), diffusion coefficient (D) and the surface adsorption amount (Γ{sup ⁎}) of ACOP on GR–CS/GCE were determined to be 0.25 s{sup −1}, 3.61 × 10{sup −5} cm{sup 2} s{sup −1} and 1.09 × 10{sup −9} mol cm{sup −2}, respectively. Additionally, a 2e{sup −}/2H{sup +} electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10{sup −6} to 1.0 × 10{sup −4} M with a low detection limit of 3.0 × 10{sup −7} M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied.

  10. Graphene-containing carbon aerogel prepared using polyethyleneimine (PEl)-modified graphene oxide (GO) for supercapacitor: effect of polyethyleneimine-modified GO content.

    Lee, Yoon Jae; Lee, Joongwon; Kim, Gil-Pyo; Lee, Eo Jin; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Graphene-containing carbon aerogel was prepared by a sol-gel polymerization of resorcinol-formaldehyde (RF) method using polyethyleneimine (PEL)-modified chemically exfoliated graphene oxide (GO), and its electrochemical performance as an electrode for supercapacitor was examined. The effect of PEI-modified GO content on the physicochemical and electrochemical properties of graphene-containing carbon aerogel was investigated. For comparison, graphene-free carbon aerogel was also prepared. Among the samples, graphene-containing carbon aerogel prepared using 45 wt% PEI-modified GO solution (CA(45PG)) showed the highest BET surface area (784 m2/g) and the largest pore volume (1.71 cm3/g) with well-developed porous structure. Electrochemical properties of graphene-containing carbon aerogel and graphene-free carbon aerogel electrodes were measured by cyclic voltammetry, charge/discharge test, and electrochemical impedance spectroscopy in 6 M KOH electrolyte. Various electrochemical measurements revealed that CA(45PG) showed the highest specific capacitance (261 F/g), the lowest equivalent series resistance (0.16 Ω), and superior capacitive behavior. It is concluded that PEI-modified GO content served as an important factor determining the physicochemical properties and supercapacitive electrochemical performance of graphene-containing carbon aerogel.

  11. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  12. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  13. An active control synchronization for two modified Chua circuits

    Li Guo-Hui

    2005-01-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchroniztion of the tow systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  14. Cooperative redox activation for carbon dioxide conversion

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  15. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    Mohammadzadeh Safoora

    2013-01-01

    Full Text Available A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE was prepared to study the electrocatalytic activity of dopamine (DP in the presence of homocysteine (HCy and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1, and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46, and rate constant (kh = 7.44×102 dm3 mol-1 s-1 were also determined using electrochemical approaches. Under the optimum pH of 5.0, the peak current of oxidation of HCy at MWCNTPE in the presence of DP occurs at a potential about 530 mV and the results showed that the oxidation peak current of HCy at the modified carbon nanotubes electrode was higher than on unmodified electrode. The peak current of differential pulse voltammograms of HCy solutions increased linearly in the range of 3.0-600.0 μM HCy with the detection limit of 2.08 μM HCy. This method was also examined for determination of HCy in physiological serum and urine samples.

  16. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  17. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  18. Voltammetric copper(II) determination with a montmorillonite-modified carbon paste electrode

    Kula, P. [Institute of Geonics, Academy of Sciences of Czech Republic, Studertska 1768, 708 00 Ostrava (Czech Republic); Navratilova, Z. [Institute of Geonics, Academy of Sciences of Czech Republic, Studertska 1768, 708 00 Ostrava (Czech Republic)

    1996-03-01

    The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4 x 10{sup -8} mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4 x 10{sup -8}-8 x 10{sup -7} mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant. (orig.). With 5 figs., 1 tab.

  19. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  20. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  1. Photocatalytic activity of zinc modified Bi 2O 3

    Hameed, Abdul; Gombac, Valentina; Montini, Tiziano; Felisari, Laura; Fornasiero, Paolo

    2009-12-01

    The surface of α-Bi 2O 3 was modified by either impregnating Zn acetate or coating with a sol-gel containing Zn hydroxide. The surface modified Bi 2O 3 powders were evaluated by UV-Visible spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and surface area analysis (BET). The photocatalytic performances were evaluated for the degradation of phenol, methylene blue and methyl orange. The variations in photocatalytic activity were correlated with morphology change. The presence of ZnO does not significantly prevent the progressive formation of photocatalytically inactive (BiO) 2CO 3, while the dye decolourization capability of nanocomposite is significantly preserved with respect to that of bare Bi 2O 3.

  2. Electrochemical behaviour of platinum at polymer-modified glassy carbon electrodes

    Carmem L P S Zanta; C A Martínez-Huitle

    2007-07-01

    In this paper, the preparations and voltammetric characteristics of chitosan-modified glassy carbon (Ct-MGC) and platinum electrodes are studied. Ct-MGC can be used for pre-concentration and quantification of trace amounts of platinum in solution. At low pH medium, the complex of Pt with protonated group -NH3+ in the chitosan molecule has been confirmed by FT-IR spectra studies.

  3. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  4. A study of single-walled carbon nanotubes modified by organics of the phthalocyanine category

    2008-01-01

    Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was...

  5. Preconcentration and electroanalysis of copper at glassy carbon electrode modified with poly(2-aminothiazole)

    Çiftçi, Hakan; Testereci, Hasan Nur; Öktem, Zeki

    2011-01-01

    Conducting poly(2-aminothiazole), PAT, was synthesized in acetonitrile with tetrabutylammonium tetrafluoroborate, TBAFB, as supporting electrolyte via constant potential electrolysis, CPE. Glassy carbon, GC, electrode was modified by immersing the electrode in a DMSO solution of PAT. Preconcentration of copper on polymer matrix was carried out at -0.7 V. The effects of preconcentration time and pH and Cu(II) concentration of the preconcentration solution on the stripping peak current of coppe...

  6. Toughness and Hot/Wet Properties of a Novel Modified BMI/Carbon Fiber Composite

    2001-01-01

    The toughness and hot/wet properties of a novel modified bismaleimide (BMI) 5428/carbon fiber composite was investigated. Results indicate that the prepared BMI/T700 composite owns high toughness, excellent hot/wet properties and mechanical properties. The compression strength after impact (CAl) of 5428/T700 composite is 260 MPa, and the results of hot/wet test show that the long-term service temperature of 5428/T700 composite can maintain at 170°C.

  7. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  8. Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction%改性炭黑-LaMnO3复合材料的制备及其共价复合效应对氧还原性能的影响

    刘景军; 金学民; 宋薇薇; 王峰; 王楠; 宋夜

    2014-01-01

    以Vulcan XC-72炭黑为载体,通过对炭载体石墨化处理和表面化学修饰,将其与化学沉淀法制备的纳米级LaMnO3颗粒共混,再经特定温度下煅烧,制备出改性炭黑-LaMnO3复合材料. X射线光电子能谱和热重分析表明,当煅烧温度在300°C时,炭载体与LaMnO3纳米颗粒之间形成了大量C-O-M (M = La, Mn)化学键.扫描电子显微镜和高分辨透射电子显微镜分析发现,纯相LaMnO3纳米颗粒主要呈现短棒、三支棒或竹节棒的形貌特征,炭载体则为具有完整石墨层的空心球结构, LaMnO3均匀分散在炭载体上.在25°C,1 mol/L NaOH溶液中的电化学测试结果表明,成分比(LaMnO3:C)为2:3的复合材料具有很高的氧还原电催化活性,氧还原反应电子数为3.81,中间产物H2O2产率为9.5%,其活性接近商业Pt/C催化剂(E-TEK).高的氧还原电催化活性主要归因于LaMnO3纳米颗粒与炭载体之间形成了大量共价键.%Covalent coupling between LaMnO3 nanoparticles and carbon black to produce a composite catalyst for oxygen reduction reaction (ORR) was achieved by physical mixing of modified carbon and per-ovskite-type LaMnO3 nanoparticles, followed by sintering at different temperatures. Perovskite-type LaMnO3 nanoparticles were first synthesized via chemical precipitation, and the carbon sup-port (Vulcan XC-72) was modified using graphitization, followed by HNO3 and ammonia treatments. The morphology and electronic states of the carbon black-LaMnO3 hybrid catalyst were character-ized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The loaded LaMnO3 particles featured rod-like, three bars-like, and bamboo rod-like structures and were homogeneously dispersed in the carbon matrix that featured a hollow spherical structure. At a sintering temperature of about 300 °C, C-O-M (M = La, Mn) bonds formed at the interface between the carbon and LaMnO3 nanoparticles. Electrochemical measurements in 1

  9. Proximate analysis for determination of micropores in granulated activated carbon

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  10. Preparation and characterization of activated carbon from waste biomass.

    Tay, Turgay; Ucar, Suat; Karagöz, Selhan

    2009-06-15

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.

  11. Potential application of activated carbon from maize tassel for the removal of heavy metals in water

    Olorundare, O. F.; Krause, R. W. M.; Okonkwo, J. O.; Mamba, B. B.

    Water-pollution problems worldwide have led to an acute shortage of clean and pure water for both domestic and human consumption. Various technologies and techniques are available for water treatment which includes the use of activated carbon. In this study activated carbons used for the removal of lead (II) ions from water samples were prepared from maize tassels (an agricultural waste residue) which were modified using physical and chemical activation. In the physical activation CO2 was used as the activating agent, while in chemical activation H3PO4 with an impregnation ratio ranging from 1 to 4 was employed. The maize tassel was pyrolysed at different temperatures ranging from 300 °C to 700 °C in an inert atmosphere for a period of 60 min and activated at 700 °C for 30 min. The effects of activation temperature, impregnation ratio and duration were examined. The resultant modified tassels were characterised by measuring their particle-size distribution, porosities, pore volume, and pore-size distribution using scanning electron microscopy (SEM). The activated carbon produced by chemical activation had the highest BET surface area ranging from 623 m2 g-1 to 1 262 m2 g-1. The surface chemistry characteristics of the modified tassels were determined by FT-IR spectroscopy and Boehm’s titration method. The experimental data proved that properties of activated carbon depend on final temperature of the process, impregnation ratio and duration of the treatment at final temperature. The adsorption studies showed that chemically prepared activated carbon performed better than physically prepared activated carbon.

  12. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production

    Fan, Yanli; Su, Feng; Li, Kai; Ke, Caixia; Yan, Yunjun

    2017-01-01

    Superparamagnetic multi-walled carbon nanotubes (mMWCNTs) were prepared by filling multi-walled carbon nanotubes (MWCNTs) with iron oxide, and further modified by linking polyamidoamine (PAMAM) dendrimers (mMWCNTs-PAMAM) on the surface. Then, mMWCNTs-PAMAM was employed as the carrier and successfully immobilized Burkholderia cepacia lipase (BCL) via a covalent method (BCL-mMWCNTs-G3). The maximum activity recovery of the immobilized lipase was 1,716% and the specific activity increased to 77,460 U/g-protein, 17-fold higher than that of the free enzyme. The immobilized lipase displayed significantly enhanced thermostability and pH-resistance, and could efficiently catalyze transesterification to produce biodiesel at a conversion rate of 92.8%. Moreover, it possessed better recycling performance. After 20 cycles of repeated used, it still retained ca. 90% of its original activity, since the carbon nanotube−enzyme conjugates could be easily separated from the reaction mixture by using a magnet. This study provides a new perspective for biotechnological applications by adding a magnetic property to the unique intrinsic properties of nanotubes. PMID:28358395

  13. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  14. Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes.

    Gao, Xin; Omosebi, Ayokunle; Landon, James; Liu, Kunlei

    2015-09-15

    Microporous SpectraCarb carbon cloth was treated using nitric acid to enhance negative surface charges of COO(-) in a neutral solution. This acid-treated carbon was further modified by ethylenediamine to attach -NH2 surface functional groups, resulting in positive surface charges of -NH3(+) via pronation in a neutral solution. Through multiple characterizations, in comparison to pristine SpectraCarb carbon, amine-treated SpectraCarb carbon displays a decreased potential of zero charge but an increased point of zero charge, which is opposed to the effect obtained for acid-treated SpectraCarb carbon. An inverted capacitive deionization cell was constructed using amine-treated cathodes and acid-treated anodes, where the cathode is the negatively polarized electrode and the anode is the positively polarized electrode. Constant-voltage switching operation using NaCl solution showed that the salt removal capacity was approximately 5.3 mg g(-1) at a maximum working voltage of 1.1/0 V, which is an expansion in both the salt capacity and potential window from previous i-CDI results demonstrated for carbon xerogel materials. This improved performance is accounted for by the enlarged cathodic working voltage window through ethylenediamine-derived functional groups, and the enhanced microporosity of the SpectraCarb electrodes for salt adsorption. These results expand the use of i-CDI for efficient desalination applications.

  15. Removal of Chromium (III from Water by Using Modified and Nonmodified Carbon Nanotubes

    Muataz Ali Atieh

    2010-01-01

    Full Text Available This study was carried out to evaluate the environmental application of modified and nonmodified carbon nanotubes through the experiment removal of chromium trivalent (III from water. The aim was to find the optimal condition of the chromium (III removal from water under different treatment conditions of pH, adsorbent dosage, contact time and agitation speed. Multi wall carbon nanotubes (MW-CNTs were characterized by field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM. The diameter of the carbon nanotubes produced varied from 20–40 nm with average diameter of 24 nm and 10 micrometer in length. Adsorption isotherms were used to model the adsorption behavior and to calculate the adsorption capacity of the absorbents. The results showed that, 18% of chromium (III removal was achieved using modified carbon nanotubes (M-CNTs at pH 7, 150 rpm, and 2 hours for a dosage of 150 mg of CNTs. The removal of Cr (III is mainly attributed to the affinity of chromium (III to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.

  16. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus.

    Zhong, Dan; Zhuo, Yan; Feng, Yuanjiao; Yang, Xiaoming

    2015-12-15

    By employing attractive performance of fluorescent carbon dots, we herein successfully established an assay for analyzing bacteria firstly. Specifically, carbon dots with blue fluorescence were initially synthesized according to a previous report, and modified with vancomycin on their surfaces. Subsequently, the prepared carbon dots were applied to detect Staphylococcus aureus accompanied with a linear range of 3.18×10(5)-1.59×10(8) cfu/mL as well as a detection limit of 9.40×10(4) cfu/mL. Compared with other regular methods, our method is more rapid and convenient in term of methodology. Meanwhile, the current strategy was applied for detection of other bacteria including Bacillus subtilis, Listeria monocytogenes, Salmonella, Pseudomonas aeruginosa and Escherichia coli, and the modified carbon dots showed obvious affinity with Gram-positive bacteria owing to the ligand-receptor interactions between vancomycin and the cell walls, suggesting its value for detecting Gram-positive bacteria. Additionally, the practicability of this sensing approach was validated by recovery experiments conducted in orange juice, confirming its potential to broaden avenues for detection of Gram-positive bacteria.

  17. Improvement of the LiBH{sub 4} hydrogen desorption by confinement in modified carbon nanotubes

    Wang, Y.T.; Wan, C.B.; Meng, X.H.; Ju, X., E-mail: jux@ustb.edu.cn

    2015-10-05

    Highlights: • The desorption kinetics for LiBH{sub 4} greatly promoted using melt infiltration method. • The LiBH{sub 4} confined in modified MWCNTs shows the best desorption kinetics. • The crystal structure of MWCNTs and SWCNTs is unchanged after ball milling. • Ball milling introduces a great amount of structural defects in the CNTs. • Nano-confinement is dominant on improving the hydrogen desorption of LiBH{sub 4}. - Abstract: The dehydrogenation kinetics of LiBH{sub 4} incorporated within various carbon nanotubes has been studied. It is demonstrated that the desorption kinetics of LiBH{sub 4} could be greatly promoted using a simple melt infiltration method and LiBH{sub 4} confined in modified multi-walled carbon nanotubes (MWCNTs) shows the best desorption kinetics. The structural properties of carbon nanotubes and confined samples are demonstrated by means of transmission electron microscopy, powder X-ray diffraction and Raman spectroscopy. The crystal structure of MWCNTs and single-walled carbon nanotubes (SWCNTs) are almost unchanged after ball milling. But high energy ball milling leads to a decrease in the average nanotube length and introduces a great amount of local disorder and structural defects in the CNTs, which may provide a considerable kinetic improvement.

  18. Removal of selected metals from drinking water using modified powdered block carbon

    Campos, V.; Sayeg, I. J.; Buchler, P. M.

    2008-09-01

    This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.

  19. Acetate production enhancement from carbon dioxide reduction by using modified cathode materials in microbial electrosynthesis

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    in the bioelectrochemical System (BES). The MES reactor can power with the solar photovoltaic system and harvest light energy to multi-carbon compounds to make it artificial photosynthesis system. Nevertheless, chemical production rate should be optimized for the commercialization of MES technology. Interestingly, it has......Microbial electrosynthesis (MES) is one of the emerging biosustainable technologies for the biological conversion of carbon dioxide to the value-added chemical precursor. The electro autotrophic bacteria fix CO2 via Wood-Ljungdahl pathway, accepting the electron derived from the cathode...... been demonstrated that the productivity was enhanced with the modified cathode surfaces by improving microbe-electrode electron transfer. Here, we have tested the different cathode materials for the improvement of acetate production from carbon dioxide and their behavior for the biofilm formation...

  20. Aqueous mercury adsorption by activated carbons.

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  1. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Wei Yang

    2016-06-01

    Full Text Available In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending, interlaminar shear strength (ILSS, interfacial debonding strength (IDS, internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL and rejected take-off (RTO. The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously.

  2. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui

    2008-01-01

    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  3. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  4. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum

    Amiri, Mandana, E-mail: mandanaamiri@uma.ac.ir [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Sohrabnezhad, Shabnam [Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht. Iran (Iran, Islamic Republic of); Rahimi, Azad [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2014-04-01

    In this approach, synthesis of nickel (II) incorporated aluminophosphate (NiAlPO-5) was performed by using hydrothermal method. The diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques were applied in order to characterize synthesized compounds. The NiAlPO-5 was used as a modifier in carbon paste electrode for the selective determination of thioridazine which is an antidepressant drug. This research is the first example of an aluminophosphate being employed in electroanalysis. The effective catalytic role of the modified electrode toward thioridazine oxidation can be attributed to the electrocatalytic activity of nickel (II) in the aluminaphosphate matrix. In addition, NiAlPO-5 has unique properties such as the high specific surface area which increases the electron transfer of thioridazine. The effects of varying the percentage of modifier, pH and potential sweep rate on the electrode response were investigated. Differential pulse voltammetry was used for quantitative determination as a sensitive method. A dynamic linear range was obtained in the range of 1.0 × 10{sup −7}–1.0 × 10{sup −5} mol L{sup −1}. The determination of thioridazine in real samples such as commercial tablets and human serum was demonstrated. - Highlights: • Nickel aluminophosphate (NiAlPO-5) has been synthesized and characterized. • Nickel (II) in modified electrode shows electrocatalytic activity. • High specific surface area of NiAlPO-5 increases electron transfer of thioridazine. • Modified electrode has very good applicability for determination of thioridazine.

  5. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  6. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Feng Dong

    2016-12-01

    Full Text Available In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM and Brunauer-Emmett-Teller (BET tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS and cyclic voltammetry (CV results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV and electrochemical impedance spectroscopy (EIS results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  7. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  8. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  9. Direct Electrochemistry of Horseradish Peroxidase on NiO Nanoflower Modified Electrode and Its Electrocatalytic Activity

    Lijun Yan

    2016-09-01

    Full Text Available In this paper nickel oxide (NiO nanoflower was synthesized and used for the realization of direct electrochemistry of horseradish peroxidase (HRP. By using carbon ionic liquid electrode (CILE as the substrate electrode, NiO-HRP composite was casted on the surface of CILE with chitosan (CTS as the film forming material and the modified electrode was denoted as CTS/NiO-HRP/CILE. UV-Vis absorption and FT-IR spectra confirmed that HRP retained its native structure after mixed with NiO nanoflower. Direct electron transfer of HRP on the modified electrode was investigated by cyclic voltammetry with a pair of quasi-reversible redox waves appeared, indicating that the presence of NiO nanoflower on the electrode surface could accelerate the electron transfer rate between the electroactive center of HRP and the substrate electrode. Electrochemical behaviors of HRP on the modified electrode were carefully investigated. The HRP modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid with wider linear range and lower detection limit. Therefore the presence of NiO nanoflower could provide a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated electrochemical biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. This work is licensed under a Creative Commons Attribution 4.0 International License.

  10. APPLICATION OF IMPREGNATED ALMOND SHELL ACTIVATED CARBON BY ZINC AND ZINC SULFATE FOR NITRATE REMOVAL FROM WATER

    A. Rezaee, H. Godini, S. Dehestani, A. Khavanin

    2008-01-01

    In this study impregnated almond shell activated carbon by Zn° and ZnSO4 were used as adsorbent with a particle size of 10-20 mesh. The objective of this research was to determine the ability of impregnated activated carbon in nitrate removal. The modified activated carbon had 1mm effective size, with a uniformity coefficient of 1.18. Potassium nitrate solution was used in batch adsorption experiments for nitrate removal from water. The effects of nitrate concentration, activated carbon dosag...

  11. 78 FR 13894 - Certain Activated Carbon From China

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  12. Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde

    Reza Ojani; Saeid Safshekan; Jahan-Bakhsh Raoof

    2014-01-01

    This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electro-deposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemi-cally deposited on the surface of the electrode. The electrochemical and morphological characteris-tics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the sur-face of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solu-tion of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around-0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocat-alytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formal-dehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.

  13. Electorchemical Studies of Cytochrome c on Electodes Modified by Single—Wall Carbon Naotubes

    程发良; 杜珊; 金葆康

    2003-01-01

    Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.

  14. Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron

    MENG Ya-feng; GUAN Bao-hong; WU Zhong-biao; WANG Da-hui

    2006-01-01

    Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.

  15. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes.

    Sharma, Deepti; Lim, Yeongjin; Lee, Yunjeong; Shin, Heungjoo

    2015-08-19

    We present a novel electrochemical glucose sensor employing an interdigitated array (IDA) of 1:1 aspect ratio carbon nanoelectrodes for the electrochemical-enzymatic redox cycling of redox species (ferricyanide/ferrocyanide) between glucose oxidase (GOx) and the two comb-shaped nanoelectrodes of the IDA. The carbon nanoelectrodes were fabricated using a simple, cost-effective, reproducible microfabrication technology known as the carbon-microelectromechanical-systems (C-MEMS) process. One comb (comb 1) of the IDA was selectively modified with GOx via the electrochemical reduction of an aryl diazonium salt, while the other comb (comb 2) remained unmodified; this facilitates electrochemically more active surface of comb 2, resulting in sensitive glucose detection. Ferricyanide is reduced to ferrocyanide by the GOx in the presence of glucose, and ferrocyanide diffuses to both combs of the IDA where it is oxidized. The limited electrochemical current collection at the surface-modified comb 1 is counterbalanced by the efficient redox cycling between the enzyme sites at comb 1 and the bare carbon surface of comb 2. Reducing the electrode-to-electrode gap between the two combs (gap = 1.9 μm) increases the diffusion flux of redox species at comb 2 hence, enhanced the sensitivity and limit of detection of the glucose sensor by ∼2.3 and ∼295 times, respectively at comb 2 compared to comb 1. The developed IDA-based glucose sensor demonstrated good amperometric response to glucose, affording two linear ranges from 0.001 to 1 mM and from 1 to 10 mM, with limits of detection of 0.4 and 61 μM and sensitivities of 823.2 and 70.0 μA mM(-1) cm(-2), respectively.

  16. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  17. Selective Voltammetric Determination of Uric Acid in the Presence of Ascorbic Acid at Ordered Mesoporous Carbon Modified Electrodes

    WEN,Yan-Li; JIA,Neng-Qin; WANG,Zhi-Yong; SHEN,He-Bai

    2008-01-01

    A novel chemically modified electrode was fabricated by immobilizing ordered mesoporous carbon (OMC)onto a glassy carbon (GC) electrode.The electrocatalytic behavior of the OMC modified electrode towards the oxidation of uric acid (UA) and ascorbic acid (AA) was studied.Compared to a glassy carbon electrode,the OMC modified electrode showed a faster electron transfer rate and reduced the overpotentials greatly.Furthermore,the OMC modified electrode resolved the overlapping voltammetric responses of UA and AA into two well-defined voltammetric peaks with peak separation of ca.0.38 V.All results show that the OMC modified electrode has a good electrocatalytic ability to UA and AA,and has an excellent response towards UA even in the presence of high concentration AA.

  18. Modified eremophilanes and anti-inflammatory activity of Psacalium cirsiifolium

    Arciniegas, Amira; Perez-Castorena, Ana L.; Nieto-Camacho, Antonio; Vivar Alfonso Romo de, E-mail: alperezc@unam.mx [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Coyoacan, D.F. (Mexico); Villasenor, Jose Luis [Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Coyoacan, D.F. (Mexico)

    2013-01-15

    Four new modified eremophilanes, together with ten known cacalol derivatives, two caryophyllenes, one aromadendrene and one flavonoid were isolated from Psacalium cirsiifolium. The structures of these compounds were elucidated by spectroscopic analysis. The antiinflammatory activity of extracts and of seven of the isolated compounds was evaluated on 12-O-tetradecanoylphorbol-13-acetate (TPA) model of induced acute inflammation. The new compound 2{alpha}-hydroxyadenostin B (4) showed a dose dependent activity (IC{sub 50} 0.41 {mu}mol per ear) and a neutrophil inhibition effect as measured by the myeloperoxidase (MPO) assay similar to that of indomethacin at 0.31 and 1.0 {mu}mol per ear. (author)

  19. Preparation and Characterization of Novel Choline and L-Glutamic Acid Mixed Monolayer Covalently Modified Glassy Carbon Electrode and Its Analytical Application to Nitrite Determination

    晋冠平; 林祥钦

    2005-01-01

    A choline and L-glutamic acid mixed monolayer covalently modified glassy carbon electrode (Ch-Glu/GCE) was fabricated and characterized by X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It provided an excellent example of mixed covalent monolayer modification of carbon electrodes with alkanol and amino acid, and also a facile means for altering the interfacial architecture. The Ch-Glu/GCE displayed good catalytic activity toward the oxidation of nitrite anions. Differential pulse voltammetry was used for determination of nitrite at the Ch-Glu/GCE. The Ch-Glu/GCE showed higher capability for restraint of pollutions than a simple Ch modified electrode or a simple Glu modified electrode.

  20. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  1. Hall measurements on carbon nanotube paper modified with electroless deposited platinum.

    Petrik, Leslie; Ndungu, Patrick; Iwuoha, Emmanuel

    2009-09-18

    Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt) distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  2. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream.

  3. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  4. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Yunzhou Shi; Biao Wang

    2014-01-01

    Carbon fiber (CF)/cellulose (CLS) composite papers were prepared by papermaking techniques and hot-melting fibers were used for modi-fication. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show that with the addition of hot-melting fibers, the modified papers exhibit enhanced mechanical performance compared to CF/CLS composite papers. Through SEM characterization, it is confirmed that the improvement of mechanical properties attributes to the reinforcement of adhesive binding at the fiber overlap nodes. Also, through four-probe method, the resistivity and the electrical performance of the modified and unmodified papers were characterized and the result shows that the hot-melting fiber modification brings no harm to the electrical properties.

  5. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes.

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The (111)In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work.

  6. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza, E-mail: arnezamzadeh@iaush.ac.ir

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (K{sub s}) of 0.44 s{sup −1} and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190 μmol L{sup −1} of acetaminophen [r{sup 2} = 0.9979, r = 0.9989 (n = 10)] with a detection limit of 0.04 μmol L{sup −1}. The method was successfully applied to the analysis of acetaminophen in some drugs. - Highlights: • Modified carbon paste electrode with Co(II)-zeolite A improved the voltammetric current in determination of acetaminophen. • Modified electrode is applicable for acetaminophen in real samples. • The proposed method has good reproducibility and repeatability.

  7. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Yunzhou Shi

    2014-02-01

    Full Text Available Carbon fiber (CF/cellulose (CLS composite papers were prepared by papermaking techniques and hot-melting fibers were used for modification. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show that with the addition of hot-melting fibers, the modified papers exhibit enhanced mechanical performance compared to CF/CLS composite papers. Through SEM characterization, it is confirmed that the improvement of mechanical properties attributes to the reinforcement of adhesive binding at the fiber overlap nodes. Also, through four-probe method, the resistivity and the electrical performance of the modified and unmodified papers were characterized and the result shows that the hot-melting fiber modification brings no harm to the electrical properties.

  8. Activated carbon is an electron-conducting amphoteric ion adsorbent

    Biesheuvel, P M

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, chemical information of the surface structure of the carbon-water interface in ACs can be used to construct an alternative EDL model for ACs. This EDL model assumes that ACs contain both acidic groups, for instance due to carboxylic functionalities, and basic groups, due to the adsorption of protons to the carbon basal planes. As will be shown, this "amphoteric Donnan" model accurately describes various data sets for ion electrosorption in ACs, for solutions of NaCl, of CaCl2, and mixtures thereof, as function of the exter...

  9. Synthesis and biocidal activity of modified poly(vinyl alcohol

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Functionalized polymers and their polymer nature give them more advantages than the corresponding small molecules. In this respect, polymeric ammonium and phosphonium salts were prepared by chemical modifications of poly(vinyl alcohol (PVA aiming to explore their antimicrobial activities against pathogenic bacteria and fungi. The modifications were performed by chloroacetylation with chloroacetyl chloride. Incorporation of the ammonium and phosphonium salts was conducted by the reaction of chloroacetylated poly(vinyl alcohol (CPVA with triethylamine (TEA, triphenylphosphine (TPP, and tributylphosphine (TBP. The antimicrobial activity of the polymers against variety of test microorganisms was examined by the cut plug and viable cell counting methods of shake cultures of 10 times dilute nutrient broth and Sabouraud’s media, seeded with the test microorganisms. It was found that the immobilized polymers exhibited antimicrobial activity against the Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella sp. and Salmonella typhi and Gram positive bacteria (Bacillus subtilis and B. cereus and the dermatophyte fungus (Trichophyton rubrum. The growth inhibition of the test microorganisms (ratio of surviving cell number, M/C varied according to the composition of the active group in the polymer and the test organism. It increased by increasing the concentration of the polymer. Triphenyl phosphonium salt of the modified poly(vinyl alcohol exhibited the most biocidal activity against both Gram-negative and Gram-positive bacteria after 24 h.

  10. Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte

    ZHANG Chuan-xiang; DUAN Yu-ling; XING Bao-lin; ZHAN Liang; QIAO Wen-ming; LING Li-cheng

    2009-01-01

    Nitrogen-containing carbons were prepared by modification of activated carbons. The modified carbons were used as electrode materials with improved electrochemical performance. Precursor anthracite was activated by KOH (KOH: anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons. The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively. Electrochemical experiments were performed in an organic electrolytic solution of 1 M (C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement. The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons: this ensured a sufficient utilization of the exposed surface for charge storage.

  11. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  12. USE OF BATTERY CARBON AS ELECTRODES IN ARC DISCHARGE METHOD FOR FABRICATION OF CARBON-MODIFIED TIO2

    Isya Fitria Andhika

    2016-09-01

    Full Text Available Fabrication with carbon-modified TiO2 by arc discharge method in liquid medium has been studied. This research was performed in two steps including fabrication and characterization. This fabrication was done by arcdischarge method with graphite electrodes from dry cell batteries and liquid medium suspension of TiO2 in ethanol 30, 50 and 70 %. A strong current was applied to electrode as 10 -50 A (20-40 V. Nanocomposites formed on the liquid medium surface were collected and characterized using X-ray diffraction (XRD,scanning electron microscope (SEM dan energy dispersive spectroscopy (EDS to determine crystallinity, surface morphology and the constituent elements, respectively. XRD data shows that the most effective fabrication TiO2/Karbon by liquid medium in ethanol 50 % indicated from the formation of a new peak with high intensity of TiC on 2Ɵ= 36.02 °. SEM data shows that the morphology of each aggregated TiO2/Karbon compared to the morphology of TiO2. In addition, EDS data shows the presence of the element carbon, titanium and oxygen in the same area indicating that the successful formation of composite material between TiO2 dan carbon.

  13. Disposable Carbon Dots Modified Screen Printed Carbon Electrode Electrochemical Sensor Strip for Selective Detection of Ferric Ions

    Shao Chien Tan

    2017-01-01

    Full Text Available A disposable electrochemical sensor strip based on carbon nanodots (C-Dots modified screen printed carbon electrode (SPCE was fabricated for selective detection of ferric ions (Fe3+ in aqueous solution. C-Dots of mean diameters within the range of 1–7 nm were synthesized electrochemically from spent battery carbon rods. The analytical performance of this electrochemical sensor strip was characterized using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The deposition of C-Dots had enhanced the electron-transfer kinetics and current intensity of the SPCE remarkably by 734% as compared to that of unmodified SPCE. Under optimized conditions, the electrochemical sensor strip exhibited a linear detection range of 0.5 to 25.0 ppm Fe3+ with a limit of detection (LOD of 0.44±0.04 ppm (at S/N ratio = 3. Validation of results by the electrochemical sensor strip was done by comparing analysis results obtained using an Atomic Absorption Spectrometer (AAS.

  14. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  15. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-06

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  16. Charcoal and activated carbon at elevated pressure

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  17. The effect of modified atmosphere packaging with carbon monoxide on the storage quality of master-packaged fresh pork

    Wilkinson, B.H.P.; Janz, J.A.M.; Morel, P.C.H.; Purchas, R.W.; Hendriks, W.H.

    2006-01-01

    Modified atmosphere packaging with carbon dioxide is effective for prolonging shelf-life of fresh meat. Addition of carbon monoxide to the system provides the advantage of enhancing meat colour. The study objective was to determine the effect of CO2-MAP + 0.4% CO, vs. 100% CO2-MAP, on the bacteriolo

  18. The Study of Electrochemical Behavior of Dopamine at Nano-gold Modified Carbon Fiber Electrode

    2003-01-01

    The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion and adsorption simultaneously at nano-gold (NG) modified carbon fiber electrode (CFE). This modified electrode can separate the peak potentials of dopamine and ascorbic acid (AA). The peak current of DA in DPV curve was found to be linearly proportional to the concentration of DA at range of 2.0×10-6~1.5×10-5mol/L and 1.0×10-5~5.0×10-4mol/L, respectively.

  19. Synthesis and Characterizations of Poly(3-hexylthiophene and Modified Carbon Nanotube Composites

    Mohammad Rezaul Karim

    2012-01-01

    Full Text Available Poly(3-hexylthiophene and modified (functionalized and silanized multiwall carbon nanotube (MWNT nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR, Raman, and X-ray diffraction (XRD measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis and photoluminescence (PL spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations in λmax of UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.

  20. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  1. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY STUDY OF CORROSION INHIBITION OF MODIFIED LIGNOSULPHONATE FOR CARBON STEEL

    C.H. Yi; X.Q. Qiu; D.J. Yang; H.M. Lou

    2005-01-01

    The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant. Moreover, results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.

  2. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  3. Cyclam Modified Carbon Paste Electrode as a Potentiometric Sensor For Determination of Cobalt(Ⅱ) Ions

    Hamid Reza POURETEDAL; Mohammad Hossein KESHAVARZ

    2005-01-01

    A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10-6_1.0×10-1 mol/L of Co2+ ions with detection limit 2.5×10-6 mol/L. The sensor exhibits good selectivities for Co2+ over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.

  4. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed.

  5. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  6. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  7. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Mohammed Zidan

    2011-01-01

    Full Text Available A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, supporting electrolyte, temperature and scan rate. The current enhancement observed in different electrolytic media varied in the following order: KH2PO4 > KCl > K2SO4 > KBr. Interestingly, the oxidation of paracetamol using modified GC electrode remain constant even after 15 cycling. It is therefore evident that the MgB2 modified GC electrode possesses some degree of stability. A slope of 0.52 dependent of scan rate on current indicates that the system undergoes diffusion-controlled process.

  8. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Sebarchievici, I.; Tăranu, B. O.; Birdeanu, M.; Rus, S. F.; Fagadar-Cosma, E.

    2016-12-01

    The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H2O2. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV-vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC_MnP_nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC_MnP_nAu in comparison with GC_MnP, due to increasing charge transfer efficiency. The MnP_nAu film mediates the electron transfer between H2O2 and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H2O2 at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H2O2 concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H2O2 are diffusion controlled. The GC_MnP_nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  9. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  10. Production of activated carbon from TCR char

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  11. New Modified-Multiwall Carbon Nanotubes Paste Electrode for Electrocatalytic Oxidation and Determination of Hydrazine Using Square Wave Voltammetry

    Ali A. ENSAF; Mahsa LOTFI; Hassan KARIMI-MALEH

    2012-01-01

    The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.

  12. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling.

  13. Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol

    SEYED KARIM HASSANINEJAD-DARZI; MOSTAFA RAHIMNEJAD; SEYEDEH ELHAM MOKHTARI

    2016-06-01

    In this work, we reported amethod for the synthesis of nanosized silicoaluminophosphate (SAPO) molecular sieves that are important members of zeolites family. The synthesized SAPO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) as well as infrared (IR) techniques. Then, the modified carbon paste electrode was prepared by nano SAPO molecular sieves and nickel (II) ion incorporated at this electrode. The electrochemical behaviour of the modified electrode (Ni-SAPO/CPE) towards the oxidation of methanol was investigated by cyclic voltammetry and hronoamperometry methods. It has been found that the oxidation current is extremely increased by using Ni-SAPO/CPE compared to the unmodified Ni-CPE, it seems that Ni$^{2+}$ inclusion into nano SAPO channels provides the active sites for catalysis of methanol oxidation. The effect of some parameters such as scan rate of potential, concentration of methanol, amount of SAPO was investigated on the oxidation of methanol at the surface of modified electrode. The values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for the Ni(II)/Ni(III) couple in the surface of Ni-SAPO/CPE were found to be 0.555, 0.022 s$^{−1}$ and 5.995 $\\times$ 10$^{−6}$ mol cm$^{−2}$, respectively. Also, the diffusion coefficient and the mean value of catalytic rate constant for methanol and redox sites of modified electrode were obtained to be $1.16\\times 10^{−5}$ cm$^2$ s$^{−1}$ and $4.62\\times 10^4$ cm$^3$ mol$^{−1} s$^{−1}$, respectively. The good catalytic activity, high sensitivity, good selectivity and stability and easy in preparation rendered the Ni-SAPO/CPE to be a capable electrode for electrocatalytic oxidation of methanol.

  14. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  15. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode.

    Teixeira, Meryene C; Tavares, Elisângela de F L; Saczk, Adelir A; Okumura, Leonardo L; Cardoso, Maria das Graças; Magriotis, Zuy M; de Oliveira, Marcelo F

    2014-07-01

    We have developed an eletroanalytical method that employs Cu(2+) solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110μgL(-1) and from 10 to 110μgL(-1) for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5μgL(-1) for mineral oil and 3.4 and 11.2μgL(-1) for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).

  16. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  17. Voltammetric determination of carbidopa and folic acid using a modified carbon nanotubes paste electrode

    Keshtkar Nasrin

    2015-01-01

    Full Text Available A novel electrochemical sensor for the selective and sensitive detection of carbidopa in presence of large excess of folic acid at physiological pH was developed by the bulk modification of carbon paste electrode (CPE with carbon nanotubes (CNTs and vinylferrocene. Large peak separation, good sensitivity and stability allow this modified electrode to analyze carbidopa individually and simultaneously along with folic acid. Applying square wave voltammetry (SWV, a linear dynamic range of 1.0×10-6- 7.0×10-4 M with detection limit of 2.0×10-7 M was obtained for carbidopa. Finally, the proposed method was applied to the determination of carbidopa and folic acid in urine sample.

  18. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel;

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  19. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid☆

    Xiang Hu; Zhao Cheng

    2015-01-01

    Modified multi-walled carbon nanotubes (MWCNTs) were used as adsorbents for removal of diclofenac. The re-action conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were applied to determine appropriate equilibrium expression. The results show that the experimental data fit the Freundlich equation well. Thermodynamic parameters show that the adsorption process is spontaneous and exothermic. The kinetic study indicates that the adsorption of diclofenac can be well described with the pseudo-second-order kinetic model and the process is controlled by multiple steps.

  20. Quinoline Group Modified Carbon Nanotubes for the Detection of Zinc Ions

    Dong Zhengping

    2009-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were covalently modified by fluorescence ligand (glycine-N-8-quinolylamide and formed a hybrid material which could be used as a selective probe for metal ions detection. The anchoring to the surface of the CNTs was carried out by the reaction between the precursor and the carboxyl groups available on the surface of the support. Fourier transform infrared spectroscopy (FTIR and Thermogravimetric analysis (TGA unambiguously proved the existence of covalent bonds between CNTs and functional ligands. Fluorescence characterization shows that the obtained organic–inorganic hybrid composite is highly selective and sensitive (0.2 μM to Zn(II detection.

  1. Reversible electrochemistry of DNA on multi-walled carbon nanotube modified electrode

    2007-01-01

    Calf thymus DNA was electrochemically oxidized at a multi-walled carbon nanotube modified electrode. The potentials for DNA oxidation at pH 7.0 were 0.71 and 0.81 V versus SCE, corresponding to the oxidation of guanine and adenine residues,respectively. The initial 6e-oxidation of adenine, observed in the first scan, resulted a quasi-reversible 2e-redox process of the oxidation product in the following scans.(C) 2007 Hong Xia Luo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon

    Hadley, Odelle; Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2008-04-14

    Black carbon (BC), a main component of combustion-generated soot, is a strong absorber of sunlight and contributes to climate change. Measurement methods for BC are uncertain, however. This study presents a method for analyzing the BC mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength as the sample is heated. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration based on derived mass attenuation efficiencies (MAE) of BC and char. The fraction of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO{sub 2}) at temperatures higher than 480 C. This method was applied to measure the BC concentration in precipitation samples collected from coastal and mountain sites in Northern California. The uncertainty in measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12 to 100 percent, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 {micro}g BC and uncertainty approached 20 percent for BC mass loading greater than 1.0 {micro}g BC.

  3. Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel

    2002-01-01

    The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work. The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel. The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated. Consequently, the impact toughness of the steel is increased by more than one time, compared with no addition of RE-modifier.

  4. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility.

  5. Electrochemically modified carbon and chromium surfaces for AFM imaging of double-strand DNA interaction with transposase protein.

    Esnault, Charles; Chénais, Benoît; Casse, Nathalie; Delorme, Nicolas; Louarn, Guy; Pilard, Jean-François

    2013-02-01

    Carbon and chromium surfaces were modified by electrochemical reduction of a diazonium salt formed in situ from the sulfanilic acid. The organic layer formed was activated by phosphorus pentachloride (PCl(5)) to form a benzene sulfonil chloride (Ar-SO(2)Cl). An electrochemical study of the blocking effect and the activity of this surface was carried out on a carbon electrode. The chromium surface study was completed by X-ray photoelectron spectroscopy and atomic force microscopy to characterize the formation of a compact monolayer (0.8 nm height and roughness 0.2-0.3 nm). The compactness and the activity of this organic monolayer allowed us to affix a length dsDNA with the aim of analyzing the formation of a complex between dsDNA and a protein. The interaction of a transposase protein with its target dsDNA was investigated. The direct imaging of the nucleoproteic complex considered herein gives new insights in the comprehension of transposase-DNA interaction in agreement with biochemical data.

  6. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries

    Li, Jingsha; Zhou, Zhi; Liu, Kun; Li, Fuzhi; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan

    2017-03-01

    Nitrogen-doped carbon materials containing non-precious metal (TM-N-C) and Co-based oxides have been extensively investigated as promising catalysts for oxygen reduction reaction (ORR). Herein, we report a novel Co3O4/Co-N-C modified ketjenblack carbon (KB) catalyst via a one-pot and scalable pyrolysis process using cheap melamine, cobalt acetate tetrahydrate and KB as raw materials. Owing to the high specific surface area and good electrical conductivity, this KB-based catalyst exhibits remarkable catalytic activity with a half-wave potential of 0.798 V (vs RHE) and a limiting current density of 5.10 mA cm-2 in alkaline solution, which are comparable with those of the commercial 20 wt% Pt/C. More importantly, it displays superior stability to Pt/C, which makes it one of the most promising non-noble-metal catalysts. Al-air batteries with this catalyst are also tested and generate a maximum power density of 161.1 mW cm-2, which is close to that with 20 wt% Pt/C catalyst (161.9 mW cm-2). After the discharge for 18 h at 50 mA cm-2, the voltage degradation of Al-air battery with Co3O4/Co-N-C modified KB is 7%, while that using Pt/C is increased to 12%. By virtues of its remarkable performance, low cost and simple fabrication method, Co3O4/Co-N-C modified KB here can be used as an efficient ORR cathode catalyst instead of the commercial Pt/C for practical Al-air batteries.

  7. Preparation of Cerium (III) 12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties

    Liu Lin [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Ndamanisha, Jean Chrysostome [Universite du Burundi, Institut de pedagogie appliquee, B.P 5223 Bujumbura (Burundi); Bai Jing [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Guo Liping, E-mail: guolp078@nenu.edu.c [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2010-03-30

    In this work, a novel structured Cerium (III) 12-tungstophosphoric acid (CePW)/ordered mesoporous carbon (OMC) composite is synthesized. The characterization of the material by the Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization shows that the novel CePW/OMC composite has improved properties based on the combination of CePW and OMC properties. CePW/OMC can be used to modify the glassy carbon (GC) electrode and the CePW/OMC/GC modified electrode shows an enhanced electrocatalytic activity. This property can be applied in the determination of some biomolecules. Especially, the detection and determination of the guanine (G) in the presence of adenine (A) is achieved. The catalytic current of G versus its concentration shows a good linearity with two good linear ranges from 4.0 x 10{sup -6} to 8.0 x 10{sup -5} M and from 8.0 x 10{sup -5} to 1.9 x 10{sup -3} M (correlation coefficient = 0.999 and 0.996) with a detection limit of 5.7 x 10{sup -9} M (S/N = 3). The linear range for adenine is 4.0 x 10{sup -6}-7.0 x 10{sup -4} M with a detection limit of 7.45 x 10{sup -8} M. With good stability and reproducibility, the present CePW/OMC/GC modified electrode should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.

  8. ENHANCING PRODUCED WATER QUALITY USING MODIFIED ACTIVATED CARBON

    AlKaabi, Maryam Ali

    2016-01-01

    The formation produced water from natural gas production process in the North field offshore considered largest volume of waste water in Qatar, which could be considered a potential benefits source for the industry as well as for other domestic uses if it was treated properly, taking in to consideration economical cost and conditions aspects. This project aims to study the physical and chemical characterizations of the produced water associated with natural gas from the North field, in the sa...

  9. Activated Carbon Fibers For Gas Storage

    Burchell, Timothy D [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  10. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  11. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  12. Activated carbon modifications to enhance its water treatment applications. An overview.

    Rivera-Utrilla, J; Sánchez-Polo, M; Gómez-Serrano, V; Alvarez, P M; Alvim-Ferraz, M C M; Dias, J M

    2011-03-15

    The main objective of this study was to list and compare the advantages and disadvantages of different methodologies to modify the surface of activated carbons (ACs) for their application as adsorbents to remove organic and inorganic pollutants from aqueous phase. These methodologies have been categorized into four broad groups: oxidation, sulfuration, ammonification, and coordinated ligand anchorage. Numerous investigations into the removal of metals from water have modified carbon surfaces to increase their content of acidic surface functional groups by using H(2)O(2), O(3) and HNO(3). Because these treatments can reduce the AC surface area, researchers are seeking alternative methods to modify and/or create surface functional groups without the undesirable effect of pore blockage. The nitrogenation or sulfuration of the AC surface can increase its basicity favoring the adsorption of organic compounds. The introduction of nitrogen or sulfur complexes on the carbon surface increases the surface polarity and, therefore, the specific interaction with polar pollutants. Different coordinated ligands have also been used to modify ACs, showing that coordinated ligand anchorage on the AC surface modifies its textural and chemical properties, but research to date has largely focused on the use of these modified materials to remove heavy metals from water by complexes formation.

  13. Synergic effect of multi-walled carbon nanotubes and gold nanoparticles towards immunosensing of ricin with carbon nanotube-gold nanoparticles-chitosan modified screen printed electrode.

    Suresh, Srinivasan; Gupta, Manish; Kumar, Gupta Ajay; Rao, Vepa Kameswara; Kumar, Om; Ghosal, Partha

    2012-09-07

    An amperometric immunosensor for the specific detection of Ricinus communis is reported. Screen printed electrodes (SPEs) were modified with gold nanoparticles (GNPs) loaded multiwalled carbon nanotubes (MWCNTs)-chitosan (Ch) film. The ratio of MWCNT and GNP was optimised to get best electrochemically active electrode. Sandwich immunoassay format was used for the immunosensing of ricin. The revealing antibodies tagged with the enzyme alkaline phosphatase (ALP) converts the substrate 1-naphthyl phosphate into 1-naphthol that was determined with the amperometric technique. The amperometric current obtained was correlated with the concentration of ricin. The prepared GNP-MWCNT-Ch-SPE showed high stability due to the Ch film, short response time with good reproducibility and increased shelf life of the electrodes immobilised with antibodies. The electrochemical activity of the electrode improved because of optimization of composition of CNTs and gold nanoparticles. Under the optimal conditions, the modified electrode showed a wide linear response to the concentration of ricin in the range of 2.5-25 ng mL(-1) with a limit of detection of 2.1 ng mL(-1) and with a relative standard deviation of 5.1% and storage life of 32 days.

  14. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)–phtalocyanine modified glassy carbon electrode

    Kurd, Masoumeh [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (k{sub s}) of immobilized Fe(II)–Pc were calculated as 1.26 × 10{sup −10} mol cm{sup −2} and 28.13 s{sup −1}, respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl{sub 3}COOH to CH{sub 3}COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection. Highlights: ► Phthalocyanine (PC) and Fe(II) immobilized onto MWCNTs modified GC electrode. ► A pair of well-defined redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) observed. ► Modified electrode shows excellent catalytic activity to electroreduction of CCl{sub 3}COOH. ► Amperometry and cyclic voltammetry techniques were used for detection of CCl{sub 3}COOH. ► Detection limit and sensitivity were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively.

  15. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  16. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  17. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  18. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes.

    Huang, Rui; Liu, Hong Yang; Zhang, Bing Sen; Sun, Xiao Yan; Liang, Chang Hai; Su, Dang Sheng; Zong, Bao Ning; Rong, Jun Feng

    2014-12-01

    Ketonic/quinonic C=O groups on the surface of a carbon matrix are capable of abstracting hydrogen in C=H bonds from hydrocarbons and enable them to selectively convert into corresponding unsaturated hydrocarbons; this process is the oxidative dehydrogenation (ODH) reaction. However, a variety of inevitable defects or graphene edges and other oxygen-containing groups on the carbon matrix are detrimental to the selective production of alkenes due to their high activity towards overoxidation. Herein, we show that phosphate can not only impede the total oxidation but also cover the selective C=O groups, hence allowing its use as a modulator to defects and oxygen-containing functional groups on the multiwalled carbon nanotubes, regulating the distribution of active sites and related catalytic targets.

  19. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    John Meynard M. Tengco; Bahareh Alsadat Tavakoli Mehrabadi; Yunya Zhang; Akkarat Wongkaew; John R. Regalbuto; Weidner, John W.; John R. Monnier

    2016-01-01

    Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED) of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) characterization of the base catalyst showed highly dispersed particles. A basic E...

  20. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  1. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.

    Samarajeewa, Dinushi R; Dieckmann, Gregg R; Nielsen, Steven O; Musselman, Inga H

    2012-08-07

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.

  2. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  3. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

  4. Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode.

    Erden, Pınar Esra; Kaçar, Ceren; Öztürk, Funda; Kılıç, Esma

    2015-03-01

    In this study, a new uric acid biosensor was constructed based on ferrocene containing polymer poly(vinylferrocene) (PVF), carboxylated multiwalled carbon nanotubes (c-MWCNT) and gelatin (GEL) modified glassy carbon electrode (GCE). Uricase enzyme (UOx) was immobilized covalently through N-ethyl-N'-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS) chemistry onto c-MWCNT/GEL/PVF/GCE. The c-MWCNT/GEL/PVF composite was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Various experimental parameters such as pH, applied potential, enzyme loading, PVF and c-MWCNT concentration were investigated in detail. Under the optimal conditions the dynamic linear range of uric acid was 2.0×10(-7) M-7.1×10(-4) M (R=0.9993) with the detection limit low to 2.3×10(-8) M. With good selectivity and sensitivity, the biosensor was successfully applied to determine the uric acid in human serum. The results of the biosensor were in good agreement with those obtained from standard method. Therefore, the presented biosensor could be a good promise for practical applications in real samples.

  5. Study of ionically modified water performance in carbonates by multivariate data analysis supplemented with necessary measurements

    Sohal, Muhammad Adeel Nassar; Kucheryavskiy, Sergey V.; Thyne, Geoffrey

    2016-01-01

    Adjustment of the ionic composition and strength of injected or imbibed brine for enhanced oil recovery (EOR) in carbonate reservoirs has been an area of active research for the past two decades. Despite many successful laboratory and field applications, the method has been reported ineffective i...

  6. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei;

    2014-01-01

    It is crucial to accurately describe the interaction between the surface functionality and the supported metal catalyst because it directly determines the activity and selectivity of a catalytic reaction. It is, however, challenging with a metal-carbon catalytic system owing to the ultrafine feat...

  7. A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode.

    Sarika, C; Shivakumar, M S; Shivakumara, C; Krishnamurthy, G; Narasimha Murthy, B; Lekshmi, I C

    2017-05-01

    In this work, we designed an amperometric catechol biosensor based on α-Fe2O3 nanocrystals (NCs) incorporated carbon-paste electrode. Laccase enzyme is then assembled onto the modified electrode surface to form a nanobiocomposite enhancing the electron transfer reactions at the enzyme's active metal centers for catechol oxidation. The biosensor gave good sensitivity with a linear detection response in the range of 8-800 μM with limit of detection 4.28 μM. We successfully employed the sensor for real water sample analysis. The results illustrate that the metal oxide NCs have enormous potential in the construction of biosensors for sensitive determination of phenol derivatives.

  8. Kinetic Study of the Electro-Catalytic Oxidation of Hydrazine on Cobalt Hydroxide Modified Glassy Carbon Electrode

    HASANZADEH,Mohammad; KARIM-NEZHAD,Ghasem; SHADJOU,Nasrin; KHALILZADEH,Balal; SAGHATFOROUSH,Lotali; ERSHAD,Sohrab; KAZEMAN,Isa

    2009-01-01

    Electrocatalytic oxidation of hydrazine was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution.The process of oxidation involved and its kinetics were established by using cyclic voltammetry,chronoamperometry techniques as well as steady state polarization measurements.In cyclic voltammetry (CV) studies,in the presence of hydrazine the peak current increase of the oxidation of cobalt hydroxide is followed by a decrease in the corresponding cathodic current.This indicates that hydrazine is oxidized on the redox mediator that is immobilized on the electrode surface via an electrocatalytic mechanism.A mechanism based on the electrochemical generation of Co(IV) active sites and their subsequent consumption by the hydrazine in question was also investigated.

  9. Hydrogen evolution reaction at Ru-modified nickel-coated carbon fibre in 0.1 M NaOH

    Pierożyński Bogusław

    2015-03-01

    Full Text Available The electrochemical activity towards hydrogen evolution reaction (HER was studied on commercially available (Toho-Tenax and Ru-modified nickel-coated carbon fibre (NiCCF materials. Quality and extent of Ru electrodeposition on NiCCF tows were examined by means of scanning electron microscopy (SEM. Kinetics of the hydrogen evolution reaction were investigated at room temperature, as well as over the temperature range: 20-50°C in 0.1 M NaOH solution for the cathodic overpotential range: -100 to -300 mV vs. RHE. Corresponding values of charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for the examined fibre tow composites were recorded.

  10. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  11. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications.

    Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M

    2015-06-01

    The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces.

  12. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes

    Mulvey JJ

    2014-09-01

    Full Text Available J Justin Mulvey,1,2 Evan N Feinberg,1,3 Simone Alidori,1 Michael R McDevitt,4,5 Daniel A Heller,1,6 David A Scheinberg1,5,6 1Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA; 2Tri-Institutional MD-PhD Program, New York, NY, USA; 3Department of Applied Physics, Yale University, New Haven, CT USA; 4Department of Radiology and 5Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 6Weill Cornell Medical College, New York, NY, USA Abstract: We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs. A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl-protected, lysine-derived alpha-amino acid, H-Lys(Boc-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA. The 111In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA. In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work. Keywords: fullerene, cycloaddition, azomethine, DOTA, thermophoresis, 111In

  13. Activated Carbon Composites for Air Separation

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  14. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations.

  15. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  16. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail: hvaldes@ucsc.cl; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)

    2006-09-21

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  17. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  18. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  19. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  20. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  1. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3(-) fluctuations.

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2017-01-01

    The CO2/HCO3(-) buffer minimizes pH changes in response to acid-base loads, HCO3(-) provides substrate for Na(+),HCO3(-)-cotransporters and Cl(-)/HCO3(-)-exchangers, and H(+) and HCO3(-) modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3(-) buffer. Switching from CO2/HCO3(-)-free to CO2/HCO3(-)-containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3(-) uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na(+),HCO3(-)-cotransport and Na(+)/H(+)-exchange activity after NH4(+)-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3(-)-free conditions but absent when the buffer capacity and apparent H(+) mobility increase in the presence of CO2/HCO3(-) even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3(-) minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and

  2. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  3. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  4. Preparation of a MFI zeolite coating on activated carbon

    Vaart, van der R.; Bosch, H.; Keizer, K.; Reith, T.

    1997-01-01

    A new and simple method for the preparation of MFI zeolite coated activated carbon is presented. Suitable nucleation sites for the growth of zeolites were introduced to the carbon by adding hydrophilic montmorillonite clay to the carbon substrate. A gas tight MFI zeolite coating was obtained on this

  5. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes; Uso da voltametria ciclica e da espectroscopia de impedancia eletroquimica na determinacao da area superficial ativa de eletrodos modificados a base de carbono

    Souza, Leticia Lopes de

    2011-07-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO{sub 3} 0.1 mol.L{sup -1} solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10{sup -2} and 2.83 X 10{sup -1} cm{sup 2}, respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm{sup 2} during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 {mu}F.cm{sup -2} found for the glassy carbon is consistent with the literature data ({approx} 200 {mu}F.cm'-{sup 2}). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C{sub d}, 3.0 x 10{sup -5} {mu}F.cm'-{sup 2} and 11 x 10{sup 3} {mu}F.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm{sup 2} and 4.72 cm{sup 2}. To sum up, the

  6. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  7. Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture

    Miskolczi Norbert

    2016-01-01

    Full Text Available Waste material was pyrolyzed in a horizontal tubular reactor at 530-540°C using different catalysts, such as activated carbon, MCM-41, HZSM-5 and their mixtures. Products were investigated by gas-chromatography, EDXRFS and standardized methods. Catalysts significantly affected the yields of volatiles; e.g. HZSM-5 catalyst increased especially the yield of gaseous hydrocarbons, while MCM-41 catalyst was responsible for increasing the pyrolysis oil yield. Synergistic effects were found using mixtures of different catalysts. Furthermore the catalysts modified the main carbon frame of the products. Pyrolysis oil obtained over HZSM-5 catalyst contained large amounts of aromatics, while MCM-41 catalyst mainly isomerized the carbon frame. Regarding contaminants it was concluded, that the sulphur content could be significantly decreased by activated carbon, however it had only a slight effect to the other properties of the products.

  8. Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage

    Dabin Wang; Zhen Geng; Cunman Zhang; Xiangyang Zhou; Xupeng Liu

    2014-01-01

    Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt%at 40 bar and -196◦C. The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.

  9. Preparation and mechanism of calcium phosphate coatings on chemical modified carbon fibers by biomineralization

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2008-01-01

    In order to prepare HA coatings on the carbon fibers, chemical modification and biomineralization processes were applied. The phase components, morphologies, and possible growth mechanism of calcium phosphate were studied by infrared spectroscopy(IR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results show that calcium phosphate coating on carbon fibers can be obtained by biomineralization. But the phase components and morphologies of calcium phosphate coatings are different due to different modification methods. Plate-like CaHPO4-2H2O (DCPD) crystals grow from one site of the active centre by HNO3 treatment. While on the para-aminobenzoic acid treated fibers, the coating is composed of nano-structural HA crystal homogeneously. This is because the -COOH functional groups of para-aminobenzoic acid graft on fibers, with negative charge and arranged structure, accelerating the HA crystal nucleation and crystallization on the carbon fibers.

  10. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors

    KASINATH OJHA; BHARAT KUMAR; ASHOK K GANGULI

    2017-03-01

    Graphene-like activated and non-activated carbon nanostructures were synthesized from various natural sources like sugar, rice husk and jute. These carbon nanostructures were characterized using SEM, FTIR and Raman spectroscopy, surface area and thermogravimetric analysis. The electrochemical studies of these carbon materials confirm their promising characteristics for supercapacitor applications. Activated carbon nanostructures exhibit higher specific capacitance compared to that of non-activated carbons (non-Ac sugar).The activated carbon (Ac-jute) exhibits maximum specific capacitance of 476 F/g at an applied current density of 0.2 A/g which is much higher than that of graphene oxide (GO).

  11. Production of activated carbon from a new precursor: Molasses

    Legrouri, K.; Ezzine, M.; Ichcho, S.; Hannache, H.; Denoyel, R.; Pailler, R.; Naslain, R.

    2005-03-01

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulfuric acid, followed by carbonization. The adsorption capacity, the BET surface area, and the pore volume of the activated carbon were determined. The micropore volume was assessed by Dubinin- Radushkevich (DR) equation. The activated materials are mainly microporous and show the type I isotherm of the Brunauer classification for nitrogen adsorption. The activation in steam yielded a carbon that contains both micropores and supermicropores. Analysis of the nitrogen isotherm by BET and DR methods established that most of obtained carbons are highly microporous, with high surface areas (≥ 1200 m2/g) and very low mesoporosity.

  12. Facile synthesis of reduced graphene oxide-modified, nitrogen-doped carbon xerogel with enhanced electrochemical capacitance

    Lei, Gang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu, Xiaoyong [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Peng, Zhiguang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu, Jiawen, E-mail: jwhu@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Hongtao, E-mail: liuht@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-12-15

    In this contribution, we report a reduced graphene oxide (rGO)-modified nitrogen-doped carbon xerogel, which could be easily prepared by pyrolysis of melamine-formaldehyde (MF) resins that are polymerized hydrothermally in an aqueous GO dispersion. Scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectrometry, and nitrogen adsorption-desorption method were employed to reveal the morphologies and structures of the prepared carbon xerogel. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge were used to investigate the electrochemical properties. The results showed that the charge transfer barrier of the mesoporous nitrogen-doped carbon xerogel was decreased evidently, owing to the modification of a layer of rGO on its wall, and the xerogel demonstrated a capacitance of as high as 205 F g{sup −1} at the current of 1 A g{sup −1}. - Graphical abstract: A facile synthesis of rGO-modified, N-doped carbon material for supercapacitor application. - Highlights: • Nitrogen-doping and graphene-attachment in the carbon material are simultaneously achieved. • A thin layer of graphene attached on the wall of the mesoporous carbon material speeds up the charge transfer. • The graphene-modified nitrogen-doped carbon xerogel shows great potential for supercapacitor application.

  13. A miniature glucose/O{sub 2} biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate

    Li, Xianchan; Zhou, Haojie [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Graduate School of CAS, Beijing 100049 (China); Yu, Ping; Su, Lei; Mao, Lanqun [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2008-06-15

    This study demonstrates a new kind of miniature glucose/O{sub 2} biofuel cells (BFCs) based on carbon fiber microelectrodes (CFMEs) modified with single-walled carbon nanotubes (SWNTs). SWNTs are used as a support both for stably confining the electrocatalyst (i.e., methylene green, MG) for the oxidation of NADH and the anodic biocatalyst (i.e., NAD{sup +}-dependent glucose dehydrogenase, GDH) for the oxidation of glucose and for efficiently facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase) for the O{sub 2} reduction. The prepared micro-sized GDH-based bioanode and laccase-based biocathode exhibit good bioelectrocatalytic activity toward the oxidation of glucose and the reduction of oxygen, respectively. In 0.10 M phosphate buffer containing 10 mM NAD{sup +} and 45 mM glucose under ambient air, the power density of the assembled miniature compartment-less glucose/O{sub 2} BFC reaches 58 {mu}W cm{sup -2} at 0.40 V. The stability of the miniature glucose/O{sub 2} BFC is also evaluated. (author)

  14. [Effects of different fertilizer application on soil active organic carbon].

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  15. Efficient L-lactic acid fermentation by the mold Rhizopus oryzae using activated carbon

    Koide, M.; Hirata, M.; Gaw, M.; Takanashi, H.; Hano, T. [Oita Univ, Oita (Japan). Dept. of Applied Chemistry

    2004-11-01

    Batch fermentations of Rhizopus oryzae AHU 6537 in medium containing granular activated carbon from coal, powder activated carbon from coal or granular activated carbon from coconut were carried out in an airlift bioreactor. As a result, fermentation broths were decolorized by activated carbon, and clearer fermentation broths were obtained than in fermentation without activated carbon. With activated carbon from coal, the cells formed smaller pellets than in fermentation without activated carbon, and fermentation performance was improved. Productivity was further improved by increasing the amount of activated carbon from coal. Therefore, the productivity of lactic acid fermentation could be improved by selecting a suitable activated carbon and by controlling the amount of activated carbon.

  16. Pd/RGO modified carbon felt cathode for electro-Fenton removing of EDTA-Ni.

    Zhang, Zhen; Zhang, Junya; Ye, Xiaokun; Hu, Yongyou; Chen, Yuancai

    Ethylenediaminetetraacetic acid (EDTA) forms stable complexes with toxic metals such as nickel due to its strong chelation. The electro-Fenton (EF) process using a cathode made from palladium (Pd), reduced graphene oxide (RGO) and carbon felt, fed with air, exhibited high activities and stability for the removal of 10 mg L(-1) EDTA-Ni solution. Pd/RGO catalyst was prepared by one-pot synthesis; the scanning electron microscopy and X-ray diffraction analysis indicated nanoparticles and RGO were well distributed on carbon felt, forming three dimensional architecture with both large macropores and a mesoporous structure. The cyclic voltammetric results showed that the presence of RGO in Pd/RGO/carbon felt significantly increased the current response of two-electron reduction of O2 (0.45 V). The key factors influencing the removal efficiency of EDTA-Ni, such as pH, current and Fe(2+) concentration, were investigated. Under the optimum conditions, the removal efficiency of EDTA-Ni reached 83.8% after 100 min EF treatment. Mechanism analysis indicated that the introduction of RGO in Pd/RGO/carbon felt significantly enhanced the electrocatalytic activities by inducing •OH in the EF process; direct H2O2 oxidation still accounted for a large amount of EDTA-Ni removal efficiency.

  17. ADSORPTION OF DYES ON ACTIVATED CARBON FIBERS

    ChenShuixia; WuChangqing; 等

    1998-01-01

    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  18. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  19. Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis

    Yasushi Hasebe; Yue Wang; Kazuya Fukuoka

    2011-01-01

    Poly(pheniothiazine) films were prepared on a porous carbon felt (CF) electrode surface by an electrooxidative polymerization of three phenothiazine derivatives (i.e.,Tthionine (TN), Toluidine Blue (TB) and Methylene Blue (MB)) from 0.1 mol/L phosphate buffer solution (pH 7.0).Among the three phenothiazies, the poly(TB) film-modified CF exhibited an excellent electrocatalytic activity for the oxidation of nicotinamide adenine dinucleotide reduced form (NADH) at +0.2 V vs.Ag/AgCl.The poly(TB) film-modified CF was successfully used as working electrode unit of highly sensitive amperometric flow-through detector for NADH.The peak currents (peak heights) were almost unchanged, irrespective of a carrier flow rate ranging from 2.0 to 4.1 mL/min, resulting in the measurement of NADH (ca.30 samples/hr) at 4.1 mL/min.The peak current responses of NADH showed linear relationship over the concentration range from 1 to 30 μmol/L (sensitivity: 0.318 μA/(μmol/L); correlation coefficient: 0.997).The lower detection limit was found to be 0.3 μmol/L (S/N = 3).

  20. Role of iron oxide impurities in electrocatalysis by multiwall carbon nanotubes: An investigation using a novel magnetically modified ITO electrodes

    Kanchan M Samant; Vrushali S Joshi; Kashinath R Patil; Santosh K Haram

    2014-04-01

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide (ITO) electrodes, without any chemical binders. The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine iron oxide nanoparticle particulate film (Io-NPs). A shift towards less positive potentials for the oxidation of dopamine was observed which is in the order of Fe-MWCNTs < Io-MWCNTs < Io-NPs. Similarly, trend towards less negative potentials for the reduction of hydrogen peroxide was observed. Thus, the electrocatalytic activities displayed by MWCNTs have been attributed to the iron oxide impurities associated with it. The systematic variation was related to the nature of interaction of iron oxide nanoparticles with MWCNT surface.

  1. Voltammetric determination of dopamine and norepinphrine on a glassy carbon electrode modified with poly (L-aspartic acid)

    Zhangyu Yu; Xiaochun Li; Xueliang Wang; Xinying Ma; Xia Li; Kewei Cao

    2012-03-01

    A convenient and useful method for the voltammetric determination of dopamine (DA) and norepinphrine (NE) based on poly(L-aspartic acid) modified glassy carbon electrode (GCE) is reported in this paper. The modified electrode exhibits excellent electro-catalytic activities for the oxidation-reduction of DA and NE, as well as eliminating the interference of ascorbic acid (AA) and uric acid (UA). Factors influencing the detection processes are optimized and the kinetic parameters are calculated. Under the optimal conditions, the anodic peak currents of DA and NE are linear with their concentration and the detection limits (S/N = 3) are 1.0 × 10−9 mol L-1 for DA and 4.31 10−9 mol L-1 for NE, respectively. The practical application of this method is demonstrated by determining the concentration of NE and DA in injection which is commercially available with satisfactory results. Compared with other electrochemical methods, this method is simple, highly selective and sensitive.

  2. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  3. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  4. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  5. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides

    Samarajeewa, Dinushi R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.

    2012-07-01

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)5(Lysine)2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino

  6. A Microbial Fuel Cell Modified with Carbon Nanomaterials for Organic Removal and Denitrification

    Njud S. Alharbi

    2013-01-01

    Full Text Available This paper investigated microbial denitrification using electrochemical sources to replace organic matter as reductant. The work also involved developing a system that could be optimised for nitrate removal in applied situations such as water processing in fish farming or drinking water, where high nitrate levels represent a potential health problem. Consequently, the study examined a range of developments for the removal of nitrate from water based on the development of electrochemical biotransformation systems for nitrate removal. This also offers considerable scope for the potential application of these systems in broader bionanotechnology based processes. Furthermore, the work discussed the context of improved microbial fuel cell (MFC performance, potential analytic applications, and further innovations using a bionanotechnology approach to analyse cell-electrode interactions. High nitrate removal rate of more than 95% was successfully achieved by using a MFC system modified with carbon nanomaterials.

  7. Carbon nanotubes modified with SnO{sub 2} rods for levofloxacin detection

    Cesarino, Vivian [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Cesarino, Ivana; Moraes, Fernando C.; Machado, Sergio A.S., E-mail: ivana@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Mascaro, Lucia H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-03-15

    A new sensor based on multi-walled carbon nanotubes modified with SnO{sub 2} rods for the electrochemical determination of levofloxacin has been investigated. The morphology, the structure, and the electrochemical performance of the composite electrode were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry, respectively. Differential pulse voltammetry in phosphate buffer solution at pH 6.0, allowed the application of a method to determine levofloxacin levels in a range of 1.0-9.9 μmol L{sup -1}, with a limit of detection calculated at 0.2 μmol L{sup -1} (72.0 mg L{sup -1}). (author)

  8. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen.

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (Ks) of 0.44s(-1) and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190μmolL(-1) of acetaminophen [r(2)=0.9979, r=0.9989 (n=10)] with a detection limit of 0.04μmolL(-1). The method was successfully applied to the analysis of acetaminophen in some drugs.

  9. SBA-15 Modified Carbon Paste Electrode for Rapid cTnI Detection with Enhanced Sensitivity

    Nong Yue HE; Hui Shi GUO; Di YANG; Chun Rong GU; Ji Nan ZHANG

    2006-01-01

    A novel electrochemical immunoassay for cardiac troponin I (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 mesoporous modified carbon paste electrode (SBA-MCPE) is described. Four main steps were carried out to obtain the analytical signal, i.e., electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection.A linear relationship between the anodic stripping peak current and concentration of cTnI from 0.5 to 5.0 ng/mL and a limit of detection of 0.2 ng/mL of cTnI were obtained.

  10. Electrocatalytic behavior of modified carbon paste electrode with Ni(ii-zeolite for oxidation of methanol in a basic solution

    Maryam Abrishamkar

    2014-12-01

    Full Text Available In this research, the electrochemical behavior of Ni-zeolite modified carbon paste electrode in the form of Ni/NiZSM-5/CPE and unmodified carbon paste electrode were studied using cyclic voltammetry and chronoamperometric techniques. It was found that methanol was oxidized by NiOOH generated with further electrooxidation of Ni ions which were doped in modified electrode during the anodic sweep. Also, the rate constant for the catalytic reaction (K of methanol was calculated 2.64* 10⁵cm³s⁻¹mol⁻¹ via Cottrell equation.

  11. Electrocatalytic behavior of modified carbon paste electrode with Ni(ii)-zeolite for oxidation of methanol in a basic solution

    Maryam Abrishamkar; Nassrin Kiamehr

    2014-01-01

    In this research, the electrochemical behavior of Ni-zeolite modified carbon paste electrode in the form of Ni/NiZSM-5/CPE and unmodified carbon paste electrode were studied using cyclic voltammetry and chronoamperometric techniques. It was found that methanol was oxidized by NiOOH generated with further electrooxidation of Ni ions which were doped in modified electrode during the anodic sweep. Also, the rate constant for the catalytic reaction (K) of methanol was calculated 2.64* 10⁵cm³s⁻¹mo...

  12. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H{sub 2}O{sub 2}. The observed sensitivities for the electrocatalytic oxidation and reduction of H{sub 2}O{sub 2} at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M{sup −1}, respectively. The detection limit (S/N = 3) for H{sub 2}O{sub 2} was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M{sup −1} and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M{sup −1} and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H{sub 2}O{sub 2} reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor.

  13. Fabrication of CeO2 Nanoparticle Modified Glassy Carbon Electrode for Ultrasensitive Determination of Trace Amounts of Uric Acid in Urine

    WEI Yan; LI Mao-Guo; FANG Bin

    2007-01-01

    The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA).The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10-7-5.0×10-4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0×10-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.

  14. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the i