WorldWideScience

Sample records for activated carbon filtration

  1. Pesticide removal by combined ozonation and granular activated carbon filtration

    OpenAIRE

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This research focused on Biological Activated Carbon (BAC) filtration, which is a combination of ozonation and GAC filtration. Its general goal was identification and understanding of the mechanisms that underlie...

  2. Removal of benzocaine from water by filtration with activated carbon

    Science.gov (United States)

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  3. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated Car

  4. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated

  5. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    Science.gov (United States)

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  6. Filtration treatment of processing kapuas river's water by coral sands/kaolinite/activated carbon

    Science.gov (United States)

    Sasri, Risya; Wahyuni, Nelly; Utomo, Kiki Prio

    2017-03-01

    Filtration treatment of processing Kapuas river's water in the Sepuk Keladi village, West Kalimantan has been conducted. The aims of the treatments to process kapuas river's water with the characteristics of peat into clean water. Processing method using flow-up-flow filtration system with filter media coral sands / kaolinite / activated carbon. Coral sands was obtained from Kijing beach and characterized using X-Ray Diffraction (XRD) and BET method. The XRD spectrum showed strongest peak at 33.09°, 52.40°, 29.34° and it can be concluded that mineral was verified corresponding to calcium consisting of calcite phase. While the result of BET plot point that surface area of coral sands was 4.954 m2/g. The effectiveness of the filtration media was determined by testing parameters such as pH, total suspended solid (TSS), total dissolved solid (TDS), chloride as Cl, and iron as Fe, before and after filtration of Kapuas river's water. The result show that kapuas river's water after filtration treatment was increased pH from 6,53 to 7,2. Filtration using this systems resulted in an average 43,53% reduction in TSS, 91,63% reduction in TDS, 83,63% reduction in content of chloride as Cl and 33,56 % reduction in content iron as Fe, respectively.

  7. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon.

    Science.gov (United States)

    Hartig, C; Ernst, M; Jekel, M

    2001-11-01

    The adsorption behaviour of two polar organic micropollutants (N-n-butylbenzenesulphonamide and sulphmethoxazole) onto powdered activated carbon (PAC) under competitive conditions prior to and after filtration with a tight ultrafiltration membrane was examined. The sulphonamides were spiked into microfiltered tertiary municipal effluent in microg L(-1) quantities. Ultrafiltration of these effluents resulted in better adsorbability for both the micropollutants and the background organic matter in the permeates compared to the feed waters. This behaviour seems to be caused by a reduced blocking of micropores by lower concentrations of high molecular weight compounds in membrane filtrates. A combined treatment of ultrafiltration prior to adsorption can therefore reduce the carbon demand for potentially harmful micropollutants in effluents.

  8. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    Science.gov (United States)

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation).

  9. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.

    Science.gov (United States)

    Tang, Hao L; Xie, Yuefeng F

    2016-01-15

    A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools.

  10. How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki S; Sauter, Daniel; Pohl, Julia; Jekel, Martin

    2015-07-01

    Direct addition of powdered activated carbon (PAC) to the inlet of a deep bed filter represents an energy- and space-saving option to remove organic micropollutants (OMPs) during advanced wastewater treatment or drinking water purification. In this lab-scale study, continuous dosing, preconditioning a filter with PAC and combinations thereof were investigated as possible dosing modes with respect to OMP adsorption efficiency. Continuous dosing resulted in decreasing effluent concentrations with increasing filter runtime due to adsorption onto accumulating PAC in the filter bed. Approximately constant removal levels were achieved at longer filter runtimes, which were mainly determined by the dose of fresh PAC, rather than the total PAC amount embedded. The highest effluent concentrations were observed during the initial filtration stage. Meanwhile, preconditioning led to complete OMP adsorption at the beginning of filtration and subsequent gradual OMP breakthrough. PAC distribution in the pumice filter was determined by the loss on ignition of PAC and pumice and was shown to be relevant for adsorption efficiency. Preconditioning with turbulent upflow led to a homogenous PAC distribution and improved OMP adsorption significantly. Combining partial preconditioning and continuous dosing led to low initial effluent concentrations, but ultimately achieved concentrations similar to filter runs without preconditioning. Furthermore, a dosing stop prior to the end of filtration was suitable to increase PAC efficiency without affecting overall OMP removals.

  11. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals adsorptive removal, resulting in rapid concentration

  12. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    NARCIS (Netherlands)

    Li, S.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Van Dijk, J.C.

    2009-01-01

    A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX), ultrafiltration (UF), nanofiltration (NF), and granular activated carbon filtration (GAC). The FIEX process removed calciu

  13. An innovative treatment concept for future drinking water production: fluidized ion exchange-ultrafiltration-nanofiltration-granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-01-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h. m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  14. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale.

    Science.gov (United States)

    Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas

    2016-05-01

    The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which

  15. Scientific opinion on the assessment of a decontamination process for dioxins and dioxin-like PCBs in fish oil by physical filtration with activated carbon

    DEFF Research Database (Denmark)

    Petersen, Annette

    the amount of dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)) and dioxin-like polychlorinated biphenyls (DL-PCBs). All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. The data......Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process consisting in the adsorption with activated carbon and physical filtration of fish oil in order to reduce...

  16. 生物活性炭老化对滤池过滤阻力和处理效果的影响%Effect of aged biological activated carbon on the filtration resistance and performance of biological activated carbon filter

    Institute of Scientific and Technical Information of China (English)

    刘璟言; 卢小燕; 尤作亮; 张金松; 郭建宁

    2016-01-01

    Biological activated carbon (BAC) used for about 10years was collected from drinking water treatment plant. The filtration resistance and performance of the aged BAC filter were investigated. The ageing of BAC produced a lot of small BAC particles. The small particles deposited on the surface of the BAC column after backwash and formed a dense filtration layer. The specific resistance of the dense filtration layer was 22 times higher than that of the deep layer of the aged BAC column. Enhanced backwash only decreased the initial filtration resistance and the removal of the dense filtration layer was the most effective method to reduce the filtration resistance. Enhanced backwash had no significant effect on the performance of the aged BAC column. The removal efficiency of the total organic carbon decreased from 24.71% to 7.04% after the removal of the dense filtration layer. However, the removal efficiencies of UV254 and particle count larger than 2µm did not change greatly and the values were nearly the same as those of the control group. There are several methods to increase the life cycle of the aged BAC, including decreasing the backwashing strength and prolonging the filtration cycle.%利用饮用水厂运行10年的生物活性炭(BAC)装填滤柱,研究活性炭老化对滤柱过滤阻力和处理效果的影响.结果表明,活性炭老化会产生大量小粒径颗粒炭,沉积于活性炭池表层的小粒径颗粒炭产生的过滤阻力是滤柱总阻力的主要来源,其比阻约为底层炭的22倍.强化反冲洗仅可降低初始过滤阻力,移除表层细炭是降低活性炭滤池阻力的有效方法.强化反冲洗对滤柱过滤性能无显著影响.移除表层细炭后,老化活性炭滤柱对总有机碳的去除率由24.71%下降至7.04%,而后恢复至移除前的水平.移除表层炭后老化活性炭对UV254和大于2µm颗粒数的去除率与对照组活性炭相似.降低活性炭滤池的反冲强度、延长过滤

  17. Effect of advanced oxidation on N-nitrosodimethylamine (NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration.

    Science.gov (United States)

    Li, Dong; Stanford, Ben; Dickenson, Eric; Khunjar, Wendell O; Homme, Carissa L; Rosenfeldt, Erik J; Sharp, Jonathan O

    2017-04-15

    Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H2O2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H2O2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H2O2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications.

  18. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-08-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  19. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  20. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications

    Science.gov (United States)

    Rashid, Md. Harun-Or; Ralph, Stephen F.

    2017-01-01

    Over the course of the past decade, there has been growing interest in the development of different types of membranes composed of carbon nanotubes (CNTs), including buckypapers and composite materials, for an ever-widening range of filtration applications. This article provides an overview of how different types of CNT membranes are prepared and the results obtained from investigations into their suitability for different applications. The latter involve the removal of small particles from air samples, the filtration of aqueous solutions containing organic compounds and/or bacteria, and the separation of individual liquids present in mixtures. A growing number of reports have demonstrated that the incorporation of CNTs into composite membranes confers an improved resistance to fouling caused by biomacromolecules and bacteria. These results are discussed, along with evidence that demonstrates it is possible to further reduce fouling by taking advantage of the inherent conductivity of composite membranes containing CNTs, as well as by using different types of electrochemical stimuli. PMID:28468314

  1. The filtration of colloidal gold nanoparticles with carbon nanotubes

    Science.gov (United States)

    de Jong, Frans Jan; Buffet, Adeline

    2016-11-01

    Understanding the local filtering of nanoparticles (NPs) is essential for the development and optimization of medical and industrial applications. Microfocus small-angle X-ray scattering (μSAXS) was used to determine the local filtration kinetics of 100 nm sized colloidal gold nanoparticles (Au NPs) within a multi-walled carbon nanotube (MWCNT) forest. To get a physical insight into the Au NP filtration process within the MWCNT forest a novel model based on the well-known DLVO theory was developed. The DLVO theory is commonly used to describe the interaction between colloidal particles. In addition to the attractive Van de Waals force and the electrostatic double-layer force, a non-DLVO force is added to account for hydration and hydrophobic effects. The model presented here shows that the Au NPs are mainly unfavorably deposited into the so-called secondary energy minimum. This latter finding is in good agreement with the experimental observations and the literature, in which unfavorable particle deposition is related to deposition into the secondary energy minimum. The use of μSAXS to get a physical insight into the local deposition kinetics of submicrometer particles opens up new pathways to optimize the preparation of MWCNT forests for filtration purposes.

  2. Filtration of sodium chloride from seawater using carbon hollow tube composed of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Chaudhary Ravi Prakash Patel

    2014-07-01

    Full Text Available The present article deals with filtration of seawater to remove sodium chloride (NaCl using filter made from organized structures of carbon nanotubes (CNTs. The filter consists of hollow carbon cylinder (length ~10 cm, diameter ~1 cm, which is composed of radially aligned CNTs. This carbon hollow cylinder has been synthesized by continuous spray pyrolysis of ferrocene–benzene solution in argon atmosphere. The hollow cylinder has been turned into a water filter by closing one end and keeping a small funnel at the other. Filtration of seawater (Marina Beach, Chennai, India has been obtained both under the self pressure of seawater column in the hollow cylinder and under the difference of pressure created by enclosing the filter in a vacuum tight container. It has been found that the efficiency of filtration is about two times higher under partial vacuum (~10–2 torr created on the filtrate (water side. After filtration of seawater, a deposit in the inner surface of hollow cylinder has been found. This deposit has been characterized by X-ray diffraction, transmission electron microscopy and energy dispersive X-ray analysis, and it has been found that the deposit was NaCl. The filtration leads to almost complete removal of NaCl from the seawater.

  3. Screening culture filtrates of fungi for activity against Tylenchulus semipenetrans

    Energy Technology Data Exchange (ETDEWEB)

    Verdejo-Lucas, S.; Viera, A.; Stchigel, A. M.; Sorribas, F. J.

    2009-07-01

    Culture filtrates of 20 fungi isolated from citrus soils were screened for their activity against Tylenchulus semipenetrans in both in vitro and greenhouse tests. The filtrates of Talaromyces cyanescens (isolates 2-4 and 2-5), Paecilomyces lilacinus, Chaetomium robustum, Acremonium strictum, Engyodontium album, Myrothecium verrucaria, Emericella rugulosa, and Tarracomyces gigaspora consistently inhibited the motility of second-stage juveniles at various concentrations of the filtrate. Dose-response models were used to determine the filtrate concentration required to inhibit the motility of 50% of the juveniles (CI50). The culture filtrate of P. lilacinus showed the highest activity with a CI50 value of 58% that differed from that of C. robustum (CI50 = 68%), and A. strictum CI50 = 82%. The culture filtrates of P. lilacinus, E. album, and T. cyanescens 2-5 maintained their activity when autoclaved at 120 degree centigrade for 20 min. The autoclaved filtrate of T. cyanescens 2-4 was more effective at inhibiting juvenile motility (CI50 = 28%) than that of T. cyanescens 2-5 (CI50 = 80%), C. robustum (CI50 = 72 %) and P. lilacinus (CI50 = 72%). The culture filtrate of T. cyanescens 2-4 also inhibited egg hatching. Nematode reproduction on Cleopatra mandarin and Carrizo citrange were respectively reduced by the culture filtrate of P. lilacinus and the autoclaved filtrate of T. cyanescens 2-4. These results support the hypothesis that soil fungi may contribute to regulate nematode densities by the production of secondary metabolites with nematicidal activity. (Author) 30 refs.

  4. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  5. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-05-01

    Full Text Available Over the course of the past decade, there has been growing interest in the development of different types of membranes composed of carbon nanotubes (CNTs, including buckypapers and composite materials, for an ever-widening range of filtration applications. This article provides an overview of how different types of CNT membranes are prepared and the results obtained from investigations into their suitability for different applications. The latter involve the removal of small particles from air samples, the filtration of aqueous solutions containing organic compounds and/or bacteria, and the separation of individual liquids present in mixtures. A growing number of reports have demonstrated that the incorporation of CNTs into composite membranes confers an improved resistance to fouling caused by biomacromolecules and bacteria. These results are discussed, along with evidence that demonstrates it is possible to further reduce fouling by taking advantage of the inherent conductivity of composite membranes containing CNTs, as well as by using different types of electrochemical stimuli.

  6. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  7. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  8. Carbon Nanotube Based Microfluidic Elements for Filtration and Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O; Ben-Barak, N; Peng, J; Noy, A

    2003-06-25

    We have developed a method for integration of patterned arrays of carbon nanotubes or the ''nanotube mesh'' into microfabricated channels. The method includes standard lithographic methods for patterning and etching the substrate, followed by catalyst patterning, CVD deposition of nanotubes, and anodic bonding of coverslip top. We will describe a carbon nanotube filtering device fabricated using this method and discuss the use of carbon nanotube arrays as molecular concentration and separation media.

  9. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    Science.gov (United States)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  10. Integration of membrane filtration and photoelectrocatalysis using a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane for enhanced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanlong; Chen, Shuo, E-mail: shuochen@dlut.edu.cn; Yu, Hongtao; Quan, Xie

    2015-12-15

    Highlights: • Membrane filtration was integrated with photoelectrocatalysis for water treatment. • This integrated process (PECM) displays good antifouling capacity in NOMs removal. • PECM process enables efficient removal of chemical contaminants (e.g., RhB). • Enhanced charge separation of PECM process leads to its improved performance. - Abstract: Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO{sub 2} nanoparticles layer with photocatalytic activity on Al{sub 2}O{sub 3} membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0 V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone.

  11. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  12. Bacterial Filtration Using Carbon Nanotube/Antibiotic Buckypaper Membranes

    Directory of Open Access Journals (Sweden)

    Luke J. Sweetman

    2013-01-01

    Full Text Available The preparation of free-standing carbon nanotube “buckypaper” (BP membranes consisting of either single-walled carbon nanotubes (SWNTs or multi-walled carbon nanotubes (MWNTs, and the antibiotic ciprofloxacin (cipro, is reported. The electrical, mechanical and morphological properties of these membranes have been characterised and are compared to those of the corresponding buckypaper membranes containing the surfactant Triton X-100 (Trix. Analysis of scanning electron microscopic images of the surfaces of SWNT/cipro and SWNT/Trix (Trix  =  Triton X-100 buckypapers revealed that the diameter of their surface pores was significantly smaller than that of the corresponding materials prepared using MWNTs. Similarly, the average internal pore diameter of both SWNT buckypapers was found to be smaller than that of their MWNT counterparts, after analysis of binding isotherms derived from nitrogen adsorption/desorption measurements performed on the materials. All four buckypaper membranes examined were found to be >99% effective for removing Escherichia coli (E. coli from aqueous suspensions. However, buckypapers containing ciprofloxacin outperformed their counterparts containing the surfactant. Both MWNT buckypapers were more effective at preventing passage of E. coli than their analogues containing SWNTs, while fluorescence microscopic examination of stained membrane surfaces demonstrated that buckypapers composed of SWNTs had greater bactericidal properties.

  13. Trace organics variation across the wastewater treatment system of a Class-B refinery and estimate of removal of refractory organics by add-on mixed-media filtration and granular activated carbon at pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Raphaelian, L. A.; Harrison, W.

    1978-06-01

    Wastewater at SOHIO's Toledo refinery was sampled every four hours for four successive days in December 1976. Effluents from the full-scale system (dissolved-air-flotation (DAF) unit and final clarifier for the activated-sludge unit) and an add-on pilot-scale unit (mixed-media filter and activated-carbon columns) were sampled for analysis of common wastewater parameters and trace organic compounds. Grab samples taken every four hours were composited daily. Organics were isolated into acid, base, and neutral fractions. Four-day composites of these daily extracts were analyzed by capillary-column gas chromatography/mass spectrometry. Some 304 compounds were identified in the neutral fraction of the DAF effluent and removal of these organics by the activated-sludge and add-on treatment units was estimated. Numerous data for the approximate concentration of organic compounds are presented. Common wastewater parameters are also presented for comparison to specific organics concentration data. The activated-sludge unit removed aromatic compounds better than it did nonaromatics whereas the activated-carbon unit was better at removal of nonaromatic compounds. Average percentage removal of those organics present in the DAF effluent was greater than 99 percent (activated sludge), approximately 0 percent (mixed-media filter), and less than 1 percent (activated carbon). Of the approximately 1 percent of trace organics remaining in the final-clarifier effluent, 81 percent (by weight) were removed by the activated carbon. Because of variations in extraction efficiencies, amount of sample injected, losses on the GC column and transfer lines, and other sources of error, these are only approximate removal estimates.

  14. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    Science.gov (United States)

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  15. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.

    Science.gov (United States)

    Genz, Arne; Kornmüller, Anja; Jekel, Martin

    2004-09-01

    The advanced phosphorus (P) removal by adsorption was studied for its suitability as a post-treatment step for membrane bioreactor (MBR) effluents low in P concentration and particle content. Two commercial adsorbents, granulated ferric hydroxide (GFH) and activated aluminium oxide (AA), were studied in batch tests and lab-scale filter tests for P adsorption in MBR filtrates. GFH showed a higher maximum capacity for phosphate and a higher affinity at low P concentrations compared to AA. Competition by inorganic ions was negligible for both adsorbents at the original pH (8.2). When equilibrium P concentrations exceeded 2 mg L(-1) in the spiked MBR filtrates, a precipitation of calcium phosphates occurred additionally to adsorption. During column studies the effluent criteria of 50 microgL(-1) P was reached after a throughput of 8000 bed volumes for GFH and 4000 for AA. Dissolved organic carbon appears to be the strongest competitor for adsorption sites. A partial regeneration and reloading of both adsorbents could be achieved by the use of sodium hydroxide.

  16. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  17. Transparent conducting film: Effect of vacuum filtration of carbon nanotube suspended in oleum

    Indian Academy of Sciences (India)

    Tsuyoshi Saotome; Hansang Kim; Zhe Wang; David Lashmore; H Thomas Hahn

    2011-07-01

    Vacuum filtration process to fabricate a transparent conducting carbon nanotube (CNT) film is reported. A CNT mat, which is a fibrous sheet of long multi-walled carbon nanotubes (MWNT), was prepared and dispersed in oleum by solution-sonication. The suspension was then vacuum filtered to obtain a thin MWNT layer with improved dispersion. Sheet resistance of the obtained MWNT layer was increased despite the improved dispersion. SEM micrographs and energy dispersive spectroscopy results indicated that the increase of the sheet resistance could be attributed to degradation and oxidation of the MWNT bundles. Though the chemical approach in this study did not improve the electrical property of the CNT mat, a mechanical approach proposed in our recent work was deemed suitable to enhance optical and electrical properties of the CNT mat.

  18. Remoção de atrazina e metabólitos pela filtração lenta com leito de areia e carvão ativado granular Removal of atrazine and metabolites through slow filtration by sand and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Edumar Ramos Cabral Coelho

    2012-09-01

    Full Text Available A atrazina (ATZé um herbicida largamente utilizado no mundo, sendo encontrada associada aos seus produtos de degradação em águas superficiais e subterrâneas. Pertence à classe das s-triazinas e, juntamente com os metabólitos clorados deetilatrazina (DEA e deisopropilatrazina (DIA, possui potencial carcinogênico e toxicidade como disruptores endócrinos. A limitação dos processos que empregam a coagulação química na remoção de ATZ, a conhecida capacidade do carvão ativado em remover microcontaminantes em água e o risco que a ATZ e seus metabólitos apresentam à saúde motivaram o estudo da filtração lenta com leito de areia e carvão ativado granular. Os resultados apontaram a eficiência do processo de filtração lenta com camada intermediária de carvão ativado granular na remoção de ATZ e a limitação deste na remoção dos metabólitos DEA, DIA e deetilhidroxiatrazina (DEHA.Atrazine (ATZ is widely used as herbicide, commonly found in association to its degradation products in surface water and groundwater. It belongs to the class of s-triazines and together with the chlorinated metabolites dieethylatrazine (DEA and deisopropilatrazine (DIA have carcinogenic potential and toxicity as endocrine disruptors. The limitation of the processes employing chemical coagulation in the removal of atrazine, the known ability of activated carbon to remove microcontaminants in water and the risk that atrazine and the potential toxicity to human health of its metabolits motivated the study of slow sand filtration bed combined with granular activated carbon. The results showed the high efficiency of the slow filtration process with intermediate layer of granular activated carbon in the removal of atrazine and its limitation on the removal of the metabolites DEA, DIA and diethylhidroxiatrazine (DEHA.

  19. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method.

    Science.gov (United States)

    van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco

    2017-07-04

    Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC14, d ng ATP L(-1)) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg(-1) C and BPC14/TOC = 16.3 ± 2.2 d ng ATP mg(-1) C, corresponding with 1.2 ± 0.19 ng ATP mg(-1) C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dynamic fouling behaviors of submerged nonwoven bioreactor for filtration of activated sludge with different SRT.

    Science.gov (United States)

    Chuang, Shun-Hsing; Lin, Po-Kuen; Chang, Wei-Chin

    2011-09-01

    The flux variations and resistances accumulated during filtration of activated sludge with sludge retention time (SRT) of 15, 30, and 60 days were analyzed to investigate the dynamic fouling behavior in a submerged nonwoven bioreactor. Different SRT values varied sludge condition and particle size distribution in the supernatants, which caused dissimilar fouling characteristics. Short-term fouling of the nonwoven bioreactor during filtration of activated sludge with SRT of 15 days was fully reversible, and the resistance percentages of solutes, colloids, and suspended solids were 6%, 27%, and 67%, respectively. On the other hand, significant increases of colloid resistance, such as with the filtration of activated sludge with SRT of 30 and 60 days, were related to the occurrence of irreversible fouling. The phenomenon of pore blocking by particles or colloids with size analogous to the pore of nonwoven fabric was a decisive factor leading to irreversible fouling in the large-pore materials.

  1. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    Science.gov (United States)

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter.

  2. Light-induced vibration characteristics of free-standing carbon nanotube films fabricated by vacuum filtration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junying; Zhu, Yong, E-mail: yongzhu@cqu.edu.cn; Wang, Ning; Zhang, Jie [The Key Laboratory of Optoelectronic Technology and System, Education Ministry of China, Chongqing University, Chongqing, 400044 (China); Wang, Xin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2014-07-14

    In this paper, we fabricated carbon nanotube (CNT) films with different thickness by vacuum filtration method, and the films were separated from Mixed Cellulose Ester membranes with burn-off process. The thickness of CNT films with different concentrations of CNTs 50 mg, 100 mg, 150 mg, and 200 mg are 10.36 μm, 20.90 μm, 30.19 μm, and 39.98 μm respectively. The CNT bundles are homogeneously distributed and entangled with each other, and still maintain 2D continuous network structures after burn-off process. The optical absorptivity of the films is between 84% and 99% at wavelengths ranging from 400 nm to 2500 nm. Vibration characteristics were measured with the Fabry-Perot (F-P) interferometer vibration measurement system. CNT films vibrate only under the xenon light irradiating perpendicularly to the surface. Vibration recorded by Fabry-Perot interferometer is considered to be caused by the time-dependent thermal moment, which is due to the temperature differences of two sides of CNT films. The vibration frequency spectrums between 0.1 ∼ 0.5 Hz were obtained by the Fast Fourier Transform spectra from time domain to frequency domain, and showed a linear relationship with films thickness, which is in accordance with theoretical model of thermal induced vibration.

  3. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    OpenAIRE

    Jinzhuo Xu; Tao Feng; Yiwei Chen; Zhuo Sun

    2013-01-01

    The graphene double-walled carbon nanotube (DWCNT) hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better ...

  4. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow

    NARCIS (Netherlands)

    van der Mei, Henny C.; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E.; Collias, Dimitris I.; Mitchell, Michael D.; Busscher, Henk J.

    2008-01-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not

  5. Polymer application for separation/filtration of biological active compounds

    Science.gov (United States)

    Tylkowski, B.; Tsibranska, I.

    2017-06-01

    Membrane technology is an important part of the engineer's toolbox. This is especially true for industries that process food and other products with their primary source from nature. This review is focused on ongoing development work using membrane technologies for concentration and separation of biologically active compounds, such as polyphenols and flavonoids. We provide the readers not only with the last results achieve in this field but also, we deliver detailed information about the membrane types and polymers used for their preparation.

  6. Pré-tratamento de lixiviados de aterros sanitários por filtração direta ascendente e coluna de carvão ativado Landfill leachate pre-treatment by upflow direct filtration and column of activated carbon

    Directory of Open Access Journals (Sweden)

    Armando Borges de Castilhos Junior

    2010-12-01

    Full Text Available Vários problemas ambientais no Brasil decorrem do acelerado crescimento dos setores produtivos e, consequentemente, da multiplicidade dos resíduos sólidos urbanos gerados. A disposição destes em aterros sanitários é prática comum; entretanto, essa deposição requer medidas de proteção ambiental, incluindo o tratamento dos lixiviados. Este trabalho, conduzido em filtros de areia e coluna de carvão ativado, trata de proposta de tratamento físico-químico do lixiviado como alternativa ao processo biológico. No que se refere ao processo de filtração, observaram-se reduções de até 74% para DQO, 47% para DBO, 93% para cor, 90% para amônia e aumento de 0,3 para 0,9 na relação DBO5/DQO. Constataram-se limitações com relação à duração das carreiras de filtração, para o que se sugere avaliar outras granulometrias de areia e até mesmo tecnologias de tratamento.Several environmental problems in Brazil are due to the rapid growth of various productive sectors, and the resulting qualitative multiplicity of municipal solid waste that are generated. The disposal of solid waste in landfills is a common practice; however, it requires environment protection measures, including the treatment of leachate. This work conducted in sand filters and activated carbon column refers to physical and chemical treatment of leachate as an alternative to the biological process. Regarding the filtration process, the results showed reductions of up to 74% for COD, 47% for BOD, 93% for color, 90% for ammonia and an increase from 0.3 to 0.9 in BOD5/COD relation. Limitations were found in relation to filtration run, which suggests the evaluation of other size grains and even treatment technologies.

  7. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  8. Filtration of activated granulocytes during cardiopulmonary bypass surgery : A morphologic and immunologic study to characterize the trapped leukocytes

    NARCIS (Netherlands)

    Smit, JJJ; de Vries, AJ; Gu, YJ; van Oeveren, W

    Cardiopulmonary bypass surgery induces an inflammatory reaction among others by activation of granulocytes. Leukocyte filtration has been shown to reduce the postoperative morbidity mediated by activated granulocytes. However, little is known about the mechanism of filter-leukocyte interaction, This

  9. Filtration of activated granulocytes during cardiopulmonary bypass surgery : A morphologic and immunologic study to characterize the trapped leukocytes

    NARCIS (Netherlands)

    Smit, JJJ; de Vries, AJ; Gu, YJ; van Oeveren, W

    2000-01-01

    Cardiopulmonary bypass surgery induces an inflammatory reaction among others by activation of granulocytes. Leukocyte filtration has been shown to reduce the postoperative morbidity mediated by activated granulocytes. However, little is known about the mechanism of filter-leukocyte interaction, This

  10. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    Directory of Open Access Journals (Sweden)

    Jinzhuo Xu

    2013-01-01

    Full Text Available The graphene double-walled carbon nanotube (DWCNT hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better long-term stability, and stronger adhesive strength with conductive substrates. The optimized hybrid films with 20% weight ratio of graphene, which were fabricated by vacuum filtration, show the best electron emission performances with a low turn-on field of 0.50 Vμm−1 (at 1 μAcm−2 and a high field enhancement factor β of 27000.

  11. Pesticide removal by combined ozonation and granular activated carbon filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This research f

  12. Pesticide removal by combined ozonation and granular activated carbon filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This

  13. Dynamic Membrane for Cross-flow Micro-filtration in Treating Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    DENG Chun-hua; LI Fang; YANG Bo; XI Dan-li; CHEN Ji-hua

    2007-01-01

    Mixed liquid of activated sludge (AS) were microfiltrated by dynamic membrane (DM) made of 6 000 mesh kaolin. The results illustrated that the permeate quality and flux with DM filtration were superior to that with direct filtration in treating AS. The experiments of membrane washing showed that DM could abate the internal fouling of membranes efficiently, and the permeate flux of renewed membrane reached 90% of that of new membranes. The denser the mixed liquid suspended solids (MLSS) were, the lower the permeate flux was. Increasing of both flow velocity over the membrane surface and trans-membrane pressure (TMP) could lead to some enhancement of permeate flux, while the former approach could be carried out more economically. The feasibility of application of the DM to membrane bioreactor (MBR) has been ascertained.

  14. 氧化石墨烯改性活性炭纤维滤除卷烟主流烟气的释放物%Filtration of Released Components in Cigarette Mainstream Smoke by Applying Graphene Oxide Modified Activated Carbon Fiber

    Institute of Scientific and Technical Information of China (English)

    盛金; 庄亚东; 朱怀远; 刘献军; 曹毅; 沈晓晨; 张媛; 韩开冬; 尤晓娟

    2013-01-01

    研究了卷烟滤嘴中添加氧化石墨烯(GO)改性活性炭纤维(ACF)复合材料对卷烟主流烟气释放物的滤除作用.采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和比表面积测定对材料进行分析,结果显示GO均匀地负载在ACF表面;与原ACF相比,GO-ACF材料的O1s峰向低结合能移动,峰形平滑,同时表面积和总孔容变大.添加GO-ACF至滤嘴的卷烟,其苯酚、氰化氢和醛酮类的释放量均比只添加ACF的卷烟释放量低,且除乙醛外均比原样降低10%以上,其中苯酚和巴豆醛的降幅达26.7%和33.1%.对烟气释放物的滤除机制研究表明,在ACF表面修饰上GO后,材料表面含有丰富的羟基、羧基、碳氧和共轭基团,活性位点增多,易与烟气中的共轭分子和极性分子发生作用.该方法量少高效,为GO二维纳米材料在卷烟领域的应用奠定了基础.%The filtration of released components in the mainstream cigarette smoke by adding graphene oxide(GO) modified activated carbon fiber (ACF) into the cigarette filter was studied.The materials were characterized by scanning electron microscope(SEM),X-ray powder diffraction(XPS)and surface area measurements.The results showed that GO was coated on ACF uniformly.Compared with ACF,the binding energy of O1s in GO-ACF became lower and the peak became more smooth,also,the surface area and the total pore volume increased.Adding GO-ACF to the cigarette filter could result in its contents of phenol,hydrocyanic acid,aldehydes and ketones all lower than those in the ACF filter cigarettes,in which the contents of components all decreased by at least 10% except for aldehyde,and the reductions of phenol and crotonaldehyde were up to 26.7% and 33.1%,respectively.The study on the mechanism of the filtration indicated that,after modifying GO onto ACF,the active sites increased,since the material surface became rich in hydroxyl,carboxyl,carbonyl and conjugated groups which could interact with

  15. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    Science.gov (United States)

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  16. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  17. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    Science.gov (United States)

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  18. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, S.N. [Istanbul University (Turkey). Forestry Faculty; Imamura, Y. [Kyoto University (Japan). Wood Research Institute; Tsuchiya, F.; Ohsato, K. [JGC Corporation, Yokohama (Japan)

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Formitopsis palustris. However the filtrates from sugi wood processed at 270{sup o}C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. (author)

  19. Efficient separation of semiconducting single-wall carbon nanotubes by surfactant-composition gradient in gel filtration

    Science.gov (United States)

    Thendie, Boanerges; Omachi, Haruka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-01-01

    Gel filtration is a powerful method of separating and purifying semiconducting single-wall carbon nanotubes (s-SWCNTs) from their metallic (m-) counterpart. However, a small amount of m-SWCNTs usually remains, thus reducing the purity of the s-SWCNTs obtained. We have investigated the effect of elution with a gradient concentration of the surfactant on the separation and purity of s-SWCNTs. By utilizing the controlled low-gradient elution (CLGE) that we have developed, the purity of s-SWCNTs is improved to 94% from the 90% obtained with the conventional separation. Furthermore, CLGE simultaneously allows diameter-based separation of small-diameter s-SWCNTs, which indicates a promising utilization of CLGE for s-SWCNT separation.

  20. Filtration Fundamentals.

    Science.gov (United States)

    Ward, Ken; Hunsaker, Scot

    1997-01-01

    Examines how choice of commercial swimming-pool filtration systems is driven by the project-specific needs of the pools. Also highlighted are definitions of specific terms used when discussing filtration systems. Questions that pool designers can answer to make filtration-system purchasing decisions are listed. (GR)

  1. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  2. [Culture-filtrate producing condition and biological activity of Fusarium solani].

    Science.gov (United States)

    Ding, Wenjiao; Li, Jinhua; Chai, Zhaoxiang

    2009-10-01

    To study the culture-filtrate producing condition of Fusarium Solani isolated from Astragalus root and explore the mechanism Astragalus root rot disease caused by, in order to find theoretical support for screening resistant germ plasma via mycotoxin. The method of germinating seeds in petri dish with filter paper and inhibition method for embryo growth were used to study the biological activity and the specialty of cultural filtrate of 10 F. solani isolates. The toxin produced by F. solani had strong inhibition effect in the different nutrient media, at different temperatures and under different light conditions. With extension of culturing time, embryo inhibition rate went up gradually with the strongest inhibition at the 12th day and the inhibition ratio between 92.0% -52.0%. The toxin produced at 5 degrees C to 35 degrees C inhibited embryo germination of Astragalus differently with the strongest at 25 degrees C, and next to it at 20,30 degrees C. The impact of light on bioactive substances of the toxin was not statistically distinctive, but the 24-hour darkness was benefit to toxin production. PSC had a stronger inhibition rate than the other nutrient media, next to it was PDB. After autoclaving, the toxin still kept toxic to embryo of Astragalus, which indicated that the toxin was tolerant to high temperatures. The toxin produced by F. solani at different growing condition had strong biological activity, was tolerant to high temperature. The best condition for F. solani to produce toxin was that it was cultured in PSC liquid medium, in dark, at 25 degrees C for 12 d. The toxin produced by isolate HQM40 was non-host specific toxin.

  3. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto

    2015-01-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications. PMID:26190921

  4. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes.

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto; Sjamsuridzal, Wellyzar

    2015-06-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

  5. PLA and PP Composite Nonwoven with Antimicrobial Activity for Filtration Applications

    Directory of Open Access Journals (Sweden)

    Marta Łatwińska

    2016-01-01

    Full Text Available The PLA (50% wt./PP (50% wt., PLA (47.5% wt./PP (47.5% wt./paraffin (5% wt., and PLA (47.25% wt./PP (47.25% wt./paraffin (5% wt./CuO·SiO2 (0.5% wt. composite nonwovens were obtained in one-step process by using the melt-blown technique. Thermal properties (by the DSC method, physicomechanical parameters, specific surface area, the structure (by the SEM method, the elemental analysis (by the EDS method, and susceptibility to hydrolytic degradation (in alkaline and neutral media were studied for all the obtained nonwovens. The antimicrobial properties of the composite nonwovens were determined by using dynamic contact conditions method, with three kinds of microorganisms applied. The DSC analysis of nonwovens revealed that the mixing of PLA and PP caused the decrease in homogeneity of both polymers, as well as a considerable increase in the PLA crystallization enthalpy. The paraffin and CuO·SiO2 addition to PLA/PP nonwoven generally improved the filtration properties and downgraded tensile strength. Among all the tested composite nonwovens, the PLA/PP/paraffin/CuO·SiO2 was the most and the PLA/PP/paraffin was the least susceptible to hydrolytic degradation in both media used in the study. The PLA/PP/paraffin/CuO·SiO2 composite nonwoven revealed strong antibacterial activity and slight activity against the yeast.

  6. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  7. Characterizing black carbon in rain and ice cores using coupled tangential flow filtration and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    A. Ellis

    2015-06-01

    Full Text Available Antarctic ice cores have been used to study the history of black carbon (BC, but little is known with regards to the physical and chemical characteristics of these particles in the remote atmosphere. Characterization remains limited by ultra-trace concentrations in ice core samples and the lack of adequate methods to isolate the particles unaltered from the melt water. To investigate the physical and chemical characteristics of these particles, we have developed a tangential flow filtration (TFF method combined with transmission electron microscopy (TEM. Tests using ultrapure water and polystyrene latex particle standards resulted in excellent blanks and significant particle recovery. This approach has been applied to melt water from Antarctic ice cores as well as tropical rain from Darwin, Australia with successful results: TEM analysis revealed a variety of BC particle morphologies, insoluble coatings, and the attachment of BC to mineral dust particles. The TFF-based concentration of these particles has proven to give excellent results for TEM studies of BC particles in Antarctic ice cores and can be used for future studies of insoluble aerosols in rainwater and ice core samples.

  8. Upflow Sludge Blanket Filtration (USBF: An Innovative Technology in Activated Sludge Process

    Directory of Open Access Journals (Sweden)

    R Saeedi

    2010-06-01

    Full Text Available Background: A new biological domestic wastewater treatment process, which has been presented these days in activated sludge modification, is Upflow Sludge Blanket Filtration (USBF. This process is aerobic and acts by using a sludge blanket in the separator of sedimentation tank. All biological flocs and suspended solids, which are presented in the aeration basin, pas through this blanket. The performance of a single stage USBF process for treatment of domestic wastewater was studied in laboratory scale.Methods: The pilot of USBF has been made from fiberglass and the main electromechanical equipments consisted of an air com­pressor, a mixing device and two pumps for sludge return and wastewater injection. The wastewater samples used for the experiments were prepared synthetically to have qualitative characteristics similar to a typical domestic wastewater (COD= 277 mg/l, BOD5= 250 mg/l and TSS= 1 mg/l.Results: On the average, the treatment system was capable to remove 82.2% of the BOD5 and 85.7% of COD in 6 h hydraulic re­tention time (HRT. At 2 h HRT BOD and COD removal efficiencies dramatically reduced to 50% and 46.5%, respectively.Conclusion: Even by increasing the concentrations of pollutants to as high as 50%, the removal rates of all pollutants were re­mained similar to the HRT of 6 h.

  9. Investigation on elimination of some trace elements during the processes of coagulation-flocculation-settling and of polishing through activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, A.

    1974-06-01

    Research report:flocculation-settling with iron or aluminium salts is described. elimination of some trace elements by filtration through sand or activated carbon is discussed. (in french) (1 diagram, 1 graph, 6 tables)

  10. Effect of temperature, pH and detergents on the antifungal activity of bacterial culture filtrates against Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Eilyn Mena

    2014-01-01

    Full Text Available The bacteria associated to crops have been studied as potential biocontrol agents. However, few investigations on the interaction Musa spp. - Mycosphaerella fijiensis-Musa associated bacteria have been developed. Consequently, bacterial metabolites involved and the effect on them of physical and chemical factors remain unknown. Therefore, this study aimed to determine the effect of temperature, pH and detergents on bacterial culture filtrates with antifungal activity in vitro against Mycosphaerella fijiensis. The pathogen growth inhibition was assessed by absorbance reading at OD 565nm. It was found that the antifungal activity of the bacterial culture filtrates against M. fijiensis, varied in the presence of different values of temperature, pH, and types of detergents and this was related to the bacterial strain. The results suggested the possible protein nature of the metabolites with antifungal activity. Keywords: bacteria, biological control, antifungal metabolites

  11. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  12. Shortening filtrations

    Institute of Scientific and Technical Information of China (English)

    ENOCHS Edgar E.

    2012-01-01

    Let C be a set of modules.We argue that there is an ordinal κ such that if a module has a filtration by modules in C,then it has a filtration of length κ by direct sums of modules in C.As an application we give another way to prove a result of Saorín and (S)(t)oví(c)ek and of (S)(t)oví(c)ek.

  13. Flax shive as a sources of activated carbon for metals remediation

    Directory of Open Access Journals (Sweden)

    Akin, D. E.

    2007-02-01

    Full Text Available Flax shive constitutes about 70% of the flax stem and has limited use. Because shive is a lignocellulosic by-product, it can potentially be pyrolyzed and activated to produce an activated carbon. The objective of this study was to create an activated carbon from flax shive by chemical activation in order to achieve significant binding of selected divalent cations (cadmium, calcium, copper, magnesium, nickel, zinc. Shive carbons activated by exposure to phosphoric acid and com-pressed air showed greater binding of cadmium, copper, nickel or zinc than a sulfuric acid-activated flax shive carbon reported in the literature and a commercial, wood-based carbon. Uptake of calcium from a drinking water sample by the shive carbon was similar to commercial drinking water filters that contained cation exchange resins. Magnesium removal by the shive carbon was greater than a commercial drinking water filtration carbon but less than for filters containing cation exchange resins. The results indicate that chemically activated flax shive carbon shows considerable promise as a component in industrial and residential water filtration systems for removal of divalent cations.

  14. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products.

    Science.gov (United States)

    Wang, Yifei; Ma, Jing; Zhu, Jiaxin; Ye, Ning; Zhang, Xiaolei; Huang, Haiou

    2016-04-01

    In this study, multi-walled carbon nanotubes (MWCNT) with selected properties, including pristine MWCNT, hydroxylated MWCNT (H-MWCNT), thin-walled MWCNT with large inner diameter (L-MWCNT), aminated MWCNT, and high-purity MWCNT were investigated for dynamic removal of eight pharmaceuticals and personal care products (PPCP). The removal ratios of different PPCP by the pristine MWCNT followed a decreasing order of triclosan (0.93) > prometryn (0.71) > 4-acetylamino-antipyrine (0.67) > carbendazim (0.65) > caffeine (0.42) > ibuprofen (0.34) > acetaminophen (0.29) at 100 min of filtration. Similar or even higher PPCP removals were obtained for all PPCP as the influent concentration decreased, suggesting potential consistent PPCP removals at environmental PPCP concentrations. The removal ratio of acetaminophen was increased to 0.74 by using H-MWCNT. SRFA (Suwannee River fulvic acid) suppressed PPCP adsorption to MWCNT, to greater extents with increasing SRFA concentrations. The L-MWCNT, despite a large inner diameter of 52 ± 3 nm, did not provide better resistance to the competitive adsorption of SRFA than MWCNT with a small inner diameter of 10 ± 2 nm. Future research will be conducted to minimize the effect of SRFA and facilitate application of MWCNT to the treatment of PPCP-contaminated water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Water Filtration Products

    Science.gov (United States)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  16. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  17. Influence of incubation time of Trichoderma harzianum Rifai and antifungal activity of culture filtrate against Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Ernesto Juniors Pérez Torres

    2016-03-01

    Full Text Available This work was developed at Agriculture Microbiology laboratory in the Agriculture Faculty at Universidad Central “Martha Abreu” de Las Villas, with the aim to evaluate the influence of incubation time of Trichoderma harzianum Rifai on antifungal activity of its culture filtrates against Bipolaris oryzae. Flask with Czapek broth was used for growing T. harzianum, then one disc of mycelium were incubated during 20 and 30 days at 28±1ºC and dark. Trichoderma harzianum (strain A-34 was submited to filtration process, and comparison were done among concentration of 0%, 25%, 50%, 75%, 100% (v/v. Major inhibition porcentaje were observed in concentrations of 75% y 100% both at 20 and 30 days of incubation. At 20 day the inhibition porcentaje was greater in comparsison with 30 days.

  18. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  19. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  20. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  1. Modified Activated Carbon Perchlorate Sorbents

    Science.gov (United States)

    2007-01-25

    Although alternative technologies for perchlorate remediation include membrane filtration (reverse osmosis ) and phytoremediation, they are either...materials and the perchlorate absorption capacity is the inverse correlation between % O and the perchlorate absorption capacity. Table 5. Comparison of

  2. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devices The Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  3. Vascular filtration function in galactose-fed versus diabetic rats: The role of polyol pathway activity

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Chang, K.; Province, M.A.; Kilo, C.; Williamson, J.R. (Washington Univ. School of Medicine, St Louis, MO (USA))

    1990-07-01

    These studies were undertaken to assess the effects of increased galactose (v increased glucose) metabolism via the polyol pathway on vascular filtration function in the kidneys, eyes, nerves, and aorta. Quantitative radiolabeled tracer techniques were used to assess glomerular filtration rate (GFR) and regional tissue vascular clearance of plasma 131I-bovine serum albumin (BSA) in five groups of male Sprague-Dawley rats: nondiabetic controls, streptozotocin-diabetic rats, nondiabetic rats fed a 50% galactose diet, diabetic rats treated with sorbinil (an aldose reductase inhibitor), and galactose-fed rats treated with sorbinil. Sorbinil was added to the diet to provide a daily dose of approximately .2 mmol/kg body weight. After 2 months of diabetes or galactose ingestion, albumin clearance was increased twofold to fourfold in the eye (anterior uvea, choroid, and retina), sciatic nerve, aorta, and kidney; GFR was increased approximately twofold and urinary excretion of endogenous albumin and IgG were increased approximately 10-fold. Sorbinil treatment markedly reduced or completely prevented all of these changes in galactose-fed, as well as in diabetic rats. These observations support the hypothesis that increased metabolism of glucose via the sorbitol pathway is of central importance in mediating virtually all of the early changes in vascular filtration function associated with diabetes in the kidney, as well as in the eyes, nerves, and aorta. On the other hand, renal hypertrophy in diabetic rats and polyuria, hyperphagia, and impaired weight gain in galactose-fed and in diabetic rats were unaffected by sorbinil and therefore are unlikely to be mediated by increased polyol metabolism.

  4. Active carbon filter health condition detection with piezoelectric wafer active sensors

    Science.gov (United States)

    Bao, Jingjing; Giurgiutiu, Victor; Rubel, Glenn O.; Peterson, Gregory W.; Ball, Thomas M.

    2011-04-01

    The impregnated active carbon used in air purification systems degrades over time due to exposure to contamination and mechanical effects (packing, settling, flow channeling, etc.). A novel approach is proposed to detect contamination in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS) and electrochemical impedance spectroscopy (ECIS). ECIS is currently being used to evaluate active carbon filtration material; however, it cannot differentiate the impedance changes due to chemical contamination from those due to mechanical changes. EMIS can detect impedance changes due to mechanical changes. For the research work presented in this paper, Piezoelectric wafer active sensor (PWAS) was used for the EMIS method. Some remarkable new phenomena were unveiled in the detection of carbon filter status. 1. PWAS EMIS can detect the presence of contaminants, such as water and kerosene in the carbon bed 2. PWAS EMIS can monitor changes in mechanical pressure that may be associated with carbon bed packing, settling and flow channeling 3. EMIS and ECIS measurements are consistent with each other and complimentary A tentative simplified impedance model was created to simulate the PWAS-carbon bed system under increasing pressure. Similar impedance change pattern was observed when comparing the simulation results with experimental data.

  5. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  6. Improved method for the determination of nonpurgeable suspended organic carbon in natural water by silver filter filtration, wet chemical oxidation, and infrared spectrometry

    Science.gov (United States)

    Burkhardt, M.R.; Brenton, R.W.; Kammer, J.A.; Jha, V.K.; O'Mara-Lopez, P. G.; Woodworth, M.T.

    1999-01-01

    Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45-??m-pore-size, 47-mm-diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame-sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample. The quantitation and method detection limit for routine analysis is 0.2 mg/L. The average percent recovery in five representative matrices was 97 ?? 11%. The errors associated with sampling and sample preparation of nonpurgeable suspended organic carbon are also described.Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45-??m-pore-size, 47-mm-diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame-sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample

  7. A Novel Hierarchical Structured Poly(lactic acid/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2016-01-01

    Full Text Available Hybrid poly(lactic acid/titania (PLA/TiO2 fibrous membranes exhibiting excellent air filtration performance and good antibacterial activity were prepared via the electrospinning technique. By varying the composition of the precursor solutions and the relative humidity, the morphologies of PLA/TiO2 fibers, including the nanopores and nanometer-scale protrusions on the surface of the fibers, could be regulated. The distribution of nanopores and TiO2 nanoparticles on the surface of PLA/TiO2 fibers was investigated. Nitrogen adsorption-desorption analysis revealed that nanopores and nanometer-scale protrusions play an important role in improving the specific surface area and nanopore volume of the relevant PLA/TiO2 fibrous membrane. Filtration performance tests conducted by measuring the penetration of sodium chloride aerosol particles with a 260 nm mass median diameter indicated that fibers with a high surface roughness, large specific surface area, and large nanopore volume greatly improved the particle capture efficiency and facilitated the penetration of airflow. Furthermore, the introduction of TiO2 nanoparticles endows the relevant fibrous membrane with antibacterial properties. The as-prepared PLA/TiO2 fibrous membrane loaded with 1.75 wt% TiO2 nanoparticles formed at a relative humidity of 45% exhibited a high filtration efficiency (99.996% and a relatively low pressure drop (128.7 Pa, as well as a high antibacterial activity of 99.5%.

  8. Methane adsorption on activated carbon

    OpenAIRE

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  9. Minimizing activated carbons production cost

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  10. Simulations of phenol adsorption on activated carbon and carbon black

    OpenAIRE

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  11. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  12. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  13. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  14. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  15. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  16. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA

    Science.gov (United States)

    Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, J.

    2010-01-01

    This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9??m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3????m) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8??mg??L-1) of the 2.2??mg??L-1 dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2??mg??L-1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2????M) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.

  17. CENTRIFUGAL MEMBRANE FILTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  18. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    Science.gov (United States)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  19. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    Science.gov (United States)

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  20. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan [Israel Institute for Biological Research, Ness Ziona (Israel). Departments of Organic Chemistry and Physical Chemistry

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  1. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats

    Science.gov (United States)

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P

    2003-01-01

    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  2. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  3. Bamboo-type carbon nanotube solids derived from low-cost epoxy resins and their potential application for air filtration

    Science.gov (United States)

    Keller, Teddy M.; Laskoski, Matthew; Long, Jeffrey W.; Qadri, Syed B.; Peterson, Gregory W.

    2014-01-01

    Carbon nanotubes (CNTs) are formed in bulk solids from the thermal decomposition of catalytic amounts of Fe2(CO)9 or Co2(CO)8 in the presence of an excess amount of a novolac epoxy carbon precursor during the conversion to a shaped thermoset composition and pyrolysis to 1,000 °C. The as-pyrolyzed carbonaceous solid is composed of either Fe or Co nanoparticles embedded in the nanostructured carbon, which contains bamboo-type carbon nanotubes, MWNTs, and some amorphous carbon. The Fe and Co nanoparticles, formed in situ from thermal decomposition of the corresponding salts, are responsible for the formation of the CNTs. The amorphous carbon is removed by selective combustion leaving a high surface area, porous composition. The pore network facilitates the transport of gaseous molecules such as ammonia to the adsorptive sites at the CNT surface and at entrained Fe or Co nanoparticle sites. During the combustion, the Fe and Co nanoparticles are oxidized to the corresponding nanostructured oxides, which are more receptive to ammonia absorption relative to the reduced metal. The ability to produce nanostructured solid compositions containing CNTs in any shape or form from inexpensive, commercially available carbon precursors is facilitating the development for application such as energy, gas sorption, chemical sensor, membrane, and nanodevices.

  4. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  5. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine

    DEFF Research Database (Denmark)

    Staehr, Mette; Buhl, Kristian B; Andersen, René F

    2015-01-01

    (uPA) in vitro. It was hypothesized that uPA is abnormally filtered to pre-urine and is inhibited in urine by amiloride in nephrotic syndrome. This was tested by determination of Na+-balance, uPA protein and activity and amiloride concentration in urine from rats with puromycin aminonucleoside (PAN......In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in pre-urine is thought to activate proteolytically ENaC and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator......) induced nephrotic syndrome. Urine samples from 6 adult and 18 pediatric patients with nephrotic syndrome were analyzed for uPA activity and protein. PAN-treatment induced significant proteinuria in rats which coincided with increased urine uPA protein and activity, increased urine protease activity...

  6. Particle emissions from laboratory activities involving carbon nanotubes

    Science.gov (United States)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  7. Petrographic evaluation of xylite activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania); Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania)

    2007-08-01

    Xylites are promising materials for activated carbon manufacturing due to their low rank, low inorganic content, and structural characteristics similar to the strong consistence of wood. These are similar to the classical adsorbents used for waste water purification, and available and profitable in the long term. This study has been undertaken to provide by means of petrographic data, new information on the porous structure development in chars during direct heating carbonization and physical activation. The xylite petrographic composition is very important, mainly due to the existence of structured wooden material - textinite with round and elongated cells - that influences the development of the structure and texture during carbonization and activation. The charcoal microstructure reveals some interesting aspects about the carbonization process with regard to evolution, efficiency and pore development. In the xylite activated carbon, the adsorption surface development by means of the highly porous system depends on the type of petrographical components, raw material grain size, and carbonization parameters. (author)

  8. Physical Activity Is not Associated with Estimated Glomerular Filtration Rate among Young and Middle-Aged Adults : Results from the Population-Based Longitudinal Doetinchem Study

    NARCIS (Netherlands)

    Herber-Gast, Gerrie-Cor M.; Hulsegge, Gerben; Hartman, Linda; Verschuren, W. M. Monique; Stehouwer, Coen D. A.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Spijkerman, Annemieke M. W.

    2015-01-01

    There is debate as to whether physical inactivity is associated with reduced kidney function. We studied the prospective association of (changes in) physical activity with estimated glomerular filtration rate (eGFR) in adult men and women. We included 3,935 participants aged 26 to 65 years from the

  9. Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion

    NARCIS (Netherlands)

    Sandra, F.; Ballestero, A.; NGuyen, V. L.; Tsampas, M. N.; Vernoux, P.; Balan, C.; Iwamoto, Y.; Demirci, U. B.; Miele, P.; Bernard, S.

    2016-01-01

    We report here the solution coatings of Diesel Particulate Filter (DPF) with allylhydridopolycarbosilane (AHPCS)-based polymers leading to supported silicon carbide (SiC)-based membranes with high temperature soot particle filtration efficiency, durability and catalytic activity. In a first part of

  10. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    Science.gov (United States)

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge).

  11. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release.

  12. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  13. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  14. Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor. The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated. The membrane foulants was also characterized by Fourier Transform Infrared (FTIR) spectroscopy technique. The results showed that the aerobic granular sludge had excellent denitrification ability; the removal efficiency of TN could reach 90%. The aerobic granular sludge could alleviate membrane fouling effectively. The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system. In addition, it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however, the activated sludge could cause severe cake fouling. The major components of the foulants were identified as comprising of proteins and polysaccharide materials.

  15. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  16. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  17. Microbial Contamination of Ice Machines Is Mediated by Activated Charcoal Filtration Systems in a City Hospital.

    Science.gov (United States)

    Yorioka, Katsuhiro; Oie, Shigeharu; Hayashi, Koji; Kimoto, Hiroo; Furukawa, Hiroyuki

    2016-06-01

    Although microbial contamination of ice machines has been reported, no previous study has addressed microbial contamination of ice produced by machines equipped with activated charcoal (AC) filters in hospitals. The aim of this study was to provide clinical data for evaluating AC filters to prevent microbial contamination of ice. We compared microbial contamination in ice samples produced by machines with (n = 20) and without an AC filter (n = 40) in Shunan City Shinnanyo Municipal Hospital. All samples from the ice machine equipped with an AC filter contained 10-116 CFUs/g of glucose nonfermenting gram-negative bacteria such as Pseudomonas aeruginosa and Chryseobacterium meningosepticum. No microorganisms were detected in samples from ice machines without AC filters. After the AC filter was removed from the ice machine that tested positive for Gram-negative bacteria, the ice was resampled (n = 20). Analysis found no contaminants. Ice machines equipped with AC filters pose a serious risk factor for ice contamination. New filter-use guidelines and regulations on bacterial detection limits to prevent contamination of ice in healthcare facilities are necessary.

  18. Adsorption of Hydantoins on Activated Carbon,

    Science.gov (United States)

    1985-05-01

    covery, Garten and Weiss (1965) proposed the existence of chromene (benzpyran) groups on the surface of H-carbons. The acid reaction with the chromene ...presence of the chromene groups on the surface of H-carbons is responsible for the acid-adsorbing characteristics. Activation temperatures and

  19. The Transport Properties of Activated Carbon Fibers

    Science.gov (United States)

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  20. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  1. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  2. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    Science.gov (United States)

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  3. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS.

    Science.gov (United States)

    Zhao, Pengyue; Fan, Sufang; Yu, Chuanshan; Zhang, Junyan; Pan, Canping

    2013-10-01

    A novel design for a rapid clean-up method was developed for the analysis of pesticide residues in fruit and vegetables followed by LC-ESI-MS/MS. The acetonitrile-based sample extraction technique was used to obtain the extracts, and further clean-up was carried out by applying the streamlined procedure on a multiplug filtration clean-up column coupled with a syringe. The sorbent used for clean-up in this research is multiwalled carbon nanotubes, which was mixed with anhydrous magnesium sulfate to remove water from the extracts. This method was validated on 40 representative pesticides and apple, cabbage, and potato sample matrices spiked at two concentration levels of 10 and 100 μg/kg. It exhibited recoveries between 71 and 117% for most pesticides with RSDs 0.995 for most studied pesticides between concentration levels of 10-500 μg/L. The LOQs for 40 pesticides ranged from 2 to 50 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market fruit and vegetable samples.

  4. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  5. ACTIVATED CARBON/REFRIGERANT COMBINATIONS FOR ...

    African Journals Online (AJOL)

    ES Obe

    2001-03-01

    Mar 1, 2001 ... Nigerian Journal of Technology Vol. 20. No. ... Federal university of Technology ... Activated carbon is the adsorbent while ammonia, ethanol and methanol are the adsorbate. The ... production is not a new phenomenon.

  6. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  7. Granular Activated Carbon Performance Capability and Availability.

    Science.gov (United States)

    1983-06-01

    Kinetics of Activated Carbon Adsorption Journal of Water Polution 47(4) Aoril 1975 Control Federation 4-t9 Wnitna) G Aoalied Polarography for...proposed models for kinetics of adsorption of pink water organics by activated carbon. Both models are basically similar in nature and propose that...include formulation of a complete model of the pink water system based upon existing data. This model would then serve to reduce the amount of

  8. Nanospace engineering of KOH activated carbon.

    Science.gov (United States)

    Romanos, J; Beckner, M; Rash, T; Firlej, L; Kuchta, B; Yu, P; Suppes, G; Wexler, C; Pfeifer, P

    2012-01-13

    This paper demonstrates that nanospace engineering of KOH activated carbon is possible by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. High specific surface areas, porosities, sub-nanometer (activation temperature. The process typically leads to a bimodal pore size distribution, with a large, approximately constant number of sub-nanometer pores and a variable number of supra-nanometer pores. We show how to control the number of supra-nanometer pores in a manner not achieved previously by chemical activation. The chemical mechanism underlying this control is studied by following the evolution of elemental composition, specific surface area, porosity, and pore size distribution during KOH activation and preceding H(3)PO(4) activation. The oxygen, nitrogen, and hydrogen contents decrease during successive activation steps, creating a nanoporous carbon network with a porosity and surface area controllable for various applications, including gas storage. The formation of tunable sub-nanometer and supra-nanometer pores is validated by sub-critical nitrogen adsorption. Surface functional groups of KOH activated carbon are studied by microscopic infrared spectroscopy.

  9. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  10. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  11. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  12. Glomerular filtration rate

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007305.htm Glomerular filtration rate To use the sharing features on this page, please enable JavaScript. Glomerular filtration rate (GFR) is a test used to check ...

  13. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  14. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  15. Effect of Vitamin D Receptor Activators on Glomerular Filtration Rate: A Meta-Analysis and Systematic Review.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Vitamin D receptor activators (VDRAs can protect against mineral bone disease, but they are reported to elevate serum creatinine (SCr and may also reduce glomerular filtration rate (GFR.We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs to evaluate the effect of VDRAs on kidney function and adverse events. MEDLINE, EMBASE, the Cochrane Controlled Trials Register were searched for RCTs that evaluate vitamin D receptor activators (alfacalcidol, calcitriol, doxercalciferol, falecalcitriol, maxacalcitol and paricalcitol up to March 2015.We included 31 studies, all of which were performed between 1976 and 2015, which enrolled 2621 patients. Patients receiving VDRAs had lower eGFR (weighted mean difference WMD -1.29 mL/min /1.73 m2, 95% CI -2.42 to -0.17 and elevated serum creatinine (WMD 7.03 μmol/L, 95% CI 0.61 to 13.46 in sensitivity analysis excluding studies with dropout rate more than 30%. Subgroup analysis of the 5 studies that not use SCr-based measures did not indicated lower GFR in the VDRAs group(WMD -0.97 mL/min/1.73 m2, 95% CI -4.85 to 2.92. Compared with control groups, there was no difference in all-cause mortality (relative risk RR 1.41, 95% CI 0.58 to 3.80, cardiovascular disease (RR 0.84, 95% CI 0.42 to 1.71, and severe adverse events (RR 1.15, 95% CI 0.75 to 1.77 for the VDRAs groups. Episodes of hypercalcemia (RR 3.29, 95% CI 2.02 to 5.38 were more common in the VDRAs group than in the control group.Administration of VDRAs increased serum creatinine levels. Subgroup analysis of studies that did not use SCr-based measures did not indicate a lower GFR in the VDRA group. Future studies with non-SCr-based measures are needed to assess whether the mild elevations of serum creatinine are of clinical significance.

  16. Preparation and characterization of activated carbons from rice ...

    African Journals Online (AJOL)

    atmosphere followed by activation using CO2 gas at various temperatures and ... available carbons, such as coal and coconut shells (Anon 1992). The ash ... extraction of the chemical from the carbonized char an activated carbon is obtained.

  17. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  18. Bimodal micropore size distribution in active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetyan, R.S.; Voloshchuk, A.M.; Limonov, N.A.; Romanov, Y.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry)

    1993-03-01

    The porous structure of active carbon was compared with that of the original mineral coal and its carbonization products. The parameters of the porous structure were calculated from the adsorption isotherms of CO[sub 2] (298 K) and H[sub 2]O (293 K). It was shown that carbonization of the original coal at 1120 K causes changes in the chemical composition, consolidation of the part which is amorphous to X-rays, generation of an ordered defect-containing structure on its basis, an increase in the volume of the micropores, and a decrease in the mean diameter. Activation of the carbonized coal affords a microporous structure with a bimodal size distribution.

  19. Converting Poultry Litter into Activated Carbon

    Science.gov (United States)

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  20. Importance of the colmation layer in the transport and removal of cyanobacteria, viruses, and dissolved organic carbon during natural lake-bank filtration

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.; Underwood, Jennifer C.; Aiken, George R.; Butler, Kenna D.; McCobb, Timothy D.; Jasperse, Jay

    2015-01-01

    This study focused on the importance of the colmation layer in the removal of cyanobacteria, viruses, and dissolved organic carbon (DOC) during natural bank filtration. Injection-and-recovery studies were performed at two shallow (0.5 m deep), sandy, near-shore sites at the southern end of Ashumet Pond, a waste-impacted, kettle pond on Cape Cod, MA, that is subject to periodic blooms of cyanobacteria and continuously recharges a sole-source drinking-water aquifer. The experiment involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophage, 110 nm long), MS2 (coliphage, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The injectate constituents were tracked as they were advected across the pond water–groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-point samplers placed at ∼30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ∼44% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d−1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by three orders of magnitude) at removing microspheres than was the underlying 20-cm-thick segment of sediment.

  1. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    Science.gov (United States)

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications.

  2. Rotary filtration system

    Science.gov (United States)

    Herman, David T.; Maxwell, David N.

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  3. A novel activated carbon for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  4. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    OpenAIRE

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  5. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  6. Characteristics of Nonafluorobutyl Methyl Ether (NFE) Adsorption onto Activated Carbon Fibers and Different-Size-Activated Carbon Particles.

    Science.gov (United States)

    Tanada; Kawasaki; Nakamura; Araki; Tachibana

    2000-08-15

    The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated

  7. Catalytic activity of carbons for methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2005-05-15

    Catalytic decomposition of methane is an environmentally attractive approach to CO{sub 2}-free production of hydrogen. The objective of this work is to evaluate catalytic activity of a wide range of carbon materials for methane decomposition reaction and determine major factors governing their activity. It was demonstrated that the catalytic activity of carbon materials for methane decomposition is mostly determined by their structural and surface properties. Kinetics of methane decomposition reaction over disordered (amorphous) carbons such as carbon black and activated carbon were determined. The mechanism of carbon-catalyzed methane decomposition reaction and the nature of active sites on the carbon surface are discussed in this paper.

  8. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  9. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  10. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media

    Science.gov (United States)

    Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2016-10-01

    Engineered nanoparticles (NPs) in the environment can act both as contaminants, when they are unintentionally released, and as remediation agents when injected on purpose at contaminated sites. In this work two carbon-based NPs are considered, namely CARBO-IRON®, a new material developed for contaminated site remediation, and single layer graphene oxide (SLGO), a potential contaminant of the next future. Understanding and modeling the transport and deposition of such NPs in aquifer systems is a key aspect in both cases, and numerical models capable to simulate NP transport in groundwater in complex 3D scenarios are necessary. To this aim, this work proposes a modeling approach based on modified advection-dispersion-deposition equations accounting for the coupled influence of flow velocity and ionic strength on particle transport. A new modeling tool (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) is presented for the simulation of NPs injection and transport in 3D scenarios. MNM3D is the result of the integration of the numerical code MNMs (Micro and Nanoparticle transport, filtration and clogging Model - Suite) in the well-known transport model RT3D (Clement et al., 1998). The injection in field-like conditions of CARBO-IRON® (20 g/l) amended by CMC (4 g/l) in a 2D vertical tank (0.7 × 1.0 × 0.12 m) was simulated using MNM3D, and compared to experimental results under the same conditions. Column transport tests of SLGO at a concentration (10 mg/l) representative of a possible spill of SLGO-containing waste water were performed at different values of ionic strength (0.1 to 35 mM), evidencing a strong dependence of SLGO transport on IS, and a reversible blocking deposition. The experimental data were fitted using the numerical code MNMs and the ionic strength-dependent transport was up-scaled for a full scale 3D simulation of SLGO release and long-term transport in a heterogeneous aquifer. MNM3D showed to potentially represent a valid tool for

  11. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  12. Adsorptive removal of nitrilotris(methylenephosphonic acid) antiscalant from membrane concentrates by iron-coated waste filtration sand.

    Science.gov (United States)

    Boels, L; Tervahauta, T; Witkamp, G J

    2010-10-15

    Iron-coated waste filtration sand was investigated as a low-cost adsorbent for the removal of nitrilotris(methylenephosphonic acid) (NTMP) from membrane concentrates. The adsorption of this phosphonate-based antiscalant on this material was measured and compared with two commercially available anion exchange resins and activated carbon. Comprehensive adsorption experiments were conducted in several synthetic concentrate solutions and in a concentrate collected from a full scale nano-filtration brackish water desalination plant. The effect of pH, ionic strength and the presence of competitive anions on the equilibrium adsorption were investigated. The results showed that, in contrast to the anion exchange resins, the adsorption on coated filtration sand is not suppressed at increasing ionic strength and is much less affected by the competitive anions carbonate and sulphate. The adsorption decreased slightly when the pH was raised from 7.0 to 8.0. The adsorption isotherms in the real nano-filtration concentrate, measured in the concentration interval of 5-50 mg dm(-1) NTMP, showed that the maximum adsorption capacity of coated filtration sand was 4.06 mg g(-1). The adsorption capacity per unit mass of the adsorbents at low NTMP concentration (12.5 mg dm(-3)) followed the decreasing order Amberlite IRA-410>coated filtration sand>Amberlite IRA-900>Norit SAE Super. This demonstrates that the use of iron-coated waste filtration sand offers a promising means for the removal of NTMP from membrane concentrates.

  13. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  14. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  15. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos-Rodriguez, R. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Montero-Cabrera, M.E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Esparza-Ponce, H.E.; Herrera-Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Ballinas-Casarrubias, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Nuevo Campus s/n, Chihuahua, Chih. (Mexico)

    2012-05-15

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6-8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35{+-}7%. Chemical speciation indicates the presence of (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -}, UO{sub 2}CO{sub 3}, UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and Fe{sub 2}O{sub 3}(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: Black-Right-Pointing-Pointer Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. Black-Right-Pointing-Pointer Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. Black-Right-Pointing-Pointer Rejection is performed by a hybrid mechanism regulated by AC adsorption. Black-Right-Pointing-Pointer Uranium and iron speciation and predominance determines the adsorption in the membrane.

  16. Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    董亚楠; 苏延磊; 陈文娟; 彭金明; 张岩; 姜忠义

    2011-01-01

    In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.

  17. Carbon nanomaterials: Biologically active fullerene derivatives

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2016-01-01

    Full Text Available Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters - fullerenes, nanotubes, and graphene - their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C60(OH24. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  18. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  19. Proximate analysis for determination of micropores in granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  20. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  1. Preparation and characterization of activated carbon from waste biomass.

    Science.gov (United States)

    Tay, Turgay; Ucar, Suat; Karagöz, Selhan

    2009-06-15

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.

  2. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  3. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... Preparation of activated carbon from a renewable agricultural ... fuel-wood because household energy requirements are met with multiple ..... for activated carbon production - A review. Renewable & Sustainable. Energy ...

  4. Aqueous mercury adsorption by activated carbons.

    Science.gov (United States)

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  5. Drinking water biotic safety of particles and bacteria attached to fines in activated carbon process

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; LIN Tao; WANG Leilei

    2007-01-01

    In this paper,the drinking water biotic safety of particles and bacteria attached to fines in activated carbon process was investigated by actual treatment process and advanced treatment pilot trial with granular activated carbon.In the experiment,the particles were detected by IBR particle calculating instrument,the activated carbon fines were counted on the basis of the most probable number (MPN) with a microscope,the total number of bacteria was analyzed between the conventional agar culture medium and the one with R2A,and the bacteria attached to activated carbon fines was resolved by the homogenization technique.The experimental results showed that the average total number of particles was 205 CNT/mL in the activated carbon effluent during a filter cycle,of which the number of particles with sizes>2μm was 77 CNT/mL more than the present particle control criterion of the American drinking water product standard (50 CNT/mL).The backwash of low density and long duration lowered particle number in the effluent.The MPN of activated carbon frees in the effluent was between 400 and 600 CNT/L,which accounted for less than 5‰ of the total particles from activated carbon filtration for a poor relative level (R2= 0.34).The microorganisms in activated carbon effluent consisted mostly of heterotrophic bacillus and the total bacteria number was five times as high as that of the inflow,i.e.the effluent from sand filter.The actual bacteria number may be truly indicated by the detection technique with R2A culture medium compared with the traditional agar cultivation.The inactivation efficiency of bacteria attached to activated carbon fines was less than 40% under 1.1 mg/L of chlorine contacting for 40 min.Results showed that the particles and bacteria attached to activated carbon fines may influence drinking water biotic safety,and that the effective control measures need to be further investigated.

  6. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  7. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    Indian Academy of Sciences (India)

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  8. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-09-01

    Full Text Available This study focused on the effect of powder activated carbon (PAC adsorption on microfiltration (MF membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC and ultraviolet absorbance at 254 nm (UV254 during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW. MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling.

  9. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water.

    Science.gov (United States)

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Ma, Xiaoyan

    2015-09-10

    This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10-200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW). MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling.

  10. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering] [and others

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  11. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  12. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  13. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  14. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  15. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  16. Charcoal and activated carbon at elevated pressure

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  17. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  18. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    Science.gov (United States)

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  19. Atividade alelopática do filtrado de cultura produzido por Fusarium solani Allelopathic activity of culture filtrate produced by Fusarium solani

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2007-03-01

    Full Text Available As plantas daninhas se constituem no principal problema a impor limitação à exploração da agropecuária nas áreas tropicais. Entretanto, o controle químico dessas plantas tem gerado insatisfações de ordem social, quer porque contaminam as fontes de recursos naturais ou por comprometerem a qualidade dos alimentos da dieta dos animais, em geral, e dos humanos, em particular. Os objetivos deste trabalho foram identificar e caracterizar a atividade alelopática do filtrado de cultura produzido pelo fungo Fusarium solani f. sp. pipers. Foram avaliados os efeitos das toxinas, nas concentrações de 1,0 e 4,0%, sobre a germinação de sementes e o desenvolvimento da radícula e do hipocótilo das plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia. Os resultados mostraram presença de atividade alelopática inibitória, com variações de acordo com a concentração e a planta receptora. A intensidade dos efeitos inibitórios induzidos pelo extrato esteve positivamente associada à concentração, com efeitos mais intensos verificados a 4,0%. Independentemente da concentração e do bioensaio, a espécie malícia se mostrou mais sensível aos efeitos do filtrado da cultura. O desenvolvimento da radícula foi o fator da planta mais intensamente inibido. Os resultados indicam a existência de potencial de utilização da toxina produzida pelo fungo, como fonte alternativa no controle de plantas daninhas, o que justifica estudos mais avançados.Weeds are a major problem limiting agriculture and cattle raising activities in the tropics. Current chemical control measures have raised environmental concerns due to their potential of contaminating natural resources and compromising the quality of animal feed. The objective of this paper was to identify and characterize the potential allelopathic activity of Fusarium solani f. sp. pipers culture filtrate. The effects of the toxin were analyzed at 1% and 4% concentration, on seed

  20. Visualization of water flow during filtration using flat filtration materials

    Directory of Open Access Journals (Sweden)

    Hrůza Jakub

    2012-04-01

    Full Text Available Filtration materials are very important elements of some industrial appliances. Water filtration is a separation of solid materials from fluid. Solid particles are captured on the frontal area of the filtration textile and only liquid passes through it. It is important to know the filtration process in a detailed way to be able to develop filtration materials. Visualization of filtration process enables a better view of the filtration. This method also enables to determine efficiency and homogeneity of filtration using image analysis. For this purpose, a new waterfiltration measuring setup was proposed and constructed. Filtration material is mounted into the optically transparent place in the setup. Laser sheet is directed into this place as in the case of Particle Image Velocimetry measuring method. Monochrome and sensitive camera records the light scattered by seeding particles in water. The seeding particles passing through the filter serve for measuring filtration efficiency, and also for visualization of filtration process. Filtration setup enables to measure also the pressure drop and a flow. The signals are processed by National Instruments compactDAQ system and UMA software. Microfibrous and nanofibrous filtration materials are tested by this measuring method. In the case of nanofibrous filtration, appropriate size of seeding particles is needed to be used to perform a process of filtration.

  1. Activated Carbon Fibers For Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  2. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  3. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  4. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  5. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium.

    Science.gov (United States)

    Li, Peng; Zuo, Jiane; Wang, Yajiao; Zhao, Jian; Tang, Lei; Li, Zaixing

    2016-04-15

    Tertiary nitrogen removal technologies are needed to reduce the excess nitrogen that is discharged into sensitive aquatic ecosystems. An integrated solid-phase denitrification biofilter (SDNF) was developed with dual media to remove nitrate and suspended solids (SS) from the secondary effluent of municipal wastewater treatment plants. Biodegradable polymer pellets of polycaprolactone (PCL) served as the biofiltration medium and carbon source for denitrification. Long-term continuous operation of the SDNF was conducted with real secondary effluent to evaluate the denitrification performance and effects of influent nitrate loading rates (NLR) and operating temperatures. The results indicated that both nitrate and SS were effectively removed. The SDNF had a strong tolerance for fluctuations in influent NLR, and a maximum denitrification rate of 3.80 g N/(L·d) was achieved. The low temperature had a significant impact on nitrogen removal, yet the denitrification rate was still maintained at a relative high level to as much as 1.23 g N/(L·d) even at approximately 8.0 °C in winter. Nitrite accumulation and excessive organics residue in the effluent were avoided throughout the whole experiment, except on occasional days in the lag phase. The observed biomass yield was calculated to be 0.44 kgVSS/kgPCL. The microbial diversity and community structure of the biofilm in the SDNF were revealed by Illumina high-throughput sequencing. The special carbon source led to an obvious succession of microbial community from the initial inoculum (activated sludge from aerobic tanks), and included a decrease in microbial diversity and a shift in the dominant groups, which were identified to be members of the family Comamonadaceae in the SDNF. The SDNF developed in this study was verified to be an efficient technology for tertiary nitrogen removal from secondary effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    Science.gov (United States)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  7. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    Science.gov (United States)

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  8. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  9. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail: hvaldes@ucsc.cl; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)

    2006-09-21

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  10. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Science.gov (United States)

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  11. Microfluidic colloid filtration

    Science.gov (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  12. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    Science.gov (United States)

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies.

  13. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies.

    Science.gov (United States)

    Wang, Qing; You, Wei; Li, Xiaowei; Yang, Yufeng; Liu, Lijun

    2014-03-15

    Invertebrate colonization of granular activated carbon (GAC) filters in the waterworks is one of the most frequently occurring and least studied biological problems of water processing in China. A survey of invertebrate colonization of GAC filters was carried out weekly from October 2010 to December 2011 at a reservoir water treatment works in South China. Twenty-six kinds of invertebrates were observed. The abundance was as high as 5600ind.m(-3) with a mean of 860ind.m(-3). Large variations in abundance were observed among different seasons and before and after GAC filtration. The dominant organisms were rotifers and copepods. The average invertebrate abundance in the filtrate was 12-18.7 times of that in the pre-filtered water. Results showed that the GAC filters were colonized by invertebrates which may lead to a higher output of organisms in the filtrate than in the pre-filtered water. The invertebrate abundance in the GAC filters was statistically correlated with the water temperature. Seasonal patterns were observed. The invertebrate abundance grew faster in the spring and summer. Copepods were dominant in the summer while rotifers dominated in all other seasons of the year. There was a transition of small invertebrates (rotifers) gradually being substituted by larger invertebrates (copepods) from spring to summer. Control measures such as backwashing with chloric water, drying filter beds and soaking with saliferous water were implemented in the waterworks to reduce invertebrate abundances in the GAC filters. The results showed that soaking with saliferous water (99%, reduction in percent) was best but drying the filter beds (84%) was more economical. Soaking filter beds with 20g/L saliferous water for one day can be implemented in case of emergency. In order to keep invertebrate abundance in the acceptable range, some of these measures should be adopted.

  14. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  15. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  16. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  17. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  18. Filtration by eyelashes

    Science.gov (United States)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  19. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    Directory of Open Access Journals (Sweden)

    S. G. Herawan

    2013-01-01

    Full Text Available Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  20. Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal.

    Science.gov (United States)

    Hu, Jingyi; Aarts, Annelies; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-07-15

    Integrating powdered activated carbon (PAC) into wastewater tertiary treatment is a promising technology to reduce organic micro-pollutant (OMP) discharge into the receiving waters. To take advantage of the existing tertiary filter, PAC was pre-embedded inside the filter bed acting as a fixed-bed adsorber. The pre-embedding (i.e. immobilization) of PAC was realized by direct dosing a PAC solution on the filter top, which was then promoted to penetrate into the filter media by a down-flow of tap water. In order to examine the effectiveness of this PAC pre-embedded filter towards OMP removal, batch adsorption tests, representing PAC contact reactor (with the same PAC mass-to-treated water volume ratio as in the PAC pre-embedded filter) were performed as references. Moreover, as a conventional dosing option, PAC was dosed continuously with the filter influent (i.e. the wastewater secondary effluent with the investigated OMPs). Comparative results confirmed a higher OMP removal efficiency associated with the PAC pre-embedded filter, as compared to the batch system with a practical PAC residence time. Furthermore, over a filtration period of 10 h (approximating a realistic filtration cycle for tertiary filters), the continuous dosing approach resulted in less OMP removal. Therefore, it was concluded that the pre-embedding approach can be preferentially considered when integrating PAC into the wastewater tertiary treatment for OMP elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Physicochemical and sensory changes in aged sugarcane spirit submitted to filtering with activated carbon filter

    Directory of Open Access Journals (Sweden)

    Felipe Cimino Duarte

    2012-09-01

    Full Text Available Sugarcane spirit is a drink considered as a national symbol of Brazil. It is produced by large producers and by about 30 thousand small and medium home-distilling producers dispersed throughout the country. The copper originating from the home-distillers can become a serious problem since at high concentrations in beverages it may cause serious human health problems. Therefore, the objective of this study was to investigate the influence of the activated carbon used in commercial filters on the physicochemical and sensory characteristics of aged sugarcane spirit. Analyses of copper, dry extract, alcoholic degree, higher alcohols, volatile acids, aldehydes, esters, furfural, and methanol were performed. The sensory evaluation was performed by seven selected trained judges, who analyzed the yellow color, woody aroma and flavor, and intensity of alcoholic aroma and flavor of the cane spirit before and after the filtration process. The sensory tests were carried out using a 9 cm non-structured intensity scale. A reduction was observed in all compounds analyzed physicochemically, except for the esters, which increased after filtration. This increase is probably due to the esterification of the alcohols and acids present. According to the sensory results obtained, a reduction was observed in the intensity of the yellow color, aroma, and wood flavor characteristics, the major characteristics of the aging process.

  2. Sex differences in serum CK activity but not in glomerular filtration rate after resistance exercise: is there a sex dependent renal adaptative response?

    Science.gov (United States)

    Amorim, Mayra Z; Machado, Marco; Hackney, Anthony C; de Oliveira, Wilkes; Luz, Carla Patrícia Novais; Pereira, Rafael

    2014-01-01

    We investigated differences in sex responses in serum CK activity and renal function measured by glomerular filtration rate (GFR) after an exercise session. Twenty-two healthy and trained volunteers (11 males and 11 females) performed 17 resistance exercises with 3 × 12 repetitions in a circuit training fashion. Subjects provided blood samples prior to exercise session, and at 24, 48, and 72 h following exercise sessions for creatine kinase and creatinine. Twenty-four-hour urine samples were collected before and 72 h after the exercise. Estimate (e) GFR was obtained by using the Chronic Kidney Disease Epidemiology Collaboration equation adjusted for males and females. After the exercise session, males showed greater serum CK activity than females (p  0.05) between sex for serum and urinary creatinine. eGFR decreased significantly for males (~10 %) and females (~8 %), but also without a difference between the sexes (p > 0.05). The correlation between CK and eGFR was significant for males (r = -0.794; p = 0.003), and females (r = -0.8875; p < 0.001). A significant negative correlation between CK activity and the eGFR indice of renal function in both males and females was observed. Additionally, the renal function compromise was similar for both sexes, despite males presenting greater exercise-induced skeletal muscle damage when compared to females.

  3. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  4. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  5. Preparation of a MFI zeolite coating on activated carbon

    NARCIS (Netherlands)

    Vaart, van der R.; Bosch, H.; Keizer, K.; Reith, T.

    1997-01-01

    A new and simple method for the preparation of MFI zeolite coated activated carbon is presented. Suitable nucleation sites for the growth of zeolites were introduced to the carbon by adding hydrophilic montmorillonite clay to the carbon substrate. A gas tight MFI zeolite coating was obtained on this

  6. Single and Mixed Gas Adsorption Equilibria of Carbon Dioxide/Methane on Activated Carbon

    NARCIS (Netherlands)

    van der Vaart, R.; van der Vaart, Rick; Huiskes, Cindy; Bosch, H.; Reith, T.

    2000-01-01

    Single gas adsorption isotherms of methane and carbon dioxide on micro-porous Norit RB1 activated carbon were determined in a gravimetric analyser in the temperature range of 292 to 349 K and pressures to 0.8 Mpa. Furthermore binary isotherms of carbon dioxide and methane mixtures were determined at

  7. The effect of filter cake viscoelasticity on filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    Wastewater is usually treated biologically, and a by-product from this treatment is waste-activated sludge with high water content. Sludge is therefore often filtrated to reduce the volume for handling and disposal, and to minimise the water content before incineration of the sludge. However...... a function of pressure as assumed when using the conventional models. Moreover, it is shown how the existing filtration models can be modified and the filtration process for activated sludge simulated....

  8. Production of activated carbon from a new precursor: Molasses

    Science.gov (United States)

    Legrouri, K.; Ezzine, M.; Ichcho, S.; Hannache, H.; Denoyel, R.; Pailler, R.; Naslain, R.

    2005-03-01

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulfuric acid, followed by carbonization. The adsorption capacity, the BET surface area, and the pore volume of the activated carbon were determined. The micropore volume was assessed by Dubinin- Radushkevich (DR) equation. The activated materials are mainly microporous and show the type I isotherm of the Brunauer classification for nitrogen adsorption. The activation in steam yielded a carbon that contains both micropores and supermicropores. Analysis of the nitrogen isotherm by BET and DR methods established that most of obtained carbons are highly microporous, with high surface areas (≥ 1200 m2/g) and very low mesoporosity.

  9. Enlargements of filtrations and applications

    CERN Document Server

    Corcuera, J M

    2012-01-01

    In this paper we review some old and new results about the enlargement of filtrations problem, as well as their applications to credit risk and insider trading problems. The enlargement of filtrations problem consists in the study of conditions under which a semimartingale remains a semimartingale when the filtration is enlarged, and, in such a case, how to find the Doob-Meyer decomposition. Filtrations may be enlarged in different ways. In this paper we consider initial and progressive filtration enlargements made by random variables and processes. Keywords: Credit Risk, Insider Trading, Enlargement of Filtrations

  10. [Effects of different fertilizer application on soil active organic carbon].

    Science.gov (United States)

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  11. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors

    Indian Academy of Sciences (India)

    KASINATH OJHA; BHARAT KUMAR; ASHOK K GANGULI

    2017-03-01

    Graphene-like activated and non-activated carbon nanostructures were synthesized from various natural sources like sugar, rice husk and jute. These carbon nanostructures were characterized using SEM, FTIR and Raman spectroscopy, surface area and thermogravimetric analysis. The electrochemical studies of these carbon materials confirm their promising characteristics for supercapacitor applications. Activated carbon nanostructures exhibit higher specific capacitance compared to that of non-activated carbons (non-Ac sugar).The activated carbon (Ac-jute) exhibits maximum specific capacitance of 476 F/g at an applied current density of 0.2 A/g which is much higher than that of graphene oxide (GO).

  12. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  13. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  14. Efficient L-lactic acid fermentation by the mold Rhizopus oryzae using activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Koide, M.; Hirata, M.; Gaw, M.; Takanashi, H.; Hano, T. [Oita Univ, Oita (Japan). Dept. of Applied Chemistry

    2004-11-01

    Batch fermentations of Rhizopus oryzae AHU 6537 in medium containing granular activated carbon from coal, powder activated carbon from coal or granular activated carbon from coconut were carried out in an airlift bioreactor. As a result, fermentation broths were decolorized by activated carbon, and clearer fermentation broths were obtained than in fermentation without activated carbon. With activated carbon from coal, the cells formed smaller pellets than in fermentation without activated carbon, and fermentation performance was improved. Productivity was further improved by increasing the amount of activated carbon from coal. Therefore, the productivity of lactic acid fermentation could be improved by selecting a suitable activated carbon and by controlling the amount of activated carbon.

  15. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  16. ADSORPTION OF DYES ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    ChenShuixia; WuChangqing; 等

    1998-01-01

    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  17. SEPARATION OF Ca AND Fe METAL ION IN SOURCE WATER BY ADSORPTION COLUMN TECHNIC WITH LOCAL ZEOLITE AND ACTIVE CARBON

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2016-04-01

    Full Text Available This research aims are to separate of Ca and Fe metal ion in source water, with local zeolite and active carbon by adsorption column technic. Efficiency of separation are control by adsorption time and size of zeolite. Method that used was column adsorption with a flow system in which sample is applied to the filtration tube containing zeolite and active carbon. Initial and final concentrations of the samples were analyzed using Atomic Adsorption Spectrophotometer instrument. The results obtained shows that ability adsorption of zeolite to Ca and Fe metal ion are a good. Zeolite 1 (10 mesh can reduce iron concentration until 93.98 % and zeolite 2 (5mesh until 98.88% for 1 – 4 week range time. Whereas reducing of calcium concentration is not good, until 2 week period time adsorption of calcium ion is about 50%.   Keywords: adsorption, zeolite, source water

  18. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    Science.gov (United States)

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  19. JPL Activated Carbon Treatment System (ACTS) for sewage

    Science.gov (United States)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  20. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  1. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    Science.gov (United States)

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  2. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    Science.gov (United States)

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  3. What Carbon Sources Support Groundwater Microbial Activity in Riparian Forests?

    Science.gov (United States)

    Gurwick, N. P.; Groffman, P. M.; McCorkle, D. C.; Stolt, M. H.; Kellogg, D. Q.; Gold, A. J.

    2004-05-01

    A major question in riparian research is the source of energy to support subsurface microbial denitrification activity. The supply of microbially-available carbon frequently limits microbial activity in the subsurface. Therefore, identifying the relative importance of carbon sources in the riparian subsurface helps explain the sustainability and spatial heterogeneity of denitrification rates. We have investigated the importance of buried, carbon-rich soil horizons, deep roots and dissolved organic carbon as potential carbon sources to support groundwater denitrification in riparian forests in Rhode Island. We used field observations, laboratory incubations and in-situ experiments to evaluate these sources at four sites in different geomorphic settings. In particular, we measured the 14C-DIC signature and DIC concentration of ambient groundwater and groundwater that had been degassed, re-introduced into the well, and incubated in-situ. Buried horizons appear to be an important source of carbon in the subsurface, as shown by active respiration in laboratory incubations; greater microbial biomass in buried carbon-rich soils compared to surrounding carbon-poor soils; and the presence of very old carbon (>1,000 ybp) in DIC 225 cm beneath the surface. DIC collected from shallower wells showed no clear evidence of ancient carbon. Roots also appear to be important, creating hotspots of carbon availability and denitrification in the generally carbon poor subsurface matrix. Dissolved organic carbon did not stimulate denitrification in aquifer microcosms in the laboratory, suggesting that this was not an important carbon source for denitrification in our sites. Determining which carbon source is fueling denitrification has practical implications. Where buried horizons are the key source, surface management of the riparian zone will likely have little direct influence on groundwater denitrification. Where roots are the key source, changes in the plant community are likely to

  4. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  5. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  6. Fractal analysis of granular activated carbons using isotherm data

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, N.R.; Pan, M. [Illinois Institute of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering; Sandi, G. [Argonne National Lab., IL (United States)

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  7. A Magnesium-Activated Carbon Hybrid Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  8. Studies on adsorptive desulfurization by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh Kumar, D.; Srivastava, Vimal Chandra [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India)

    2012-05-15

    Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso-octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C{sub 0}: 100-900 mg/L), adsorbent dosage (m: 2-22 g/L), time of adsorption (t: 15-735 min), and temperature (T: 10-50 C). Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination R{sup 2}-value of 0.9390 and Fisher F-value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Adsorption of EDTA on activated carbon from aqueous solutions.

    Science.gov (United States)

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  10. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  11. [Study on adsorption properties of organic vapor on activated carbons].

    Science.gov (United States)

    Cai, Dao-Fei; Huang, Wei-Qiu; Wang, Dan-Li; Zhang, Lin; Yang, Guang

    2013-12-01

    Adsorption technology is widely used in oil vapor recovery, and adsorbents have decisive effect on separation. Three kinds of activated carbon (AC) were chosen to study their adsorption properties and adsorption energy, where n-hexane and n-heptane acted as adsorbate and adsorption experiments were conducted at 293.15 K. At the same time, regression formula of Logistic model was used to fit the throughout curves of active carbons. The results showed that: surface area and pore volume of activated carbon were the main factors affecting its adsorption properties; the adsorption behavior of n-hexane and n-heptane were corresponding to Langmuir adsorption isotherm model; adsorption energy of these three kinds of activated carbon became greater with increasing specific surface area. Fitting curve of Logistic model had high similarity with the experimental results, which could be used in the prediction of breakthrough curves of activated carbons.

  12. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  13. Efficacy of two chemical coagulants and three different filtration media on removal of Aspergillus flavus from surface water.

    Science.gov (United States)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-02-01

    Aquatic fungi are common in various aqueous environments and play potentially crucial roles in nutrient and carbon cycling as well as interacting with other organisms. Species of Aspergillus are the most common fungi that occur in water. The present study was undertaken to elucidate the efficacy of two coagulants, aluminum sulfate and ferric chloride, used at different concentrations to treat drinking water, in removing Aspergillus flavus, as well as testing three different filtration media: sand, activated carbon, and ceramic granules, for their removal of fungi from water. The results revealed that both coagulants were effective in removing fungi and decreasing the turbidity of drinking water, and turbidity decreased with increasing coagulant concentration. Also, at the highest concentration of the coagulants, A. flavus was decreased by 99.6% in the treated water. Among ceramic granules, activated carbon, and sand used as media for water filtration, the sand and activated carbon filters were more effective in removing A. flavus than ceramic granules while simultaneously decreasing the turbidity levels in the test water samples. Post-treatment total organic carbon (TOC) and total nitrogen (TN) concentrations in the experimental water did not decrease; on the contrary, TN concentrations increased with the increasing dosage of coagulants. The filtration process had no effect in reducing TOC and TN in tested water.

  14. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    Science.gov (United States)

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction.

  15. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L

    2014-12-01

    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  16. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  17. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  18. Filtration performance of microporous ceramic supports.

    Science.gov (United States)

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  19. Impact of sulfur oxides on mercury capture by activated carbon.

    Science.gov (United States)

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  20. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  1. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  2. The Influence of Spirulina platensis Filtrates on Caco-2 Proliferative Activity and Expression of Apoptosis-Related microRNAs and mRNA.

    Science.gov (United States)

    Śmieszek, Agnieszka; Giezek, Ewa; Chrapiec, Martyna; Murat, Martyna; Mucha, Aleksandra; Michalak, Izabela; Marycz, Krzysztof

    2017-03-07

    Spirulina platensis (SP) is a blue-green microalga that has recently raised attention not only as a nutritional component, but also as a source of bioactivities that have therapeutic effects and may find application in medicine, including cancer treatment. In the present study we determined the cytotoxic effect of S. platensis filtrates (SPF) on human colon cancer cell line Caco-2. Three concentrations of SPF were tested-1.25%, 2.5%, and 5% (v/v). We have found that the highest concentration of SPF exerts the strongest anti-proliferative and pro-apoptotic effect on Caco-2 cultures. The SPF negatively affected the morphology of Caco-2 causing colony shrinking and significant inhibition of metabolic and proliferative activity of cells. The wound-healing assay showed that the SPF impaired migratory capabilities of Caco-2. This observation was consistent with lowered mRNA levels for metalloproteinases. Furthermore, SPF decreased the transcript level of pro-survival genes (cyclin D1, surviving, and c-Myc) and reduced the autocrine secretion of Wnt-10b. The cytotoxic effect of SPF involved the modulation of the Bax and Bcl-2 ratio and a decrease of mitochondrial activity, and was related with increased levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO). Moreover, the SPF also caused an increased number of cells in the apoptotic sub-G0 phase and up-regulated expression of mir-145, simultaneously decreasing expression of mir-17 and 146. Obtained results indicate that SPF can be considered as an agent with anti-cancer properties that may be used for colon cancer prevention and treatment.

  3. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    Science.gov (United States)

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data.

  4. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.

    Science.gov (United States)

    Hayashi, T; Lee, T G; Hazelwood, M; Hedrick, E; Biswas, P

    2000-06-01

    The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.

  5. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  6. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors

    Science.gov (United States)

    Li, Yong-feng; Liu, Yan-zhen; Liang, Yu; Guo, Xiao-hui; Chen, Cheng-meng

    2017-09-01

    This report presents a facile and effective method to synthesize freestanding nitrogen-doped reduced graphene oxide (rGO)/activated carbon (AC) composite papers for supercapacitors by a method combining vacuum filtration with post-annealing in NH3 atmosphere. The effect of activated carbon contents on the microstructure and capacitive behavior of the resulting composite papers before and after the annealing was investigated by X-ray diffraction, scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy. Results show that the composite paper with a 30% activated carbon loading has a high nitrogen content of 14.6 at% and superior capacitive performance (308 F/g, 1 A/g) to the other composite papers with various activated carbon loadings. Nitrogen was doped and GO reduced during the annealing. The rGO nanosheets acted as a framework, and the AC particles served as spacers to avoid agglomeration of graphene sheets. The high capacitance of the composite paper is ascribed to the electric double-layer behavior and the reversible redox reactions of the nitrogen and oxygen groups. The entire process is simple, environmental friendly and easily scalable for mass production.

  7. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  8. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon?

    Energy Technology Data Exchange (ETDEWEB)

    Margot, Jonas, E-mail: jonas.margot@epfl.ch [School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne (Switzerland); Kienle, Cornelia, E-mail: cornelia.kienle@oekotoxzentrum.ch [Swiss Centre for Applied Ecotoxicology, Eawag/EPFL, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Magnet, Anoÿs, E-mail: anoys.magnet@lausanne.ch [Sanitation Service, City of Lausanne, Rue des terreaux 33, 1002 Lausanne (Switzerland); Weil, Mirco, E-mail: m.weil@ect.de [ECT Oekotoxikologie GmbH, Boettgerstrasse 2-14, 65439 Floersheim/Main (Germany); Rossi, Luca, E-mail: luca.rossi@epfl.ch [School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne (Switzerland); Alencastro, Luiz Felippe de, E-mail: felippe.dealencastro@epfl.ch [School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne (Switzerland); Abegglen, Christian, E-mail: christian.abegglen@vsa.ch [Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, 8600 Dübendorf (Switzerland); Thonney, Denis, E-mail: denis.thonney@sige.ch [Sanitation Service, City of Lausanne, Rue des terreaux 33, 1002 Lausanne (Switzerland); Chèvre, Nathalie, E-mail: nathalie.chevre@unil.ch [Faculty of Geosciences and the Environment, University of Lausanne, 1015 Lausanne (Switzerland); Schärer, Michael, E-mail: michael.schaerer@bafu.admin.ch [Federal Office for the Environment (FOEN), Water Division, 3003 Bern (Switzerland); and others

    2013-09-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O{sub 3} l{sup −1} or a PAC dose between 10 and 20 mg l{sup −1}. Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of

  9. Grafting of activated carbon cloths for selective adsorption

    Science.gov (United States)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  10. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  11. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  12. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  13. Adsorption of chromium ion (VI) by acid activated carbon

    OpenAIRE

    A. A. Attia; Khedr,S. A.; Elkholy,S. A.

    2010-01-01

    The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S), and utilized as an adsorbent for the removal of Cr(VI) from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S...

  14. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    Science.gov (United States)

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  15. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  16. Interaction forces between waterborne bacteria and activated carbon particles

    NARCIS (Netherlands)

    Busscher, Henk J.; Dijkstra, Rene J. B.; Langworthy, Don E.; Collias, Dimitris I.; Bjorkquist, David W.; Mitchell, Michael D.; Van der Mei, Henny C.

    2008-01-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positiv

  17. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  18. Maize genome sequencing by methylation filtration.

    Science.gov (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  19. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  20. Dynamic optical filtration

    Science.gov (United States)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  1. Magnetic flocculation and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu [Georgia Inst. of Tech., Atlanta, GA (United States). School of Civil and Environmental Engineering; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  2. Mechanism of phenol adsorption onto electro-activated carbon granules.

    Science.gov (United States)

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  3. STUDIES ON THE PREPARATION OF ZINC-CONTAINING ACTIVATED CARBON FIBERS AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of activated carbon fibers, using sisal fiber as precursors, were preparedwith steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. Theantibacterial activities of these activated carbon fibers were determined and compared. The researchresults showed that these sisal based activated carbon fibers supporting zinc have strongerantibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related tothe precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silversupported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.

  4. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  5. Comparative study on microbial removal in immersed membrane filtration (IMF) with and without powdered activated carbon (PAC).

    Science.gov (United States)

    Ujang, Z; Au, Y L; Nagaoka, H

    2002-01-01

    This paper describes an investigation on the effect of microbial removal using IMF for high quality drinking water production. The comparison of IMF and IMF-PAC configuration was carried out in the study to highlight the importance of PAC in the system. The specific objective of this study was to study the effect of PAC adsorption in the IMF-PAC system particularly in removing microbial substances from contaminated raw water. A bench scale IMF-PAC configuration using a flat sheet microfiltration membrane was set up for experimental purposes. Experimentally, the result has shown high removal of microbial substances with the IMF-PAC system compared to IMF. The result of E. coli removal achieved was below the detectable level due to the microbial size, which is bigger than membrane pore size. The addition of PAC has shown a direct effect on total microbial removal. The adsorption of microbial onto PAC surfaces reduced the amount of smaller microbial present in permeate samples. As a conclusion, the configuration of IMF is a promising separation process in removing microbial substances, especially when the system is combined with PAC.

  6. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  7. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    Science.gov (United States)

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  8. Quality of poultry litter-derived granular activated carbon.

    Science.gov (United States)

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  9. Functionalized Activated Carbon Derived from Biomass for Photocatalysis Applications Perspective

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2015-01-01

    Full Text Available This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to transform lignocellulosic biomass into the activated carbon (AC. In the photocatalysis applications, this AC can further be used as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to develop sustainable carbon of the synthesis process, where catalytic conversion is accounted. The catalytic treatment corresponding to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers the recombination rate of holes and electrons.

  10. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  11. Activated Carbon Prepared in a Novel Gas Fired Static Bed ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... The reactor is fabricated using stainless steel plates of 4 mm ... is introduced into the reaction chamber. The ... reaction of carbon with the activating agent. A number ..... organic liquids, characterisation of the organic fraction of.

  12. OXIDATION AND CHARACTERIZATION OF ACTIVE CARBON AG-5

    Directory of Open Access Journals (Sweden)

    Tatiana Goreacioc

    2015-06-01

    Full Text Available The surface chemistry of the commercial active carbon AG-5 has been modified by oxidation with concentrated nitric acid. The structural changes caused by oxidative treatment were estimated on the basis of nitrogen adsorption-desorption isotherms and thermal analysis. Boehm titration method and infrared spectral analysis have been used in order to evaluate surface chemistry characteristics of active carbon samples. After oxidation process the amount of total acidic groups on oxidized active carbon surface (AG-5ox increases by about 6 times in comparison with unmodified sample (AG-5. The concentration of the acidic groups on the oxidized active carbon surface (AG-5ox was in the following order: strong acidic >>> weak acidic > phenolic.

  13. Application of Activated Carbon Mixed Matrix Membrane for Oxygen Purification

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2010-07-01

    Full Text Available This study is performed primarily to investigate the effect of activated carbon on oxygen separation performance of polyethersulfone mixed matrix membrane. In this study, polyethersulfone (PES-activated carbon (AC mixed matrix membranes were fabricated using dry/wet technique. This study investigates the effect of polyethersulfone concentration and activated carbon loading on the performance of mixed matrix membrane in terms of permeability and selectivity of O2/N2 gas separation. The fabricated flat sheet mixed matrix membranes were characterized using permeation test, Field Emission Scanning Electron Microscopy (FESEM analysis and Differential Scanning Calorimetry (DSC. It was found that the activated carbon loading affected the gas separation performance of mixed matrix membrane. PES- 1wt% AC membrane yielded 3.75 of O2/N2 selectivity, however 5 wt% of AC can produced 5 O2/N2 selectivity

  14. [Influence of biological activated carbon dosage on landfill leachate treatment].

    Science.gov (United States)

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  15. (Hevea brasiliensis) SEED PERICARP-ACTIVATED CARBON IN ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Biochemical Engineering and Biotechnology Laboratory, ... Keywords: abattoir waste water, activated carbon, adsorption isotherms, iron (III) chloride, lagergren equations, ... industrial wastes as well as natural agricultural bye-.

  16. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  17. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers.

    Science.gov (United States)

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny

    2014-01-01

    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  18. Cooperative redox activation for carbon dioxide conversion

    DEFF Research Database (Denmark)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches...

  19. Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon

    Science.gov (United States)

    Ardhyarini, N.; Krisnandi, Y. K.

    2017-07-01

    Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.

  20. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    Science.gov (United States)

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  1. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  2. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin

    OpenAIRE

    2013-01-01

    A facile and sustainable approach has been successfully devised to fabricate ultrafine (100-500 nm) highly porous activated carbon fibers (ACFs) by electrospinning of aqueous solutions of predominantly alkali lignin (low sulfonate content) followed by simultaneous carbonization and activation at 850 °C under N2. Incorporating a polyethylene oxide (PEO) carrier with only up to one ninth of lignin not only enabled efficient electrospinning into fibers but also retained fibrous structures during...

  3. Microwave absorbing properties of activated carbon fibre polymer composites

    Indian Academy of Sciences (India)

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  4. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  5. Integrative filtration research and sustainable nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Drew Thompson; David Y.H.Pui

    2013-01-01

    With the wide applications of nanomaterials in an array of industries,more concerns are being raised about the occupational health and safety of nanoparticles in the workplace,and implications of nanotechnology on the environment and living systems.Studies on environmental,health and safety (EHS) issues of nanomaterials play a significant role in public acceptance,and eventual sustainability,of nanotechnology.We present research results on three aspects of the EHS studies:characterization and measurement of nanoparticles,nanoparticle emission and exposure at workplaces,and control and abatement of nanoparticle release using filtration technology.Measurement of nanoparticle agglomerates using a newly developed instrument,the Universal Nanoparticle Analyzer,is discussed.Nanoparticle emission and exposure measurement results for carbon nanotubes in the manufacture of nanocomposites and for silicon nanoparticles in their production at a pilot scale facility are presented.Filtration of nanoparticles and nanoparticle agglomerates are also studied.

  6. Production of activated carbon from rice husk Vietnam

    Science.gov (United States)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  7. On influence of some ecological factors on intensity of the oyster filtration (Ostrea edulis

    Directory of Open Access Journals (Sweden)

    N. A. Sitnik

    2009-10-01

    Full Text Available Quantitative regularities of the filtration feeding of the Black Sea oyster depending on some ecological factors were studied. Influence of food concentration on filtration activity of shellfish is described. Dependences of filtration speed are certain on the body mass of oysters under different temperature conditions were found. The seasonal changes of its intensity in the Kerch Strait and the Donuzlav Estuary are illustrated. Influence of water salinity on filtration activity of the oyster is established.

  8. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?

    Science.gov (United States)

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoÿs; Weil, Mirco; Rossi, Luca; de Alencastro, Luiz Felippe; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael; Barry, D A

    2013-09-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O3 l(-1) or a PAC dose between 10 and 20 mg l(-1). Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants

  9. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    Science.gov (United States)

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  10. Research of ceramic membrane filtration characteristics in continuous reaction system%连续反应系统中陶瓷膜过滤特性研究

    Institute of Scientific and Technical Information of China (English)

    张凤莉; 孙亚峰; 杨阿三

    2014-01-01

    Ceramic membrane module has high separation efficiency and good stability. In this thesis, we make multiphase reactor and ceramic membrane filtration components a continuous device, in order to realize the solid-liquid separation and continuous operation, we used three phases system including air, water and activated carbon as our study medium, studying its filtration characteristics, investigating the stability of the ceramic mem-brane filter components and membrane filtrating pressure and the effect of circulation pump frequency conversion on the components of ceramic membrane filtration flux. The results showed that the ceramic membrane components can ensure the stability to filter in the longer term;Filtration flux are greatly affected by the filtration pressure pro-portionally, the greater the filtrating pressure, the larger the filtration flux will be; In addition to this, the filtration flux increases with the growth of circulation flow rate.%陶瓷膜组件具有较高的分离效率且稳定性好,本文是将多相反应器与陶瓷膜过滤组件组成连续装置,以期实现液固分离和操作的连续化,以空气-水-活性炭三相为研究介质,对其过滤特性进行研究,结果表明:陶瓷膜组件能够确保在较长时间内过滤的稳定性;过滤通量受过滤压力的影响较大,过滤压力越大过滤通量越大;过滤通量随着循环流量的增大而增大。

  11. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (PTiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network.

  12. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  13. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    Science.gov (United States)

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  14. Modus of filtration.

    Science.gov (United States)

    Meltzer, Theodore H

    2006-01-01

    Experience teaches that particles larger than the pores of a filter cannot negotiate its passage. Other retention mechanisms are less obvious than sieve retention or size exclusion. They are electrical in nature, and find expression in the bonding alliances that mutually attract (or repel) filters and particles. The influence of hydrogen bonds, of van der Waals forces, of hydrophobic adsorptions, and of transient polarities on particle retentions are set forth in terms of the double electrical layer concept that also governs colloidal destabilizations. The origins of differences in membrane porosities is explained, as also the importance of the filtration conditions. The singularity of the particle-fluid-filter relationship on organism and/or pore size alteration is stressed.

  15. Filtration properties of nonwovens.

    Science.gov (United States)

    Gador, W; Jankowska, E

    1999-01-01

    This paper presents the results and conclusions from experimental investigations concerning filtration properties of nonwovens. The needled nonwovens were made from polyester fibres (PTE) with average fibre diameter 12 micrometres and polypropylene fibres (PP) with average fibre diameter 32 micrometres. Nonwovens were produced out of each of those fibres or out of a mixture of polyester and polypropylene fibres. This paper also presents investigations of nonwoven fabric made of polypropylene fibres (PP) with average fibre diameter 2.6 micrometres, which was formed according to melt-blown technology. Oil mist, as challenge aerosol, was used to evaluate the performance of filter media at various aerosol velocities. The average oil mist test aerosol particle diameter was 0.3 micrometre. Filter penetration was measured at oil mist concentration 0.24 g/m(3).

  16. Production of activated carbon from peanut hill using phosphoric acid and microwave activation

    Directory of Open Access Journals (Sweden)

    Weerawat Clowutimon

    2015-06-01

    Full Text Available The optimum conditions for preparing activated carbon from peanut hulls by phosphoric acid and microwave activation were studied. Factors investigated in this study were temperature of carbonization at 300, 350, 400 and 450๐ C, and time of carbonization at 30, 60 and 90 minutes. The optimum yield was observed that carbonization temperature of 400๐ C and time at 60 minutes, respectively. The yield of charcoal was 39% and the f ix carbon was 69%. Then the charcoal was activated by phosphoric acid and microwave irradiation, respectively. The effect of the weight per volume ratios of charcoal to activating acid (1:1, 1:2 and 2:1(W/V, microwave power at (activated 300, 500 and 700 watts, and activated time (30, 60 and 90 seconds were studied. The results showed that the optimum conditions for activating peanut charcoal were 1:2 (W/V charcoal per activating acid, microwave power 700 watts for 90 seconds. The results yielding maximum surface area by BET method was 303.1 m2 /g and pore volume was 0.140 cm3 /g. An efficiency of maximum iodine adsorption was 418 mg iodine/g activated carbon. Comparing the adsorption efficiency of non- irradiated and irradiated activated carbon, the efficiency of irradiated activated carbon improved up to 31%, due to its larger surface area and pore volume.

  17. Influence of carbon and nitrogen sources on growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Tejera, Noel A; Ortega, Eduardo; Rodés, Rosa; Lluch, Carmen

    2004-09-01

    The effects of different carbon and nitrogen sources on the growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus were investigated. The amino acids asparagine, aspartic acid, and glutamic acid affected microbial growth and nitrogenase activity. Several enzymatic activities involved in the tricarboxylic acid cycle were affected by the carbon source used. In addition, glucose and gluconate significantly increased the oxygen consumption (respiration rate) of whole cells of G. diazotrophicus grown under aerobic conditions. Enzymes responsible for direct oxidation of glucose and gluconate were especially active in cells grown with sucrose and gluconate. The presence of amino acids in the apoplastic and symplastic sap of sugarcane stems suggests that these compounds might be of importance in the regulation of growth and nitrogenase activity during the symbiotic association. The information obtained from the plant-bacterium association together with the results of other biochemical studies could contribute to the development of biotechnological applications of G. diazotrophicus.

  18. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.

    Science.gov (United States)

    Wallentin, Carl-Johan; Nguyen, John D; Stephenson, Corey R J

    2012-01-01

    This mini-review highlights the Stephenson group's contribution to the field of photoredox catalysis with emphasis on carbon-carbon bond formation. The realization of photoredox mediated reductive dehalogenation initiated investigations toward both intra- and intermolecular coupling reactions. These reactions commenced via visible light-mediated reduction of activated halogens to give carbon-centered radicals that were subsequently involved in carbon-carbon bond forming transformations. The developed protocols using Ru and Ir based polypyridyl complexes as photoredox catalysts were further tuned to efficiently catalyze overall redox neutral atom transfer radical addition reactions. Most recently, a simplistic flow reactor technique has been utilized to affect a broad scope of photocatalytic transformations with significant enhancement in reaction efficiency.

  19. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  20. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  1. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  2. Activated Carbon Composites for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Tsouris, Costas [ORNL; McFarlane, Joanna [ORNL

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  3. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  4. In situ sorption of technetium using activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. E-mail: elis.holm@radfys.lu.se; Gaefvert, T.; Lindahl, P.; Roos, P

    2000-07-15

    The sorption of technetium in pertechnetate form on carbon has been investigated. The sorption is pH dependent with maximal distribution coefficients, K{sub d}, in the order of 10{sup 6} at pH 2-4 for activated carbon with a grain size {<=}100 {mu}m. The equilibrium time to reach such distribution coefficient was about 5 h at room temperature. The exact mechanisms for the sorption are not fully understood but reduction of Tc by the carbon might be an important process. Technetium can effectively and rapidly (5 l min{sup -1}) be sorbed from very large volumes (several hundred liters) of environmental waters on commercial cartridge filters impregnated with activated carbon. After incineration, the filters can be analyzed for {sup 99}Tc by conventional methods.

  5. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    V. V. Strelko; S. S. Stavitskaya; Yu. I. Gorlov

    2014-01-01

    The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid cata-lysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with-SO3H,-COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.

  6. Removal of geosmin and 2-methylisoborneol by biological filtration.

    Science.gov (United States)

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to

  7. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  8. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    OpenAIRE

    Khaled Okiel; Mona El-Sayed; Mohamed Y. El-Kady

    2011-01-01

    Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC) and deposited carbon (DC). The results gave evidence of the ability of the adsorb...

  9. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... activating it in high temperatures (800 - 1000°C) in an oxidizing environment. At this .... sample has displayed typical coal behavior. It has lost water content up ..... Adsorption of Copper and Cadmium Ions by Activated Carbon ...

  10. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  11. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  12. Decolorization of Cheddar cheese whey by activated carbon.

    Science.gov (United States)

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  13. Adsorption of chromium ion (VI by acid activated carbon

    Directory of Open Access Journals (Sweden)

    A. A. Attia

    2010-03-01

    Full Text Available The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S, and utilized as an adsorbent for the removal of Cr(VI from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S were compared with the acid-treated commercial activated carbon (CAC-S. The optimum efficiency shows that the Cr(VI uptake being attained at pH 1.5. The equilibrium adsorption data was better fitted to the Langmuir adsorption model. The results of kinetic models showed that the pseudo-first-order kinetic model was found to correlate the experimental data well. It was concluded that activated carbon produced from olive stones (OS-S has an efficient adsorption capacity compared to (CAC-S sample.

  14. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    Science.gov (United States)

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  15. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Dinesh [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)]. E-mail: dm_1967@hotmail.com; Singh, Kunwar P. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Singh, Vinod K. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  16. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  17. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-03-01

    The impact of long-term (>2 years) biological activated carbon (BAC) treatment for mitigating organic fouling in the microfiltration of biologically treated secondary effluent was investigated. Correlation between the organic constituents and hydraulic filtration resistance was investigated to identify the major components responsible for fouling. Over two years operation, the removal efficiency for dissolved organic carbon (DOC) by the BAC treatment was fairly consistent (30 ± 3%), although the reduction in UVA254 gradually decreased from 56 to 34%. BAC treatment effectively decreased the organic foulants in the effluent and so contributed to the mitigation of membrane fouling as shown by reduction in the unified membrane fouling index (UMFI). BAC consistently removed biopolymers whereas the removal of humic substances decreased from 52 to 25% after two years of BAC operation, and thus led to a gradual decrease in UMFI reduction efficiency from 78 to 43%. This was due to gradual reduction in adsorption capacity of the activated carbon as confirmed by analysis of its pore size distribution. Hence humics also played an important role in membrane fouling. However, there was a good correlation between protein and carbohydrate contents with hydraulically reversible and irreversible filtration resistance, compared with UVA254, turbidity and DOC. Although the mitigation of membrane fouling decreased over time, this study demonstrated that the long-term use of BAC pre-treatment of biologically treated secondary effluent prior to microfiltration has potential to reduce the need for frequent chemical cleaning and so increase membrane life span.

  18. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California

    Science.gov (United States)

    Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, J.; Hill, M.C.

    2011-01-01

    Oocysts of the protozoan pathogen Cryptosporidium parvum are of particular concern for riverbank filtration (RBF) operations because of their persistence, ubiquity, and resistance to chlorine disinfection. At the Russian River RBF site (Sonoma County, CA), transport of C. parvum oocysts and oocyst-sized (3 ??m) carboxylate-modified microspheres through poorly sorted (sorting indices, ??1, up to 3.0) and geochemically heterogeneous sediments collected between 2 and 25 m below land surface (bls) were assessed. Removal was highly sensitive to variations in both the quantity of extractable metals (mainly Fe and Al) and degree of grain sorting. In flow-through columns, there was a log-linear relationship (r2 = 0.82 at p < 0.002) between collision efficiency (??, the probability that colloidal collisions with grain surfaces would result in attachment) and extractable metals, and a linear relationship (r2 = 0.99 at p < 0.002) between ?? and ??1. Collectively, variability in extractable metals and grain sorting accounted for ???83% of the variability in ?? (at p < 0.0002) along the depth profiles. Amendments of 2.2 mg L-1 of Russian River dissolved organic carbon (DOC) reduced ?? for oocysts by 4-5 fold. The highly reactive hydrophobic organic acid (HPOA) fraction was particularly effective in re-entraining sediment-attached microspheres. However, the transport-enhancing effects of the riverine DOC did not appear to penetrate very deeply into the underlying sediments, judging from high ?? values (???1.0) observed for oocysts being advected through unamended sediments collected at ???2 m bls. This study suggests that in evaluating the efficacy of RBF operations to remove oocysts, it may be necessary to consider not only the geochemical nature and size distribution of the sediment grains, but also the degrees of sediment sorting and the concentration, reactivity, and penetration of the source water DOC. ?? 2011 American Chemical Society.

  19. High surface area activated carbon prepared from cassava peel by chemical activation.

    Science.gov (United States)

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  20. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  1. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-kui; QIN Wen-qing; NIU Yin-jian; LI Hua-xia

    2006-01-01

    The immobilization of Thiobacillus ferrooxidans on the activated carbon particles as support matrix was investigated. Cycling batch operation results in the complete oxidation of ferrous iron in 8 d when the modified 9 K medium is set to flow through the mini-bioreactor at a rate of 0.104 L/h at 25 ℃. The oxidation rate of ferrous iron with immobilized T. ferrooxidans is 9.38 g/(L·h). The results show that the immobilization of T. ferrooxidans on activated carbon can improve the rate of oxidation of ferrous iron. The SEM images show that a build-up of cells of T. ferrooxidans and iron precipitates is formed on the surface of activated carbon particles.

  2. Urea adsorption by activated carbon prepared from palm kernel shell

    Science.gov (United States)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  3. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  4. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    Science.gov (United States)

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability.

  5. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  6. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  7. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  8. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  9. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    Science.gov (United States)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  10. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    Science.gov (United States)

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N(+) atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  12. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    Science.gov (United States)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the

  13. Extraction of endo-pectinase activity from the culture filtrate of Polyporus squamosus by aqueous two-phase systems composed of low molecular mass polyethylene glycol and phosphate salt

    Directory of Open Access Journals (Sweden)

    Peričin Draginja M.

    2004-01-01

    Full Text Available Separation of endo-pectinase activity from the culture filtrate of Polyporus squamosus - strain MMOL76, by aqueous two-phase partitioning technique in polyethylene glycol/sodium dihydrogen phosphate system was investigated as the first operation in the downstream processing of enzyme. The best results concerning the partitioning coefficient and the top phase yield were achieved in the polyethylene glycol 400/sodium dihydrogen phosphate system at the tie-line length 78.9 % at pH 3.8 (K = 8, with a 90% yield.

  14. Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Youl; Park, Seo Kyoung; Lee, Je Seung [Kyung Hee University, Seoul (Korea, Republic of)

    2016-05-15

    Porous carbons derived from polysaccharides (cellulose, chitosan, and alginic acid) have been prepared by heat treatment under N{sub 2} atmosphere and activated at high temperature under ammonia gas atmosphere. The CO{sub 2} adsorption capacities of prepared porous carbon materials and their dependence on the surface area and pore volume were investigated. The surface area of pristine carbon from cellulose, chitosan, and alginic acid at 800 .deg. C was measured as 406.5, 206.8, and 258.2 m{sup 2}/g with the pore volume of 0.27, 0.14, and 0.15 cm{sup 3}/g, respectively. The surface area and pore volume of carbons derived from cellulose, chitosan, and alginic acid further increased up to 976.6, 883.4, and 1031.9 m{sup 2}/g and 0.54, 0.45, and 0.65 cm{sup 3}/g, respectively, after the activation at high temperature under ammonia gas environment. The CO{sub 2} adsorption capacities of pristine carbons were measured as high as 1.85 mmol/g and further increased up to 2.44 mmol/g by ammonia activation.

  15. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  16. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    Science.gov (United States)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  17. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  18. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  19. Carbon-carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone.

    Science.gov (United States)

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-02-05

    The activation of carbon-carbon (C-C) bonds is an effective strategy in building functional molecules. The C-C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C-C bond activation. Here we describe an organocatalytic activation of C-C bonds through the addition of an NHC to a ketone moiety that initiates a C-C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C-C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process.

  20. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  1. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    Science.gov (United States)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  2. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    Science.gov (United States)

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  3. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent

    Energy Technology Data Exchange (ETDEWEB)

    Satyawali, Yamini [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Balakrishnan, Malini, E-mail: malinib@teri.res.in [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Center, Lodhi Road, New Delhi 110003 (India)

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8 L reactor was equipped with a submerged 30 {mu}m nylon mesh filter with 0.05 m{sup 2} filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m{sup -3} d{sup -1}. PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  4. Preparation of Paper Containing Activated Carbon.

    Science.gov (United States)

    1984-06-01

    development of charcoal paper. RESUME On a obtenu du papier contenant du charbon actif en dispersant du charbon r~duit en poudre et en versant des agents de...sa capaciti d’adsorption et de ritention du charbon . Ce papier pourrait servir d𔄀crans dans une salle de contr~le de contamination pour le balayage...contenant du charbon . "l-ii:: . ---:.-o * *** * *. .. t C Cd. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 S 2 INTRODUCTION . Activated

  5. Latest aspects of mechanical filtration

    Directory of Open Access Journals (Sweden)

    Stanislav Koláček

    2013-01-01

    Full Text Available The aim of this study was to describe and unify all knowledge about mechanic filtration. The first part deals with the parameters and properties of filtration. Here some important basic concepts are explained such as pressure gradient, filter life, etc. There’s also a description of convenient filtration technology for coarse and fine materials, such as sand, smoke or soot. The second part primarily focuses on the real use and application of filters for liquid and gaseous media. The differences in construction between different types of filters for filtration of fuels, oils, hydraulic fluids, air and cabin filters are described. The last section is focused mainly on new materials for the production of filters. These materials are ceramic or nanomaterials, which can actually be enriched for example with antibacterial silver or some fungicides.

  6. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  7. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  8. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  9. Enhancing anaerobic digestion of poultry blood using activated carbon.

    Science.gov (United States)

    Cuetos, Maria José; Martinez, E Judith; Moreno, Rubén; Gonzalez, Rubén; Otero, Marta; Gomez, Xiomar

    2017-05-01

    The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA) accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6-8 g/L). The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM) were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  10. Health benefits of particle filtration.

    Science.gov (United States)

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  11. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  12. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  13. Authigenic carbonates from active methane seeps offshore southwest Africa

    Science.gov (United States)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation-decomposition.

  14. Use of Activated Carbon Derived from Maize Cob and Mahogany ...

    African Journals Online (AJOL)

    MBI

    2015-12-28

    Dec 28, 2015 ... Shell for the Removal of Colour from Textile Effluent. Gumel, S. M. ... In the present study natural adsorbents Maize Cob (MC) and Mahogany Shells (MS) were carbonized and activated ... remove even minute amount of dyes in wastewaters. (Yakubu et .... were prepared by putting 10, 20, 30, 40 and 50 ml.

  15. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  16. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  17. Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)

    1999-12-01

    The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.

  18. XPS of nitrogen-containing functional groups on activated carbon

    NARCIS (Netherlands)

    Jansen, R.J.J.; Bekkum, van H.

    1995-01-01

    XPS is used to study the binding energy of the Cls, Nls and Ols photoelectrons of surface groups on several nitrogen-containing activated carbons. Specific binding energies are assigned to amide (399.9 eV). lactam and imidc (399.7 eV). pyridine (398.7 eV), pyrrole (400.7 eV), alkylamine. secondary a

  19. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the pa

  20. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    Science.gov (United States)

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism.

  1. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  2. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    Science.gov (United States)

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperaturescarbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  3. Molten carbonate fuel cell cathodes. Improvement of the electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Rodrigo, T. [Instituto de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid (Spain)

    2005-10-30

    The purpose of this work is to improve the electrocatalytic activity of Li-Ni mixed oxides by the addition of rare earth oxides (cerium or lanthanum). The influence of cerium and lanthanum on the electrocatalytic activity of these compounds was investigated by means of electrochemical impedance spectroscopy (EIS). The stability of these compounds was studied in a mixture of 62% lithium carbonate and 38% potassium carbonate at high temperature under an atmosphere rich in carbon dioxide to accelerate their dissolution. The morphology and the crystalline structure of the samples were not affected by the incorporation of cerium or lanthanum. The samples impregnated with CeO{sub 2} or La{sub 2}O{sub 3} showed lower resistance to charger-transfer processes than the sample without earth rare oxides. Both cerium and lanthanum improved the charger-transfer processes for oxygen reduction in an atmosphere rich in carbon dioxide. The reason may be due to cerium oxide acting as oxygen donor, and lanthanum oxide capturing CO{sub 2}, and the partial pressure of carbon dioxide on the surface of electrode.

  4. Determining water content in activated carbon for double-layer capacitor electrodes

    Science.gov (United States)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  5. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  6. Activation and micropore structure of carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  7. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Institute of Scientific and Technical Information of China (English)

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  8. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  9. Evaluation of the genetic activity of industrially produced carbon black.

    Science.gov (United States)

    Kirwin, C J; LeBlanc, J V; Thomas, W C; Haworth, S R; Kirby, P E; Thilagar, A; Bowman, J T; Brusick, D J

    1981-06-01

    Commercially produced oil furnace carbon black (Chemical Abstract Service Registry No. 1333-86-4) has been evaluated by five different assay for genetic activity. These were the Ames Salmonella typhimurium reverse mutation test, sister chromatid exchange test in CHO cells, mouse lymphoma test, cell transformation assay in C3H/10T1/2 cells, and assay for genetic effects in Drosophila melanogaster. Limited cellular toxicity was exhibited but no significant genetic activity was noted.

  10. Removal of amitriptyline from aqueous media using activated carbons

    OpenAIRE

    Valente Nabais, Joao; Ledesma, Beatriz; Laginhas, Carlos

    2012-01-01

    This paper reports the removal of amitriptyline, a widely used tricyclic anti-depressant, from aqueous solutions by six activated carbons produced from cork, coffee endocarp and eucalyptus pulp. The results of this study showed that samples from cork and eucalyptus pulp, activated at 800 °C, exhibited the highest adsorption capacity of 120 mg/g and 110 mg/g, respectively. Samples produced from coffee endocarp showed the lowest capacity. Amitriptyline adsorption was almost in...

  11. Filtrating forms of soil bacteria

    Science.gov (United States)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  12. Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon.

    Science.gov (United States)

    Boehler, M; Zwickenpflug, B; Hollender, J; Ternes, T; Joss, A; Siegrist, H

    2012-01-01

    Micropollutants (MP) are only partly removed from municipal wastewater by nutrient removal plants and are seen increasingly as a threat to aquatic ecosystems and to the safety of drinking water resources. The addition of powder activated carbon (PAC) is a promising technology to complement municipal nutrient removal plants in order to achieve a significant reduction of MPs and ecotoxicity in receiving waters. This paper presents the salient outcomes of pilot- and full-scale applications of PAC addition in different flow schemes for micropollutant removal in municipal wastewater treatment plants (WWTPs). The sorption efficiency of PAC is reduced with increasing dissolved organic carbon (DOC). Adequate treatment of secondary effluent with 5-10 g DOC m(-3) requires 10-20 g PAC m(-3) of effluent. Counter-current use of PAC by recycling waste PAC from post-treatment in a contact tank with an additional clarifier to the biology tank improved the overall MP removal by 10 to 50% compared with effluent PAC application alone. A dosage of 15 g PAC m(-3) to a full-scale flocculation sand filtration system and recycling the backwash water to the biology tank showed similar MP elimination. Due to an adequate mixing regime and the addition of adapted flocculants, a good retention of the fine fraction of the PAC in the deep-bed filter were observed (1-3 g TSS m(-3); TSS: total suspended solids). With double use of PAC, only half of the PAC was required to reach MP removal efficiencies similar to the direct single dosage of PAC to the biology tank. Overall, the application of PAC in WWTPs seems to be an adequate and feasible technology for efficient MP elimination (>80%) from wastewater comparable with post ozonation.

  13. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  14. Bioindication potential of carbonic anhydrase activity in anemones and corals.

    Science.gov (United States)

    Gilbert, A L; Guzmán, H M

    2001-09-01

    Activity levels of carbonic anhydrase (CA) were assessed in anemones Condylactis gigantea and Stichodactyla helianthus with laboratory exposures to copper, nickel, lead, and vanadium, and also in animals collected from polluted vs pristine field sites. CA activity was found to be decreased with increase in metal concentration and also in animals collected from the polluted field site. Preliminary assessments to adapt the CA assay for use in the widespread coral Montastraea cavernosa show decreased CA activity in specimens from the polluted field site and provide an avenue for future research aimed at more thoroughly describing coral CA activity for potential application in bioindication.

  15. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    Science.gov (United States)

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  16. Application of a Fused Carbon Nanomaterial Filter for Lunar Dust Abatement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, will apply its patented carbon nanotube filtration technology for air and nanoscale particulate engine exhaust filtration to NASA's Lunar...

  17. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  18. Filtration and compression of organic materials

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    The conventional filtration theory has been based on filtrations of incompressible particles such as anatase, kaolin and clay. The filtration models have later been used for organic slurries but can often not explain the observed experimental data. At constant pressure, the filtrate volume does...

  19. 40 CFR 141.73 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.73 Section 141.73... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system..., and does not meet all of the criteria in § 141.71 (a) and (b) for avoiding filtration, must...

  20. DETOXIFICATION OF PESTICIDES POLLUTED SOIL BY ADSORBTION ON ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    V.M. Mukhin

    2009-06-01

    Full Text Available The paper emphasizes a very severe social-ecological problem, related to the contamination of soils by pesticides and fodder micotoxins. The authors suggest the utilization of a carbon adsorption based method of purification of soils contaminated with traces of pesticides. It is demonstrated that this method of soil rehabilitation leads to an 80% crop increase, allowing the production of environmentally clean plant products. The utilization of special activated carbons “Ptitsesorb” leads to a 30-40% decrease of necessary combined fodder in chickens breeding.

  1. Neutron activation study of gold-decorated singlewall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rafael G.F.; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Ladeira, Luiz O.; Lacerda, Rodrigo G.; Oliveira, Sergio de; Pinheiro, Mauricio V.B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Ferreira, Andrea V. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2007-07-01

    Single-wall carbon nanotubes (SWNT) were synthesized by arc discharge technique of doped graphite electrodes and purified by burning the amorphous carbon and removing the metals with hydrochloric acid (HCl). The nanotubes were also functionalized with carboxyl groups (-COOH) by ultrasonification with nitric (HNO{sub 3}) and sulfuric (H{sub 2}SO{sub 4}) acids. The nanotubes were then decorated with gold by reducing chloroauric acid (HAuCl{sub 4}) with UV and hydrazine (N{sub 2}H{sub 4}). Atomic Force Microscope (AFM) images confirmed the decoration with the hydrazine route. The gold concentration in the samples was analyzed by neutron activation analysis. (author)

  2. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    Science.gov (United States)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  3. Sorption of perfluorinated compounds from contaminated water to activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Mona C.; Boerresen, Marion H. [Norwegian Geotechnical Inst. (NGI), Oslo (Norway); Schlabach, Martin [Norwegian Inst. for Air Research, Kjeller (Norway); Cornelissen, Gerard [Norwegian Geotechnical Inst. (NGI), Oslo (Norway); Dept. of Applied Environmental Sciences (ITM), Stockholm Univ. (Sweden)

    2010-03-15

    Introduction: Perfluorinated compounds (PFC) are toxic and bioaccumulative compounds that are ubiquitous in the environment. It is important to develop effective techniques to remove PFC from water. This study is the first to investigate sorption of PFC to activated carbon (AC) at environmentally relevant nanogram per liter concentrations. Methods: Batch AC sorption isotherms were measured for water from a contaminated groundwater well, for three perfluorosulfonates and five perfluoroacetic acids. Results: For perfluorooctane sulfonate and perfluorooctanoic acid Freundlich sorption coefficients, log K{sub iF} for powdered activated carbon (PAC) were 4.0 and 3.8 (ng/g)(ng/L){sup -n}, respectively, and for granular activated carbon (GAC) were 2.7 and 2.3 (ng/g)(ng/L){sup -n}, respectively. Sorption was nonlinear, with Freundlich n coefficients generally around 0.5. The K{sub iF} on both GAC and PAC were PFC chain-length dependant, with increasing number of carbon yielding increasing K{sub iF}. This chain-length dependence appeared stronger for perfluorosulfonates than for perfluoroacetic acids. Tests with short (10 min) adsorption times still yielded substantial PFC removal (20-40% for GAC, 60-90% for PAC) and revealed that AC is probably suitable for PFC removal in flow-through systems. A perfluorinated polymer, Teflon, was also tested as a PFC removal agent but proved not to be effective for PFC-contaminated water purification. (orig.)

  4. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  5. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  7. Nitric acid vapor removal by activated, impregnated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Wood, G.O.

    1996-12-31

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The nitric acid vapor was generated from concentrated acid solutions and detected by trapping in a water bubbler for pH measurements. Both low and moderate relative humidity conditions were used. All carbons were effective at vapor contact times representative of air-purifying respirator use. One surprising observation was the desorption of low levels of ammonia from impregnated carbons. This was apparently due to residual ammonia from the impregnation processes.

  8. Synthesis of carbon molecular sieves by activation and coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S.; Gandadhar, B. (Indian Institute of Technology, Bombay (India). Dept. of Chemical Engineering)

    1993-04-01

    Carbon molecular sieves were synthesized from indigenous bituminous coal and coconut shell. After preliminary treatment, these materials were subjected to steam or carbon dioxide activation in the range 500-900[degree]C. In other experiments the raw materials were partly air-oxidized at [approximately] 200[degree]C, mixed with binder and extruded to cylindrical pellets, which were subjected to coke deposition by cracking of methane in the range 750-780[degree]C for 5-14 min. All the products were characterized by analysis of kinetic and equilibrium adsorption data. The molecular sieve performance was judged by the O[sub 2]/N[sub 2] uptake ratio. The best carbon molecular sieves, obtained by methane cracking at 780[degree]C at a flow of 100 ml min[sup -1] had an uptake ratio of 2.667. 11 refs., 7 figs., 5 tabs.

  9. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate

    Institute of Scientific and Technical Information of China (English)

    Wu Zhang; Yao Hui Qu; Li Jun Gao

    2012-01-01

    PbO2/activated carbon (AC) hybrid supercapacitor in H2SO4 with a carbon foam current collector is studied.The PbO2/AC hybrid is designed with electrodeposited PbO2 thin film as positive electrode to match with AC negative electrode.The discharge curve shows capacitive characteristics between 1.88 V and 0.65 V.The hybrid system exhibits excellent energy and powe performance,with specific energy of 43.6 Wh/kg at a power density of 654.2 W/kg.The use of carbon foam current collecto ensures stability of the PbO2 electrode in H2SO4 environment.After 2600 deep cycles at 15 C high rate of charge/discharge,the capacity remains nearly unchanged from its initial value.

  10. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  11. A comparative study of carbon dioxide adsorption on multi-walled carbon nanotubes versus activated charcoal

    Science.gov (United States)

    Khalili, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Davoodi, M.

    2012-09-01

    In this study, the quilibrium adsorption of CO2 on activated charcoal and multi-walled carbon nanotube (MWCNT) were experimentally investigated at temperature range of 298-318 K and pressures up to 40 bars. The maximum storage capacity for both materials was obtained at lowest temperature and highest pressure under study. The amount of CO2 adsorbed on MWCNT is 2 times higher than that of activated Charcoal whereas the specific surface area of activated carbon is aboute 2 times higher than MWNT. The experimental data of CO2 adsorption have been analyzed using different model isotherms such as the Freundlich and Langmuir. Heat of adsorption evaluated from a set of isotherms based on the Clausius-Clapeyron equation indicated physical nature of adsorption mechanism.

  12. Research on Membrane Fouling in Cross-flow Filtration of Activated Sludge%错流过滤活性污泥过程中膜污染的研究

    Institute of Scientific and Technical Information of China (English)

    王勇; 刘鹰; 宋永辉; 沈加正; 华耀祖

    2011-01-01

    The critical flux of the membrane bloreactor with self-made filtration membrane was determined by stepwise increasing flux method. The experimental results show that the critical flux of the membrane bioreactor is 23. 8 L/( m2 · h ). The membrane fouling behavior in filtration of activated sludge was studied under the condition of subcritical flux. The results of model calculation show that the decrease of membrane flux accords with membrane resistance limit model, pore blocking resistance model and cake resistance model simultaneously. The analysis on filtration resistance distribution of the running membrane shows that the resistances caused by cake-forming and pore-blocking are the main parts of filtration resistance, which are 36. 64% and 61. 96% of the total resistance respectively, the resistance caused by membrane only accounts for 1.40% .%采用通量阶式递增法对自制未改性滤膜用于膜生物反应器时的临界通量进行了测定.实验结果表明该膜生物反应器的临界通量为23.8 L(/ m2·h).在低于临界通量的条件下,对膜过滤活性污泥的污染行为进行了研究,通过模型计算,得出膜通量的衰减同时符合膜阻力模型、孔堵塞阻力模型和滤饼层阻力模型.对运行后过滤阻力分布进行分析,结果表明滤饼层阻力和孔堵塞阻力是过滤阻力的主要组成部分,分别占到过滤阻力的36.64%和61.96%,而膜阻力仅占1.40%.

  13. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium.

  14. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  15. Surface functional groups and redox property of modified activated carbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  16. APPLICATION OF POWDERY ACTIVATED CARBONS FOR REMOVAL IBUPROFEN FROM WATER

    Directory of Open Access Journals (Sweden)

    Alicja Puszkarewicz

    2017-07-01

    Full Text Available The paper presents results of studies on the use of adsorptive properties of selected powdered activated carbons (Norit SA Super and Carbopol MB5 for removal of ibuprofen from water. The tests were performed on non-flow conditions, series depending on the type and dose of powdered adsorbents. The research was carried out on a model solution of ibuprofen at initial concentration C0 = 20 mg/dm3, at 200 C. Froundlich and Langmuir adsorption isotherms were used. Lagergrene kinetic models (PFO and Ho (PSO were used to describe adsorption kinetics. Both carbons exhibited a higher affinity for the adsorbent at a pH above 7. The better adsorbent was the Norit SA Super, for which, the highest adsorption capacity q = 0.448 g/g was achieved with dose D = 35 mg/dm3. The effectiveness of adsorption (decrease of ibuprofen in water was 78%. Total removal of ibuprofen was obtained for a dose of carbon D = 200 mg/dm3. With respect to Carbopol, the highest adsorption capacity (q = 0.353 g / g was achieved at a dose of 30 mg / dm3, resulting in a 53% efficiency. Studies have shown that both tested powdered activated carbons have contributed to effective cleaning of aqueous solutions containing ibuprofen.

  17. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    Science.gov (United States)

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  18. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  19. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  20. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    Science.gov (United States)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  1. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  2. Modeling Water Filtration

    Science.gov (United States)

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  3. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Science.gov (United States)

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass.

  4. Filtration effectiveness of HVAC systems at near-roadway schools.

    Science.gov (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods.

  6. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    Science.gov (United States)

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Activated carbon from flash pyrolysis of eucalyptus residue.

    Science.gov (United States)

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  8. Activated carbon from flash pyrolysis of eucalyptus residue

    Directory of Open Access Journals (Sweden)

    Grima-Olmedo C

    2016-09-01

    Full Text Available Forestry waste (eucalyptus sp was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10–15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  9. 75 FR 51754 - Certain Activated Carbon from the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2010-08-23

    ... Activated Carbon from the People's Republic of China: Notice of Partial Rescission of Antidumping Duty... of initiation of an administrative review of the antidumping duty order on certain activated carbon... Activated Carbon Plant; Datong Forward Activated Carbon Co., Ltd.; Datong Guanghua Activated Carbon Co.,...

  10. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  11. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke

    Energy Technology Data Exchange (ETDEWEB)

    Wiessner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Dept. of Remediation Research

    1998-07-31

    This paper investigated activated carbon and activated coke adsorption for the treatment of highly contaminated discoloured industrial wastewater with a wide molecular size distribution of organic compounds. Lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments. The investigations were performed using water samples taken from various depths of the deposits ponds. A comparison of the capacities of the adsorption materials used showed, that because of its large number of macro and mesopores, activated coke is more suitable for wastewater treatment and in addition cheaper than activated carbon.

  12. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    Science.gov (United States)

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  13. Inlfuence of Carbon Content on S Zorb Sorbent Activity

    Institute of Scientific and Technical Information of China (English)

    Xu Li

    2013-01-01

    The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve into the kind and morphology of carbon on the sorbent. Test results have revealed that coke could be deposited on the S Zorb sorbent dur-ing the operating process, and the coke content was an important factor inlfuencing the reaction performance of the S Zorb sorbent. Retention of a deifnite amount of coke on the sorbent while securing the desulfurization activity of the S Zorb sor-bent would be conducive to the reduction of octane loss of reaction product.

  14. Activated carbon treatment of municipal solid waste incineration flue gas.

    Science.gov (United States)

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant.

  15. Water purification by sulfide-containing activated carbon.

    Science.gov (United States)

    Oeste, F D; Haas, R; Kaminski, L

    2000-03-01

    We investigated a new kind of activated carbon named gaiasafe-Formstoff as an agent for powerful heavy metal reduction. This activated carbon contains highly dispersed sulfide compounds. Our investigations with lead containing wastewaters showed an outstanding metal sulfide precipitation power of the new agent. The lead reduction rates are independent of wastewater parameters like lead concentration and complexing agent concentration. Contacted as powder or as a fixed bed with wastewater gaiasafe-Formstoff showed the best cleaning capacity in comparison to all other agents tested. Investigations with gaiasafe-Formstoff about its ability to reduce the contents of further heavy metals in wastewater are under way. The gaiasafe-Formstoff reaction products with wastewater represent an energy-rich and raw material-rich resource when fed to metallurgical processes.

  16. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon

    Energy Technology Data Exchange (ETDEWEB)

    Milewska-Duda, J.; Duda, J.; Nodzenski, A.; Lakatos, J. [Stanislaw Staszic University of Mining and Metallurgy, Krakow (Poland). Faculty of Fuels and Energy

    2000-07-01

    The paper shows what can be deduced on sorption mechanisms in hard coals and active carbon by using a theoretical model of sorption of small molecules in elastic submicroporous materials. This multiple sorption model (MSM) describes both adsorption and absorption phenomena. Basic assumptions and formulae of the MSM are presented. The computations were performed for isotherms of CO{sub 2} and CH{sub 4} at elevated pressures on three coal samples of different rank and on an active carbon. Nonideality of the sorbates is handled by an original state equation providing consistent information on fugacity and cohesion energy corresponding to a given molar volume of sorbate molecules in the sorption system. Surface structure of the studied coals and energetic parameters of the systems determined with MSM are compared to those obtained by using BET and Dubinin-Radushkievitch equations.

  17. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  18. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    Science.gov (United States)

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  19. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  20. Role of activated carbon on micropollutans degradation by different radiation processes

    Directory of Open Access Journals (Sweden)

    Inmaculada Velo Gala

    2015-04-01

    Full Text Available The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent

  1. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    the distribution of N and P on the fields. Filtration is a useful method for such a separation. Furthermore, chemicals can be added to flocculate the solids and thereby increase the filterability i.e. the specific filter-cake resistance can be reduced from 1015 m/kg to 1011 m/kg. Both the amount of added chemicals......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...... that the discrepancy between the filtration theory and the observed filtration behaviour is due to a time-dependent collapse of the formed cake (creep). This can also explain the observed behaviour when flocculated manure is filtered. The filtration data can be simulated if cake creep is adopted in the filtration...

  2. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  3. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  4. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    Science.gov (United States)

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  5. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  6. High sensitivity measurements of active oxysterols with automated filtration/filter backflush-solid phase extraction-liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Roberg-Larsen, Hanne; Strand, Martin Frank; Grimsmo, Anders; Olsen, Petter Angell; Dembinski, Jennifer L; Rise, Frode; Lundanes, Elsa; Greibrokk, Tyge; Krauss, Stefan; Wilson, Steven Ray

    2012-09-14

    Oxysterols are important in numerous biological processes, including cell signaling. Here we present an automated filtration/filter backflush-solid phase extraction-liquid chromatography-tandem mass spectrometry (AFFL-SPE-LC-MS/MS) method for determining 24-hydroxysterol and the isomers 25-hydroxycholesterol and 22S-hydroxycholesterol that enables simplified sample preparation, high sensitivity (~25 pg/mL cell lysis sample) and low sample variability. Only one sample transfer step was required for the entire process of cell lysis, derivatization and determination of selected oxysterols. During the procedure, autoxidation of cholesterol, a potential/common problem using standard analytical methods, was found to be negligible. The reversed phase AFFL-SPE-LC-MS/MS method utilizing a 1mm inner diameter column was validated, and used to determine levels of the oxysterol analytes in mouse fibroblast cell lines SSh-LII and NIH-3T3, and human cancer cell lines, BxPC3, HCT-15 and HCT-116. In BxPC3 cells, the AFFL-SPE-LC-MS/MS method was used to detect significant differences in 24S-OHC levels between vimentin+ and vimentin- heterogenous sub-populations. The methodology also allowed monitoring of significant alterations in 24S-OHC levels upon delivery of the Hedgehog (Hh) antagonist MS-0022 in HCT-116 colorectal carcinoma cell lines.

  7. Impact of Acidification on Pollutants Fate and Soil Filtration Function

    Directory of Open Access Journals (Sweden)

    Jarmila Makovniková

    2014-12-01

    Full Text Available The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb, soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol. The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS is defined by qualitative (pH, or-ganic matter quality - A400/600 and quantitative factors (carbon content-Cox, humus layer thickness-H according to the Eq.:[PSS]=F(pH+F(A465/665+F(Cox*F(H. Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

  8. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    Science.gov (United States)

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs.

  9. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    Science.gov (United States)

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  10. Preparation of creating active carbon from cigarette filter waste using microwave-induced KOH activation

    Science.gov (United States)

    Hamzah, Yanuar; Umar, Lazuardi

    2017-05-01

    For the first time, cigarette filter waste, which is an environmental hazardous material, is used as basic material prepared for creating activated carbon (AC) via KOH chemical activation using a microwave input power of 630 W and irradiation time of 20 minutes. Active carbon was characterized by TGA, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, nitrogen adsorption-desorption, and absorption of methylene blue (MB). The results of x-ray diffraction showed that active carbon has a semi-crystalline structure with peaks of 2θ of 22.87° and 43.70°. Active carbon microstructure analysis showed that the layer height (Lc ) is inversely proportional to the width of the layer (La ), and the distance between the two layers is d002 and d100 , which depends significantly on the ratio of AC: KOH. It was found that the optimum BET surface area and adsorption capacity for MB were 328.13 m2 / g and 88.76 m2 / g, respectively. The results revealed the potential to prepare activated carbon from cigarette filter waste using microwave irradiation.

  11. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanzong; ZHENG Jingtang; QU Xianfeng; YU Weizhao; CHEN nonggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and acti-vated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  12. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  13. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Science.gov (United States)

    2011-10-31

    ... chemicals. Also excluded from the scope is activated carbon cloth. Activated carbon cloth is a woven textile... various types where a woven format is required. Any activated carbon meeting the physical description of...'') Yearbook of Labor Statistics. Additionally, because the Department is now using Chapter 6A to...

  14. System and method for coproduction of activated carbon and steam/electricity

    Science.gov (United States)

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  15. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  16. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Science.gov (United States)

    2010-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  17. 78 FR 26748 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-05-08

    ... International Trade Administration Certain Activated Carbon From the People's Republic of China: Preliminary... duty order on certain activated carbon from the People's Republic of China (``PRC'') for the period of... The merchandise subject to the order is certain activated carbon.\\1\\ The products are...

  18. Improving IAQ Via Air Filtration.

    Science.gov (United States)

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  19. Filtration combustion: Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  20. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found that the prod......The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... magnitude as the primary consolidation (defined by the hydraulic retardation), the creep phenomenon may occur during filtration. This will lead to Ruth's plots characterized by a concave with two (more or less) distinct slopes. The slopes are defined by the relationship between the porosity...

  1. Preparation of TiO2-activated carbon complex membranes and their photoelectrocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    尤宏; 姚杰; 孙丽欣; 王强

    2003-01-01

    The experimental process of preparing TiO2-activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo-catalysis and photo-electro-catalysis are measured to study the properties of complex membranes. Experimental results show that the photo-catalytic activity of the membranes is high and stable in the process of treating Rhodamine-B; the application of an electric field accelerates the speed of photo-catalysis, and the efficiency of photo-catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine-B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO2-activated carbon complex membranes is a simple low-cost process suitable for large scale application.

  2. Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent

    Science.gov (United States)

    Yuliusman; Nasruddin; Afdhol, M. K.; Amiliana, R. A.; Hanafi, A.

    2017-07-01

    Palm shell is a potential source of raw materials for the produce of activated carbon as biosorbent for quite large numbers. The purpose of this study is to produce activated carbon qualified Indonesian Industrial Standard (SNI), which will be used as biosorbent to purify the impurities in the off gas petroleum refinery products. Stages of manufacture of activated carbon include carbonization, activation of chemistry and physics. Carbonization of activated carbon is done at a temperature of 400°C followed by chemical activation with active agent KOH and ZnCl2. Then the physical activation is done by flowing N2 gas for 1 hour at 850°C and followed by gas flow through the CO2 for 1 hour at 850°C. Research results indicate that activation of the active agent KOH produce activated carbon is better than using the active agent ZnCl2. The use of KOH as an active agent to produce activated carbon with a water content of 13.6%, ash content of 9.4%, iodine number of 884 mg/g and a surface area of 1115 m2/g. While the use of ZnCl2 as the active agent to produce activated carbon with a water content of 14.5%, total ash content of 9.0%, iodine number 648 mg/g and a surface area of 743 m2/g.

  3. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    Science.gov (United States)

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review.

  4. Enhanced adsorption of quaternary amine using modified activated carbon.

    Science.gov (United States)

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  5. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  6. Kinetics of continuous biodegradation of pesticide organic wastewater by activated carbon-activated sludge

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT-AS) in a plug bioreactor. A kinetic model of PACT-AS wastewater treatment system was established to provide an useful basis for further simulate scale-up treatment of toxic organic wastewater.

  7. Membraneless water filtration using CO2

    Science.gov (United States)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick; Stone, Howard

    2016-11-01

    Water purification technologies such as ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles, or so-called diffusiophoresis. Due to the large diffusion potential built up by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Our findings suggest a means to separate particles without membranes or filters, thus reducing operating and maintenance costs. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits very low pressure drop and is essentially free from fouling.

  8. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    Science.gov (United States)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  9. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  10. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  11. Coupling dehydrogenation of isobutane in the presence of carbon dioxide over chromium oxide supported on active carbon

    Institute of Scientific and Technical Information of China (English)

    Jian Fei Ding; Zhang Feng Qin; Xue Kuan Li; Guo Fu Wang; Jian Guo Wang

    2008-01-01

    The dehydrogenation of isobutane (IB) to produce isobutene coupled with reverse water gas shift in the presence of carbon dioxide was investigated over the catalyst Cr2O3 supported on active carbon (Cr2O3/AC). The results illustrated that isobutane c onversion and isobutene yield can be enhanced through the reaction coupling in the presence of carbon dioxide. Moreover, carbon dioxide can partially eliminate carbonaceous deposition on the catalyst and keep the active phase (Cr2O3), which are then helpful to alleviate the catalyst deactivation.

  12. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for so

  13. Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Andersen, Shuang Ma;

    2014-01-01

    Commercially available graphitized carbon nanofibers and multi-walled carbon nanotubes, two carbon materials with very different structure, have been functionalized in a nitric–sulfuric acid mixture. Further on, the materials have been platinized by a microwave assisted polyol method. The relative...... that the functionalization improves the stability for multi-walled carbon nanotubes, at the cost of decreased activity....

  14. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  15. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  16. Drawing method and device of activated carbon sludge from drums

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shigeru [Toshiba Corp., Kawasaki, Kanagawa (Japan); Kaji, Koichi

    1998-09-11

    Upon drawing out active sludge accumulated while being separated from supernatant water in a drum for containing active sludge generated as residues after the processing of washing liquid generated in a nuclear power plant, the sludge is stirred together with the supernatant water while being scraped off from the surface by using a stirring blade equipped with teeth. Then the sludge in the form of a slurry is drained by a highly viscous fluid transferring-pump. Then accumulated active carbon sludge can be supplied quantitatively as a mayonnaise-like slurry to a furnace. Alternatively, the supernatant water is drawn out at first from a drum, and sludge is discharged to the outside next by using screw blades disposed backward while scraping the sludge from the surface by rotating scraping teeth. With such procedures, there can be provided an advantageous point that the accumulated active carbon sludge can be supplied in a state of small lumps quantitatively to a furnace. (T.M.)

  17. Production of activated carbon from a new precursor molasses by activation with sulphuric acid.

    Science.gov (United States)

    Legrouri, K; Khouya, E; Ezzine, M; Hannache, H; Denoyel, R; Pallier, R; Naslain, R

    2005-02-14

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulphuric acid, followed by carbonisation at varying conditions (temperature and gas coverage) in order to optimize preparation parameters. The influence of activation conditions was investigated by determination of adsorption capacity of methylene blue and iodine, the BET surface area, and the pore volume of the activated carbon were determined while the micropore volume was determined by the Dubinin-Radushkevich (DR) equation. The activated materials are mainly microporous and reveal the type I isotherm of the Brunauer classification for nitrogen adsorption. The activated carbons properties in this study were found for activation of the mixture (molasses/sulphuric acid) in steam at 750 degrees C. The samples obtained in this condition were highly microporous, with high surface area (> or =1200 m2/g) and the maximum adsorption capacity of methylene blue and iodine were 435 and 1430 mg/g, respectively.

  18. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea

    Science.gov (United States)

    Inal, I. Isil Gurten; Holmes, Stuart M.; Banford, Anthony; Aktas, Zeki

    2015-12-01

    Highly microporous and mesoporous activated carbons were produced from waste tea for application as supercapacitor electrodes, utilising a chemical activation method involving treatment with either K2CO3 or H3PO4. The area, pore structure characteristics and surface functionality of the activated carbons were evaluated to investigate the influence on electrochemical performance. The performance of the activated carbons as supercapacitor electrodes was tested by cyclic voltammetry (CV), impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements, in an aqueous electrolyte. The results showed that the pore structure and type of the activated carbon have significant impact on the supercapacitor performance. Both waste tea-based activated carbon electrodes showed good cyclic stability. However, despite its lower specific surface area the highly microporous activated carbon produced with K2CO3, exhibited much better capacitive performance than that of the mesoporous activated carbon produced with H3PO4.

  19. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    Science.gov (United States)

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1).

  20. Emulsions for interfacial filtration.

    Energy Technology Data Exchange (ETDEWEB)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  1. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.

    2011-04-04

    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  2. On determinants of glomerular filtration rate after inhibition of proximal tubular reabsorption

    DEFF Research Database (Denmark)

    Leyssac, P P; Karlsen, F M; Holstein-Rathlou, N H

    1994-01-01

    The carbonic anhydrase inhibitor acetazolamide (ACZ) inhibits the absolute rate of proximal reabsorption (APR), causes a reduction in glomerular filtration rate (GFR), and activates the tubuloglomerular feedback mechanism (TGF) resulting in afferent vasoconstriction. The quantitative importance...... vasoconstriction seen after carbonic anhydrase inhibition fails to restore GFR to its control value. This is due to the high flow resistance in the distal nephron segments during the increased tubular flow rates seen after ACZ. The high distal flow resistance causes a parallel change in Pgc and Pprox and thus...... leaves delta P nearly unchanged. The present study highlights the importance of the distal flow resistance in determining delta P and therefore GFR during conditions where tubular flow rate is increased....

  3. Carbon sink activity and GHG budget of managed European grasslands

    Science.gov (United States)

    Klumpp, Katja; Herfurth, Damien; Soussana, Jean-Francois; Fluxnet Grassland Pi's, European

    2013-04-01

    In agriculture, a large proportion (89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities of European ecosystemes, however, often questioned the existence of C storing grasslands, as though a net sink of C was observed, uncertainty surrounding this estimate was larger than the sink itself (Janssens et al., 2003, Schulze et al., 2009. Then again, some of these estimates were based on a small number of measurements, and on models. Not surprising, there is still, a paucity of studies demonstrating the existence of grassland systems, where C sequestration would exceed (in CO2 equivalents) methane emissions from the enteric fermentation of ruminants and nitrous oxide emissions from managed soils. Grasslands are heavily relied upon for food and forage production. A key component of the carbon sink activity in grasslands is thus the impact of changes in management practices or effects of past and recent management, such as intensification as well as climate (and -variation). We analysed data (i.e. flux, ecological, management and soil organic carbon) from a network of European grassland flux observation sites (36). These sites covered different types and intensities of management, and offered the opportunity to understand grassland carbon cycling and trade-offs between C sinks and CH4 and N2O emissions. For some sites, the assessment of carbon sink activities were compared using two methods; repeated soil inventory and determination of the ecosystem C budget by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports (net C storage, NCS). In general grassland, were a potential sink of C with 60±12 g C /m2.yr (median; min -456; max 645). Grazed sites had a higher NCS compared to cut sites (median 99 vs 67 g C /m2.yr), while permanent grassland sites tended to have a lower NCS compared to temporary sown grasslands (median 64 vs

  4. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  5. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  6. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela); Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); D' Ornelas, Lindora [Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); Betancourt, Paulino [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela)], E-mail: pbetanco@strix.ciens.ucv.ve

    2008-06-30

    Vanadium nanoparticles ({approx}7 nm) stabilized on activated carbon were synthesized by the reduction of VCl{sub 3}.3THF with K[BEt{sub 3}H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 deg. C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  7. Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2

    Directory of Open Access Journals (Sweden)

    Andi Muhammad Anshar

    2016-05-01

    Full Text Available The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400oC and then activated by 10% of ZnCl2. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400oC and activated with 10% of ZnCl2 for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.

  8. Mixture Based Outlier Filtration

    Directory of Open Access Journals (Sweden)

    P. Pecherková

    2006-01-01

    Full Text Available Success/failure of adaptive control algorithms – especially those designed using the Linear Quadratic Gaussian criterion – depends on the quality of the process data used for model identification. One of the most harmful types of process data corruptions are outliers, i.e. ‘wrong data’ lying far away from the range of real data. The presence of outliers in the data negatively affects an estimation of the dynamics of the system. This effect is magnified when the outliers are grouped into blocks. In this paper, we propose an algorithm for outlier detection and removal. It is based on modelling the corrupted data by a two-component probabilistic mixture. The first component of the mixture models uncorrupted process data, while the second models outliers. When the outlier component is detected to be active, a prediction from the uncorrupted data component is computed and used as a reconstruction of the observed data. The resulting reconstruction filter is compared to standard methods on simulated and real data. The filter exhibits excellent properties, especially in the case of blocks of outliers. 

  9. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    Science.gov (United States)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical

  10. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  11. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin [Dept. of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)], E-mail: sjpark@inha.ac.kr

    2009-08-25

    In this work, poly(amide imide) solutions in dimethylformamide were electrospun into webs consisting of 350 nm ultrafine nanofibers. These nanofiber webs were used to produce activated carbon nanofibers (ACNFs), through stabilization and carbonisation-activation processes. Experimental results indicated that ACNFs activated at 800 deg. C afforded the highest specific surface area but low mesopore volume. The high specific surface area, mainly due to the micropores, introduced maximum specific capacitance at low current density (150 F g{sup -1} at 10 mA g{sup -1}). Elevating the volume fraction of mesopores gave maximum specific capacitance at high current density (100 F g{sup -1} at 1000 mA g{sup -1}), which could be explained on the basis of ion mobility in the pores. Thus, the capacitance of the supercapacitors was strongly dependent on the specific surface area and micro- or mesopore volume of the ACNFs.

  12. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    Science.gov (United States)

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  13. Characterization of activated carbon prepared by phosphoric acid activation of olive stones

    Directory of Open Access Journals (Sweden)

    S.M. Yakout

    2016-11-01

    Full Text Available The effects of activating agent concentration on the pore structure and surface chemistry of activated carbons derived from olive stone with chemical activation method using phosphoric acid as the activating agent were studied. Mass changes associated with the impregnation, carbonization and washing processes were measured. With H3PO4 dilute solutions (60, 70, and 80 wt% H3PO4, the loading of substance on CS increases with concentration. The concentration of the H3PO4 solution seems to control the processes of impregnation, carbonization and washing in the preparation of AC from olive stones by H3PO4 chemical activation. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 80 wt.%. The BET surface areas and total pore volumes of the carbons produced at H3PO4 80 wt.% are 1218 m2/g and 0.6 cm3/g, respectively.

  14. 40 CFR 141.173 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.173 Section 141.173... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that...

  15. Synthesis of a Carbon-activated Microfiber from Spider Webs Silk

    Science.gov (United States)

    Taer, E.; Mustika, W. S.; Taslim, R.

    2017-03-01

    Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.

  16. Thermal analysis of activated carbons modified with silver metavanadate

    Energy Technology Data Exchange (ETDEWEB)

    Goscianska, Joanna; Nowicki, Piotr; Nowak, Izabela [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland); Pietrzak, Robert, E-mail: pietrob@amu.edu.pl [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Preparation of the activated carbons from waste materials as new supports for AgVO{sub 3}. Black-Right-Pointing-Pointer Decomposition of AgVO{sub 3} to V{sub 2}O{sub 5} and Ag{sup 0} for the samples 1 and 3 wt.% Ag-V is observed. Black-Right-Pointing-Pointer Samples containing 5 wt.% Ag-V decompose to vanadyl species as intermediate compounds. - Abstract: The effect of silver metavanadate doping on physicochemical properties and thermal behaviour of the activated carbons obtained from waste materials was investigated. The carbonaceous supports were subjected to carbonisation at 400 or 600 Degree-Sign C. The samples carbonised at 600 Degree-Sign C have much more developed surface area and porous structure than the analogous samples obtained at 400 Degree-Sign C. Impregnation of activated carbons with silver metavanadate leads to a decrease in their surface area and pore volume. According to thermal analysis (TG, DTG) in the samples containing 1 and 3 wt.% of silver metavanadate, AgVO{sub 3} is fully decomposed to do vanadium oxide and Ag, with no intermediate products, while in the samples containing 5 wt.% AgVO{sub 3}, this salt is decomposed to vanadyl species as intermediate compounds at 350 Degree-Sign C before the formation of V{sub 2}O{sub 5} at 500 Degree-Sign C. Moreover, in all samples impregnated with silver metavanadate the nanoparticles of silver undergo crystallisation leading to reduction of Ag{sup +} ions from the vanadium salt to Ag{sup 0}.

  17. Activated carbon is an electron-conducting amphoteric ion adsorbent

    CERN Document Server

    Biesheuvel, P M

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, chemical information of the surface structure of the carbon-water interface in ACs can be used to construct an alternative EDL model for ACs. This EDL model assumes that ACs contain both acidic groups, for instance due to carboxylic functionalities, and basic groups, due to the adsorption of protons to the carbon basal planes. As will be shown, this "amphoteric Donnan" model accurately describes various data sets for ion electrosorption in ACs, for solutions of NaCl, of CaCl2, and mixtures thereof, as function of the exter...

  18. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  19. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  20. Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption

    Energy Technology Data Exchange (ETDEWEB)

    Anson, A. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)]. E-mail: aanson@ualberta.ca; Lafuente, E. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Urriolabeitia, E. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Navarro, R. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Benito, A.M. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Maser, W.K. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Martinez, M.T. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)

    2007-06-14

    Single wall carbon nanotubes (SWNTs) and MAXSORB activated carbon have been used as the support of palladium nanoparticles. The preparation of the palladium loaded carbon materials has been done by direct reaction between the support and a Pd (0) compound, either Pd{sub 2}(dba){sub 3}.CHCl{sub 3} or Pd(PPh{sub 3}){sub 4}. The efficiency of the loading reaction has been much better when Pd{sub 2}(dba){sub 3}.CHCl{sub 3} has been chosen as the Pd source, reaching high palladium loadings (up to ca. 45 wt.%) with relatively small particle size (5-10 nm for SWNTs and 30-40 nm for MAXSORB). The hydrogen isotherms of the palladium loaded materials present a steep increase at very low pressures. The H/Pd atomic ratio of the samples has been found to be dependent on the Pd precursor, being higher in the case of Pd{sub 2}(dba){sub 3}.CHCl{sub 3}. Several samples have achieved H/Pd ratios higher than the value for bulk Pd (H/Pd {approx} 0.6-0.7). Maximum hydrogen sorption at room temperature in the palladium loaded samples has been found to be of 0.5 wt.% at atmospheric pressure. Oxidative treatments on the substrate before the palladium loading have diminished the efficiency of the loading reaction, the hydrogen adsorption, and the H/Pd atomic ratio.

  1. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors

    Science.gov (United States)

    Sun, Yuan; Chen, Rong; Lipka, Stephen M.; Yang, Fuqian

    2016-05-01

    Activated carbon microspheres (ACSs), which are prepared using hydrothermal synthesis and ammonia activation, are used as the active materials in the anode and cathode of electric double layer capacitors (EDLCs). The ACS-based EDLCs of symmetrical electrodes exhibit good stability and a high degree of reversibility over 2000 charge-discharge cycles for electric current up to 10 A g-1. The ACSs maintain a nongraphitized carbon structure after over 2000 charge-discharge cycles. Nanoindentation experiments are performed on the ACSs, which are electrochemically cycled in a voltage window of 0-1 V at three electric currents of 0.5, 5, and 10 A g-1. For the same indentation load, both the contact modulus and indentation hardness of the ACSs decrease with the increase of the electric current used in the electrical charging and discharging. These results suggest that there exists strength degradation introduced by the electric current. A larger electric current will cause more strength degradation than a smaller electric current.

  2. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    Science.gov (United States)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  3. Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

    OpenAIRE

    2014-01-01

    The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over AC-supported transition-metal oxide catalysts. According to the study, Fe2O3/AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3/AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 °C; Fe content, 20 wt%; GHSV = 7000 mL g-1 h-1), 95.43% sulfur dioxide conversion and 86.59% sulfur yi...

  4. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  5. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Science.gov (United States)

    2010-11-17

    ... carbon cloth. Activated carbon cloth is a woven textile fabric made of or containing activated carbon fibers. It is used in masks and filters and clothing of various types where a woven format is required... preliminarily rescinded the review with respect to Lingzhou, the Department now finds that it would be unfair...

  6. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Songlin; Yang, Jianxiao; Cai, Xuan [Faculty of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Liu, Junli [Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042 (China)

    2009-07-15

    Two series of activated carbons derived from China fir (Cunninghamia lanceolata) wood impregnated with phosphoric acid were prepared in a cylindrical container that was kept in a closed state covered with a lid (the covered case) or in an open state. The effects of the carbonization of volatile pyrolytic products of starting materials on the properties of activated carbon were investigated in the process of phosphoric acid activation. Elemental analysis and SEM observation showed that both activating in the covered case and increasing the mass of starting material used favored the carbonization of volatile pyrolytic products. An investigation of N{sub 2} adsorption isotherms revealed that the carbonization of volatile pyrolytic products significantly enhanced mesopore development in the final carbons, especially pores with a size range from 2.5 to 30 nm, with little influence on micropores, and therefore produced a large increase in the adsorption capacity to Vitamin B12 (with a molecular size of 2.09 nm). Activated carbons with highly developed mesopores could be obtained in the covered case. The carbonization mechanism of volatiles was discussed and two different carbonization pathways (in solid and gas phases) were proposed during phosphoric acid activation. (author)

  7. Centrifugal membrane filtration -- Task 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  8. Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

    Institute of Scientific and Technical Information of China (English)

    YU Qiongfen; LI Ming; JI Xu; QIU Yu; ZHU Yuntao; LENG Congbin

    2016-01-01

    Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.

  9. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  10. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization

    Institute of Scientific and Technical Information of China (English)

    SHAO Xing-hua; ZHENG Jian-wei

    2014-01-01

    The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy ifeld was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha-1 yr-1; P, 45 kg triple superphosphate-P2O5 ha-1 yr-1; K, 75 kg potassium chloride-K2O ha-1 yr-1;and pig manure, 22 500 kg ha-1 yr-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was signiifcantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no signiifcant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was signiifcantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not signiifcantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and signiifcantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was signiifcantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not signiifcantly correlated with one another. No signiifcant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.

  11. Oviposition Attractancy of Bacterial Culture Filtrates: response of Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    S Poonam

    2002-04-01

    Full Text Available Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3 at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type, B. t. var. israelensis (mutant and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm, which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm, the culture filtrates of B. t. var. israelensis (wild type and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.

  12. Cake Filtration in Viscoelastic Polymer Solutions

    Science.gov (United States)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  13. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    Science.gov (United States)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  14. Effect of calcium on adsorption capacity of powdered activated carbon.

    Science.gov (United States)

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  15. FLUORIDE SORPTION USING MORRINGA INDICA-BASED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    G. Karthikeyan, S. Siva Ilango

    2007-01-01

    Full Text Available Batch adsorption experiments using activated carbon prepared from Morringa Indica bark were conducted to remove fluoride from aqueous solution. A minimum contact time of 25 min was required for optimum fluoride removal. The influence of adsorbent, dose, pH, co-ions (cations and anions on fluoride removal by the activated carbon has been experimentally verified. The adsorption of fluoride was studied at 30 C, 40 C and 50 C. The kinetics of adsorption and adsorption isotherms at different temperatures were studied. The fluoride adsorption obeyed both Langmuir and Freundlich isotherms and followed a pseudo first order kinetic model. The thermodynamic studies revealed that the fluoride adsorption by Morringa Indica is an endothermic process indicating an increase in sorption rate at higher temperatures. The negative values of G indicate the spontaneity of adsorption. SEM and XRD studies confirmed the surface morphological characteristics of the adsorbent and the deposition of fluoride on the surface of the material.

  16. Cellulose: A review as natural, modified and activated carbon adsorbent.

    Science.gov (United States)

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  17. Promoting direct interspecies electron transfer with activated carbon

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.

    2012-01-01

    Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of metha......Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation...... of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...

  18. Adsorption onto fibrous activated carbon: applications to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  19. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Khairul; Koyama, Shigeru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 (Japan); Saha, Bidyut B. [Mechanical Engineering Department, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395 (Japan); Rahman, Kazi A.; Chakraborty, Anutosh; Ng, Kim Choon [Mechanical Engineering Department, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2010-06-15

    The objective of this article is to evaluate adsorption kinetics of R134a and R507A on pitch based activated carbon experimentally by a constant volume variable pressure method at different adsorption temperatures ranging from 20 to 60 C. These data are useful for the design of adsorption cooling and refrigeration systems and are unavailable in the literature. Data obtained from the kinetic studies were analyzed with various kinetic models and the Fickian diffusion model is found to be the most suitable overall. Guided by the experimental measurements, the surface diffusion is also estimated and is found that it follows the classical Arrhenius law within the experimental range. (author)

  20. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Vicente, E-mail: vicente.jimenez@uclm.es [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Sanchez, Paula; Valverde, Jose Luis [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Romero, Amaya [Escuela Tecnica Agricola, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2010-11-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N{sub 2}/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied b