WorldWideScience

Sample records for activated carbon adsorption

  1. Adsorption of Carbon Dioxide on Activated Carbon

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  2. Adsorption characteristics of activated carbon hollow fibers

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  3. Simulations of phenol adsorption on activated carbon and carbon black

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  4. Methane adsorption on activated carbon

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  5. ADSORPTION OF DYES ON ACTIVATED CARBON FIBERS

    ChenShuixia; WuChangqing; 等

    1998-01-01

    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  6. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  7. Aqueous mercury adsorption by activated carbons.

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  8. [Study on adsorption properties of organic vapor on activated carbons].

    Cai, Dao-Fei; Huang, Wei-Qiu; Wang, Dan-Li; Zhang, Lin; Yang, Guang

    2013-12-01

    Adsorption technology is widely used in oil vapor recovery, and adsorbents have decisive effect on separation. Three kinds of activated carbon (AC) were chosen to study their adsorption properties and adsorption energy, where n-hexane and n-heptane acted as adsorbate and adsorption experiments were conducted at 293.15 K. At the same time, regression formula of Logistic model was used to fit the throughout curves of active carbons. The results showed that: surface area and pore volume of activated carbon were the main factors affecting its adsorption properties; the adsorption behavior of n-hexane and n-heptane were corresponding to Langmuir adsorption isotherm model; adsorption energy of these three kinds of activated carbon became greater with increasing specific surface area. Fitting curve of Logistic model had high similarity with the experimental results, which could be used in the prediction of breakthrough curves of activated carbons.

  9. Adsorption of EDTA on activated carbon from aqueous solutions.

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  10. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  11. Studies on adsorptive desulfurization by activated carbon

    Rakesh Kumar, D.; Srivastava, Vimal Chandra [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India)

    2012-05-15

    Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso-octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C{sub 0}: 100-900 mg/L), adsorbent dosage (m: 2-22 g/L), time of adsorption (t: 15-735 min), and temperature (T: 10-50 C). Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination R{sup 2}-value of 0.9390 and Fisher F-value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  13. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  14. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  15. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  16. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  17. Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes

    Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)

    1999-12-01

    The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.

  18. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  19. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  20. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  1. Adsorption of chromium ion (VI) by acid activated carbon

    A. A. Attia; Khedr,S. A.; Elkholy,S. A.

    2010-01-01

    The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S), and utilized as an adsorbent for the removal of Cr(VI) from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S...

  2. Adsorption of chromium ion (VI by acid activated carbon

    A. A. Attia

    2010-03-01

    Full Text Available The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S, and utilized as an adsorbent for the removal of Cr(VI from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S were compared with the acid-treated commercial activated carbon (CAC-S. The optimum efficiency shows that the Cr(VI uptake being attained at pH 1.5. The equilibrium adsorption data was better fitted to the Langmuir adsorption model. The results of kinetic models showed that the pseudo-first-order kinetic model was found to correlate the experimental data well. It was concluded that activated carbon produced from olive stones (OS-S has an efficient adsorption capacity compared to (CAC-S sample.

  3. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  4. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  5. Adsorption of dyes onto activated carbon prepared from olive stones

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  6. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  7. Enhanced adsorption of quaternary amine using modified activated carbon.

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  8. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  9. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  10. Mechanism of phenol adsorption onto electro-activated carbon granules.

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  11. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  12. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  13. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  14. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  15. Characteristics of Nonafluorobutyl Methyl Ether (NFE) Adsorption onto Activated Carbon Fibers and Different-Size-Activated Carbon Particles.

    Tanada; Kawasaki; Nakamura; Araki; Tachibana

    2000-08-15

    The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated

  16. Grafting of activated carbon cloths for selective adsorption

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  17. ORGANIC CHELATING REAGENT ON REDOX ADSORPTION OF ACTIVATED CARBON FIBER TOWARDS Au3+

    2002-01-01

    Organic chelating reagent influences upon the redox adsorption of activated carbon fibertowards Au3- were systematically investigated. The experimental results indicated that the presenceof organic chelating reagent on activated carbon fiber strongly affects adsorption capacity ofactivated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three timesby the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended onthe pH value of adsorption and temperature.

  18. CO2 adsorption on chemically modified activated carbon.

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  19. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  20. Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT

    ZHOU; XiaoFang; CUI; Sheng; LIU; Yu; LIU; XueYong; SHEN; XiaoDong; WU; ZhanWu

    2013-01-01

    The adsorption properties of TNT from wastewater by hydrophobic silica aerogel/activated carbon composite materials were investigated. The effects of adsorption time, pH value, adsorption temperature, and the amount of the composite materials on the adsorption rate were studied. The adsorption principle and mechanism of the composite materials were discussed along with the Freundlich equation. The results showed that the best adsorption rate of the hydrophobic silica aerogel/activated car-bon composite materials could reach 96.5% with adsorption conditions of adsorption temperature 25°C, pH value 7, the amount of SiO2aerogel dosage 3.33 g/L, and adsorption time of 120 min. The adsorption of hydrophobic SiO2aero-gel/activated carbon composite materials for TNT solution is mainly surface adsorption, and also has some chemical adsorp-tion when the aerogel hydrophobicity is modified.

  1. Adsorption onto fibrous activated carbon: applications to water treatment

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  2. Effect of calcium on adsorption capacity of powdered activated carbon.

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  3. A simplified adsorption model for water vapor adsorption on activated carbon

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  4. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  5. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  6. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    Khaled Okiel; Mona El-Sayed; Mohamed Y. El-Kady

    2011-01-01

    Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC) and deposited carbon (DC). The results gave evidence of the ability of the adsorb...

  7. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  8. Adsorption Models and Structural Characterization for Activated Carbon Fibers

    CHEN Chuan-juan; WANG Ru-zhu; OLIVEIRA R.G.; HU Jin-qiang

    2009-01-01

    The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevich equation showed the best agreement with the experimental data, while the Langmuir equation showed a large deviation when employed at low relative pressures. The MP method, t-method and αs-method were used to analyze the pore size distribution. The calculated average pore widths and BET (Brunauer-Emmett-Teller) surface areas for the sample A-13 were 0.86 nm and 1 286.60 m2/g, while for the sample A-16, they were 0.82 nm and 1 490.64 m2/g. The sample with larger pore width was more suitable to be used as additive in chemical heat pumps, while the other one could be used as adsorbent in adsorption refrigeration systems.

  9. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  10. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  11. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  12. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  13. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  14. A comparative study of carbon dioxide adsorption on multi-walled carbon nanotubes versus activated charcoal

    Khalili, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Davoodi, M.

    2012-09-01

    In this study, the quilibrium adsorption of CO2 on activated charcoal and multi-walled carbon nanotube (MWCNT) were experimentally investigated at temperature range of 298-318 K and pressures up to 40 bars. The maximum storage capacity for both materials was obtained at lowest temperature and highest pressure under study. The amount of CO2 adsorbed on MWCNT is 2 times higher than that of activated Charcoal whereas the specific surface area of activated carbon is aboute 2 times higher than MWNT. The experimental data of CO2 adsorption have been analyzed using different model isotherms such as the Freundlich and Langmuir. Heat of adsorption evaluated from a set of isotherms based on the Clausius-Clapeyron equation indicated physical nature of adsorption mechanism.

  15. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  16. Activated Carbon Adsorption Properties of the Residual Matters in Textile Dyeing and Printing Secondary Effluent

    TIAN Qing; LI Fang; LIU Fang; YANG Bo; CHEN Ji-hua

    2008-01-01

    The research employed the adsorption isotherm measurement, the batch kinetic adsorption and the rapid small-scale carbon column test (RSSCT) to find out the characteristics and main impacting factors of granular activated carbon (GAC) adsorption, in treating the textile dyeing-printing/polyester alkali de-weighting secondary effluent (TSE). The adsorption affinities and capacities for the organics surrogated by CODCr, color and UV254 (UV absorbency at λ= 254 nm) predicted by isotherm, small-scale-fixed bed were discussed. Adsorption rates for CODCr, color and UV254 are much different and carbon particle size dependent. The color adsorption rate and capacity should be taken as the main consideration factors in designing bio-activated carbon filter(BACF). The breakthrough of GAC adsorption column is mainly influenced by the low MW readily adsorbable organics in TSE. UVm is a good adsorption breakthrough indicator. The study provides References for BACFs' design and operation control in textile secondary effluent (TSE) tertiary treatment.

  17. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  18. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  19. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  20. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  1. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  2. Adsorption of Halogenated Hydrocarbons from Gaseous Streams by Amberlite XAD-4 Resin and Activated Carbon: Equilibria

    Rexwinkel, G.; Heesink, A.B.M.; Swaaij, van W.P.M.

    1999-01-01

    Single-solute adsorption equilibria have been measured for the adsorption of the gaseous solutes chloroform, chlorobenzene, and 1,1,1-trichloroethane onto Amberlite XAD-4 resin. For 1,1,1-trichloroethane the adsorption equilibrium has also been measured with activated carbon Norit ROW 0.8 SUPRA as a

  3. ADSORPTION ISOTHERMS AND POTENTIAL DISTRIBUTIONS OF NITROGEN ON VARIOUS ACTIVATED CARBONS

    2005-01-01

    The adsorption isotherms of four activated carbons (Norit RB1, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution.

  4. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.

  5. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke

    Wiessner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Dept. of Remediation Research

    1998-07-31

    This paper investigated activated carbon and activated coke adsorption for the treatment of highly contaminated discoloured industrial wastewater with a wide molecular size distribution of organic compounds. Lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments. The investigations were performed using water samples taken from various depths of the deposits ponds. A comparison of the capacities of the adsorption materials used showed, that because of its large number of macro and mesopores, activated coke is more suitable for wastewater treatment and in addition cheaper than activated carbon.

  6. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  7. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  8. Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit.

    Aboua, Kouassi Narcisse; Yobouet, Yao Augustin; Yao, Kouassi Benjamin; Goné, Droh Lanciné; Trokourey, Albert

    2015-06-01

    The activated carbon obtained from the shells of Macoré fruit was used as an adsorbent for the removal of dyes such as methylene blue (MB) and methyl orange (MO) from synthetic contaminated aqueous solutions. It holds that the adsorption is more favourable at acidic pH, with an optimum adsorption at pH = 2. At this pH, the adsorption rate is more than 98% for the two dyes. The sorption capacity was enhanced by increasing the amount of activated carbon. Above room temperature, the adsorption rates remain constant at a value of approximately 99%. The study of the adsorption kinetics indicates that the adsorption on the studied dyes follows second-order kinetics. The isotherm adsorption data were found to be described by both Langmuir and Freundlich. In addition, the thermodynamic studies revealed that the adsorption process is a favourable, endothermic and spontaneous phenomenon.

  9. Removal of Ni (II) from aqueous solutions by adsorption onto Ricinus communis seed shell activated carbons.

    Thamilarasu, P; Karunakaran, K

    2011-01-01

    The adsorption studies on the removal of Ni(II) from aqueous solution using Ricinus communis seed shells activated carbon and polypyrrole coated Ricinus communis seed shells activated carbon were carried out under various experimental conditions. The effects of various process parameters have been investigated by following the batch adsorption technique. Adsorption data was modeled with Freundlich, Langmuir and tempkin adsorption isotherms. Thermodynamics parameters such as DeltaH0, DeltaS0, and DeltaG0 were calculated indicating that the adsorption was spontaneous and endothermic nature. A mechanism, involving intra particle diffusion and surface adsorption, has been proposed for the adsorption of Ni(II) onto the adsorbent. Adsorbent used in this study is characterized by FTIR and SEM before and after the adsorption of metal ions.

  10. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  11. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    Rajoriya, R.K.; Prasad, B; Mishra, I.M.; Wasewar, K. L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  12. Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

    YU Qiongfen; LI Ming; JI Xu; QIU Yu; ZHU Yuntao; LENG Congbin

    2016-01-01

    Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.

  13. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  14. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  15. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  16. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  17. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde.

    Wen, Qingbo; Li, Caiting; Cai, Zhihong; Zhang, Wei; Gao, Hongliang; Chen, Lijun; Zeng, Guangming; Shu, Xin; Zhao, Yapei

    2011-01-01

    The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75°C, which is affordable and economical for recycling.

  18. Computational Chemistry Approach to Interpret the Crystal Violet Adsorption on Golbasi Lignite Activated Carbon

    Depci, Tolga; Sarikaya, Musa; Prisbrey, Keith A.; Yucel, Aysegul

    2016-10-01

    In this paper, adsorption mechanism of Crystal Violet (CV) dye from the aqueous solution on the activated carbon prepared from Golbasi lignite was explained and interpreted by a computational chemistry approach and experimental studies. Molecular dynamic simulations and Ab initio frontier orbital analysis indicated relatively high energy and electron transfer processes during adsorption, and molecular dynamics simulations showed CV dye molecules moving around on the activated carbon surface after adsorption, facilitating penetration into cracks and pores. The experimental results supported to molecular dynamic simulation and showed that the monolayer coverage occurred on the activated carbon surface and each CV dye ion had equal sorption activation energy.

  19. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate.

  20. Metal-loaded polystyrene-based activated carbons as DBT removal media via reactive adsorption

    2006-01-01

    [EN] To improve the desulfurization capability of activated carbons, new metal-loaded carbon-based sorbents containing sodium, cobalt, copper, and silver highly dispersed within the carbon matrix were prepared and tested at room temperature for dibenzothiophene (DBT) adsorption. The content of metals can be controlled by selective washing. The new adsorbents showed good adsorption capacities and selectivity towards DBT. The metals incorporated to the surface act not only as active sites for s...

  1. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  2. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  3. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  4. Comparative Studies of the Adsorption of Direct Dye on Activated Carbon and Conducting Polymer Composite

    J. Raffiea Baseri

    2012-01-01

    Full Text Available This study analyses the feasibility of removing Direct Blue 71 from aqueous solution by different adsorbents such as activated carbon (TPAC and Poly pyrrole polymer composite (PPC prepared from Thevetia Peruviana. Batch mode adsorption was performed to investigate the adsorption capacities of these adsorbents by varying initial dye concentration, temperature, agitation time and pH. The performance of TPAC was compared with PPC. Among the adsorbents, PPC had more adsorption capacity (88.24% than TPAC (58.82% at an initial concentration of 50 mg/L and at 30°C. The experimental data best fitted with pseudo second order kinetic model. The adsorption data fitted well for Langmuir adsorption isotherm. Thermodynamic parameters for the adsorbents were also evaluated. The carbon embedded in conducting polymers matrix show better adsorptive properties than activated carbon.

  5. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    Khaled Okiel

    2011-06-01

    Full Text Available Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC and deposited carbon (DC. The results gave evidence of the ability of the adsorbents to adsorb oil and that the adsorptive property of the three adsorbents (bentonite, PAC, and DC has been influenced by different factors. The effects of contact time, the weight of adsorbents and the concentration of adsorbate on the oil adsorption have been studied. Oil removal percentages increase with increasing contact time and the weight of adsorbents, and decrease with increasing the concentration of adsorbate. Equilibrium studies show that the Freunlich isotherm was the best fit isotherm for oil removal by bentonite, PAC, and DC. The data show higher adsorptive capacities by DC and bentonite compared to the PAC.

  6. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  7. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  8. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  9. Characteristics of an activated carbon monolith for a helium adsorption compressor

    Lozano-Castello, D.; Jorda-Beneyto, M.; Cazorla-Amoros, D.; Linares-Solano, A.; Burger, J.F.; Brake, ter H.J.M.; Holland, H.J.

    2010-01-01

    An activated carbon monolith (ACM) with a high helium adsorption/desorption capacity, high density, low pressure drop, low thermal expansion and good mechanical properties was prepared and applied successfully in a helium adsorption compressor as a part of a 4.5 K sorption cooler. The activated carb

  10. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution

    Mohammad Hassan Mahaninia; Paria Rahimian; Tahereh Kaghazchi

    2015-01-01

    Activated carbons were prepared by two chemical methods and the adsorption of Cu (II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration, and pHzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also, adsorption mechanism and effect of pH on the adsorption of Cu (II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu (II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.

  11. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  12. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  13. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2

    Hao Yang; Maochu Gong; Yaoqiang Chen

    2011-01-01

    Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD,FT-IR and texture property test.The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces.The texture property test reveals that the activated carbons displayed different texture properties,especially the micropore size distribution.The adsorption capacities of the activated carbons were investigated by adsorbing CH4,CO2,N2 and O2 at 25 ℃ in the pressure range of 0-200 kPa.The results reveal that all the activated carbons had high CO2 adsorption capacity,one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa.And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa.In the pressure range of 0-200 kPa,the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.

  14. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents.

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    In occupational hygiene, activated carbon produced from coconut shell is a common adsorbent material for harmful substances including organic vapors due to its outstanding adsorption capacity and cost advantage. However, moisture adsorption of the carbon generally decreases the adsorption capacity for organic vapors. In a previous report, we prepared several coconut shell activated carbons which had been preconditioned by equilibration with moisture at different relative humidities and measured the breakthrough times for 6 kinds of organic vapor, in order to clarify the effect of preliminary moisture content in activated carbon on the adsorption capacity in detail. We found that the relative percent weight increase due to moisture adsorption of the carbon specimen had a quantitative effect, reducing the breakthrough time. In this report, we carried out further measurements of the effect of moisture content on the adsorption of 13 kinds of organic vapor, and investigated the relationship between moisture adsorption and the reduction of the breakthrough time of activated carbon specimens. We also applied the data to the Wood's breakthrough time estimation model which is an extension of the Wheeler-Jonas equation.

  15. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    谢自立; 敦坤敏; 吴菊芳; 袁存禾

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  16. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-08

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  17. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  18. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  19. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  20. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  1. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.

    Karthikeyan, T; Rajgopal, S; Miranda, Lima Rose

    2005-09-30

    Adsorption capacity of Cr(VI) onto Hevea Brasilinesis (Rubber wood) sawdust activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ) and standard entropy (DeltaS degrees ) were evaluated. Adsorption kinetics of Cr(VI) ions onto rubber wood sawdust activated carbon were analyzed by pseudo first-order and pseudo second-order models. Pseudo second-order model was found to explain the kinetics of Cr(VI) adsorption most effectively. Intraparticle diffusion studies at different temperatures show that the mechanism of adsorption is mainly dependent on diffusion. The rate of intraparticle diffusion, film diffusion coefficient and pore diffusion coefficient at various temperatures were evaluated. The Langmuir, Freundlich and Temkin isotherm were used to describe the adsorption equilibrium studies of rubber wood sawdust activated carbon at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherm in the temperature range studied. The result shows that the rubber wood sawdust activated carbon can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported.

  2. A computer-controlled experimental facility for krypton and xenon adsorption coefficient measurements on activated carbons

    Del Serra, Daniele; Aquaro, Donato; Mazed, Dahmane; Pazzagli, Fabio; Ciolini, Riccardo, E-mail: r.ciolini@ing.unipi.it

    2015-07-15

    Highlights: • An experimental test facility for qualification of the krypton and xenon adsorption properties of activated carbons. • The measurement of the adsorption coefficient by using the elution curve method. • The simultaneous on-line control of the main physical parameters influencing the adsorption property of activated carbon. - Abstract: An automated experimental test facility, intended specifically for qualification of the krypton and xenon adsorption properties of activated carbon samples, was designed and constructed. The experimental apparatus was designed to allow an on-line control of the main physical parameters influencing greatly the adsorption property of activated carbon. The measurement of the adsorption coefficient, based upon the elution curve method, can be performed with a precision better than 5% at gas pressure values ranging from atmospheric pressure up to 9 bar and bed temperature from 0 up to 80 °C. The carrier gas flow rate can be varied from 40 up to 4000 N cm{sup 3} min{sup −1} allowing measurement of dynamic adsorption coefficient with face velocities from 0.3 up to 923 cm min{sup −1} depending on the gas pressure and the test cell being used. The moisture content of the activated carbon can be precisely controlled during measurement, through the relative humidity of the carrier gas.

  3. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs

    Habib, Khairul; Koyama, Shigeru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 (Japan); Saha, Bidyut B. [Mechanical Engineering Department, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395 (Japan); Rahman, Kazi A.; Chakraborty, Anutosh; Ng, Kim Choon [Mechanical Engineering Department, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2010-06-15

    The objective of this article is to evaluate adsorption kinetics of R134a and R507A on pitch based activated carbon experimentally by a constant volume variable pressure method at different adsorption temperatures ranging from 20 to 60 C. These data are useful for the design of adsorption cooling and refrigeration systems and are unavailable in the literature. Data obtained from the kinetic studies were analyzed with various kinetic models and the Fickian diffusion model is found to be the most suitable overall. Guided by the experimental measurements, the surface diffusion is also estimated and is found that it follows the classical Arrhenius law within the experimental range. (author)

  4. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  5. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  6. [Preparation, characterization and adsorption performance of mesoporous activated carbon with acidic groups].

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Zhang, Yu-Xuan

    2013-06-01

    Mesoporous activated carbons containing acidic groups were prepared with cotton stalk based fiber as raw materials and H3PO4 as activating agent by one step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on the yield, elemental composition, oxygen-containing acid functional groups and adsorptive capacity of activated carbon were studied. The adsorption capacity of the prepared activated carbon AC-01 for p-nitroaniline and Pb(II) was studied, and the adsorption mechanism was also suggested according to the equilibrium experimental results. The maximum yield of activated carbons prepared from cotton stalk fiber reached 35.5% when the maximum mesoporous volume and BET surface area were 1.39 cm3 x g(-1) and 1 731 m2 x g(-1), respectively. The activated carbon AC-01 prepared under a H3 PO4/precursor ratio of 3:2 and activated at 900 degrees C for 90 min had a total pore volume of 1.02 cm3 x g(-1), a micoporous ratio of 31%, and a mesoporous ratio of 65%. The pore diameter of the mesoporous activated carbon was mainly distributed in the range of 2-5 nm. The Langmuir maximum adsorption capacities of Pb(II) and p-nitroaniline on cotton stalk fiber activated carbon were 123 mg x g(-1) and 427 mg x g(-1), respectively, which were both higher than those for commercial activated carbon fiber ACF-CK. The equilibrium adsorption experimental data showed that mesopore and oxygen-containing acid functional groups played an important role in the adsorption.

  7. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi

    2009-07-01

    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1microm, but further particle size reduction produced little improvement.

  8. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  9. Limited adsorption selectivity of active carbon toward non-saccharide compounds in lignocellulose hydrolysate.

    Wang, Zhaojiang; Zhuang, Jingshun; Wang, Xiaojun; Li, Zongquan; Fu, Yingjuan; Qin, Menghua

    2016-05-01

    Prehydrolysis of lignocellulose produces abundant hemicellulose-derived saccharides (HDS). To obtain pure HDS for application in food or pharmaceutical industries, the prehydrolysis liquor (PHL) must be refined to remove non-saccharide compounds (NSC) derived from lignin depolymerization and carbohydrate degradation. In this work, activated carbon (AC) adsorption was employed to purify HDS from NSC with emphasis on adsorption selectivity. The adsorption isotherms showed the priority of NSC to be absorbed over HDS at low AC level. However, increase of AC over 90% of NSC removal made adsorption non-selective due to competitive adsorption between NSC and HDS. Size exclusion chromatography showed that the adsorption of oligomeric HDS was dominant while monomeric HDS was inappreciable. The limited selectivity suggested that AC adsorption is infeasibility for HDS purification, but applicable as a pretreatment method.

  10. Roles of metal/activated carbon hybridization on elemental mercury adsorption.

    Bae, Kyong-Min; Kim, Byung-Joo; Rhee, Kyong Yop; Park, Soo-Jin

    2014-08-01

    In this study, the elemental mercury removal behavior of metal (copper or nickel)/activated carbon hybrid materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed using the N2/77 K adsorption isotherms. The microstructure and surface morphologies of the hybrid materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. In the experimental results, the elemental mercury adsorption capacities of all copper/activated carbon hybrid materials were higher than that of the as-received material despite the decrease in specific surface areas and total pore volumes after the metal loading. All the samples containing the metal particles showed excellent elemental mercury adsorption. The Ni/ACs exhibited superior elemental mercury adsorption to those of Cu/ACs. This suggests that Ni/ACs have better elemental mercury adsorption due to the higher activity of nickel.

  11. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  12. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperaturescarbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  13. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process.

  14. Adsorption of reactive brilliant red K-2BP on activated carbon developed from sewage sludge

    Jiankun XIE; Qinyan YUE; Hui YU; Wenwen YUE; Renbo LI; Shengxiao ZHANG; Xiaona WANG

    2008-01-01

    Activated carbon was prepared from the sewage sludge of municipal wastewater treatment plant by chemical activation (activation reagent is ZnCl2) and was used for the adsorption of dye (reactive brilliant red K-2BP). The impact of adsorbent amount, adsorption time and pH value on adsorption effect, the adsorption kinetics, and the adsorption thermodynamics were dis-cussed according to batch adsorption tests. The results indicated that the activated carbon developed from sewage sludge (ACSS), which was mesoporous, possessed opened porous structures. The iodine number of the ACSS was heavy metals in the leachate didn't exceed the contents limit. The adsorption kinetics of reactive brilliant red K-2BP on the ACSS was accorded with the two-step kinetics rate equation and pseudo-second-order kinetics equation. Compared to the Freundlich isotherm equation, the Langmuir isotherm equation showed better applicability for the adsorption. The adsorption which was favorable was an endothermic (enthalpy △H > 0) and spontaneous (flee energy △G 0).

  15. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  16. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  17. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    Holstvoogd, R.D.; Swaaij, van W.P.M.

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems stud

  18. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.

    Cabal, Belen; Budinova, Temenuzhka; Ania, Conchi O; Tsyntsarski, Boyko; Parra, José B; Petrova, Bilyana

    2009-01-30

    The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation.

  19. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  20. Study on the preparation of straw activated carbon and its phenol adsorption properties

    Chen, Liping

    2017-01-01

    Using sunflower straw as raw materials to manufacture straw activated carbon-modified by phosphoric acidand adsorption isotherm of phenol on straw activated carbon was studied in a batch reactor. The physical properties of the prepared straw activated carbons were characterized by scanning electron microscopy. The effect of various parameters, adsorbent dose, pH and temperature, were studied on optimum conditions. The results have shown that the absorbent was efficient, the removal ratio of phenol up to 99.36% with an adsorbent dosage of 16 g·L-1, a pH of 6.0-8.0, at 25 °C. The experimental adsorption data fitted reasonably well to the Langmuir isotherm, the maximum adsorption capacity was 109.89 mg/g. The process of adsorption is a exothermic process.

  1. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon

    Lee, Jong Jib [Kongju National University, Cheonan (Korea, Republic of)

    2015-02-15

    Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

  2. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  3. Equilibrium adsorption of methane, ethane, ethylene, and propylene and their mixtures on activated carbon

    Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. (Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (ES))

    1989-04-01

    The authors discuss pure gas adsorption isotherms of methane, ethane, ethylene, and propylene on activated carbon determined at 323{Kappa} and pressures in the range 0-100 kPa. Binary and ternary adsorption isotherms were also determined at the same temperature and pressures for all the mixtures of these adsorbates, with the exception of methane-propylene mixtures due to their difference in adsorption capacity. Two models have been applied for correlation and prediction of mixture adsorption equilibria-the ideal adsorbed solution (IAS) and the real adsorbed solution (RAS). This second model provides better results for all the systems.

  4. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pHactivated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.

  5. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  6. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  7. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm.

  8. Experimental Investigation on Adsorption Capacity of a Variety of Activated Carbon/Refrigerant Pairs

    Ahmed N. Shmroukh

    2015-04-01

    Full Text Available This study aims to develop a device with minimum heat and mass transfer limitations between adsorbent and adsorbate, and subsequently to obtain practically applicable adsorption capacity data. Also, 5 kW adsorption chillers (evaporators, condensers and adsorbers are designed based on the experimental output data of the whole tested pairs. A finned-tube heat exchanger was employed and installed at the center adsorber, and each employed adsorbent was immobilized on its surfaces by using an adhesive agent. A variety of pairs: are activated carbon powder (ACP/R-134a, ACP/R-407c, ACP/R-507A, activated carbon granules (ACG/R-507A, ACG /R-407c and ACG /R-134a, were examined at different adsorption temperatures of 25, 30, 35 and 50°C. It was found that, at the adsorption temperature of 25°C the maximum adsorption capacity was 0.8352 kg kg-1 for ACP/R-134a, while at the adsorption temperature of 50°C the maximum adsorption capacity was 0.3207 kg kg-1 for ACP/R- 134a. Therefore, the ACP/R-134a pair is highly recommended to be employed as adsorption refrigeration working pair because of its higher maximum adsorption capacity higher than the other examined pairs.

  9. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon

    Yuxin WANG; Congmin LIU; Yaping ZHOU

    2008-01-01

    Activated carbon with high specific surface area and considerable mesopores was prepared from bam-boo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% H3PO4 at 80℃ for 9 days and activation at 500℃ for 4 h, the prepared acti-vated carbon had the highest mesopore volume of 0.67 cm3/g, a specific surface area of 1567 m2/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH4, CO2, N2 and O2on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO2 and the other gases was observed, which would be of interest for the adsorp-tive separation/purification of gaseous CO2 from its mix-tures, especially from mixtures with N2 and/or O2.

  10. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark

    Phussadee Patnukao; Apipreeya Kongsuwan; Prasert Pavasant

    2008-01-01

    Powdered activated carbon (PAC) prepared from Eucalyptus camaldulensis Dehn. bark was tested for its adsorption capacity for Cu(Ⅱ) and Pb(Ⅱ). The experiment was conducted to investigate the effects of pH, contact time, initial metal concentration, and temperature. The best adsorption of both Cu(Ⅱ) and Pb(Ⅱ) occurred at pH 5, where the adsorption reached equilibrium within 45 min for the whole range of initial heavy metal concentrations (0.1-10 mmol/L). The adsorption kinetics was found to follow the pseudo-second order model where equilibrium adsorption capacities and adsorption rate constants increased with initial heavy metal concentrations. The adsorption isotherm followed Langmuir better than Freundlich models within the temperature range (25-60℃). The maximum adsorption capacities (qm) occurred at 60℃, where qm for Cu(Ⅱ) and Pb(Ⅱ) were 0.85 and 0.89 mmol/g, respectively. The enthalpies of Cu(Ⅱ) and Pb(Ⅱ) adsorption were 43.26 and 58.77 kJ/mol, respectively. The positive enthalpy of adsorption indicated an endothermic nature of the adsorption.

  11. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  12. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon

    Milewska-Duda, J.; Duda, J.; Nodzenski, A.; Lakatos, J. [Stanislaw Staszic University of Mining and Metallurgy, Krakow (Poland). Faculty of Fuels and Energy

    2000-07-01

    The paper shows what can be deduced on sorption mechanisms in hard coals and active carbon by using a theoretical model of sorption of small molecules in elastic submicroporous materials. This multiple sorption model (MSM) describes both adsorption and absorption phenomena. Basic assumptions and formulae of the MSM are presented. The computations were performed for isotherms of CO{sub 2} and CH{sub 4} at elevated pressures on three coal samples of different rank and on an active carbon. Nonideality of the sorbates is handled by an original state equation providing consistent information on fugacity and cohesion energy corresponding to a given molar volume of sorbate molecules in the sorption system. Surface structure of the studied coals and energetic parameters of the systems determined with MSM are compared to those obtained by using BET and Dubinin-Radushkievitch equations.

  13. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon.

    Selvi, K; Pattabhi, S; Kadirvelu, K

    2001-10-01

    Activated carbon (AC) prepared from coconut tree sawdust was used as an adsorbent for the removal of Cr(VI) from aqueous solution. Batch mode adsorption studies were carried out by varying agitation time, initial Cr(VI) concentration, carbon concentration and pH. Langmuir and Freundlich adsorption isotherms were applied to model the adsorption data. Adsorption capacity was calculated from the Langmuir isotherm and was 3.46 mg/g at an initial pH of 3.0 for the particle size 125-250 microm. The adsorption of Cr(VI) was pH dependent and maximum removal was observed in the acidic pH range. Desorption studies were carried out using 0.01-1 M NaOH solutions.

  14. Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol

    Aktas, Ozguer, E-mail: Ozgur.Aktas@mam.gov.tr [Bogazici University Institute of Environmental Sciences, 34342 Bebek, Istanbul (Turkey); Cecen, Ferhan [Bogazici University Institute of Environmental Sciences, 34342 Bebek, Istanbul (Turkey)

    2010-05-15

    The extent of cometabolic bioregeneration of activated carbons loaded with 2-nitrophenol was investigated in lab-scale batch activated sludge reactors. Bioregeneration was quantified by measuring the deterioration in adsorption capacity of a fresh activated carbon after a pre-loading and a subsequent bioregeneration sequence. Activated carbons loaded with 2-nitrophenol could be partially bioregenerated cometabolically in the presence of phenol as the growth substrate. The occurrence of exoenzymatic bioregeneration was also possible during cometabolic bioregeneration of thermally activated carbon. However, cometabolic bioregeneration of chemically activated carbon was higher in accordance with higher desorbability. Rather than biodegradation, desorption was the rate-limiting step in bi-solute bioregeneration of phenol and 2-nitrophenol. The absence of oxidative coupling reactions leads to sufficient reversible adsorption, which eventually makes 2-nitrophenol an ideal compound in terms of bioregenerability.

  15. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  16. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature.

  17. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree.

    Senthilkumaar, S; Kalaamani, P; Subburaam, C V

    2006-08-25

    Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.

  18. Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment

    Bouzid, Mohamed; Sellaoui, Lotfi; Khalfaoui, Mohamed; Belmabrouk, Hafedh; Lamine, Abdelmottaleb Ben

    2016-02-01

    In this work, we studied the adsorption of ethanol on three types of activated carbon, namely parent Maxsorb III and two chemically modified activated carbons (H2-Maxsorb III and KOH-H2-Maxsorb III). This investigation has been conducted on the basis of the grand canonical formalism in statistical physics and on simplified assumptions. This led to three parameter equations describing the adsorption of ethanol onto the three types of activated carbon. There was a good correlation between experimental data and results obtained by the new proposed equation. The parameters characterizing the adsorption isotherm were the number of adsorbed molecules (s) per site n, the density of the receptor sites per unit mass of the adsorbent Nm, and the energetic parameter p1/2. They were estimated for the studied systems by a non linear least square regression. The results show that the ethanol molecules were adsorbed in perpendicular (or non parallel) position to the adsorbent surface. The magnitude of the calculated adsorption energies reveals that ethanol is physisorbed onto activated carbon. Both van der Waals and hydrogen interactions were involved in the adsorption process. The calculated values of the specific surface AS, proved that the three types of activated carbon have a highly microporous surface.

  19. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  20. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    Martin, Awaludin

    2011-03-10

    This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.

  1. Adsorption of indoor toxic gas by ionic liquid impregnated activated carbons

    Rahman, Noraisyah Azeezah Abdul; Leveque, Jean Marc; Mutalib, Mohamed Ibrahim Abdul; Ghani, Noraini Abdul; Thangarajoo, Nanthinie; Mazlan, Faizureen Afzal; Farooq, Amjad; Irfan, Naseem; Duclaux, Laurent; Reinert, Laurence; Ondarts, Michel

    2016-11-01

    Butylpyridinium thiocyanate [BuPyr]SCN ionic liquid was synthesized by metathesis and characterized. NMR spectrum has shown the [BuPyr] cation while FTIR has shown the SCN anion peak which confirms the structure of the synthesized ionic liquid. The ionic liquid was impregnated on activated carbon in order to enhance performance of sulfur dioxide adsorption compared to the non-impregnated raw activated carbon. Two types of activated carbons were used; activated carbon cylindrical granules and cloth. Different percentages of ionic liquid loading (1%, 10% and 20%) were applied. The capacity of the adsorbent for treatment of 10 ppm and 50 ppm SO2 was determined by breakthrough curve analysis whereby optimum breakthrough time was obtained. [BuPyr]SCN impregnated on activated carbon cloth have shown higher adsorption performance.

  2. Investigation of the adsorption of anionic surfactants at different pH values by means of active carbon and the kinetics of adsorption

    2004-01-01

    In this study, the effect of pH on the removal of anionic surfactants, such as linear alkyl benzene sulfonate (LABS) and dodecyl benzene sulfonate (DBS) by means of adsorption by activated carbon was investigated. For this purpose activated carbon was used as adsorbent. Anionic surfactant solutions with initial pH values of 3, 6, 8 and 12 were used. The adsorption isotherms for the adsorption of anionic surfactants by active carbon at different pH were determined. These adsorption isotherms w...

  3. Phenol Adsorption on Nitrogen-enriched Activated Carbon Prepared from Bamboo Residues

    Ji Zhang

    2013-12-01

    Full Text Available Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration. Adsorption equilibrium was achieved within 120 min at a phenol concentration of 250 mg/L. When the pH was 4 and 0.1 g of the carbon absorbent and 100 mL of phenol solution at 250 mg/L were used, the phenol adsorption of the ACs with melamine and urea modifications were 219.09 mg/g and 214.45 mg/g, respectively. Both were greater than the capacity of unmodified AC, which was 163.82 mg/g. The Langmuir isotherm adsorption equation well described the experimental adsorption isotherms. The adsorption kinetics was well explained by pseudo-second-order kinetics rather than the pseudo-first-order. In conclusion, the nitrogen-enriched activated carbon proposed as adsorbents of the phenol wastewater were shown to be effective, which also means that bamboo residues have promise as activated carbon precursors for liquid phase adsorbents for environmental protection.

  4. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.

    Skodras, G; Diamantopoulou, Ir; Pantoleontos, G; Sakellaropoulos, G P

    2008-10-01

    Activated carbons are suitable materials for Hg(0) adsorption in fixed bed operation or in injection process. The fixed bed tests provide good indication of activated carbons effectiveness and service lives, which depend on the rates of Hg(0) adsorption. In order to correlate fixed bed properties and operation conditions, with their adsorptive capacity and saturation time, Hg(0) adsorption tests were realized in a bench-scale unit, consisted of F400 activated carbon fixed bed reactor. Hg(0) adsorption tests were conducted at 50 degrees C, under 0.1 and 0.35 ng/cm(3) Hg(0) initial concentrations and with carbon particle sizes ranging between 75-106 and 150-250 microm. Based on the experimental breakthrough data, kinetic studies were performed to investigate the mechanism of adsorption and the rate controlling steps. Kinetic models evaluated include the Fick's intraparticle diffusion equation, the pseudo-first order model, the pseudo-second order model and Elovich kinetic equation. The obtained experimental results revealed that the increase in particle size resulted in significant decrease of breakthrough time and mercury adsorptive capacity, due to the enhanced internal diffusion limitations and smaller external mass transfer coefficients. Additionally, higher initial mercury concentrations resulted in increased breakthrough time and mercury uptake. From the kinetic studies results it was observed that all the examined models describes efficiently Hg(0) breakthrough curves, from breakpoint up to equilibrium time. The most accurate prediction of the experimental data was achieved by second order model, indicating that the chemisorption rate seems to be the controlling step in the procedure. However, the successful attempt to describe mercury uptake with Fick's diffusion model and the first order kinetic model, reveals that the adsorption mechanism studied was complex and followed both surface adsorption and particle diffusion.

  5. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides.

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2011-09-15

    Adsorption is an effective process to remove mercury from polluted waters. In spite of the great number of experiments on this subject, the assessment of the optimal working conditions for industrial processes is suffering the lack of reliable models to describe the main adsorption mechanisms. This paper presents a critical analysis of mercury adsorption on an activated carbon, based on the use of chemical speciation analysis to find out correlations between mercury adsorption and concentration of dissolved species. To support this analysis, a comprehensive experimental study on mercury adsorption at different mercury concentrations, temperatures and pH was carried out in model aqueous solutions. This study pointed out that mercury capture occurs mainly through adsorption of cationic species, the adsorption of anions being significant only for basic pH. Furthermore, it was shown that HgOH(+) and Hg(2+) are captured to a higher extent than HgCl(+), but their adsorption is more sensitive to solution pH. Tests on the effect of temperature in a range from 10 to 55 °C showed a peculiar non-monotonic trend for mercury solution containing chlorides. The chemical speciation and the assumption of adsorption exothermicity allow describing this experimental finding without considering the occurrence of different adsorption mechanisms at different temperature.

  6. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut

    2004-04-01

    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates.

  7. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons.

  8. Adsorption kinetics of propane on energetically heterogeneous activated carbon

    Ismail, Azhar Bin

    2014-11-01

    The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.

  9. Characterizing o- and p-nitrophenols adsorption onto innovative activated carbon prepared from date pits.

    Altaher, Hossam; Dietrich, Andrea M

    2014-01-01

    The production and performance of activated carbon prepared from date pits was investigated. Date pits are an abundant local waste product in many countries; converting them to a commercial product would increase the sustainability of this fruit crop. The date pit activated carbon was shown to have similar characteristics of pore size and surface functional groups as other commercial carbons. Batch experiments were conducted with o- and p-nitrophenol to evaluate the performance of this carbon. Results were analyzed according to Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. The adsorption capacity of o-nitrophenol was 142.9 mg/g while that of p-nitrophenol was 108.7 mg/g. The adsorption process was physical in nature. The position of the -NO(2) group in the benzene ring has a considerable effect on the adsorption capacity and rate of uptake. The kinetic results showed that a pseudo second-order model appropriately describes the experimental data. The analysis of kinetic data revealed that the mechanism of adsorption is complex with both liquid film diffusion and intraparticle diffusion contributing to adsorption of both adsorbates.

  10. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    Wen Yang

    2014-01-01

    Full Text Available Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane capacities. In addition, a thermodynamic study of the heat of adsorption of CH4 on the carbon spheres was carried out. Adsorption of CH4 on carbon spheres showed a decrease in the adsorption heat with CH4 occupancy, and the heat of adsorption fell from 20.51 to 12.50 kJ/mol at 298 K and then increased to a little higher values at a very high loading (>0.70, indicating that CH4/CH4 interactions within the adsorption layer became significant.

  11. Kinetics of naphthalene adsorption on an activated carbon: comparison between aqueous and organic media.

    Cabal, B; Ania, C O; Parra, J B; Pis, J J

    2009-07-01

    The purpose of this work was to explore the kinetics of naphthalene adsorption on an activated carbon from aqueous and organic solutions. Kinetic curves were fitted to different theoretical models, and the results have been discussed in terms of the nature and properties of the solvents, the affinity of naphthalene to the solutions, and the accessibility to the porosity of the activated carbon. Data was fitted to the pseudo-second order kinetic model with good correlation coefficients for all the solution media. The faster adsorption rate was obtained for the most hydrophobic solvent (heptane). The overall adsorption rate of naphthalene seems to be controlled simultaneously by external (boundary layer) followed by intraparticle diffusion in the porosity of the activated carbon when water, ethanol and cyclohexane are used as solvents. In the case of heptane, only two stages were observed (pore diffusion and equilibrium) suggesting that the limiting stage is the intraparticle diffusion. The low value of the boundary thickness supports this observation.

  12. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.

    Ahn, Chi K; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2008-12-15

    The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.

  13. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  14. AUSTRALIAN PINE CONES-BASED ACTIVATED CARBON FOR ADSORPTION OF COPPER IN AQUEOUS SOLUTION

    MUSLIM A.

    2017-02-01

    Full Text Available The Australian Pine cones (APCs was utilised as adsorbent material by physical and chemical activation for the adsorption Cu(II in aqueous solution. FTIR and SEM analysis were conducted to obtain the active site and to characterise the surface morphology of the APCs activated carbon (APCs AC prepared through pyrolysis at 1073.15 K and alkaline activation of NaOH. The independent variables effect such as contact time, Cu(II initial concentration and the activator ratio in the ranges of 0-150 min, 84.88-370.21 mg/l and 0.2-0.6 (NaOH:APCs AC, respectively on the Cu(II adsorption capacity were investigated in the APCs activated carbon-solution (APCs ACS system with 1 g the APCs AC in 100 mL Cu(II aqueous solution with magnetic stirring at 75 rpm, room temperature of 298.15 K (± 2 K, 1 atm and pH 5 (±0.25. As the results, Cu(II adsorption capacity dramatically increased with increasing contact time and Cu(II initial concentration. The optimal Cu(II adsorption capacity of 26.71 mg/g was obtained in the APCs ACS system with 120-min contact time, 340.81 m/l initial Cu(II and 0.6 activator ratio. The kinetics study showed the Cu(II adsorption kinetics followed the pseudo-second-order kinetics with 27.03 mg/g of adsorption capacity, 0.09 g/mg.min of rate constant and 0.985-R2. In addition, the Cu(II adsorption isotherm followed the Langmuir model with 12.82 mg/g of the mono-layer adsorption capacity, 42.93 l/g of the over-all adsorption capacity and 0.954-R2.

  15. Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues

    L. Giraldo

    2008-03-01

    Full Text Available Activated carbons obtained from cane sugar bagasse (ACB, African palm pit (ACP and sawdust (ACS were prepared through an impregnated with HNO3 and thermal treatment in an atmosphere in N2/steam water at 1173 K. Adsorption isotherms of N2 at 77 K and of CO2 at 273 K were determined for the activated carbons for which surface area and pore volume values were from 868 to 1100 m²g-1 and from 0.27 to 0.55cm³ g-1, respectively. These results were correlated, with the ones obtained for adsorption the adsorption isotherms of Pb2+ in aqueous solutions. Impregnation of the lignocellulosic materials with nitric acid produced acid-type activated carbons with total acid site contents between 4.13 and 6.93 mmol g-1 and pH at the point of zero charge values between 2.7 and 4.1, which were within range of the adsorption, at different pH values, since they determined, the surface charge of the activated carbons. Adsorption isotherms of Pb2+ at different pH values (2-8 at 298 K were determined. The ion adsorption capacity on ACB, ACP and ACS were 13.7, 15.2 and 17.5 mg.g-1, respectively. Experimental data were fitted to the Langmuir and Freundlich models and all cases the former fit better. The highest values for the quantity adsorbed on the monolayer, qm, were at pH 4, whereas the surface, charge of activated carbons was negative and the lead species mainly present was Pb2+. For higher pHs, the quantity of Pb2+ adsorbed decreased, and this had an important effect on adsorption, the surface characteristics of the solids and the hydroxilated lead species that were formed in the system.

  16. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  17. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue

    Julius Ndi Nsami; Joseph Ketcha Mbadcam

    2013-01-01

    The adsorption of methylene blue from aqueous solution onto activated carbon prepared from cola nut shell has been investigated under batch mode. The influence of major parameters governing the efficiency of the process such as, solution pH, sorbent dose, initial concentration, and contact time on the removal process was investigated. The time-dependent experimental studies showed that the adsorption quantity of methylene blue increases with initial concentration and decreasing adsorbent dosa...

  18. STUDY ON THE PROPERTIES OF DIFFERENT ACTIVATED CARBON FIBERS AND THEIR ADSORPTION CHARACTERISTICS FOR FORMALDEHYDE

    H.Q. Rong; Z.Y. Ryu; J.T. Zheng

    2001-01-01

    Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a relative pressure range from 10 6to 1. The regularization method according to Density Functional Theory (DFT) wasemployed to calculate the pore size distribution in the samples. Their specific surfaceareas were calculated by BET method, micropore volume and microporous specificsurface area calculated by t-plot method and MPD by Horvath-Kawazoe equation. Mi-cropore volume of rayon-based ACF was higher than that of other samples. The staticand dynamic adsorption capacity for formaldehyde on different ACFs was determined.The results show that steam activated Rayon-based A CFs had higher adsorption capac-ity than that of steam and KOH activated PAN-A CFs. Breakthrough curves illustratedthat Rayon-ACFs had longer breakthrough time, thus they possessed higher adsorp-tion capacity for formaldehyde than that of PAN-ACFs. The entire sample had smalladsorption capacity and short breakthrough time for water. Rayon-A CFs had exccl-lent adsorption selectivity for formaldehyde than PAN-ACFs. And the samples withhigh surface areas had relatively high adsorption capacity for formaldehyde. Elementaicontent of different A CFs were performed. Rayon-based A CFs contained more oxygenthan PAN-ACFs, which may be attributed to their excellent adsorption capacity forformaldehyde.

  19. p-Chlorophenol adsorption on activated carbons with basic surface properties

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.

  20. Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon.

    Li, Yuran; Guo, Yangyang; Zhu, Tingyu; Ding, Song

    2016-05-01

    Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption.

  1. Removal of Toluene at Low Concentration with Activated Carbon Filter : Adsorption Analysis using Tenax Tube and TD-GCMSD

    Shan, Chi-En

    2016-01-01

    Various studies have demonstrated the usefulness of adsorption of activated carbon on VOCs removal. Large porosity and high adsorption allows activated carbon to remove very small particles. This project was commissioned by the company name Genano Oy to test the activated carbon filter in their air purifier and hence to provide a database for the company. The purpose of this thesis was to study the effectiveness of impregnated activated carbon filter on toluene removal. Experiment was co...

  2. Influence of Main Components in Exhaust Gas on Mercury Adsorption Capacity of Brominated Activated Carbon

    Tran Hong Con

    2016-01-01

    Full Text Available Brominated activated carbon (AC-Br, which was produced from coconut shell activated carbon (AC and brominated by wet way with elemental bromine, was determined as a material with super high adsorption capacity of mercury vapor. But in real exhaust gases, there are many components such as SO2, NOx, CO, CO2, HCl, H2O can influence on adsorption ability of the AC-Br. In this paper, these influences were studied and compared them between initial AC and AC-Br. Each component has different effect on AC and AC-Br and followed by its particular mechanism.

  3. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui

    2008-01-01

    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  4. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells.

    Fouladi Tajar, Amir; Kaghazchi, Tahereh; Soleimani, Mansooreh

    2009-06-15

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC & SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd(2+). Sulfurizing agent (SO(2) gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH>8.0 (C(0)=100mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO(2) greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  5. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  6. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  8. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics.

    Kumar, Arvind; Prasad, B; Mishra, I M

    2008-04-01

    The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50PAC and GAC, respectively. Error analysis also confirmed the efficacy of the R-P isotherm to best fit the experimental data. The pseudo-second order kinetic model best represents the kinetics of the adsorption of AN onto PAC and GAC. Maximum adsorption capacity of PAC and GAC at optimum conditions of AN removal (adsorbent dose approximately 20 g/l of solution, and equilibrium time approximately 5 h) was found to be 51.72 and 46.63 mg/g, respectively.

  9. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  10. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-01-31

    Three carbon samples were employed in this work, including commercial (1690 m(2) g(-1)), activated carbon prepared from guava seeds (637 m(2) g(-1)), and activated carbon prepared from avocado kernel (1068 m(2) g(-1)), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  11. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon.

    Namasivayam, C; Sangeetha, D

    2006-07-01

    Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.

  12. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties

    Park, S.J.; Kim, K.D.

    1999-10-01

    The effect of anodic surface treatment of activated carbon on adsorption and ion exchange characteristics was investigated in the condition of 35 wt% NaOH electrolyte for 60 s. The acid and base values were determined by a titration technique, and surface and pore structures were studied in terms of BET volumetric measurement with N{sub 2} adsorption. The ion exchange capacity of the anodized activated carbons was characterized by a dry weight capacity technique. It was observed that an increase in current intensity leads to an increase in the surface functional groups of activated carbons, resulting in increasing pH, acid-base values, and anion-cation exchange capacities, without significant change of surface and pore structures (i.e., specific surface area, total pore volume, micropore volume, and average pore diameter). Also, anodically treated activated carbons are more effectively evaluated on the base value or cation exchange capacity than on the oppose properties in this electrolytic system.

  13. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  14. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Ramin Karimzadeh

    2012-10-01

    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  15. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  16. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell.

    Zabihi, M; Haghighi Asl, A; Ahmadpour, A

    2010-02-15

    The adsorption ability of a powdered activated carbons (PAC) derived from walnut shell was investigated in an attempt to produce more economic and effective sorbents for the control of Hg(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local walnut shell, were prepared by chemical activation methods using ZnCl(2) as activating reagents. Adsorption of Hg(II) from aqueous solutions was carried out under different experimental conditions by varying treatment time, metal ion concentration, pH and solution temperature. It was shown that Hg(II) uptake decreases with increasing pH of the solution. The proper choice of preparation conditions were resulted in microporous activated carbons with different BET surface areas of 780 (Carbon A, 1:0.5 ZnCl(2)) and 803 (Carbon B, 1:1 ZnCl(2))m(2)/g BET surface area. The monolayer adsorption capacity of these particular adsorbents were obtained as 151.5 and 100.9 mg/g for carbons A and B, respectively. It was determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms as well as pseudo-second-order kinetics.

  17. Investigation of the adsorption of anionic surfactants at different pH values by means of active carbon and the kinetics of adsorption

    SIBEL ZOR

    2004-01-01

    Full Text Available In this study, the effect of pH on the removal of anionic surfactants, such as linear alkyl benzene sulfonate (LABS and dodecyl benzene sulfonate (DBS by means of adsorption by activated carbon was investigated. For this purpose activated carbon was used as adsorbent. Anionic surfactant solutions with initial pH values of 3, 6, 8 and 12 were used. The adsorption isotherms for the adsorption of anionic surfactants by active carbon at different pH were determined. These adsorption isotherms were seen to be consistent with Freundlich’s adsorption isotherm. k and n constants were determined from Freundlich’s linear equation. Adsorption rate constants were determined from the obtained kinetic curves which were suitable for the first order of rate kinetics.

  18. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  19. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  20. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.

    Matsui, Yoshihiko; Sakamoto, Asuka; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku; Shirasaki, Nobutaka; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2014-09-16

    Decreasing the particle size of powdered activated carbon may enhance its equilibrium adsorption capacity for small molecules and micropollutants, such as 2-methylisoborneol (MIB) and geosmin, as well as for macromolecules and natural organic matter. Shell adsorption, in which adsorbates do not completely penetrate the adsorbent but instead preferentially adsorb near the outer surface of the adsorbent, may explain this enhancement in equilibrium adsorption capacity. Here, we used isotope microscopy and deuterium-doped MIB and geosmin to directly visualize the solid-phase adsorbate concentration profiles of MIB and geosmin in carbon particles. The deuterium/hydrogen ratio, which we used as an index of the solid-phase concentration of MIB and geosmin, was higher in the shell region than in the inner region of carbon particles. Solid-phase concentrations of MIB and geosmin obtained from the deuterium/hydrogen ratio roughly agreed with those predicted by shell adsorption model analyses of isotherm data. The direct visualization of the localization of micropollutant adsorbates in activated carbon particles provided direct evidence of shell adsorption.

  1. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  2. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  3. Effect of surface property of activated carbon on adsorption of nitrate ion.

    Iida, Tatsuya; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2013-01-01

    In this study, the removal of acidic functional groups and introduction of basic groups/sites on activated carbons (ACs) by outgassing and ammonia gas treatment were respectively carried out to enhance the nitrate ion adsorption in aqueous solution. Then, the relationships between nitrate ion adsorption and solution pH as well as surface charge of AC were investigated to understand the basic mechanisms of nitrate ion adsorption by AC. The result showed that the nitrate ion adsorption depended on the equilibrium solution pH (pHe) and the adsorption amount was promoted with decreasing pHe. The ACs treated by outgassing and ammonia gas treatment showed larger amount of nitrate ion adsorption than that by untreated AC. These results indicated that, since basic groups/sites could adsorb protons in the solution, the AC surface would be charged positively, and that the nitrate ion would be electrically interacted with positively charged carbon surface. Accordingly, it was concluded that basic groups/sites on the surface of AC could promote nitrate ion adsorption.

  4. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers.

    Hsiu-Mei, Chiang; Ting-Chien, Chen; San-De, Pan; Chiang, Hung-Lung

    2009-01-30

    Sludge adsorbent (SA) and commercial activated carbon fibers (ACFC and ACFT) were applied to Orange II and Chrysophenine (CH) adsorption (BET surface area: ACFC>ACFT>SA). ACFT was primarily in the micropore range, while SA was approximately 500 A (macropore) and 80 A (mesopore). The ACFC pore volume was high in both the mesopore and micropore regions. Measurement of the oxygen surface functional groups of the adsorbents using Boehm's titration method showed a similar distribution on the carbon fibers (mainly in the carbonyl group), while SA was mainly in the carboxyl, lactone and phenolic groups. The SA, ACFC and ACFT adsorption capacities of Orange II (30-80 mg/l) ranged from 83 to 270, 209-438, and 25-185 mg/g at temperatures ranging from 10 to 60 degrees C, respectively. CH concentration ranged from 30 to 80 mg/l, corresponding to SA and ACFC adsorption capacities of 39-191 and 48-374 mg/g over the defined temperature range, from 10 to 60 degrees C. CH adsorption on ACFT was low. The adsorption capacity of Orange II on ACFT was lower than on SA at 10 degrees C, but at higher temperatures the Orange II molecules were transported into the ACFT, producing an adsorption capacity similar to that of SA. Mass transfer increased with temperature, overcoming the adsorption energy barrier. Overall, SA and ACFC were more effective than ACFT.

  5. Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities.

    Girods, P; Dufour, A; Fierro, V; Rogaume, Y; Rogaume, C; Zoulalian, A; Celzard, A

    2009-07-15

    The problems of valorisation of particleboard wastes on one hand, and contamination of aqueous effluents by phenolic compounds on the other hand, are simultaneously considered in this work. Preparation of activated carbons from a two steps thermo-chemical process, formerly designed for generating combustible gases, is suggested. The resultant carbonaceous residue is activated with steam at 800 degrees C. Depending on the preparation conditions, surface areas within the range 800-1300 m(2)/g are obtained, close to that of a commercial activated carbon (CAC) specially designed for water treatment and used as a reference material. The present work shows that particleboard waste-derived activated carbons (WAC) are efficient adsorbents for the removal of phenol from aqueous solutions, with maximum measured capacities close to 500 mg/g. However, most of times, the adsorption capacities are slightly lower than that of the commercial material in the same conditions, i.e., at equilibrium phenol concentrations below 300 ppm. Given the extremely low cost of activated carbons prepared from particleboard waste, it should not be a problem to use it in somewhat higher amounts than what is required with a more expensive commercial material. Phenol adsorption isotherms at 298 K were correctly fitted by various equations modelling type I and type II isotherms for CAC and WAC, respectively. Phenol adsorption isotherms of type II were justified by a 3-stages adsorption mechanism.

  6. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions.

  7. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  8. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon.

    Yi, Zheng-ji; Yao, Jun; Kuang, Yun-fei; Chen, Hui-lun; Wang, Fei; Yuan, Zhi-min

    2015-01-01

    The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.

  9. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon.

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-07-30

    Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (30kDa) had much less effect on PFC adsorption capacity.

  10. Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon

    2007-01-01

    Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant Kd was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants and isotherms, respectively. The average change of standard adsorption heat ΔHo is -25.29 kJ/mol. Negative ΔHo and ΔGo values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy ΔSo is also negative, which suggests a decrease in the freedom of the system.

  11. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed

    Nelson Giovanny Rincón-Silva

    2015-01-01

    Full Text Available Activated carbons from shell eucalyptus (Eucalyptus globulus were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1 and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.

  12. Numerical analysis of nitrogen adsorption isotherms on active carbons by an employment of the new LBET class models.

    Kwiatkowski, Mirosław

    2007-09-15

    The reported research concerns properties of the new LBET class models designed to describe the heterogeneous adsorption on microporous carbonaceous materials. In particular, the new adsorption models were used for the analysis of the microporous structure of two active carbons on the basis of nitrogen adsorption isotherms. This paper gives more information on the properties of the proposed identification technique.

  13. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs)

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    A series of activated carbon fibers (ACFs) and heat-treated oxidized ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore surface chemistry and pore volume for the adsorption of SO2 and its catalytic conversion to H2SO4.

  14. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  15. Condensate water treatment by adsorption onto an activated carbon grade with high-activity and low-silicate leaching

    Herzer, J. [NORIT Germany, Kempen (Germany); Ernhofer, R. [BAYERNOIL Refineries, Ingolstadt (Germany); Dikkenberg, J. van den [NORIT Activated Carbon, Amersfoort (Netherlands)

    2006-07-01

    Granular activated carbon (GAC) is frequently used to remove dissolved organic impurities from condensate water. An optimal adsorption capacity and GAC life time are achieved by matching the size of the target organics versus the pore size distribution of the activated carbon. From a product range of over 150 activated carbon grades, eight different NORIT GAC types are available for condensate water polishing. Differences between these grades apply to adsorption properties, hydraulic properties and purity. Guidelines for design and operation of the GAC stage are provided. (orig.)

  16. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents.

    Ji, Liangliang; Chen, Wei; Duan, Lin; Zhu, Dongqiang

    2009-04-01

    Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments. We herein studied single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) as potential effective adsorbents for removal of tetracycline from aqueous solution. In comparison, a nonpolar adsorbate, naphthalene, and two other carbonaceous adsorbents, pulverized activated carbon (AC) and nonporous graphite, were used. The observed adsorbent-to-solution distribution coefficient (Kd, L/kg) of tetracycline was in the order of 10(4)-10(6) L/kg for SWNT, 10(3)-10(4) L/kg for MWNT, 10(3)-10(4) L/kg for AC, and 10(3)-10(5) L/kg for graphite. Upon normalization for adsorbent surface area, the adsorption affinity of tetracycline decreased in the order of graphite/ SWNT > MWNT > AC. The weaker adsorption of tetracycline to AC indicates that for bulky adsorbates adsorption affinity is greatly affected by the accessibility of available adsorption sites. The remarkably strong adsorption of tetracycline to the carbon nanotubes and to graphite can be attributed to the strong adsorptive interactions (van der Waals forces, pi-pi electron-donor-acceptor interactions, cation-pi bonding) with the graphene surface. Complexation between tetracycline and model graphene compounds (naphthalene, phenanthrene, pyrene) in solution phase was verified by ring current-induced 1H NMR upfield chemical shifts of tetracycline moieties.

  17. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.

    Santhy, K; Selvapathy, P

    2006-07-01

    The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater.

  18. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    Y. S. Mohammad

    2014-01-01

    Full Text Available Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.

  19. Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: Equilibrium, kinetic and thermodynamic studies

    Abdessalem Omri

    2016-11-01

    Full Text Available The adsorption of bentazon onto Lawsonia inermis wood-based activated carbon (LWAC was carried out in this work. The effects of different reaction parameters such as the initial bentazon concentration, contact time, activated carbon dosage, stirring rate, temperature and pH on bentazon adsorption were investigated in a batch process mode. Equilibrium data were analyzed by the Langmuir, Freundlich and Temkin isotherm model. Langmuir isotherm provided the best fit to the equilibrium data with maximum adsorption capacity of 169.49 mg/g at 20 °C. Adsorption kinetic was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° showed that the adsorption of bentazon onto LWAC was feasible, spontaneous and exothermic at 20–40 °C. Desorption of the used LWAC was studied using ethanol as solvent and a percent desorption efficiency of bentazon equalizes 73.8% was obtained after three cycles.

  20. Batch Study for Insecticide Carbofuran Adsorption onto Palm-Oil-Fronds-Activated Carbon

    Jassem M. Salman

    2013-01-01

    Full Text Available The adsorption of insecticide, carbofuran from aqueous solution onto activated carbon derived from palm oil fronds (PFAC was investigated through batch study. The effects of both initial concentration and pH of the carbofuran over the range of 25 to 250 mg/L and 2 to 12, respectively, on the adsorption of the prepared PFAC were studied in batch experiments. Equilibrium data were fitted to the Langmuir, the Freundlich, and the Temkin isotherm models. The results obtained from application of these models show that the best fits were achieved with the Langmuir model, and a maximum monolayer adsorption capacity of 164 mg/g was obtained at 30°C. The regeneration efficiency of spent activated carbon was studied and it was found to be 90.0–96.4%. The results indicated that PFAC has good capability as adsorbent for the removal of carbofuran from aqueous solutions.

  1. Kinetics of adsorption of di-n-butyl phthalate (DBP) by four different granule-activated carbons

    Po keung TSANG; Zhanqiang FANG; Hui LIU; Xiaolei CHEN

    2008-01-01

    The kinetics of the adsorption of an endocrine disruptor,di,n,butyl phthalate (DBP),by four different granulated,activated carbons (GACs) is presented in this paper. Results showed that adsorption of DBP by the four GACs followed first,order kinetics and the adsorption constant of the four GAC was found to follow the order:nut shell>coconut shell>Coaly carbon 1.0>Coaly carbon 1.5. Batch adsorption studies were also conducted to investigate the effect of pH on the adsorption process. The optimum pH for the removal of DBP from aqueous solutions under the experimental conditions used in this work was found to be 5.0. The characterization of the carbon surfaces was conducted by using scanning electron microscopy (SEM). Furthermore,results from infrared spectroscopic (IR) studies showed that physical adsorption plays an important role in the adsorption of DBP by the four selected GACs.

  2. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  3. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  4. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.

    Hamadi, Nadhem K; Sri Swaminathan; Chen, Xiao Dong

    2004-08-09

    The removal of pesticide from wastewater under different batch experimental conditions, using a car tire derived activated carbon was investigated. The pesticide utilized in the study was Paraquat dichloride (1,1-dimethyl-4,4-bipyridyl dichloride), which is a well known herbicide. The adsorbent was produced from the pyrolysis and activation of used tires (TAC). The performances of this adsorbent and a commercial activated carbon F300 (CAC) have been compared. It was determined that the adsorption of Paraquat was weakly pH dependent. The effects of particle size, carbon dosage, temperature and the initial concentration of the Paraquat were studied. Further experiments investigating the regeneration capabilities of the tire-supplied carbon were performed. The regenerated carbons that were washed with basic pH solution were found to have the best sorption capacity recovery. It was found that the rate of sorption of Paraquat onto the carbon is very fast with almost 90% of the maximum possible adsorption taking place in the first 5 min. Nevertheless, the batch sorption kinetics was fitted for a first-order reversible reaction, a pseudo-first-order reaction and a pseudo-second-order reaction. The pseudo-second-order chemical reaction model appears to provide the best correlation. The applicability of the Langmuir isotherm for the present system has been evaluated at different temperatures. The isotherms show that the sorption capacity of CAC decreases with temperature and the dominant mechanism of CAC adsorption is physical sorption.

  5. Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology.

    Arulkumar, M; Sathishkumar, P; Palvannan, T

    2011-02-15

    Thespesia populnea is a large tree found in the tropical regions and coastal forests of India. Its pods were used as a raw material for the preparation of activated carbon. The prepared activated carbon was used for the adsorptive removal of Orange G dye from aqueous system. The effects of various parameters such as agitation time, initial dye concentration and adsorbent dosage were studied using response surface methodology (RSM). RSM results show that 0.54 g of activated carbon was required for the maximum adsorption of Orange G dye (17.6 mg L(-1)) within a time period of 4.03 h. Adsorption data were modeled using Freundlich and Langmuir adsorption isotherms. The adsorption of Orange G dye by activated carbon obeyed both Fruendlich and Langmuir isotherm. Adsorption kinetic data were tested using pseudo-zero, first, second-order and intraparticle diffusion models. Kinetic studies revealed that the adsorption followed pseudo-second-order reaction with regard to the intraparticle diffusion. FTIR spectral result indicated all the functional group except primary amines (3417 cm(-1)) and CN (1618 cm(-1)) were involved in the adsorption process. XRD data showed that Orange G dye adsorbed activated carbon might not induce the bulk phase changes. SEM results showed that the surface of the activated carbon was turned from dark to light color after dye adsorption.

  6. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  7. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  8. Characterization and adsorption behavior of a novel triolein-embedded activated carbon composite adsorbent

    RU Jia; LIU Huijuan; QU Jiuhui; WANG Aimin; DAI Ruihua

    2005-01-01

    A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemical properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204 μg·L-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.

  9. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon

    Hu, C.X.; Zhou, J.S.; Luo, Z.Y.; He, S.; Wang, G.K.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2006-07-01

    Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was investigated. Both MnO{sub 2}-AC and FeCl{sub 3}-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO{sub 4}{sup -}, Mn{sup 4+}, NO{sub 3}{sup -}, Fe{sup 3+} Cl{sup -}, etc. The Hg sorption capacity on MnO{sub 2}-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied. It was found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could be concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.

  10. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon

    HU Chang-xing; ZHOU Jin-song; LUO Zhong-yang; HE Sheng; WANG Guang-kai; CEN Ke-fa

    2006-01-01

    Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was inrestigated. Both MnO2-AC and FeCl3-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO4-, Mn4+, O, NO3-, Fe3+, Cl-, etc. The Hg sorption capacity on MnO2-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied, it found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.

  11. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  12. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation

    Tseng, R.-L. [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan (China)]. E-mail: trl@nuu.edu.tw

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887 m{sup 2} g{sup -1}. The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R {sub L}) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  13. The effects of aging on the dynamic adsorption of hazardous organic vapors on impregnated activated carbon.

    Amitay-Rosen, Tal; Leibman, Amir; Nir, Ido; Zaltsman, Amalia; Kaplan, Doron

    2015-01-01

    The effects of an eight-year natural aging of ASC impregnated activated carbon on the adsorption capacity and breakthrough times of model organic vapors and of the nerve agent sarin were investigated. Aging delayed methanol breakthrough from dry air on pre-dried carbon, but shortened the breakthrough time of both methanol and hexane under relative humidity (RH) of 30-85% on pre-humidified carbon. Aging also shortened the breakthrough time of the less volatile model compound 2-methoxyethanol, especially under RH of 60-85%. Aging significantly reduced the protection capacity against sarin at RH of 85%. The effects of aging on physisorption are attributed to enhanced hydrogen-bonding capability and strength of the interaction between water and adsorption sites on the carbon surface.

  14. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested.

  15. Equilibrium, Kinetics, and Thermodynamics of Remazol Brilliant Blue R Dye Adsorption onto Activated Carbon Prepared from Pinang Frond

    Mohd Azhar Ahmad; Safarudin Gazali Herawan; Ahmad Anas Yusof

    2014-01-01

    The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorpt...

  16. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  17. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon.

    Li, Lin; Gao, Min; Liu, Junxin; Guo, Xuesong

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 microm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.

  18. CO(2) adsorption on supported molecular amidine systems on activated carbon.

    Alesi, W Richard; Gray, McMahan; Kitchin, John R

    2010-08-23

    The CO(2) capture capacities for typical flue gas capture and regeneration conditions of two tertiary amidine N-methyltetrahydropyrimidine (MTHP) derivatives supported on activated carbon were determined through temperature-controlled packed-bed reactor experiments. Adsorption-desorption experiments were conducted at initial adsorption temperatures ranging from 29 degrees C to 50 degrees C with temperature-programmed regeneration under an inert purge stream. In addition to the capture capacity of each amine, the efficiencies at which the amidines interact with CO(2) were determined. Capture capacities were obtained for 1,5-diazo-bicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) supported on activated carbon at a loading of approximately 2.7 mol amidine per kg of sorbent. Moisture was found to be essential for CO(2) capture on the amidines, but parasitic moisture sorption on the activated carbon ultimately limited the capture capacities. DBN was shown to have a higher capture capacity of 0.8 mol CO(2) per kg of sorbent and an efficiency of 0.30 mol CO(2) per mol of amidine at an adsorption temperature of 29 degrees C compared to DBU. The results of these experiments were then used in conjunction with a single-site adsorption model to derive the Gibbs free energy for the capture reaction, which can provide information about the suitability of the sorbent under different operating conditions.

  19. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  20. Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon.

    Zazycki, Maria A; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2017-03-01

    In this work, chitin (CTN), chitosan (CTS) and activated carbon (AC) were used as adsorbents to recover valuable metals from leachates of mobile phone wastes. The mobile phone wastes (contactors) were collected and characterized. The valuable metals were extracted by thiourea leaching. The adsorption of valuable metals from leachates was studied according to the kinetic and equilibrium viewpoints. It was found that the contactors were composed by Au, Ni, Cu and Sn. The thiourea leaching provided extraction percentages of 68.6% for Au, 22.1% for Ni and 2.8% for Cu. Sn was not extracted. The leachate presented 17.5 mg L(-1) of Au, 324.9 mg L(-1) of Ni and 573.1 mg L(-1) of Cu. The adsorption was fast, being the equilibrium attained within 120 min. The adsorption of Au, Ni and Cu onto CTN and AC followed the Langmuir model, while, the adsorption of these metals onto CTS, followed the Freundlich model. Removal percentages higher than 95% were obtained for all metals, depending of the type and amount of adsorbent. It was demonstrated that the adsorption onto chitin, chitosan and activated carbon can be an alternative to recover valuable metals from leachates of mobile phone wastes.

  1. Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications

    El-Sharkawy, I.I. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580 (Japan); Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, El-Mansoura (Egypt); Saha, B.B.; Koyama, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580 (Japan); He, J.; Ng, K.C.; Yap, C. [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2008-12-15

    Adsorption equilibrium uptake of ethanol onto a highly porous activated carbon based adsorbent, namely Maxsorb III, has been experimentally investigated using a thermo-gravimetric analyzer (TGA) unit over adsorption temperatures ranging from 20 to 60 C. The Dubinin-Astakhov (D-A) equation has been used to correlate the experimental data. Isosteric heat of adsorption is also estimated by using the Clausius-Clapeyron equation. Employing a thermodynamically equilibrium model, the performance of the ideal adsorption cooling cycle has also been studied and compared to that of activated carbon fiber (ACF)-ethanol pair. Experimental results show that Maxsorb III can adsorb up to 1.2 kg of ethanol per kilogram of adsorbent. Theoretical calculations show that, the Maxsorb III-ethanol adsorption cycle can achieve a specific cooling effect of about 420 kJ kg{sup -1} at an evaporator temperature of 7 C along with a heat source of temperature 80 C and thus the pair is recommended for solar cooling applications. (author)

  2. Removal of Bi(Ⅲ) with Adsorption Technique Using Coconut Shell Activated Carbon

    SARTAPE Ashish; MANDHARE Aniruddha; SALVI Prathmesh; PAWAR Dattatraya; RAUT Prakash; ANUSE Mansing; KOLEKAR Sanjay

    2012-01-01

    In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tron microscope(SEM),Fourier Transform Infrared(FTIR),C,H,N,S analyzer,and BET surface area analyzer.The parameters examined include agitation time,initial concentration of Bi(Ⅲ),adsorbent dose and temperature.The maximum adsorption of Bi(Ⅲ)(98.72%) was observed at 250 mg·L-1 of Bi(Ⅲ) and adsorbent dose of 0.7 g when agitation was at 160 r·min-1 for 240 min at(299±2) K.The thermodynamic parameters such as Gibb's free energy(△Gθ),enthalpy(△Hθ) and entropy(△Sθ) were evaluated.For the isotherm models applied to adsorption study,the Langmuir isotherm model fits better than the Freundlich isotherm.The maximum adsorption capacity from the Langmuir isotherm was 54.35 mg?g?1 of Bi(Ⅲ).The kinetic study of the adsorption shows that the pseudo second order model is more appropriate than the pseudo first order model.The result shows that,coconut shell ac-tivated carbon is an effective adsorbent to remove Bi(Ⅲ) from aqueous solutions with good adsorption capacity.

  3. Gravimetric analysis of CO2 adsorption on activated carbon at various pressures and temperatures using piezoelectric microcantilevers.

    Jin, Yusung; Lee, Dongkyu; Lee, Sangkyu; Moon, Wonkyu; Jeon, Sangmin

    2011-09-15

    We investigated the adsorption and desorption of CO(2) on activated carbon using piezoelectric microcantilevers. After coating the free end of a cantilever with activated carbon, variations in the resonance frequency of the cantilever were measured as a function of CO(2) pressure, which is related to mass changes due to the adsorption or desorption of CO(2). The pressure-dependent viscous damping effects were compensated in the calculation of the CO(2) adsorption capacity of the activated carbon by comparing the frequency differences between the coated and uncoated cantilevers. The mass sensitivity of the piezoelectric cantilever was found to be better than 1 pg. The fractional coverage of CO(2) agreed with a Langmuir adsorption isotherm, indicating that a submonolayer of adsorbed CO(2) occurred on the surface of the activated carbon under the experimental conditions. The heat of adsorption was determined using the Clausius-Clapeyron relation and the fractional coverage of CO(2) at various temperatures and pressures.

  4. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate.

  5. Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood.

    Tancredi, Nestor; Medero, Natalia; Möller, Fabiana; Píriz, Javier; Plada, Carina; Cordero, Tomás

    2004-11-15

    Eucalyptus grandis sawdust, a major waste from the growing Uruguayan wood industry, was used in previous work to prepare powdered activated carbon (PAC). In the present work, granular activated carbon (GAC) was prepared by mixing PAC, carboxymethyl cellulose as a binder, and kaolin as reinforcer. Ultimate analysis and surface characterization of GAC and PAC were performed. Phenol adsorption was used as a way to compare the characteristics of different PAC and GAC preparations. Kinetics and isotherms of the different GAC and PAC were performed in a shaking bath at 100 rpm and 298 K. Phenol concentrations were determined by UV spectroscopy. Some kinetics parameters were calculated; from kinetics results, external resistance to mass transfer from the bulk liquid can be neglected as the controlling step. Isotherms were fitted to Langmuir and Freundlich models, and corresponding parameters were determined. Maximum phenol uptakes for all carbons were determined and correlated with carbon characteristics. Thermogravimertic analysis (TGA) determinations were performed in order to study adsorption characteristics and conditions for GAC regeneration after its use. The results showed that phenol is preferentially physisorbed on the carbon of the granules, though some chemisorption was detected. No adsorption was detected in the kaolin-carboxymethyl cellulose mixture.

  6. Adsorption isotherms and kinetics for dibenzothiophene on activated carbon and carbon nanotube doped with nickel oxide nanoparticles

    MAZEN K NAZAL; GHASSAN A OWEIMREEN; MAZEN KHALED; MUATAZ A ATIEH; ISAM H ALJUNDI; ABDALLA M ABULKIBASH

    2016-04-01

    Activated carbon (AC) and multiwall carbon nanotubes (CNT) doped with 1, 5 and 10% Ni in the form of nickel oxide nanoparticles were prepared using the wetness impregnation method. These percentages were denoted by the endings NI1, NI5 and NI10 in the notations ACNI1, ACNI5, ACNI10 and CNTNI1, CNTNI5, CNTNIL10, respectively. The physicochemical properties for these adsorbents were characterized using N$_2$ adsorption–desorption surface area analyzer, thermal gravimetric analysis (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy, field-emission transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectrometre. Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for DBT was $74\\pm 5$ mg g$^{−1}$ on ACNI5; the maximum adsorption capacities of the other adsorbents followed the trend ${\\rm ACNI1 > ACNI10 > AC > CNTNI5 > CNTNI1 > CNTNI10 > CNT}$. The adsorption rates for DBT and thiophene followed pseudo-second-order kinetics. The selective removal by these adsorbents of DBT relative to thiophene and naphthalene was evaluated. The adsorbents’ reusability and the effect of the percentage of aromaticcompounds on their adsorption capacity were also reported.

  7. Nomographs for soil vapor extraction and off-gas treatment by activated carbon adsorption

    Egemen, E.; Nirmalakhandan, N. [New Mexico State Univ., Las Cruces, NM (United States). Civil, Agricultural, and Geological Engineering Dept.

    1997-12-31

    Soil vapor extraction (SVE) is a widely accepted in-place treatment technology that uses forced air to remove contaminant vapors from zones of permeable vapor flow, thereby enhancing the volatilization of contaminants from the subsurface. The resulting off-gases are contaminated with volatiles and semi-volatiles and have to treated by catalytic or thermal destruction systems, activated carbon adsorbers, or bioreactors. Of these, activated carbon adsorption is the most commonly used technology. From the theoretical foundation of SVE and carbon adsorption, two nomographs were developed for remedial investigation, feasibility studies, planning, operation, and preliminary design purposes. An advantage of such nomographs is that they graphically indicate the sensitivity of the remediation process to different design parameters and critical ranges within a given parameter. In effect, nomographs can help to foster an intuitive understanding of the SVE and adsorption processes itself, which is of considerable value to a process engineer. In addition, such a nomograph provides a utilitarian resource to those who do not have direct access to a comparable computer model. The purpose of this paper is to present the design equations and their use in the development of nomographs for the design of SVE systems and treatment of contaminated air streams by activated carbon canisters.

  8. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    Bhatnagar, A.; Ji, M.; Choi, Y.H.

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process var...... that the adsorption process using ZnCl2 treated coconut GAC might be a promising innovative technology in future for nitrates removal from drinking water.......Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...

  9. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  10. Effect of Na+ impregnated activated carbon on the adsorption of NH+4-N from aqueous solution

    Mo Shi; Zhengfang Wang; Zheng Zheng

    2013-01-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na,respectively),were used as adsorbents to remove NH4+-N.The surface features of samples were investigated by BET,SEM,XRD and FT-IR.The adsorption experiments were conducted in equilibrium and kinetic conditions.Influencing factors such as initial solution pH and initial concentration were investigated.A possible mechanism was proposed.Results showed that optimal NH4+-N removal efficiency was achieved at a neutral pH condition for the modified ACs.The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study.The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model.Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment,especially oxidation by nitric acid,thus increasing the removal efficiency of the modified ACs for NH4+-N.Na+-impregnated ACs had a higher removal capability in removing NH4+-N than unmodified AC,possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion.The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4+-N adsorption on the active homogenous sites within the adsorbents.The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism.The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  11. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  12. Experimental study on high-pressure adsorption of hydrogen on activated carbon

    周亚平; 周理

    1996-01-01

    A systematic measurement of H2 adsorption on activated carbon over a wide scope of conditions was completed for the first time using a novel cryostat developed by the present authors. The equilibrium temperatures covered 77-298 K with the space of about 20 K, and the equilibrium pressures increased from 0 to about 7MPa. A set of adsorption/desorption isotherms was obtained by a standard volumetric method. This set of experimental data was fitted to all the well-known models of type-I isotherms, and Dubinin-Astakhov (D-A) equation was found to be the best-fit one On the basis of D-A model one can predict adsorption with relative error of ±4%. A 3-dimensional adsorption surface was also constructed, and the isosteric heat of adsorption was analytically determined. Except in the low pressure area, the calculated values agreed well with the experimental ones. Finally, the troubles encountered in applying D-A equation to supercritical adsorption is discussed.

  13. Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma.

    Inoue, Satoru; Kiriyama, Kentaro; Hatanaka, Yoshihiro; Kanoh, Hirofumi

    2015-02-01

    The ability of an activated carbon (AC) to adsorb 18 different cytokines with molecular weights ranging from 8 kDa to 70 kDa and high mobility group box-1 (HMGB1) from inflammatory model plasma at 310 K and the mechanisms of adsorption were examined. Porosity analysis using N2 gas adsorption at 77K showed that the AC had micropores with diameters of 1-2 nm and mesopores with diameters of 5-20 nm. All 18 cytokines and HMGB1 were adsorbed on the AC; however, the shapes of the adsorption isotherms changed depending on the molecular weight. The adsorption isotherms for molecules of 8-10 kDa, 10-20 kDa, 20-30 kDa, and higher molecular weights were classified as H-2, L-3, S-3, and S-1 types, respectively. These results suggested that the adsorption mechanism for the cytokines and HMGB1 in the mesopores and on the surface of the AC differed as a function of the molecular weight. On the basis of these results, it can be concluded that AC should be efficient for cytokine adsorption.

  14. Carbon dioxide adsorption and activation on Ceria (110): A density functional theory study

    Cheng, Zhuo; Lo, Cynthia S

    2012-01-01

    Ceria (CeO2) is a promising catalyst for the reduction of carbon dioxide (CO2) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO2 adsorption and initial activation on CeO2 surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (DFT+U), to explore various adsorption sites and configurations for CO2 on stoichiometric and reduced CeO2 (110). Our model of reduced CeO2 (110) contains oxygen vacancies at the topmost atomic layer and undergoes surface reconstruction upon introduction of these vacancies. We find that CO2 adsorption on reduced CeO2 (110) is thermodynamically favored over the corresponding adsorption on stoichiometric CeO2 (110). The most stable adsorption configuration consists of CO2 adsorbed parallel to the reduced CeO2 (110) surface, with the molecule situated near the site of the oxygen vacancy. Structural changes in the CO2 molecule are also observed upon adsorption, so t...

  15. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue

    Julius Ndi Nsami

    2013-01-01

    Full Text Available The adsorption of methylene blue from aqueous solution onto activated carbon prepared from cola nut shell has been investigated under batch mode. The influence of major parameters governing the efficiency of the process such as, solution pH, sorbent dose, initial concentration, and contact time on the removal process was investigated. The time-dependent experimental studies showed that the adsorption quantity of methylene blue increases with initial concentration and decreasing adsorbent dosage. The equilibrium time of 180 min was observed and maximum adsorption was favoured at pH 3.5. The dye removal using 0.1 g of adsorbent was more than 90%. This dosage (0.1 g was considered as the optimum dosage to remove methylene blue from aqueous solutions. The equilibrium adsorption data were analyzed by the Freundlich, Langmuir adsorption isotherm models. The kinetics of methylene blue solution was discussed by pseudo-first-order, pseudo-second-order, and Elovich models. The adsorption process follows the Elovich rate kinetic model, having a correlation coefficient in the range between 0.9811 and 1.

  16. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  17. Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm

    Kaman Sherlynna Parveen Deshon

    2017-01-01

    Full Text Available The current ponding system applied for palm oil mill effluent (POME treatment often struggle to comply with the POME discharge limit, thus it has become a major environmental concern. Batch adsorption study was conducted for reducing the Chemical Oxygen Demand (COD, Total Suspended Solids (TSS and Color of pre-treated POME using coconut shell-based activated carbon (CS-AC. The CS-AC showed BET surface area of 744.118 m2/g, with pore volume of 04359cm3/g. The adsorption uptake was studied at various contact time and POME initial concentration. The CS-AC exhibited good ability with average percentage removal of 70% for COD, TSS and Color. The adsorption uptake increased over time and attained equilibrium in 30 hours. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Based on the coefficient regression and sum of squared errors, the Langmuir isotherm described the adsorption of COD satisfactorily, while best described the TSS and Color adsorption; giving the highest adsorption capacity of 10.215 mg/g, 1.435 mg/g, and 63.291 PtCo/g respectively. The CS-AC was shown to be a promising adsorbent for treating POME and was able to comply with the Environmental Quality Act (EQA discharge limit. The outcome of treated effluent using CS-AC was shown to be cleaner than the industrial biologically treated effluent, achieved within shorter treatment time.

  18. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  19. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon.

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2015-01-08

    In this work, the results of equilibrium and dynamic adsorption tests of hexavalent chromium, Cr (VI), on activated carbon are presented. Adsorption isotherms were determined at different levels of pH and temperature. Dynamic tests were carried out in terms of breakthrough curves of lab-scale fixed bed column at different pH, inlet concentration and flow rate. Both the adsorption isotherms and the breakthrough curves showed non-linear and unconventional trends. The experimental results revealed that chromium speciation played a key role in the adsorption process, also for the occurrence of Cr(VI)-to-Cr(III) reduction reactions. Equilibrium tests were interpreted in light of a multi-component Langmuir model supported by ion speciation analysis. For the interpretation of the adsorption dynamic tests, a mass transfer model was proposed. Dynamic tests at pH 11 were well described considering the external mass transfer as the rate controlling step. Differently, for dynamic tests at pH 6 the same model provided a satisfying description of the experimental breakthrough curves only until a sorbent coverage around 1.6mgg(-1). Above this level, a marked reduction of the breakthrough curve slope was observed in response to a transition to an inter-particle adsorption mechanism.

  20. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica coat

    Manal El-Sadaawy

    2014-06-01

    Full Text Available The present study investigates the possibility of using low cost agriculture waste as doum-palm seed coat for the removal of nickel ions from aqueous solutions. Two activated carbons had been prepared from raw doum-palm seed coat (DACI and DACII; as well, the raw material was used as an adsorbent (RD. Batch adsorption experiments were performed as a function of pH of solution, initial nickel ions concentration, dose of adsorbent and contact time. Adsorption data were modeled using Langmuir, Freundlich, Temkin and D–R Models. Different error analysis conforms that the isotherm data followed Freundlich models for all adsorbents. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order and Elovich model. Adsorption mechanism was investigated using the intra-particle diffusion model. Diffusion coefficients were calculated using the film and intraparticle diffusion models. Kinetic studies showed that the adsorption of Ni2+ ions onto RD, DACI and DACII followed pseudo-second order kinetic model, and indicates that the intra-particle diffusion controls the rate of adsorption but it is not the rate limiting step.

  1. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste

    HUANG Yaji; JIN Baosheng; ZHONG Zhaoping; ZHONG Wenqi; XIAO Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal.A three-stage activation process (drying at 200℃,pyrolysis in N2 atmosphere,followed by CO2 activation) was used for the production of activated samples.The effects of carbonization temperature (400-600 ℃),activation temperature (700-900 ℃),and activation time (1-2.5 h) on the physicochemieal properties (weight-loss and BET surface) of the prepared carbon were investigated.Adsorptive removal of mercury from real flue gas onto activated carbon has been studied.The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (HgV:38.7% vs.53.5%,HgO:50.5% vs.68.8%),although its surface area is around 10 times smaller,89.5 m2/g vs.862 m2/g.The low cost activated carbon can be produced from chicken waste,and the procedure is suitable.

  2. Use of mathematical algorithms to evaluate the influence of physicochemical parameters affecting the adsorption of aromatic compounds on activated carbon

    Ana Lucia Paredes Doig

    2015-09-01

    Full Text Available The main objective was to describe parameters and physicochemical factors of activated carbon related to the adsorption capacity of three adsorbates: Phenol, benzoic acid, and salicylic acid. Two multivariate data analysis methods were used: Partial least square (PLS and principal component regression (PCR. PLS showed better agreement between estimated and experimental values and using this method, equations were developed to predict the removal capacity of each adsorbate. The adsorption capacity of activated carbon in relation to benzoic acid, salicylic acid, and phenol was predicted with a standard error of validation of less than 6%. Surface acidity was the most important parameter affecting the adsorption of aromatic compounds by activated carbon.

  3. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  4. Adsorption of Acid Red 18 (AR18) by Activated Carbon from Poplar Wood- A Kinetic and Equilibrium Study

    Reza Shokoohi; Vahid Vatanpoor; Mansuor Zarrabi; Akram Vatani

    2010-01-01

    Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18) dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dy...

  5. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    Rahman, Kazi Afzalur

    2010-11-11

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study adsorbed natural gas (ANG) storage systems when the low temperature natural gas regasified from the liquid phase is considered to charge in the storage chamber. Adsorption parameters were evaluated from the isotherm data using the Tóth and Dubinin-Astakhov models. The isosteric heat of adsorption, which is concentration- and temperature-dependent, is extracted from the data. The Henry\\'s law coefficients for the methane/Maxsorb III pairs are evaluated at various temperatures. © 2010 American Chemical Society.

  6. Two-dimensional modeling of volatile organic compounds adsorption onto beaded activated carbon.

    Tefera, Dereje Tamiru; Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2013-10-15

    A two-dimensional heterogeneous computational fluid dynamics model was developed and validated to study the mass, heat, and momentum transport in a fixed-bed cylindrical adsorber during the adsorption of volatile organic compounds (VOCs) from a gas stream onto a fixed bed of beaded activated carbon (BAC). Experimental validation tests revealed that the model predicted the breakthrough curves for the studied VOCs (acetone, benzene, toluene, and 1,2,4-trimethylbenzene) as well as the pressure drop and temperature during benzene adsorption with a mean relative absolute error of 2.6, 11.8, and 0.8%, respectively. Effects of varying adsorption process variables such as carrier gas temperature, superficial velocity, VOC loading, particle size, and channelling were investigated. The results obtained from this study are encouraging because they show that the model was able to accurately simulate the transport processes in an adsorber and can potentially be used for enhancing absorber design and operation.

  7. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast

    Deepak Pathania

    2017-02-01

    Full Text Available In this study, activated carbon was developed from Ficus carica bast (FCBAC. The experiments were carried out to explore methylene blue (MB uptake by FCBAC. The influence of various experimental factors such as contact time, initial dye concentration, adsorbent dosage, temperature and pH of dye solution was investigated. The adsorption equilibrium was represented with Langmuir, Freundlich and Temkin isotherm models. Langmuir and Tempkin equations were found to have the correlation coefficient value in good agreement. Adsorption of MB onto FCBAC followed pseudo second order kinetics. The calculated values of ΔH°, ΔS° and ΔG° were found to be 21.55 kJ/mol, 76.24 J/mol K and −1.55 kJ/mol, respectably. Adsorption process was spontaneous and endothermic in nature.

  8. Efficacy evaluation of activated carbon prepared from date stones in cyanide adsorption from synthetic wastewater

    Bahman Ramavandi

    2013-02-01

    Results: The maximum adsorption capacity of 50.21 mg/g corresponded with Langmuir model. Kinetic evaluation indicated that the adsorption of cyanide ions by the adsorbent clearly followed the pseudo-second order rate reaction. The absorption was pH dependent and the maximum adsorption was done by solutions having pH 9. At an optimum pH 9, over 97% removal of 100 mg/L cyanide was attained for an adsorbent dose of 1.25 g/L during a 40 min contact time. Conclusion: Activated carbon prepared from date stones is an efficient and low-cost adsorbent for removing of different concentrations of cyanide from water and wastewater.

  9. Preparation and Adsorption Performances of Phragmites australis Activated Carbon with High Acidity

    FU Cheng-kai

    2017-03-01

    Full Text Available For removal of heavy metals from wastewater and recycling the wetland plants, the present study investigated the viability of using silage of Phragmites australis (PA to prepare activated carbons (ACs with high acidity. BET surface area, porous texture and surface functional characteristics of ACs were analyzed by N2 adsorption/desorption, elemental analysis and Boehm titration method. ACs presented well-developed micro-porosity and favorable surface acidity. The sorption equilibrium data for Ni (Ⅱ and Cd (Ⅱ sorption onto ACs were analyzed by the Langmuir and Freundlich models. The Langmuir model was fitted well to the adsorption behavior. The properties of high surface acidity promoted the adsorption of heavy metals by the silage-treated ACs and the chemical sorption played the key role in the sorption process.

  10. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  11. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption.

    Beita-Sandí, Wilson; Ersan, Mahmut Selim; Uzun, Habibullah; Karanfil, Tanju

    2016-01-01

    The main objective of this study was to examine the roles of powdered activated carbon (PAC) characteristics (i.e., surface chemistry, pore size distribution, and surface area) in the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) in surface and wastewater-impacted waters. Also, the effects of natural attenuation of NDMA precursors in surface waters, NDMA FP concentration, and carbon dose on the removal of NDMA FP by PAC were evaluated. Finally, the removal of NDMA FP by PAC at two full-scale DWTPs was monitored. Wastewater-impacted and surface water samples were collected to conduct adsorption experiments using different PACs and activated carbon fibers (ACFs) with a wide range of physicochemical characteristics. The removal efficiency of NDMA FP by PAC was significantly higher in wastewater-impacted than surface waters. Adsorbable NDMA precursors showed a size distribution in the waters tested; the adsorbable fraction included precursors accessing the pore size regions of 10-20 Å and carbons showed higher removal of NDMA FP than acidic carbons on a surface area basis. The overall removal of NDMA FP by PAC on a mass basis depended on the surface area, pore size distribution and pHPZC. Thus, PACs with hybrid characteristics (micro and mesoporous), higher surface areas, and basic surface chemistry are more likely to be effective for NDMA precursor control by PAC adsorption. The application of PAC in DWTPs for taste and odor control resulted in an additional 20% removal of NDMA FP for the PAC doses of 7-10 mg/L. The natural attenuation of NDMA precursors through a combination of processes (biodegradation, photolysis and adsorption) decreased their adsorbability and removal by PAC adsorption.

  12. Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution

    董亚楠; 苏延磊; 陈文娟; 彭金明; 张岩; 姜忠义

    2011-01-01

    In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.

  13. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  14. Adsorption Batch Studies on the Removal of Pb(II Using Maize Tassel Based Activated Carbon

    Mambo Moyo

    2013-01-01

    Full Text Available The demand for clean water is on the increase as rapid industrialization is still contributing to pollution. Nowadays, as water is the basic need for mankind, efforts have gathered momentum to decontaminate it in order to address the acute shortage of clean and pure water. Maize tassel was used as the precursor for making activated carbon for the adsorption of Pb(II ions. The product obtained was characterized and utilized for the removal of Pb(II from aqueous solutions over a wide range of initial metal ion concentration (10–50 mg/L, contact time (5–300 min, adsorbent dose (0.1–2.5 g, and pH (2–12. The optimum set of conditions for biosorption of Pb(II ion were found to be initial concentration 10 mg/L, dosage 1.2 g, and pH 5.4. The adsorption data conformed to both the Langmuir and the Freundlich isotherms but fitted best into the Langmuir model. The R2 for Langmuir equation was 0.9997 and that for Freundlich was 0.9515. The Langmuir monolayer adsorption capacity of the activated carbon was calculated to be 37.31 mg/g. The results indicate that activated carbon might be used to effectively adsorb Pb(II ions from wastewater treatment plants.

  15. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption.

    Karanfil, Tanju; Dastgheib, Seyed A; Mauldin, Dina

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers (ACFs) and two granular activated carbons (GACs) preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 A. It also had the highest volume in pores 5-8 A, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 A, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the waythatthe carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption.

  16. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers.

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    Commercially available activated carbon fibers (ACFs) were modified further by a chemical activation method to obtain superior CO(2) adsorption capacity. The relationship between the pore structure of the modified ACF and the CO(2) adsorption behaviors was investigated. Chemical activation (with KOH at a fixed activation temperature of 900°C for 1h and various KOH/ACF weight ratios ranging from 1 to 4) of ACF increased the total pore volume and specific surface area to 1.124 cm(3)g(-1) (KOH/ACF weight ratio of 2) and 2318 m(2)g(-1) (KOH/ACF weight ratio of 4), respectively. Compared to ACF, the total pore volume and specific surface area were improved by factors of 2.5 and 2.3, respectively. Interestingly, the highest CO(2) adsorption capacity of 250 mg g(-1) at 298 K and 1 bar was observed at a KOH/ACF weight ratio of 3. The modified ACF had the narrowest microporosity ranging from 0.5 to 0.7 nm. Therefore, the increase in CO(2) adsorption capacity after chemical activation is closely related to the narrower pore size distribution rather than the total or micropore volume and specific surface area.

  17. Characterization of chlorinated tire-derived mesoporous activated carbon for adsorptive removal of toluene

    Zhu, Jianzhong [College of Environment, HoHai University, Nanjing (China); Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO (United States); Liang, Hao [Logistic Department of Guangzhou Military District, Guangzhou (China); Fang, Jun [Delon Hampton and Associates District of Columbia Water and Sewer Authority, Washington, DC (United States); Zhu, Jianguo [Wistron NeWeb (Kunshan) Corporation, Kunshan, Jiangsu Province (China); Shi, Buchang [Department of Chemistry, Western Kentucky University, Bowling Green, KY (United States)

    2011-06-15

    A series of chlorinated mesoporous activated carbons were derived from waste tires by pyrolysis, activation, and chlorination at different temperatures. The physical and chemical properties of the samples were studied by Brunauer-Emmett-Teller (BET) analysis, Fourier Transform IR Spectroscopy (FT-IR), point of zero charge measurement, thermogravimetric analysis, and by testing their behavior as adsorbents for toluene removal. Our results showed that the tire-derived activated carbon samples have highly mesoporous volumes and surface areas, and chlorination treatment has a slight effect on the pore structure. Lewis acidity of the sample increases after chlorination and the chlorine content increases from 0.24 to 2.32% with chlorination temperature increasing from 50 to 400 C. The higher the chlorine content, the more is the toluene adsorption. In comparison with the commercial carbon (F-400), all the samples have significantly higher adsorption capacity for toluene due to the presence of mesopores, inductive effect of the partial positive chemisorbed chlorine and resonance effects of C-Cl structures. The mesopores probably render easier diffusion of toluene molecule to inner carbon matrix and the strong {pi}-{pi} interaction between toluene and C-Cl resonance structure in the carbon significantly affects the interplay bonding process thus enhances the toluene removal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Geosmin and 2-methylisoborneol adsorption on super-powdered activated carbon in the presence of natural organic matter.

    Matsui, Y; Nakano, Y; Hiroshi, H; Ando, N; Matsushita, T; Ohno, K

    2010-01-01

    Geosmin and 2-methylisoborneol (2-MIB) are naturally occurring compounds responsible for musty-earthy-odors in surface water supplies. They are a severe problem confronting utilities worldwide. Adsorption by powdered activated carbon (PAC) is a widely used process to control this problem, but it has low efficiency, which engenders large budget spending for utilities services. Super-powdered activated carbon (S-PAC) is activated carbon with much finer particles than those of PAC. Experiments on geosmin and 2-MIB adsorptions on S-PAC and PAC were conducted. Geosmin and 2-MIB adsorption capacities on S-PAC were not smaller than those on PAC although natural organic matter, which adversely impacted the adsorption capacity of geosmin and 2-MIB, was more adsorbed on S-PAC than on PAC, meaning that the adsorption competition is less severe for S-PAC than for PAC.

  19. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  20. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  1. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  2. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon.

    Hartig, C; Ernst, M; Jekel, M

    2001-11-01

    The adsorption behaviour of two polar organic micropollutants (N-n-butylbenzenesulphonamide and sulphmethoxazole) onto powdered activated carbon (PAC) under competitive conditions prior to and after filtration with a tight ultrafiltration membrane was examined. The sulphonamides were spiked into microfiltered tertiary municipal effluent in microg L(-1) quantities. Ultrafiltration of these effluents resulted in better adsorbability for both the micropollutants and the background organic matter in the permeates compared to the feed waters. This behaviour seems to be caused by a reduced blocking of micropores by lower concentrations of high molecular weight compounds in membrane filtrates. A combined treatment of ultrafiltration prior to adsorption can therefore reduce the carbon demand for potentially harmful micropollutants in effluents.

  3. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review.

    Ahmed, Muthanna J

    2017-03-01

    Antibiotics, an important type of pharmaceutical pollutant, have attracted many researchers to the study of their removal from aqueous solutions. Activated carbon (AC) has been widely used as highly effective adsorbent for antibiotics because of its large specific surface area, high porosity, and favorable pore size distribution. In this article, the adsorption performance of AC towards three major types of antibiotics such as tetracyclines, quinolones, and penicillins were reviewed. According to collected data, maximum adsorption capacities of 1340.8, 638.6, and 570.4mg/g were reported for tetracyclines, quinolones, and penicillins, respectively. The values of 1/n for Freundlich isotherm were less than unity, suggesting that the adsorption was nonlinear and favorable. Adsorption kinetics followed closely the pseudo-second-order model and analysis using the Weber-Morris model revealed that the intra-particle diffusion was not the only rate controlling step. AC adsorption demonstrated superior performance for all selected drugs, thus being efficient technology for treatment of these pollutants.

  4. Thermodynamic and Kinetic Study of the Adsorption of Pb (II from Aqueous Solution Using Bentonite and Activated Carbon

    Ziad T. Abd Ali

    2013-01-01

    Full Text Available The adsorption of Pb(II ions onto bentonite and activated carbon was investigated. The effects of pH, initial adsorbent dosage, contact time and temperature were studied in batch experiments. The maximum adsorption capacities for bentonite and activated carbon were 0.0364 and 0.015 mg/mg, respectively. Thermodynamic parameters such as Gibbs free energy change, Enthalpy change and Entropy change have been calculated. These thermodynamic parameters indicated that the adsorption process was thermodynamically spontaneous under natural conditions and the adsorption was endothermic in nature. Experimental data were also tested in terms of adsorption kinetics, the results showed that the adsorption processes followed well pseudo second- order kinetics.

  5. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  6. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other.

  7. Kinetics of enhanced adsorption by polarization for organic pollutants on activated carbon fiber

    HAN Yanhe; QUAN Xie; ZHAO Huimin; CHEN Shuo; ZHAO Yazhi

    2007-01-01

    The adsorption kinetics for model pollutants on activated carbon fiber(ACF)by polarization was investigated in this work.Kinetics data obtained for the adsorption of these model pollutants at open-circuit.400 mV,and -400 mV polarization were applied to the Lagergren equation,and adsorption rate constants(Ka)were determined.With the anodic polarization of 400 mV,the capacity of sodium phenoxide was increased from 0.0083 mmol/g at open circuit to 0.18 mmol/g,and a 17-fold enhancement was achieved;however,the capacity of p-nitrophenol was decreased from 2.93 mmol/g at open-circuit to 2.65 mmol/g.With the cathodal polarization of -400 mV,the capacity of aniline was improved from 3.60 mmol/g at open-circuit to 3.88 mmol/g;however,the capacity of sodium dodecylben zene sulfonate was reduced from 2.20 mmol/g at open-circuit to 1.59 mmol/g.The enhancement for electrosorption changed with different groups substituting.Anodic polarization enhances the adsorption of benzene with the electron donating group.But whether anodic or not,cathodal polarization had less effect on the adsorption of electron-accepting aromatic compounds,and decreased the adsorption capacity of benzene-bearing donor-conjugate bridge-acceptor,while increasing its adsorption rate.Electrostatic interaction played a very important role in the electrosorption of ion-pollutants.

  8. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH4)2S2O8 solution to maximize oxygen content for the first step, and then NH3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pHe) investigated. The more decrease in pHe value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pHpzc) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pHe 2.5 for Ox-9.5AG.

  9. KINETIC AND THERMODYNAMIC STUDY OF THE ADSORPTION OF MANGANESE (II ON ACTIVATED CARBON

    OUISSAF BENTABET

    2012-06-01

    Full Text Available Recent studies revealed the Bay of Algiers was being polluted by manganese. Similar pollution was also reported in Azemmour, Morocco alongside the estuary of Oum Er Rbia, but also in the waters of developed countries (i.e. Canada, especially following the replacement of tetraethylplumbane in gasoline by methylcyclopentadienyl manganese. Treatment of polluted waters by manganese is therefore essential prior to their release, which is within the purpose of the present study. Commercial activated carbon (AC was used for treating synthetic aqueous solution containing different concentrations of Mn. Adsorption kinetics was studied under agitation at different temperatures between 295 and 318 K. Results show that there are two areas where adsorption occurs according to a first-class model. In the first one, rate constant is k1 = 0.001610 min-1, meanwhile in the second, it is k2 = 0.000488 min-1. Equilibrium is reached in 7 hours. The obtained adsorption isotherm is a V type and follows Freundlich model for low concentrations and Langmuir model for high concentrations. The isotherm part described by Freundlich model lessens with the rise of temperature, increasing adsorption maximum capacity from 3.49 mg Mn/g AC (at 295 K to 4.78 mg Mn/g AC (at 318 K. Adsorption is endothermic. Standard enthalpy (14.4869 kJ•mol-1 and standard entropy (36.25 J•mol-1•K-1 have been calculated. The free energy was positive in all the studied temperatures range. The values of adsorption heat indicate a physical adsorption.

  10. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane.

    Zhou, Xu-Jian; Buekens, Alfons; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2016-02-01

    Activated carbon is widely used to abate dioxins and dioxin-like compounds from flue gas. Comparing commercial samples regarding their potential to adsorb dioxins may proceed by using test columns, yet it takes many measurements to characterise the retention and breakthrough of dioxins. In this study, commercial activated carbon samples are evaluated during tests to remove trace amounts of dioxins dissolved in n-hexane. The solution was prepared from fly ash collected from a municipal solid waste incinerator. The key variables selected were the concentration of dioxins in n-hexane and the dosage of activated carbon. Both polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) showed very high removal efficiencies (94.7%-98.0% for PCDDs and 99.7%-99.8% for PCDFs). The presence of a large excess of n-hexane solvent had little effect on the removal efficiency of PCDD/Fs. The adsorbed PCDD/Fs showed a linear correlation (R(2) > 0.98) with the initial concentrations. Comparative analysis of adsorption isotherms showed that a linear Henry isotherm fitted better the experimental data (R(2) = 0.99 both for PCDDs and PCDFs) than the more usual Freundlich isotherm (R(2) = 0.88 for PCDDs and 0.77 for PCDFs). Finally, the results of fingerprint analysis indicated that dioxin fingerprint (weight proportion of different congeners) on activated carbon after adsorption did not change from that in hexane.

  11. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  12. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K2CO3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K2CO3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m(2)/g), the maximum adsorption capacities determined from the Langmuir model (Q(o)max) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5

  13. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Barthélemy J.-P.

    2003-01-01

    Full Text Available In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC. Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results. Nevertheless, this kind of experiment allows us to assess the adsorption performances of an activated carbon for different pesticides. Because of the lack of comparable available results, we have eveloped a standardized methodology based on the experiment in mini-column of granular activated carbon. The main experimental conditions are activated carbon: Filtrasorb 400 (Chemviron Carbon; water: mineral and organic reconstituted water (humic acid concentration: 0,5 mg/l; influent concentration 500 g . l -1 ; activated carbon weight: 200 mg; EBCT (Empty Bed Contact Time: 0.16 min.; linear speed: 0.15 m . s -1 . In these conditions, it appears that diuron is highly adsorbed in comparison with other active substances like chloridazon, atrazine or MCPA. From the ratio of effluent volume for the breakthrough point with respect to diuron, it is suggested that products of which the difference factor ratio is – (a below 0.40: may be reckoned as weakly adsorbed (MCPA; (b from 0.41 to 0.80: may be reckoned as moderately adsorbed (chloridazon and atrazine; (c above 0.80: as highly adsorbed on granular activated carbon. Active substances that are weakly adsorbed and have to be removed from drinking water, may highly reduce the lifetime of an activated carbon bed. This kind of information is particularly useful for water suppliers and for regulatory authorities.

  14. Adsorption of direct dye onto activated carbon prepared from areca nut pod--an agricultural waste.

    Gopalswami, P; Sivakumar, N; Ponnuswamy, S; Venkateswaren, V; Kavitha, G

    2010-10-01

    Activated carbons are made from various agricultural wastes by physical and chemical activation. The preparation of activated carbon from agricultural waste could increase economic return and also provides an excellent method for the solid waste disposal thereby reduce pollution. Areca nut pod, which is an agricultural waste, has been used as a raw material to produce activated carbon (AAC) by four different methods. The adsorption of Direct blue dye used in textile industry on the porous areca nut pod activated carbon was investigated. The activated carbon AAC has an average surface area of 502 m2/g. CAC, the commercial reference was mainly micro porous with a surface area of 1026 m2/g .The study investigated the removal of direct dye from simulated water. The effects of adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. The results indicate that AAC could be employed as low-cost alternative to commercial activated carbon in wastewater treatment for the removal of acid dyes.

  15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded).

  16. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  17. Natural gas adsorption on biomass derived activated carbons: A mini review

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  18. K2S-activated carbons developed from coal and their methane adsorption behaviors

    Feng, Yan-Yan; Yang, Wen; Chu, Wei

    2014-10-01

    The main purpose of this work is to prepare various activated carbons by K2S activation of coal with size fractions of 60-80 meshes, and investigate the microporosity development and corresponding methane storage capacities. Raw coal is mixed with K2S powder, and then heated at 750 °C-900 °C for 30 min-150 min in N2 atmosphere to produce the adsorbents. The texture and surface morphology are characterized by a N2 adsorption/desorption isotherm at 77 K and scanning electron microscopy (SEM). The chemical properties of carbons are confirmed by ultimate analysis. The crystal structure and degree of graphitization are tested by X-ray diffraction and Raman spectra. The relationship between sulfur content and the specific surface area of the adsorbents is also determined. K2S activation is helps to bring about better development of pore texture. These adsorbents are microporous materials with textural parameters increasing in a range of specific surface area 72.27 m2/g-657.7 m2/g and micropore volume 0.035 cm3/g-0.334 cm3/g. The ability of activated carbons to adsorb methane is measured at 298 K and at pressures up to 5.0 MPa by a volumetric method. The Langmuir model fits the experimental data well. It is concluded that the high specific surface area and micropore volume of activated carbons do determine methane adsorption capacity. The adsorbents obtained at 800 °C for 90 min with K2S/raw coal mass ratios of 1.0 and 1.2 show the highest methane adsorption capacities amounting to 106.98 mg/g and 106.17 mg/g, respectively.

  19. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon

    Lin Li; Min Gao; Junxin Liu; Xuesong Guo

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols.Most previous work has focused on the evaluation of their biological risks.In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch.Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms.The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr.Over 85%of airborne bacteria and fungi emitted from thc oxidation ditch were adsorbed within 80 hr of continuous operation mode.Most of them had a particle size of 0.65-4.7 μm.Those airborne microorganisms with small particle size were apt to be adsorbed.The SEM/EDAX,BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC.Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms.Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon.High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon.Microscopic observation was also carried out to investigate original and used adsorbents.

  20. Indoor Air Contaminant Adsorption By Palm Shell Activated Carbon Filter – A Proposed Study

    Leman A.M

    2016-01-01

    Full Text Available Indoor air contaminant is a public issue. High Volatile Organic Compound (VOC, Carbon monoxide (CO, Carbon dioxide (CO2, and particulate matter is becoming main issue that needs to solve. Therefore, this study focus on improving indoor air quality by using activated carbon (AC for Ventilation and Air-Conditioning (VAC. It investigated because AC is widely explored but developing AC as a filter for VAC is not developed yet. The AC prepared by physical and chemical activation process and combination both of process and it was activated by H3PO4 and NaOH. Characterization and analysis process are consists of water content, ash content, bulk density, adsorption capacity, iodine number and indoor air filtering analysis. Treated activated carbon potential in achieving higher surface area of the structure to the range of 950 to 1150 m2/g for gas phase application. The higher surface area will adsorb more air pollution. Maintained properties of activated carbon such as hardness, density, pore, extractable ash, particle size (12 by 40 mesh and pH are becoming the main concern in achieving high quality of activated carbon.

  1. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis.

    Mui, Edward L K; Cheung, W H; Valix, Marjorie; McKay, Gordon

    2010-07-15

    Two types of activated carbons from tyre char (with or without sulphuric acid treatment) were produced via carbon dioxide activation with BET surface areas in the range 59-1118 m(2)/g. Other characterisation tests include micropore and mesopore surface areas and volumes, pH, and elemental compositions, particularly heteroatoms such as nitrogen and sulphur. They were correlated to the adsorption capacity which were in the range of 0.45-0.71 mmol/g (untreated) and 0.62-0.84 mmol/g (acid-treated) for Acid Blue 25. In the case of larger-sized molecules like Acid Yellow 117, capacities were in the range of 0.23-0.42 mmol/g (untreated) and 0.29-0.40 mmol/g (acid-treated). Some tyre carbons exhibit a more superior performance than a microporous, commercial activated carbon (Calgon F400). By modelling the dye adsorption equilibrium data, the Redlich-Peterson isotherm is adopted as it has the lowest SSE. Based on the surface coverage analysis, a novel molecular orientation modelling of adsorbed dyes has been proposed and correlated with surface area and surface charge. For the acid dyes used in this study, molecules were likely to be adsorbed by the mesopore areas.

  2. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  3. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  4. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  5. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-15

    Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption-desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg(2+) adsorption ability of samples was investigated. The results show that the Hg(2+) adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.

  6. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  7. Sustainable Activated Carbons from Agricultural Residues Dedicated to Antibiotic Removal by Adsorption

    Jonatan Torres-Perez; Claire Gerente; Yves Andres

    2012-01-01

    The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracycline removal, a common antibiotic. Two new ACs were produced by direct activation with steam from beet pulp (BP-H2O) and peanut hu_lls (PH-H2O) in environmental friendly conditions BP-H2O and PH-H2Opresentcarbon content rangedcarbons with different intrinsic properties.

  8. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  9. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  10. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Chang, Shenteng; Lu, Chungsying, E-mail: clu@nchu.edu.tw; Lin, Kun-Yi Andrew

    2015-01-30

    Graphical abstract: A comparison of TMAH adsorption capacity with GO, NaY and GAC is conducted and the result reveals that the magnitude of qe follows the order of GO > NaY > GAC. The adsorption capacity of GO is significantly higher than those of zeolite and activated carbon in this and reported studies, showing its encouraging potential. GO also exhibits good reversibility of TMAH adsorption through 10 cycles of adsorption and desorption process. This reflects that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment. - Highlights: • Adsorption kinetics and isotherms of TMAH to GO, NaY and GAC are compared. • Thermodynamics of TMAH adsorption to GO, NaY and GAC is determined. • GO exhibits the highest TMAH adsorption capacity, followed by NaY and GAC. • Recyclabilities of NaY and GO remain above 95% but that of GAC dropped to 70%. - Abstract: Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  11. EFFECT OF MOLECULAR OXYGEN ON ADSORPTIVE CAPACITY AND EXTRACTION EFFICIENCY OF GRANULATED ACTIVATED CARBON FOR THREE ORTHO-SUBSTITUTED PHENOLS

    Adsorptive capacity of activated carbon for several organic compounds was found to be strongly influenced by the presence of molecular oxygen. This influence is manifested by the polymerization of adsorbate on the surface of activated carbon. As a result, GAC exhibits much high...

  12. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.

    Li, Xueqing; Hai, Faisal I; Nghiem, Long D

    2011-05-01

    Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better removal rate during operation under no or low (0.1g/L) PAC dosage. When the PAC concentration in MBR was raised to 1.0 g/L, a sustainable and significantly improved performance in the removal of both compounds was observed - the removal efficiencies of sulfamethoxazole and carbamazepine increased to 82 ± 11% and 92 ± 15% from the levels of 64 ± 7%, and negligible removal, respectively. The higher removal efficiency of carbamazepine at high (1.0 g/L) PAC dosage could be attributed to the fact that carbamazepine is relatively more hydrophobic than sulfamethoxazole, which subsequently resulted in its higher adsorption affinity toward PAC.

  13. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  14. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  15. Optimum operating conditions for an adsorption cryocooler: a case of activated carbon + nitrogen system

    Radhika Rani Rao [Don Bosco Institute of Technology, Bangalore (India). Dept. of Physics; Madhu Prasad [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Kandadai Srinivasan [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    2005-03-01

    Adsorption cryocoolers are among the possible options for obtaining cryogenic temperatures, in particular for small cooling capacity applications such as cooling of infra red detectors. They need to be optimized for liquid yield. The performance of thermal compressors therein pivots around the adsorption characteristics of the adsorbent + adsorbate combination and how effectively one could pack requisite amounts of adsorbent into a given volume of the compressor housing. In addition, the overall performance of the cooler is a function of limits of operating temperatures and pressures across the compressor. This paper proposes a performance indicator-the product of liquid yield and the uptake efficiency of the compressor - and evaluates its values for various possible operating conditions for one specimen of activated carbon. It is shown that there is a limited domain of operation and that there is a condition of best performance within that domain. (author)

  16. ADSORPTION OF COPPER FROM AQUEOUS SOLUTION BY ELAIS GUINEENSIS KERNEL ACTIVATED CARBON

    NAJUA DELAILA TUMIN

    2008-08-01

    Full Text Available In this study, a series of batch laboratory experiments were conducted in order to investigate the feasibility of Elais Guineensis kernel or known as palm kernel shell (PKS-based activated carbon for the removal of copper from aqueous solution by the adsorption process. Investigation was carried out by studying the influence of initial solution pH, adsorbent dosage and initial concentration of copper. The particle size of PKS used was categorized as PKS–M. All batch experiments were carried out at a constant temperature of 30°C (±2°C using mechanical shaker that operated at 100 rpm. The single component equilibrium data was analyzed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth adsorption isotherms.

  17. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  18. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  19. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.

    Secondes, Mona Freda N; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-15

    Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  20. Adsorption of Cu(II from aqueous solution using activated carbon derived from mangosteen peel

    Yandan Chen

    2012-11-01

    Full Text Available Effects of the mixing method of K2CO3 with the source biomass and thermal history on the properties of the mangosteen peel activated carbons (MSACs were investigated. The one-step impregnation activation process was found to be remarkably effective in increasing the mesoporosity of the activated carbon (L-MSAC as well as BET surface area (SBET and total pore volume, compared to the solid-solid dry mixing method in a two-stage process. The better fit of Langmuir isotherm indicates a maximum adsorption capacity of Cu(II to be 21.74 mg•g−1 for L-MSAC, which makes it a promising adsorbent for the removal of copper ion from aqueous solutions.

  1. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems.

    Abromaitis, V; Racys, V; van der Marel, P; Meulepas, R J W

    2016-04-01

    In Biological Activated Carbon (BAC) systems, persistent organic pollutants can be removed through a combination of adsorption, desorption and biodegradation. These processes might be affected by the presence of other organics, especially by the more abundant easily-biodegradable organics, like acetate. In this research these relations are quantified for the removal of the persistent pharmaceutical metoprolol. Acetate did not affect the adsorption and desorption of metoprolol, but it did greatly enhance the metoprolol biodegradation. At least part of the BAC biomass growing on acetate was also able to metabolise metoprolol, although metoprolol was only converted after the acetate was depleted. The presence of easily-degradable organics like acetate in the feeding water is therefore beneficial for the removal of metoprolol in BAC systems. The isotherms obtained from metoprolol adsorption and desorption experiments showed that BAC systems are subject to hysteresis; for AC bioregeneration to take place the microbial biomass has to reduce the concentration at the AC-biomass interface 2.7 times compared to the concentration at which the carbon was being loaded. However, given the threshold concentration of the MET degrading microorganisms (<0.08 μg/L) versus the average influent concentration (1.3 μg/L), bioregeneration is feasible.

  2. Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25 ℃

    E. Salehi; V. Taghikhani; C. Ghotbi; E. Nemati Lay; A. Shojaei

    2007-01-01

    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 ℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.

  3. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models.

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S

    2009-01-30

    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  4. Adsorption of some metal complexes derived from acetyl acetone on activated carbon and purolite S-930

    Salam A.H. Al-Ameri

    2014-12-01

    Full Text Available A new Schiff base (HL derived from condensation of p-anisidine and acetyl acetone has been prepared and used as a chelating ligand to prepare Cr(III, Mn(II, Co(II, Ni(II and Cu(II complexes. The study of the nature of these complexes formed in ethanol solution following the mole ratio method (2:1, L:M gave results which were compared successfully with these obtained from isolated solid state studies. These studies revealed that the complexes having square planner geometry of the type (ML2, M = Co(II, Ni(II and Cu(II, and octahedral geometry of the type [CrIIIL2(H2O2]Cl and [MNIIL2(H2O2]. The adsorption studies of three complexes Cr(III, Mn(II, and Co(II on activated carbon, H and Na-forms of purolite S-930 resin show high adsorption percentage for Cr(III on purolite S-930 due to ion exchange interaction compared with high adsorption of neutral Mn(II, Co(II complexes on activated charcoal. Linear plot of log Qe versus log Ce showed that the adsorption isotherm of these three complexes on activated carbon, H and Na-forms of purolite S-930 surface obeys Freundlich isotherm and was similar to S-curve type according to Giles classification which investigates heterogeneous adsorption. The regression values indicate that the adsorption data for these complexes fitted well within the Freundlich isothermal plots for the concentration studied. The accuracy and precision of the concentration measurements of these complexes were determined by preparing standard laboratory samples, the results show relative error ranging from ±1.08 to 5.31, ±1.04 to 4.82 and ±0.28 to 3.09 and the relative standard deviation did not exceed ±6.23, ±2.77 and ±4.38% for A1, A2 and A3 complexes, respectively.

  5. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.

    Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T

    2014-01-01

    Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and

  6. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.

    Shamsijazeyi, Hadi; Kaghazchi, Tahereh

    2014-01-01

    As an inexpensive method for modification of activated carbons (ACs), sulfurization has attracted significant attention. However, the resulting sulfurized activated carbons (SACs) often are less porous than the original ACs. In this work, we propose a new method for concurrent sulfurization/activation that can lead to preparation of SACs with more porosity than the corresponding non-sulfurized ACs. By using scanning electron microscopy, nitrogen adsorption/desorption, and iodine number experiments, the porous structure of the SACs has been compared with that of non-sulfurized ACs. The specific surface areas of SACs are higher than the corresponding ACs, regardless of the type of activation agents used. For instance, the specific surface area of SAC and AC activated with phosphoric acid is 1,637 and 1,338 m(2)/g, respectively. Additionally, sulfur contents and surface charges (pHpzc) of the SACs and non-sulfurized ACs are compared. In fact, the SACs have higher sulfur contents and more acidic surfaces. Furthermore, the Hg(II) adsorption capacity of SACs has been compared with the corresponding non-sulfurized ACs. The Hg(II) adsorption isotherms on a selected SAC is measured at different pH values and temperatures. Hg(II) adsorptions as high as 293 mg/g are observed by using SACs prepared by the method proposed in this study.

  7. Adsorption and destruction of PCDD/Fs using surface-functionalized activated carbons.

    Atkinson, J D; Hung, P C; Zhang, Z; Chang, M B; Yan, Z; Rood, M J

    2015-01-01

    Activated carbon adsorbs polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) from gas streams but can simultaneously generate PCDD/Fs via de novo synthesis, increasing an already serious disposal problem for the spent sorbent. To increase activated carbon's PCDD/F sorption capacity and lifetime while reducing the impact of hazardous waste, it is beneficial to develop carbon-based sorbents that simultaneously destroy PCDD/Fs while adsorbing the toxic chemicals from gas streams. In this work, hydrogen-treated and surface-functionalized (i.e., oxygen, bromine, nitrogen, and sulfur) activated carbons are tested in a bench-scale reactor as adsorbents for PCDD/Fs. All tested carbons adsorb PCDD/F efficiently, with international toxic equivalent removal efficiencies exceeding 99% and mass removal efficiencies exceeding 98% for all but one tested material. Hydrogen-treated materials caused negligible destruction and possible generation of PCDD/Fs, with total mass balances between 100% and 107%. All tested surface-functionalized carbons, regardless of functionality, destroyed PCDD/Fs, with total mass balances between 73% and 96%. Free radicals on the carbon surface provided by different functional groups may contribute to PCDD/F destruction, as has been hypothesized in the literature. Surface-functionalized materials preferentially destroyed higher-order (more chlorine) congeners, supporting a dechlorination mechanism as opposed to oxidation. Carbons impregnated with sulfur are particularly effective at destroying PCDD/Fs, with destruction efficiency improving with increasing sulfur content to as high as 27%. This is relevant because sulfur-treated carbons are used for mercury adsorption, increasing the possibility of multi-pollutant control.

  8. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture

    García López, Susana; Gil Matellanes, María Victoria; Fernández Martín, Claudia; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga

    2011-01-01

    In this study a commercial activated carbon (Norit R2030CO2) was assessed as a solid sorbent for precombustion CO2 capture. This technology involves the removal of CO2 from the shifted-syngas prior to the generation of electricity and the production of high-purity clean H2. The CO2 equilibrium adsorption capacity and breakthrough time were evaluated in a flow-through system where the adsorbent was subjected to four consecutive adsorption–desorption cycles. A CO2/H2/N2 gas mixture (20/70/10 vo...

  9. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  10. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2016-02-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  11. Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor.

    Chang, Chiung-Fen; Lee, Shu-Chi

    2012-06-01

    High gravity rotating packed bed (HGRPB) reactor possesses the property of high mass transfer rate, which is expected to promote the adsorption rate for the process. In this study, HGRPB has been applied on adsorption removal of methomyl from solution, adopting the adsorbent of activated carbon F400. The influence of operating parameters of HGRPB on mass transfer such as the rotating speed (N(R)), the flow rate of solution (F(L)) and initial concentration of methomyl (C(b0)) were examined. The traditionally internal mass transfer models combined with Freundlich isotherm were used to predict the surface and effective diffusion coefficients. In addition, the results have also been compared with those obtained from the traditional basket stirred batch reactor (BBR). The results showed that the larger values of N(R) and F(L) enhanced the effective intraparticle diffusion and provided more accessible adsorption sites so as to result in lower equilibrium concentration in HGRPB system when compared to SBR system. The results of adsorption kinetics demonstrated that surface and effective diffusions were both significantly greater in HGRPB system instead of BBR system. Furthermore, the values of Bi(S) also manifested less internal mass transfer resistance in HGRPB system. The contribution ratio (R(F)) of the surface to pore diffusion mass transport showed that the larger contribution resulted from the surface diffusion in HGRPB system. Therefore, the results reasonably led to the conclusion that when the HGRPB system applied on the adsorption of methomyl on F400, the lower equilibrium concentration and faster internal mass transfer can be obtained so as to highly possess great potential to match the gradually stricter environmental standard.

  12. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  13. Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon.

    Namasivayam, C; Sangeetha, D

    2004-12-15

    Phosphate removal from aqueous solution was investigated using ZnCl(2)-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3-10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.

  14. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid

    LU Hai-jun; LUAN Mao-tian; ZHANG Jin-li; YU Yong-xian

    2008-01-01

    The adsorption capacity of landfill liners containing granular activated carbon (GAC), or bentonite activated by acid, for Cr(VI) was investigated by batch testing. The results show that both GAC and activated bentonite could be used as sorptive amendments for trapping Cr(VI) in landfill liners. The Cr(VI) sorption to GAC and activated bentonite is much greater than Cr(VI) sorption to natural clay. The adsorption capacity of Cr(VI) onto all the soils increases with increasing temperature; adsorption ca-pacity is also significantly influenced by soil-solid concentration. As the soil-solid concentration increases the adsorption capacity first decreases logarithmically, but then stabilizes when the soil-solid concentration exceeds a critical value (e.g. 400 g/L). Perme-ability tests were conducted in the laboratory. The results indicate that the hydraulic conductivity of landfill liners containing GAC or activated bentonite can meet the engineering requirement of 1 nm/s. One-dimensional transport simulations for Cr(VI) were performed to evaluate the effect of GAC and activated bentonite on landfill liners. The results of the simulations indicate that land-fill liners containing GAC, or activated bentonite, significantly retard the transport of Cr(VI) relative to a conventional clay liner.

  15. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon

    N.T. Abdel-Ghani

    2016-01-01

    Full Text Available The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120min. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intraparticle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986. The intraparticle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944. The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

  16. Elucidating the role of phenolic compounds in the effectiveness of DOM adsorption on novel tailored activated carbon.

    Yan, Liang; Fitzgerald, Martha; Khov, Cindy; Schafermeyer, Amy; Kupferle, Margaret J; Sorial, George A

    2013-11-15

    Two novel tailored activated carbons (BC-41-OG and BC-41-MnN) with favorable physicochemical characteristics were successfully prepared for adsorption of dissolved natural organic matter (DOM) by applying systematically chemical and thermal treatment. This research was conducted to investigate the impact of the presence of phenolics on the adsorption capacity of DOM. Isotherm tests were performed for both humic acid (HA) and phenolics on both novel tailored activated carbons and commercial activated carbon F400. The presence of phenolics display a significant effect on hindering the adsorption of HA, however; the physicochemical characteristics of novel activated carbons (surface metal oxides and mesoporosity) can play an important role in alleviating this effect. In contrast, F400, with a relatively lower mesoporosity and surface basicity as compared to the developed adsorbents, was severely impacted by the oligomerization of phenolic compounds. The adsorption capacity of DOM in presence of phenolics was further studied in a continuous flow microcolumn system. The column results showed that both BC-41-OG and BC-41-MnN have not only higher HA adsorption capacity but also better selective adsorption ability than F400.

  17. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  18. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  19. Efficient adsorption of 4-Chloroguiacol from aqueous solution using optimal activated carbon: Equilibrium isotherms and kinetics modeling

    Afidah Abdul Rahim

    2016-10-01

    Full Text Available The optimal activated carbon produced from Prosopis africana seed hulls (PASH-AC was obtained using the impregnation ratio of 3.19, activation temperature of 780 °C and activation time of 63 min with surface area of 1095.56 m2/g and monolayer adsorption capacity of 498.67 mg/g. The adsorption data were also modeled using five various forms of the linearized Langmuir equations as well as Freundlich and Temkin adsorption isotherms. In comparing the legitimacy of each isotherm model, chi square (χ2 was incorporated with the correlation coefficient (R2 to justify the basis for selecting the best adsorption model. Langmuir-2 > Freundlich > Temkin isotherms was the best order that described the equilibrium adsorption data. The results revealed pseudo-second-order to be the most ideal model in describing the kinetics data.

  20. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  1. Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.

    Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas

    2013-03-01

    The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.

  2. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-02-14

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  3. Experimental study on activated carbon-nitrogen pair in a prototype pressure swing adsorption refrigeration system

    Anupam, Kumar; Palodkar, Avinash V.; Halder, G. N.

    2016-04-01

    Pressure swing adsorption of nitrogen onto granular activated carbon in the single-bed adsorber-desorber chamber has been studied at six different pressures 6-18 kgf/cm2 to evaluate their performance as an alternative refrigeration technique. Refrigerating effect showed a linear rise with an increase in the operating pressure. However, the heat of adsorption and COP exhibited initial rise with the increasing operating pressure but decreased later after reaching a maximum value. The COP initially increases with operating pressures however, with the further rise of operating pressure it steadily decreased. The highest average refrigeration, maximum heat of adsorption and optimum coefficient of performance was evaluated to be 415.38 W at 18 kgf/cm2, 92756.35 J at 15 kgf/cm2 and 1.32 at 12 kgf/cm2, respectively. The system successfully produced chilled water at 1.7 °C from ambient water at 28.2 °C.

  4. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    Secondes, Mona Freda N. [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines); Naddeo, Vincenzo, E-mail: vnaddeo@unisa.it [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Belgiorno, Vincenzo [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Ballesteros, Florencio [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines)

    2014-01-15

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  5. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  6. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  7. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  8. Removal of Cu(II Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Derived From Olive Waste Cakes

    Hesham G. Ibrahim

    2016-04-01

    Full Text Available This paper studied the ability of using local activated carbon (LAC derived from olive waste cakes as an adsorbent for the removal of Cu(II ions from aqueous solution by batch operation. Various operating parameters such as solution pH, adsorbent dosage, initial metal ions concentration, and equilibrium contact time have been studied. The results indicated that the adsorption of Cu(II increased with the increasing pH, and the optimum solution pH for the adsorption of Cu(II was found to be 5. The adsorption process increases with increasing dosage of LAC, also the amount of Cu(II removed changes with Cu(II initial concentration and contact time. Adsorption was rapid and occurred within 25 min. for Cu(II concentration range from 60 to 120 mg/l isothermally at 30±1 oC. Maximum adsorption occurs at Cu(II initial concentration lesser than 100 mg/l by using adsorbent dosage (1.2 g/l. The equilibrium adsorption data for Cu(II were fitted well with the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of LAC was found to be 106.383 mg/g. So, the results indicated the suitability use of the activated carbon derived from olive waste cakes (LAC as low cost and natural material for reliable removal of Cu(II from water and wastewater effluents.

  9. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  10. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  11. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  12. Studies on the Physical Adsorption Equilibria of Gases on Porous Solids over a Wide Temperature Range Spanning the Critical Region——Adsorption on Microporous Activated Carbon

    周亚平; 白书培; 周理; 杨斌

    2001-01-01

    Adsorption equilibria of nitrogen and methane on microporous (<2 nm) activated carbon were measured for a wide temperature range (103—298 K) spanning the critical region. Information relating to Henry constants, the isosteric heat of adsorption, and the amnount of limiting adsorption were evaluated. All isotherms show type-I features for both sub- and supercritical temperatures. A new isotherm equation and a consideration for the importance of the effect of the adsorbed phase volume allow this kind of isotherms to be modeled satisfactorily. The model parameter of the saturated amount of absolute adsorpaon (nt0) equals the limiting adsorption amount (nlim), leaving the physical meaning of the latter clarified, and the exponent parameter (q) proves to be an appropriate index of surface heterogeneity.

  13. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji [Faculty of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Machida, Motoi [Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan)], E-mail: machida@faculty.chiba-u.jp; Tatsumoto, Hideki [Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan)

    2007-08-15

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to C{pi}-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to {pi}-{pi} dispersion for the aromatics.

  14. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.

    Baup, S; Wolbert, D; Laplanche, A

    2002-10-01

    Three pesticides (atrazine, bromoxynil and diuron) and two granular activated carbons are involved in equilibrium and kinetic adsorption experiments. Equilibrium is represented by Freundlich isotherm law and kinetic is described by the Homogeneous Surface Diffusion Model, based on external mass transfer and intraparticle surface diffusion. Equilibrium and long-term experiments are conducted to compare Powdered Activated Carbon and Granular Activated Carbon. These first investigations show that crushing GAC into PAC improves the accessibility of the adsorption sites without increasing the number of these sites. In a second part, kinetics experiments are carried out using a Differential Column Batch Reactor. Thanks to this experimental device, the external mass transfer coefficient k(f) is calculated from empirical correlation and the effect of external mass transfer on adsorption is likely to be minimized. In order to obtain the intraparticle surface diffusion coefficient D. for these pesticides, comparisons between experimental kinetic data and simulations are conducted and the best agreement leads to the Ds coefficient. This procedure appears to be an efficient way to acquire surface diffusion coefficients for the adsorption of pesticides onto GAC. Finally it points out the role of surface diffusivity in the adsorption rate. As a matter of fact, even if the amount of the target-compound that could be potentially adsorbed is really important, its surface diffusion coefficient may be small, so that its adsorption may not have enough contact time to be totally achieved.

  15. Adsorptive Removal of Para-chlorophenol Using Stratified Tapered Activated Carbon Column

    M.EE Sze; G. McKay

    2012-01-01

    The feasibility of adsorptive removal of single component organic compound (para-chlorophenol) by Calgon Filtrasorb 400 (F400) carbon was investigated. The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon. Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons. The Bed Depth Service Time (BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables. When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested, the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics, in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.

  16. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  17. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    Namasivayam, C; Sangeetha, D

    2005-09-01

    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  18. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye--Acid Blue 113.

    Gupta, V K; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-02-15

    A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  19. Adsorption of Ni(II, Cu(II and Fe(III from Aqueous Solutions Using Activated Carbon

    A. Edwin Vasu

    2008-01-01

    Full Text Available An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, Chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II, Cu(II and Fe(III ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich, Langmuir and Redlich-Peterson isotherms and the isotherm constants were evaluated. Time variation studies indicate that adsorptions follow pseudo-second order kinetics. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

  20. Predicting the adsorption properties of carbon dioxide corrosion inhibitors using a structure-activity relationship

    Kinsella, B.; De Marco, R.; Jefferson, A.; Pejcic, B. [Western Australian Corrosion Research Group, Department of Applied Chemistry, Curtin University of Technology, GPO Box U1987, Perth, 6845, WA (Australia); Durnie, W. [Nalco/Exxon Energy Chemicals Ltd, Hardley, Hythe, Southampton (Australia)

    2004-07-01

    This paper presents a study of the influence of various chemical inhibitors on the corrosion rate of mild steel in brine electrolyte under carbon dioxide conditions. The performances as corrosion inhibitors were fitted to a Temkin adsorption isotherm, and various constants of adsorption (i.e., adsorption equilibrium constants and molecular interaction constants) have been obtained. The inhibitor adsorption mechanism has been discussed in terms of thermodynamics (i.e., {delta}H, {delta}G and {delta}S) and this revealed that some compounds chemisorbed onto the steel electrode. In addition, molecular modelling was undertaken using PCSPARTAN Plus and HyperChem Professional, and the various molecular parameters have been correlated with the thermodynamic adsorption properties of the inhibitors. A four-parameter fit for both negative and positive charged molecules is discussed. (authors)

  1. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  2. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon.

    Yu, Xiangquan; Sun, Weiling; Ni, Jinren

    2015-11-01

    LSER models for organic compounds adsorption by single and multi-walled carbon nanotubes and activated carbon were successfully developed. The cavity formation and dispersion interactions (vV), hydrogen bond acidity interactions (bB) and π-/n-electron interactions (eE) are the most influential adsorption mechanisms. SWCNTs is more polarizable, less polar, more hydrophobic, and has weaker hydrogen bond accepting and donating abilities than MWCNTs and AC. Compared with SWCNTs and MWCNTs, AC has much less hydrophobic and less hydrophilic adsorption sites. The regression coefficients (e, s, a, b, v) vary in different ways with increasing chemical saturation. Nonspecific interactions (represented by eE and vV) have great positive contribution to organic compounds adsorption, and follow the order of SWCNTs > MWCNTs > AC, while hydrogen bond interactions (represented by aA and bB) demonstrate negative contribution. These models will be valuable for understanding adsorption mechanisms, comparing adsorbent characteristics, and selecting the proper adsorbents for certain organic compounds.

  3. Preparation and Characteristics of Activated Carbon from Wood Bark and Its Use for Adsorption of Cu (II

    Jiahui ZHANG

    2014-12-01

    Full Text Available In this study, wood bark activated carbon (bark activated carbon, BAC were prepared by the method of steam activation at the activation temperature of 700 °C and 800 °C. The pore structures of BAC samples obtained were analysed via means of low temperature nitrogen adsorption. Iodine adsorption value and Cu (II ions adsorption capacity were also investigated. The results indicated that micropores and mesopores were abundant in BACs, which indicated a better adsorption effect in iodine and Cu (II ions adsorption capacities than wood bark carbon. The efficiency for the removal of Cu (II ions were carried out as a function of contact time. The optimal dosage of Cu (II ions by BAC700 and BAC800 samples is 5 g/L with an optimal time of 30 min. The kinetic studies of BACs revealed a better correlation with the Lagergren pseudo-second order model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6400

  4. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent.

  5. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  6. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  7. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon

    Luo Xiaogang [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Zhang Lina, E-mail: lnzhang@public.wh.hb.cn [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2009-11-15

    Maghemite ({gamma}-Fe{sub 2}O{sub 3}) nanoparticles were created with a submerged circulation impinging stream reactor (SCISR) from FeCl{sub 3}.6H{sub 2}O and FeCl{sub 2}.4H{sub 2}O by using precipitation followed by oxidation. Subsequently, by blending cellulose with the Fe{sub 2}O{sub 3} nanoparticles and activated carbon (AC) in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to -12 deg. C, millimeter-scale magnetic cellulose beads, coded as MCB-AC, was fabricated via an optimal dropping technology. The cellulose beads containning Fe{sub 2}O{sub 3} nanoparticles exhibited sensitive magnetic response, and their recovery could facilitate by applying a magnetic field. The adsorption and desorption of the organic dyes on MCB-AC were investigated to evaluate the removal of dyes (methyl orange and methylene blue) with different charges from aqueous solution. Their adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the MCB-AC sorbent could efficiently adsorb the organic dyes from wastewater, and the used sorbents could be recovered completely. Therefore, we developed a highly efficient sorbent, which were prepared by using simple and 'green' process, for the applications on the removal of hazardous materials.

  8. Spontaneous adsorption and electrochemical behaviour of safranine O at electrochemically activated glassy carbon electrode

    Abdessamad, NourElHouda [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia); Adhoum, Nafaa, E-mail: Nafaa.adhoum@insat.rnu.tn [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia)

    2009-08-15

    The adsorption behaviour of safranine O (SO) at electrochemically pretreated glassy carbon electrodes has been studied. It was found that SO adsorption depended on the properties of the electrode surface, as determined by the nature and duration of the activation step. It was noticed that SO was adsorbed spontaneously and strongly on the surface of anodically pretreated electrode. The electrochemical behaviour of the modified electrode was investigated in H{sub 2}SO{sub 4} (0.25 M) using cyclic voltammetry (CV). A reversible two electron, two proton wave was observed at -180 mV vs. SCE and the formal potential was found to be decreasing upon increasing the solution pH (-56.8 mV pH{sup -1}). The modified electrode exhibited good stability on repeated scanning between -500 and 200 mV vs. SCE, causing only 5% decrease in the peak height after 100 cycles at a scan rate of 20 mV s{sup -1}. The surface coverage was calculated to be 0.812 nmol cm{sup -2} and the electron transfer rate constant (k{sub s}{sup 0}=1.45s{sup -1}) and transfer coefficient ({alpha} = 0.43) for the adsorbed SO were evaluated using the Laviron method. The modified electrode clearly showed good electrocatalytic ability for oxygen reduction to H{sub 2}O{sub 2}.

  9. Study on two stage activated carbon/HFC-134a based adsorption chiller

    >K Habib,

    2013-06-01

    In this paper, a theoretical analysis on the performance of a thermally driven two-stage four-bed adsorption chiller utilizing low-grade waste heat of temperatures between 50°C and 70°C in combination with a heat sink (cooling water) of 30°C for air-conditioning applications has been described. Activated carbon (AC) of type Maxsorb III/HFC-134a pair has been examined as an adsorbent/refrigerant pair. FORTRAN simulation program is developed to analyze the influence of operating conditions (hot and cooling water temperatures and adsorption/desorption cycle times) on the cycle performance in terms of cooling capacity and COP. The main advantage of this two-stage chiller is that it can be operational with smaller regenerating temperature lifts than other heat-driven single-stage chillers. Simulation results shows that the two-stage chiller can be operated effectively with heat sources of 50°C and 70°C in combination with a coolant at 30°C.

  10. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon.

    Luo, Xiaogang; Zhang, Lina

    2009-11-15

    Maghemite (gamma-Fe(2)O(3)) nanoparticles were created with a submerged circulation impinging stream reactor (SCISR) from FeCl(3) x 6H(2)O and FeCl(2).4H(2)O by using precipitation followed by oxidation. Subsequently, by blending cellulose with the Fe(2)O(3) nanoparticles and activated carbon (AC) in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to -12 degrees C, millimeter-scale magnetic cellulose beads, coded as MCB-AC, was fabricated via an optimal dropping technology. The cellulose beads containning Fe(2)O(3) nanoparticles exhibited sensitive magnetic response, and their recovery could facilitate by applying a magnetic field. The adsorption and desorption of the organic dyes on MCB-AC were investigated to evaluate the removal of dyes (methyl orange and methylene blue) with different charges from aqueous solution. Their adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the MCB-AC sorbent could efficiently adsorb the organic dyes from wastewater, and the used sorbents could be recovered completely. Therefore, we developed a highly efficient sorbent, which were prepared by using simple and "green" process, for the applications on the removal of hazardous materials.

  11. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  12. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  13. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  14. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment.

  15. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Shay, M.A.

    1989-01-01

    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  16. Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon.

    Tefera, Dereje Tamiru; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2014-05-06

    A two-dimensional mathematical model was developed to study competitive adsorption of n-component mixtures in a fixed-bed adsorber. The model consists of an isotherm equation to predict adsorption equilibria of n-component volatile organic compounds (VOCs) mixture from single component isotherm data, and a dynamic adsorption model, the macroscopic mass, energy and momentum conservation equations, to simulate the competitive adsorption of the n-components onto a fixed-bed of adsorbent. The model was validated with experimentally measured data of competitive adsorption of binary and eight-component VOCs mixtures onto beaded activated carbon (BAC). The mean relative absolute error (MRAE) was used to compare the modeled and measured breakthrough profiles as well as the amounts of adsorbates adsorbed. For the binary and eight-component mixtures, the MRAE of the breakthrough profiles was 13 and 12%, respectively, whereas, the MRAE of the adsorbed amounts was 1 and 2%, respectively. These data show that the model provides accurate prediction of competitive adsorption of multicomponent VOCs mixtures and the competitive adsorption isotherm equation is able to accurately predict equilibrium adsorption of VOCs mixtures.

  17. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole.

    Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.

  18. Salt-enhanced removal of 2-ethyl-1-hexanol from aqueous solutions by adsorption on activated carbon.

    Chang, Ganggang; Bao, Zongbi; Zhang, Zhiguo; Xing, Huabin; Su, Baogen; Yang, Yiwen; Ren, Qilong

    2013-12-15

    2-Ethyl-1-hexanol has extensive industrial applications in solvent extraction, however, in view of its potential pollution to environment, the removal and recovery of 2-ethyl-1-hexanol is considered an essential step toward its sustainable use in the future. In this work, we report the removal of 2-ethyl-1-hexanol from aqueous solutions containing salts in high concentrations by adsorption on a coal-based activated carbon. Adsorption thermodynamics showed that the experimental isotherms were conformed well to the Langmuir equation. Also it was found that inorganic salts, i.e. MgCl2 and CaCl2 in high concentration significantly enhanced the adsorption capacity from 223 mg/g in the deionized water to 277 mg/g in a saline water. This phenomenon of adsorption enhancement could be ascribed to the salt-out effect. Kinetic analysis indicated that adsorption kinetics follows the pseudo-second-order equation and the adsorption rate constants increase with the salt concentration. The dynamic breakthrough volume and adsorbed amount of 2-ethyl-1-hexanol were significantly elevated when the salt is present in the water. The dynamic saturated adsorption amount increased from 218.3mg/g in the deionized water to 309.5mg/g in a salt lake brine. The Tomas model was well applied to predict the breakthrough curves and determine the characteristics parameters of the adsorption column.

  19. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively.

  20. The Adsorption of Phenol by Lignite Activated Carbon%褐煤活性炭吸附苯酚的研究

    吕国诚; 郝娇; 刘瑠; 马鸿文; 方勤方; 吴丽梅; 魏铭泉; 张以河

    2011-01-01

    The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various experimental parameters such as contact time, initial phenol concentration, temperature, and pH value on the adsorption of phenol by lignite activated carbon. The experimental data were fitted well with the pseudo-second-order kinetic model. The adsorption is an endothermic process and conforms to Freundlich thermodynamic model. The results indicate that the lignite activated carbon is suitable to be used as an adsorbent material for adsorption of phenol from aqueous solutions.

  1. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113

    Gupta, V.K., E-mail: vinodfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gupta, Bina [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rastogi, Arshi [Chemistry Department, K.L.D.A.V.(P.G.) College, Roorkee (India); Agarwal, Shilpi [School of Studies in Chemistry, Jiwaji University, Gwalior, MP (India); Nayak, Arunima [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2011-02-15

    Research highlights: {yields} The system is cheap, efficient and fast for the removal of dyes from waters. {yields} Higher adsorption capacity is due to higher mesoporous volume of the adsorbent. {yields} The rate determining step of the adsorption process is particle diffusion. - Abstract: A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  2. Impact of Nanoparticles and Natural Organic Matter on the Removal of Organic Pollutants by Activated Carbon Adsorption

    Isotherm experiments evaluating trichloroethylene (TCE) adsorption onto powdered activated carbon (PAC) were conducted in the presence and absence of three commercially available nanomaterials— iron oxide (Fe2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2). Isotherm exp...

  3. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  4. Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors.

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    Activated carbon is an elemental material used for hygienic applications, particularly as an adsorbent for harmful gases and vapors. In Japanese industrial and occupational hygiene, activated carbon produced from coconut shell is a traditional and popular adsorbent material due to its excellent adsorption ability and cost advantage. In this research, in order to clarify the effect of the preliminary content of moisture on the adsorption capacity in detail, we prepared several coconut shell activated carbons which were preconditioned by equilibration with moisture at different relative humidities. We measured their adsorption capacities as breakthrough times for 6 kinds of organic vapor, and attempted to determine the relationships between the relative weight increase of water adsorption and the decrease of adsorption capacities of the activated carbon specimens for the organic vapors. The procedure of the quantitative evaluation of the effect of moisture and the results are useful for practical applications of activated carbon, particularly those used as adsorbents in workplaces.

  5. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  6. Studies of Adsorption Characteristics of Activated Carbons in between 4.5 to 10 K for Cryopump Applications

    Krishnamoorthy, V.; Swarup Udgata, Satya; Shankar Tripathi, Vijai; Gangradey, Ranjana; Kasthurirengan, Srinivasan; Behera, Upendra

    2012-11-01

    Cryosorption pump is the only solution to pump helium, hydrogen and its isotopes in fusion devices. To design such pumps, knowledge of adsorption characteristics of activated carbons in the temperature range from 4.5 to 77 K is needed, but is very scarce in the open literature. Hence an experimental setup is designed and developed to measure adsorption characteristics of activated carbons down to 4.5 K. For this purpose, a commercial micropore analyzer operating down to 77K is coupled to a two-stage GM cryocooler, to enable cooling the sample temperature down to 4.5 K. A heat switch is mounted in between the second stage cold head and the sample chamber helps to vary the sample temperature from 4.5 K to 77K without affecting the performance of the cryocooler. The details of the experimental setup is presented elsewhere. We present here the experimental results of adsorption of different types of activated carbons in the temperature range 4.5K to 10 K using Helium gas as adsorbate. These results are evaluated in terms of surface area, pore sizes and their distributions. Also the effect of epoxy based adhesive used in bonding the activated carbons to the panels is evaluated. These results will be useful towards the selection of the right activated carbons for the development of cryosorption pumps.

  7. Metal Ion Adsorption by Activated Carbons Made from Pecan Shells: Effect of Oxygen Level During Activation

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this presenta...

  8. Copper (II) Adsorption by Activated Carbons from Pecan Shells: Effect of Oxygen Level During Activation

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is...

  9. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  10. Quantitation of microorganic compounds in waters of the Great Lakes by adsorption on activated carbon

    Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.

    1963-01-01

    Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.

  11. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  12. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds

    Rajkumar, D.; Palanivelu, K.; Balasubramanian, N. [Anna University, Madras (India). Center for Environmental Studies

    2005-01-01

    Electrochemical degradation of mixed phenolic compounds present in coal conversion wastewater was investigated in the presence of chloride as supporting electrolyte. Initially, the degradation experiments were conducted separately with 300 mg/L of individual phenolic compound in the presence of 2500 mg/L chloride using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode at 5.4 A/dm{sup 2} current density. Comparison of the experimental results of the chemical oxygen demand (COD) removal versus charge indicated that the order of decreasing COD removal for various phenolic compounds as catechol {gt} resorcinol {gt} m-cresol {gt} o-cresol {gt} phenol {gt} p-cresol. Degradation of the mixture of phenolic compounds and high-pressure liquid chromatography (HPLC) determinations at various stages of electrolysis showed that phenolic compounds were initially converted into benzoquinone and then to lower molecular weight aliphatic compounds. The COD and the total organic carbon (TOC) removal were 83 and 58.9% after passing 32 Ah/L with energy consumption of 191.6 kWh/kg of COD removal. Experiments were also conducted to remove adsorbable organic halogens (AOX) content in the treated solution using granular activated carbon. The optimum conditions for the removal of AOX was at pH 3.0, 5 mL/min flow rate and 31.2 cm bed height. Based on the investigation, a general scheme of treatment of mixed phenolic compounds by combined electrochemical and activated carbon adsorption treatment is proposed.

  13. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  14. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-08-30

    Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°С and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  15. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater.

    Dubey, Kirti V; Juwarkar, Asha A; Singh, S K

    2005-01-01

    Methods used for biosurfactant recovery include solvent extraction, precipitation, crystallization, centrifugation and foam fractionation. These methods cannot be used when distillery wastewater (DW) is used as the nutrient medium for biosurfactant production by Pseudomonas aeruginosa strain BS2, because recovery of biosurfactant by any of these methods imparts color to the biosurfactant. The biosurfactant has a nonaesthetic appearance with lowered surface active properties. These methods cannot be used for continuous recovery of biosurfactant during cultivation. Hence, a new downstream technique for biosurfactant recovery from fermented DW comprised of adsorption-desorption processes using wood-based activated carbon (WAC) was developed. This study involves batch experiments to standardize the factors affecting the rate of biosurfactant adsorption onto WAC. WAC was the most efficient adsorbent among various ones tested (i.e., silica gel, activated alumina and zeolite). The WAC (1% w v(-1)), equilibrium time (90 min), pH range of 5-10 and temperature of 40 degrees C were optimum to achieve 99.5% adsorption efficiency. Adsorption kinetics and intraparticle diffusion studies revealed the involvement of both boundary layer diffusion and intraparticle diffusion. The Langmuir adsorption isotherm of WAC indicated the formation of a monolayer coverage of the biosurfactant over a homogeneous carbon surface, while the Freundlich isotherm showed high adsorption at strong solute concentrations and low adsorption at dilute solute concentrations. WAC concentration of 4% w v(-1) facilitated complete removal of the biosurfactant from collapsed foam (contained 5-fold higher concentration of biosurfactant than was present in fermented DW). Biosurfactant adsorption was of chemisorption type. Acetone (polar solvent) was a specific viable eluant screened among various ones tested because it selectively facilitated maximum recovery, i.e., 89% biosurfactant from WAC. By acetone

  16. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis.

    Pathirathna, Pavithra; Samaranayake, Srimal; Atcherley, Christopher W; Parent, Kate L; Heien, Michael L; McElmurry, Shawn P; Hashemi, Parastoo

    2014-09-21

    Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.

  17. Adsorption of Lead (II) from aqueous solutions onto activated carbon prepared from Algerian dates stones of Phoenix dactylifera.L (Ghars variety) by H3PO4 activation

    N. Chaouch; M. R. Ouahrani; S. E. Laouini

    2014-01-01

    Currently water pollution constitutes a great challenge, and activated carbon is a common adsorbent used to remove lead contaminants. Unfortunately, it is a non selective process. The main object of this study was the use of an activated carbon prepared from nuts of dates Algerian origin to remove this metal. The adsorption measurement of lead on activated carbon showed a real potential for removing this metal contaminants waste. The result showed also that the determination of lead remained ...

  18. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  19. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  20. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  1. Effect of HNO{sub 3} treatment on the SO{sub 2} adsorption capacity of activated carbon prepared from Chinese low-rank coal

    Hang Wenhui; Wang ling; Li Shurong [China Coal Research Institute, Beijing (China)

    1999-11-01

    SO{sub 2} removal from flue gas by activated carbon and HNO{sub 3} treated activated carbon from Chinese low-rank coal was studied. SO{sub 2} adsorption on activated carbon is mainly chemisorption. There was shown to be a correlation between adsorption capacity and the number of active sites on the carbon surface. HNO{sub 3} treatment transforms C-H bonds in activated carbon into active sites, for removal of SO{sub 2}. 2 figs., 2 tabs.

  2. Pore Structure Characteristics of Activated Carbon Fibers Derived from Poplar Bark Liquefaction and Their Use for Adsorption of Cu(II

    Jiahui Zhang

    2014-11-01

    Full Text Available In this work, wood bark was liquefied to prepare activated carbon fibers, which were obtained through melt-spinning, stabilization, carbonizing, and stream activation. The effects of varying activation temperature on the pore structure and the adsorption capacity of the liquefied wood bark activated carbon fibers (LWBACFs were studied using analysis of nitrogen adsorption-desorption isotherms and static adsorption of copper (II ions from aqueous solution. The results indicated that higher specific surface area was obtained as the activation temperature increased. The specific surface area reached a maximum of 1962 m2/g with an average pore diameter of approximately 2 nm. Carbonization at 200 °C played an important role in the formation of pore structure. The adsorption of copper by LWBACFs was high, with a peak of 15 mg/g. All parameters showed that LWBACFs performed well in the adsorption of micropores.

  3. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time.

  4. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  5. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOx and NOx of flue gas at low temperature

    S.SUMATHI; S.BHATIA; K.T.LEE; A.R.MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100-300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) im-pregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOxand NOx simultaneously.

  6. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SO_x and NO_x of flue gas at low temperature

    S.; SUMATHI; S.; BHATIA; K.T.; LEE; A.; R.; MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100―300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) impregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOx and NOx simultaneously.

  7. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.

    Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.

  8. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Camilo Hernán Cruz Vélez

    2010-05-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  9. Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: from a batch study to continuous column operation.

    Li, Jing; Du, Yue; Deng, Bin; Zhu, Kangmeng; Zhang, Hui

    2016-12-17

    The performance of activated carbon (AC) for the adsorption of Acid Orange 7 (AO7) was investigated in both batch and column studies. The optimal conditions for adsorption process in batch study were found to be a stirring speed of 500 rpm, AC dosage of 5 g/L, and initial AO7 concentration of 100 mg/L. The spent AC was then treated with peroxydisulfate (PDS), and the regenerated AC was used again to adsorb AO7. Both pseudo-first-order and pseudo-second-order rate models for adsorption kinetics were investigated, and the results showed that the latter model was more appropriate. The effects of regeneration time, PDS concentration, and stirring speed on AO7-spent AC regeneration were investigated in batch studies, and the optimal conditions were time 2 h, stirring speed 700 rpm, and PDS concentration 10 g/L. Under the same adsorption conditions, 89% AO7 could be decolorized by adsorption using regenerated AC. In the column studies, the effect of flow rate was investigated and the adsorption capacity was nearly the same when the flow rate rose from 7.9 to 11.4 mL/min, but it decreased significantly when the flow rate was increased to 15.2 mL/min. The performance of regenerated AC in the column was also investigated, and a slight increase in the adsorption capacity was observed in the second adsorption cycle. However, the adsorption capacity decreased to some extent in the third cycle due to the consumption of C-OH group on the AC surface during PDS regeneration.

  10. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing.

  11. Sulfide treatment to inhibit mercury adsorption onto activated carbon in carbon-in-pulp gold recovery circuits

    Touro, F.J.; Lipps, D.A.

    1988-03-29

    A process for treating a mercury-contaminated, precious metal-containing ore slurry is described comprising: (a) reacting sulfide anions in an aqueous ore slurry of a mercury and precious metal-containing carbonaceous ore, and (b) conducting a simultaneous cyanide leach and carbon-in-pulp adsorption of the precious metal from the carbonaceous ore in the sulfide-containing ore slurry.

  12. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    Sumrit Mopoung; Phansiri Moonsri; Wanwimon Palas; Sataporn Khumpai

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carr...

  13. Adsorption of Acid Red 18 (AR18 by Activated Carbon from Poplar Wood- A Kinetic and Equilibrium Study

    Reza Shokoohi

    2010-01-01

    Full Text Available Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18 dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dye concentration and adsorbent dosage on dye removal. Langmuir and Freundlich isotherm models have been investigated. Pseudo-first order, pseudo-second order and modified pseudo-first order kinetic models have been used for experimental data. The results showed that removal efficiency was increased with increasing of adsorbent dosage, contact time and decreasing of pH, but with increasing of dye concentration, the removal efficiency was decreased. Adsorption isotherm models showed that Langmuir isotherm model was best fitted onto collected data (r2>0.978. In addition, kinetic models showed that sorption of AR18 onto activated carbon prepared from poplar wood follows the pseudo-first order model (r2>0.9758.

  14. An experimental study of adsorption interference in binary mixtures flowing through activated carbon

    Madey, R.; Photinos, P. J.

    1983-01-01

    The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.

  15. Adsorption of the reactive azo dyes onto NH4Cl-induced activated carbon

    Sakine Shekoohiyan

    2016-03-01

    Full Text Available Background: The efficacy of NH4Cl-induced activated carbon (NAC was examined in order to adsorb RR198, an azo reactive model dye, from an aqueous solution. Methods: The effects of pH (3 to 10, adsorbent dose (0.1 to 1.2 g/L, dye concentration and contact time on the adsorption efficiency were investigated. Results: The results showed that the removal of dye was highest at a solution pH of 7 and a powder dose of 1.1 g/L. The 85.9%, 72.6% and 65.4% removal of RR198 was obtained for a concentration of 25, 50 and 100 mg/L, respectively, at a relatively short contact time of 30 minutes, and at optimum pH and NAC concentrations of 1 g/L. The experimental data for kinetic analysis illustrated a best fit to the pseudo-second-order model. The study data on equilibrium were modeled using Langmuir, Freundlich and Dubinin–Radushkevich models; the Langmuir equation provided the best fit for the data. Conclusion: Therefore, the NAC appears to be an efficient and appropriate adsorbent for the removal of reactive azo dyes from waste streams.

  16. Adsorption of acid and basic dyes by sludge-based activated carbon:Isotherm and kinetic studies

    李鑫; 王广智; 李伟光; 王萍; 宿程远

    2015-01-01

    A batch experiment was conducted to investigate the adsorption of an acid dye (Acid Orange 51) and a basic dye (Safranine) from aqueous solutions by the sludge-based activated carbon (SBAC). The results show that the adsorption of Acid Orange 51 decreases at high pH values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich−Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.

  17. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  18. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g-1 (298 K), 196.1 mg g-1 (303 K) and 185.2 mg g-1 (308 K). It was much higher than that of AC-Fe and AC-Al. And the process was controlled by both film diffusion and intra particle mass transport. The results also showed that, the Freundlich and Temkin isotherm fit the adsorption well.

  19. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated.

  20. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  1. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  2. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst

    HUANG Shaoyong; ZHANG Changbin; HE Hong

    2009-01-01

    An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H2O by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140℃. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.

  3. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  4. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.

    Seckler, Ferreira Filho Sidney; Margarida, Marchetto; Rosemeire, Alves Laganaro

    2013-08-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water. This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption, combined with coagulation using iron as a coagulant. The adsorption and coagulation process were studied through different case scenarios of jar tests. The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition. Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L, and PAC dosages varied from 10 to 40 mg/L. The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L). Lower MIB removal efficiencies were observed in the presence of coagulant, showing a clear interference of the iron precipitate or coagulant in the adsorption process. The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass. For both cases of PAC dosing, upstream and downstream of the coagulant injection point, the MIB removal efficiency was similar. However, MIB removal efficiency was 15% lower when compared with experiments without the coagulant application. This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores. This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation.

  5. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  6. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  7. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals.

  8. Carbon nanomaterials for gas adsorption

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  9. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  10. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  11. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.

    Pan, Long; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2016-10-01

    Superfine powdered activated carbon (SPAC), which is produced from conventionally sized powdered activated carbon (PAC) by wet milling in a bead mill, has attracted attention for its high adsorptive removal ability in both research and practice. In this study, the performance of dry-milled SPAC was investigated. 2-Methylisoborneol (MIB), an earthy-musty compound commonly targeted by water treatment systems, was used as the target adsorbate. Dry-milled SPAC exhibited lower adsorptive removal of MIB than wet-milled SPAC, even when both SPACs were produced from the same PAC and were composed of particles of the same size. One reason for the lower removal of MIB by the dry-milled SPAC was a higher degree of aggregation in the dry-milled SPAC after production; as a result the apparent particle size of dry-milled SPAC was larger than that of wet-milled SPAC. The dry-milled SPAC was also more negatively charged than the wet-milled SPAC, and, owing to its higher repulsion, it was more amenable to dispersion by ultrasonication. However, even after the dry-milled SPAC was ultrasonicated so that its apparent particle size was similar to or less than that of the wet-milled SPAC, the dry-milled SPAC was still inferior in adsorptive removal to the wet-milled SPAC. Therefore, another reason for the lower adsorptive removal of dry-milled SPAC was its lower equilibrium adsorption capacity due to the oxidation during the milling. The adsorption kinetics by SPACs with different degrees of particle aggregation were successfully simulated by a pore diffusion model and a fractal aggregation model.

  12. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    Bastos-Neto, M. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Canabrava, D.V. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Torres, A.E.B. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Jimenez-Lopez, A. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Azevedo, D.C.S. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)]. E-mail: diana@gpsa.ufc.br; Cavalcante, C.L. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)

    2007-04-30

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N{sub 2} adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage.

  13. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  14. Synthesis of Activated Carbon Mesoporous from Coffee Waste and Its Application in Adsorption Zinc and Mercury Ions from Aqueous Solution

    Liliana Giraldo

    2012-01-01

    Full Text Available We obtain activated carbons with high portion of meso pores using coffee residues as precursor for the application of adsorption of large adsorbates. Because of its natural properties, the coffee residue exhibited a large pore size. In this work, the coffee residue were impregnated with ZnCl2 and KOH, and then carbonized under the nitrogen conditions and activated with CO2 respectively. Obtained activated carbons are used in the adsorption of ions Hg(II and Zn(II. These adsorbents are efficacious to remove these ions from aqueous solution, with monocomponent equilibrium adsorption capacities ranging from from 0.002 to 0.380 mmol∙g-1 for Hg on ACK3 and from 0.002 to 0.330 mmol∙g-1 for ACZ3. For Zn(II on ACK2 from 0.002 to 0.300 mmol∙g-1, and from 0.001 to 0.274 mmol∙g-1 for ACZ2.

  15. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Pita Rengga Wara Dyah

    2016-01-01

    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.

  16. Adsorption Study of Methane on Activated Meso-carbon Microbeads by Density Functional Theory

    SHAO, Xiao-Hong(邵晓红); HUANG, Shi-Ping(黄世萍); SHEN, Zhi-Gang(沈志刚); CHEN, Jian-Feng(陈建峰)

    2004-01-01

    A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determination of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen on activated mesocarbon microbead (AMCMB) at 77 K. The pores of AMCMB are described as slit-shaped with PSD. Based on the PSD, methane adsorption and phase behavior are studied by the DFT method. Both nitrogen and methane molecules are modeled as Lennard-Jones spherical molecules, and the well-known Steele's 10-4-3 potential is used to represent the interaction between the fluid molecule and the solid wall. In order to test the combined method and the PSD model, the Intelligent Gravimetric Analyzer (IGA-003) was used to measure the adsorption of methane on the AMCMB. The DFT results are in good agreement with the experimental data. Based on these facts, we predict the adsorption amount of methane, which can reach 32.3 w at 299 K and 4 MPa. The results indicate that the AMCMBs are a good candidate for adsorptive storage of methane and natural gas. In addition, the capillary condensation and hysteresis phenomenon of methane are also observed at 74.05 K.

  17. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  18. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III Adsorption from Aqueous Solution

    Sumrit Mopoung

    2015-01-01

    Full Text Available This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III adsorption were also studied. Fe(III adsorption was carried out by 30 mL column with 5–20 ppm Fe(III initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III adsorption test. It was shown that Fe(III was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g.

  19. Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater.

    Zietzschmann, Frederik; Worch, Eckhard; Altmann, Johannes; Ruhl, Aki Sebastian; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-11-15

    The competitive impacts of different fractions of wastewater treatment plant effluent organic matter (EfOM) on organic micro-pollutant (OMP) adsorption were investigated. The fractionation was accomplished using separation by nanofiltration (NF). The waters resulting from NF were additionally treated to obtain the same dissolved organic carbon (DOC) concentrations as the initial water. Using size exclusion chromatography (LC-OCD) it could be shown that the NF treatment resulted in an EfOM separation by size. Adsorption tests showed different competitive effects of the EfOM fractions with the OMP. While large EfOM compounds that were retained in NF demonstrated a reduced competition as compared to the raw water, the NF-permeating EfOM compounds showed an increased competition with the majority of the measured OMP. The effects of small size EfOM are particularly negative for OMP which are weak/moderate adsorbates. Adsorption analysis was carried out for the differently fractionized waters. The small sized EfOM contain better adsorbable compounds than the raw water while the large EfOM are less adsorbable. This explains the observed differences in the EfOM competitiveness. The equivalent background compound (EBC) model was applied to model competitive adsorption between OMP and EfOM and showed that the negative impacts of EfOM on OMP adsorption increase with decreasing size of the EfOM fractions. The results suggest that direct competition for adsorption sites on the internal surface of the activated carbon is more substantial than indirect competition due to pore access restriction by blockage. Another explication for reduced competition by large EfOM compounds could be the inability to enter and block the pores due to size exclusion.

  20. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators.

  1. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon.

    Ie, Iau-Ren; Chen, Wei-Chin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Yuan-Chung; Tsai, Hsieh-Hung; Jen, Yi-Shiu

    2012-05-30

    Mercury chloride (HgCl(2)) is the major mercury derivate emitted from municipal solid waste incinerators, which has high risk to the environment and human health. This study investigated the adsorption of vapor-phase HgCl(2) with an innovative composite sulfurized activated carbon (AC), which was derived from the pyrolysis, activation, and sulfurization of waste tires. The composite sulfur-impregnation process impregnated activated carbon with aqueous-phase sodium sulfide (Na(2)S) and followed with vapor-phase elemental sulfur (S(0)). Thermogravimetric analysis (TGA) was applied to investigate the adsorptive capacity of vapor-phase HgCl(2) using the composite sulfurized AC. The operating parameters included the types of composite sulfurized AC, the adsorption temperature, and the influent HgCl(2) concentration. Experimental results indicated that the sulfur-impregnation process could increase the sulfur content of the sulfurized AC, but decreased its specific surface area. This study further revealed that the composite sulfurized AC impregnated with aqueous-phase Na(2)S and followed with vapor-phase S(0) (Na(2)S+S(0) AC) had much higher saturated adsorptive capacity of HgCl(2) than AC impregnated in the reverse sequence (S(0)+Na(2)S AC). A maximum saturated adsorptive capacity of HgCl(2) up to 5236 μg-HgCl(2)/g-C was observed for the composite Na(2)S+S(0) AC, which was approximately 2.00 and 3.17 times higher than those for the single Na(2)S and S(0) ACs, respectively.

  2. In vivo adsorption study of fluoxetine using carbon materials,

    Nabais, Joao; Tinoco, Teresa; Morais, Julio

    2011-01-01

    The in vivo adsorption of fluoxetine by a commercial activated carbon and a laboratory prepared activated carbon fibre were studied. The results showthat the carbon materials tested are not toxic toWistar rats and both materials had a high efficacy in the in vivo adsorption of fluoxetine preventing toxicity of the drug overdose administered to the animals.

  3. Retention of biological activity and near-infrared absorbance upon adsorption of horseradish peroxidase on single-walled carbon nanotubes

    Palwai, Naveen R.; Martyn, David E.; Neves, Luis F. F.; Tan, Yongqiang; Resasco, Daniel E.; Harrison, Roger G.

    2007-06-01

    The objective of this study is to demonstrate the adsorption of horseradish peroxidase (HRP) on single-walled carbon nanotubes (SWNTs) using the sodium cholate suspension-dialysis method and to determine the effect of HRP adsorption on the biological activity of HRP and the UV-vis-NIR spectra of the SNWTs. The results indicate that this method results in a stable SWNT-protein suspension with complete retention of enzymatic activity of adsorbed HRP and also retention of a substantial fraction of the NIR absorption at 980 nm. The loading of protein on the SWNTs is high, and the overall yield of preparing the SWNT-protein suspension is also high. This process is promising for preparing SWNT-protein suspensions for biological applications where maintaining protein activity and SWNT absorption are important.

  4. INCREASING ADSORPTION OF ACTIVATED CARBON FROM PALM OIL SHELL FOR ADSORB H2S FROM BIOGAS PRODUCTION BY IMPREGNATION

    Wasan Phooratsamee

    2014-01-01

    Full Text Available Biogas is the combustible gas produced through a biological process, known as anaerobic digestion which is the process operated at low-temperature and without air. Biogas consists of 55-80% CH4, 20-45% CO2 with trace amount of H2S and other impurities. Common H2S removal technologies from biogas fall into one of adsorption on a solid such as iron oxide based materials, activated carbon or impregnated activated carbon. Conventionally, activated carbon is produced from biomass residues and agricultural residues such as palm oil shell which promising approach for the production of cheap. It is so due to the palm oil shell carries a large amount of carbon content which it is the main composition of activated carbon. Therefore, it is usable as raw material for producing impregnated activated carbon and used as adsorbents. The aim of this study is a produce the activated carbon from palm oil shells by chemical activation using ZnCl2 and optimal conditions after impregnated them with NaOH, KI and K2CO3 for H2S absorption from biogas product. In this research, production of activated carbon involved three stages; (i carbonization of raw material in an inert atmosphere which was carbonized in a muffle furnace at 600°C for 1 h; (ii secondly activation of char product from the first stages at fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length which was studied to observe the effect of char product: Chemical agent ratio (ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h; and (iii finally alkali impregnated activated carbon which were immersed 1:3 ratio in 500 mL of 1 N NaOH, KI and K2CO3 solutions and stirred for 30 min. The result showed that the surface area and the pore volume increased progressively with increasing the char product: Chemical agent ratio. The maximum

  5. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires.

    Lin, Hsun-Yu; Yuan, Chung-Shin; Wu, Chun-Hsin; Hung, Chung-Hsuang

    2006-11-01

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 degrees C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer-Emmett-Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 x 10(-1) mg HgCl2/g PAC at 25 degrees C with an initial HgCI2 concentration of 25 microg/m3. With the increase of adsorption temperature PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 degrees C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 degrees C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) > 0.998 for HgCl2 adsorption at 25 and 150 degrees C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 degrees C, whereas it was slightly higher for sulfurized WPAC than for CPAC at 150 degrees C.

  6. Carbons prepared from Spartina alterniflora and its anaerobically digested residue by H3PO4 activation: characterization and adsorption of cadmium from aqueous solutions.

    Wang, Zhengfang; Nie, Er; Li, Jihua; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng

    2011-04-15

    Two series of activated carbons were prepared from Spartina alterniflora and from its anaerobically digested residue by H(3)PO(4) activation at various process conditions, and used as adsorbents for the removal of cadmium (II) in aqueous solutions. The surface areas and pore volumes of carbons were derived from adsorption isotherms (N(2) at 77K). The surface chemistry of carbons was investigated by infrared spectroscopy. Comparison study indicated that physicochemical properties of the activated carbons were strongly dependent not only on activation conditions but also on biopolymer contents of precursors. Several isotherm models were investigated and the adsorption isotherm data were best represented by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 47.85 mg/g at 25 °C. The results showed that the activated carbon produced from S. alterniflora could be employed as a promising adsorbent for removing cadmium (II) from aqueous solutions.

  7. Carbon dioxide adsorption in graphene sheets

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  8. Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal

    Zeid Abdullah AlOthman

    2014-12-01

    Full Text Available Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.

  9. Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers.

    Lian, Fei; Xing, Baoshan; Zhu, Lingyan

    2011-08-15

    The composition, structure, and adsorption behavior of activated carbons (ACs) derived from three different types of waste polymers, i.e., tire rubber (TR), polyvinyl chloride (PVC), and polyethyleneterephtalate (PET), by KOH activation were compared. The AC derived from PET exhibited the largest surface area (2831 m(2)/g) and pore volume (1.68 cm(3)/g) due to the homogenous aromatic composition of PET. The AC derived from PVC exhibited relatively lower surface area (2666 m(2)/g) but more narrowed pore size distribution (2-3 nm). The complex composition and high ash content of tire particles resulted in AC product with significantly lower surface area (398.5 m(2)/g) and heterogeneous pore width. Adsorption data of methylene blue (MB) were fitted well by Langmuir equation, indicating monolayer coverage on the ACs. The high oxygen content of PET-derived AC heavily affected its adsorption to MB and iodine. Due to the remarkable surface area and highly mesoporous structures, ACs based on both PET and PVC exhibited much higher adsorption capacities than that of TR and commercial coal-based AC (F400). This study demonstrates that the properties of ACs are highly dependent on their starting polymers and the potential of converting synthetic polymer waste into effective adsorbents for environmental remediation and cleanup.

  10. Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature.

    Levasseur, Benoit; Gonzalez-Lopez, Eugene; Rossin, Joseph A; Bandosz, Teresa J

    2011-05-01

    Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.

  11. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon.

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2008-06-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in

  12. Preparation of sewage sludge based activated carbon by using Fenton's reagent and their use in 2-naphthol adsorption.

    Gu, Lin; Wang, Yachen; Zhu, Nanwen; Zhang, Daofang; Huang, Shouqiang; Yuan, Haiping; Lou, Ziyang; Wang, Miaolin

    2013-10-01

    In this study, Fenton's reagents (H2O2/Fe(2+)) are used to activate raw sewage sludge for the preparation of the sludge based activated carbon. The effect of the amount of hydrogen peroxide addition on carbon's chemical composition, texture properties, surface chemistry and morphology are investigated. Choosing an appropriate H2O2 dosage (5 v%) (equivalent to 70.7 mM/(g VS)), it is possible to obtain a comparatively highly porous materials with SBET and the total pore volume being 321 m(2)/g and 0.414 cm(3)/g, respectively. Continuously increasing the oxidant ratio resulted in a decreased SBET value. Further adsorption experiments by using 2-naphthol as model pollutant revealed that the adoption followed a pseudo-second-order kinetics better than pseudo-first-order. The calculated adsorption capacity is 111.9 mg/g on the carbon with 5% H2O2 pretreatment while this value is just 51.5mg/g on carbons without any pretreatment.

  13. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions.

    Gupta, Vinod Kumar; Nayak, Arunima; Agarwal, Shilpi; Tyagi, Inderjeet

    2014-03-01

    Rubber tire activated carbon modification (RTACMC) and rubber tire activated carbon (RTAC) were prepared from waste rubber tire by microwave assisted chemical treatment and physical heating respectively. A greater improvement in porosity and total pore volume was achieved in RTACMC as compared to that of RTAC. But both have a predominantly mesoporous structure. Under identical operating conditions, an irradiation time of 10 min, chemical impregnation ratio of 1.50 and a microwave power of 600 W resulted in maximizing the efficiency of RTACMC for p-cresol (250 mg/g) at a contact time of 90 min while RTAC showed a 71.43 mg/g adsorption capacity at 150 min. Phenol, due to its higher solubility was adsorbed to a lesser extent by both adsorbents. Physical nature of interactions, pore diffusion mechanism and exothermicity of the adsorption process was operative in both adsorbents. The outcomes support the feasibility of preparing high quality activated carbon from waste rubber tire by microwave assisted chemical activation.

  14. Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compound (VOCs): A Specific Review

    Pierre Le Cloirec

    2012-01-01

    A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.

  15. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  16. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H., E-mail: chbassim@eng.usm.my [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2009-05-30

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), standard free energy ({Delta}G{sup o}) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  17. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.

    Tan, I A W; Ahmad, A L; Hameed, B H

    2009-05-30

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  18. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  19. Investigation of SO{sub 2} adsorption capacity of the activated carbon with O{sub 2}-NH{sub 3} treatment

    Ko, Yoon Hee; Seo, Kyung Won [Ajou University, Suwon (Korea, Republic of); Park, Dal Keun [KIST, Seoul (Korea, Republic of)

    1995-05-01

    Activated carbons, modified by oxygen and ammonia treatment, were tested for their catalytic activity in the SO{sub 2} adsorption. The modified activated carbons showed higher SO{sub 2} adsorption capacity compared with the untreated activated carbons. In this study the surface of activated carbon was modified to introduce the surface oxygen and nitrogen functional groups from NH{sub 3} and/or O{sub 2} treatment. In this experiment the conditions of modification varied with the NH{sub 3} concentrations(0{approx}25 vol%) and temperature (473{approx}1273 K) of the furnace, which directly affect surface functionalities, elemental composition, surface area and pore structure. The adsorption capacities were measured in an electric torsion balance(Cahn 2000). The activated carbons were characterized by temperature programmed desorption(TPD), Fourier transform infrared spectroscopy(FTIR), and acid-base titration. The maximum capacity of SO{sub 2} adsorption of the carbon sample(SO{sub 2} mg/m{sup 2} surface area) was obtained in the temperature range of 973{approx}1173 K. The activated carbons, treated with NH{sub 3}(up to 25% with O{sub 2} 3% of fixed amount), adsorbed SO{sub 2} about 48% more than the untreated activated carbons. (author). 9 refs., 11 figs., 1 tab.

  20. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters

    Ferreira Filho SIDNEY SECKLER; Marchetto MARGARIDA; Alves Laganaro ROSEMEIRE

    2013-01-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water.This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption,combined with coagulation using iron as a coagulant.The adsorption and coagulation process were studied through different case scenarios of jar tests.The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition.Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L,and PAC dosages varied from 10 to 40 mg/L.The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L).Lower MIB removal efficiencies were observed in the presence of coagulant,showing a clear interference of the iron precipitate or coagulant in the adsorption process.The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass.For both cases of PAC dosing,upstream and downstream of the coagulant injection point,the MIB removal efficiency was similar.However,MIB removal efficiency was 15% lower when compared with experiments without the coagulant application.This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores.This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation.

  1. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages.

  2. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study

    Nazari, Ghadir; Abolghasemi, Hossein; Esmaieli, Mohamad; Sadeghi Pouya, Ehsan

    2016-07-01

    The walnut shell was used as a low cost adsorbent to produce activated carbon (AC) for the removal of cephalexin (CFX) from aqueous solution. A fixed-bed column adsorption was carried out using the walnut shell AC. The effect of various parameters like bed height (1.5, 2 and 2.5 cm), flow rate (4.5, 6 and 7.5 mL/min) and initial CFX concentration (50, 100 and 150 mg/L) on the breakthrough characteristics of the adsorption system was investigated at optimum pH 6.5. The highest bed capacity of 211.78 mg/g was obtained using 100 mg/L inlet drug concentration, 2 cm bed height and 4.5 mL/min flow rate. Three kinetic models, namely Adam's-Bohart, Thomas and Yoon-Nelson were applied for analysis of experimental data. The Thomas and Yoon-Nelson models were appropriate for walnut shell AC column design under various conditions. The experimental adsorption capacity values were fitted to the Bangham and intra-particle diffusion models in order to propose adsorption mechanisms. The effect of temperature on the degradation of CFX was also studied.

  3. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  4. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process.

    Chang, Shih-Hsien; Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan; Su, Yu-Chun; Chang, Chih-Yuan

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L(-1) sorbed 82% of RB5 (100 mg L(-1)) within 4h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH(0) of 7, current density of 277 A m(-2), and NaCl of 1 g L(-1). However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L(-1) effectively removed COD and toxicity of electrocoagulation-treated solution within 4h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30s at power of 800 W, GAC/water ratio of 20 g L(-1), and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A(265) (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  5. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons

    T. S. Anirudhan; S. S. Sreekumari

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(Ⅱ),Hg(Ⅱ) and Cu(Ⅱ) from industrial effluents through batch adsorption process.The AC was characterized by elemental analysis,fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,thermal gravimetric and differential thermal analysis,surface area analyzer and potentiometric titrations.The effects of initial metal concentration,contact time,pH and adsorbent dose on the adsorption of metal ions were studied.The adsorbent revealed a good adsorption potential for Pb(Ⅱ) and Cu(Ⅱ) at pH 6.0 and for Hg(Ⅱ) at pH 7.0.The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation.The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model.The adsorption capacities of the AC decreased in the order:Pb(Ⅱ) >Hg(Ⅱ) > Cu(Ⅱ).

  6. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  7. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  8. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Barthélemy J.-P.; Gérard M.-C.

    2003-01-01

    In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC). Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results...

  9. Adsorption of Lead (II from aqueous solutions onto activated carbon prepared from Algerian dates stones of Phoenix dactylifera.L (Ghars variety by H3PO4 activation

    N. Chaouch

    2014-09-01

    Full Text Available Currently water pollution constitutes a great challenge, and activated carbon is a common adsorbent used to remove lead contaminants. Unfortunately, it is a non selective process. The main object of this study was the use of an activated carbon prepared from nuts of dates Algerian origin to remove this metal. The adsorption measurement of lead on activated carbon showed a real potential for removing this metal contaminants waste. The result showed also that the determination of lead remained dependent on some parameters such as pH, time contact, temperature and initial concentrations of metal. Adsorption data followed Freundlich model, they were better fitted by Langmuir isotherm as compared to Freundlich.

  10. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.

    Zietzschmann, Frederik; Aschermann, Geert; Jekel, Martin

    2016-10-01

    The adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC) was compared between regionally different waters within two groups, namely five drinking waters and seven wastewater treatment plant (WWTP) effluents. In all waters, OMP were spiked to adjust similar ratios of the initial OMP and DOC concentrations (c0,OMP/c0,DOC). PAC was dosed specific to the respective DOC (e.g. 2 mg PAC/per mg DOC). Liquid chromatography with online carbon detection shows differences of the background organic matter (BOM) compositions. The OMP removals at given DOC-specific PAC doses vary by ±15% (drinking waters) and ±10% (WWTP effluents). Similar BOM-induced adsorption competition in the waters of the respective group results in overall relationships between the PAC loadings and the liquid phase concentrations of each OMP (in the case of strong adsorbates). Weaker adsorbates show no overall relationships because of the strong BOM-induced adsorption competition near the initial OMP concentration. Correlations between OMP removals and UV254 removals were independent of the water (within the respective group). The equivalent background compound (EBC) model was applied to the experimental data. Using global EBC Freundlich coefficients, the initial EBC concentration correlates with the DOC (both water groups separately) and the low molecular weight (LMW) organics concentrations (all waters combined). With these correlations, the EBC could be initialized by using the DOC or the LMW organics concentration of additional drinking water, WWTP effluent, and surface water samples.

  11. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition.

    Shimabuku, Kyle K; Cho, Hyukjin; Townsend, Eli B; Rosario-Ortiz, Fernando L; Summers, R Scott

    2014-12-02

    This study demonstrates that the ideal adsorbed solution theory-equivalent background compound (IAST-EBC) as a stand-alone model can simulate and predict the powdered activated carbon (PAC) adsorption of organic micropollutants found in drinking water sources in the presence of background dissolved organic matter (DOM) under nonequilibrium conditions. The IAST-EBC represents the DOM competitive effect as an equivalent background compound (EBC). When adsorbing 2-methylisoborneol (MIB) with PAC, the EBC initial concentration was a similar percentage, on average 0.51%, of the dissolved organic carbon in eight nonwastewater impacted surface waters. Using this average percentage in the IAST-EBC model yielded good predictions for MIB removal in two nonwastewater impacted waters. The percentage of competitive DOM was significantly greater in wastewater impacted surface waters, and varied markedly in DOM size fractions. Fluorescence parameters exhibited a strong correlation with the percentage of competitive DOM in these waters. Utilizing such correlations in the IAST-EBC successfully modeled MIB and sulfamethoxazole adsorption by three different PACs in the presence of DOM that varied in competitive effect. The influence of simultaneous coagulant addition on PAC adsorption of micropollutants was also investigated. Coagulation caused the DOM competitive effect to increase and decrease with MIB and sulfamethoxazole, respectively.

  12. CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models

    Juan C. Moreno-Piraján

    2012-07-01

    Full Text Available Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H3PO4, ZnCl2 and CaCl2 aqueous solutions of various concentrations. The adsorbents obtained were characterized by N2 adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1 Bar in volumetric adsorption equipment. The experimental adsorption isotherms were fitted to Langmuir and Tóth models, and a better fit was observed to Tóth equation with a correlation coefficient of 0.999. The maximum experimental values for adsorption capacity at the highest pressure (2.627–5.756 mmol·g−1 are between the calculated data in the two models.

  13. Studies on Mercury Adsorption on Bromine Modified Activated Carbon%溴素改性活性炭汞吸附特性研究

    周强; 冒咏秋; 段钰锋; 朱纯; 佘敏; 洪亚光

    2014-01-01

    在固定床实验台上进行了1% NH4Br改性活性炭汞吸附实验.利用吸附动力学模型从动力学角度探讨了汞吸附速率控制步,汞吸附活化能与初始汞吸附速率.结果表明:150℃时,1% NH4Br改性活性炭脱汞能力显著增强,其原因是改性后活性炭表面活性位点(Br)明显增加,强化了化学吸附作用.但低温时,化学吸附增强作用不明显.汞在改性活性炭表面的吸附活化能为29.69 kJ/mol,说明吸附以物理吸附为主,化学吸附为辅.改性活性炭的初始汞吸附速率随温度增加而增加.活性位吸附是汞吸附速率控制步,外部传质控制也影响整个汞吸附过程,吸附遵循Langmuir吸附等温方程.%An experimental study on mercury adsorption of 1% NH4Br modified activated carbon was carried out in a fixed-bed reactor.Adsorption kinetic models were used to investigate mercury adsorption rate controlling step,adsorption activation energy and initial mercury adsorption rate from the kinetic point of view.The results show that mercury adsorption capacity of modified activated carbon increases significantly at 150℃ due to addition of active site (Br) on activated carbon surface,which improves chemisorption.However,performance of chemisorption at low flue gas temperature is not dominant.The activation energy of mercury adsorption on modified activated carbon surface is 29.69 kJ/mol,which illustrates that mercury adsorption is mainly physisorption but enhanced by chemisorption.The initial mercury adsorption rate of modified activated carbon increases with temperature elevation.Mercury adsorption on active sites is the adsorption rate controlling step and external mass transfer also plays an important role.Mercury adsorption on modified activated carbon follows the Langmuir isotherm equation.

  14. Removal of malachite green from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption

    T. Santhi

    2010-12-01

    Full Text Available The use of low -cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the Annona squmosa seed for the removal of malachite green (MG dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent is increased, the percentage of dye removal increase accordingly. Optimum pH value for dye adsorption was 7.0. Maximum dye was sequestered within 50 min from the start of every experiment. The adsorption of malachite green followed the pseudo-second –order rate equation and fits the Langmuir, Freundlich, Dubinin-Radushekevich (D-R and Tempkin equations well. The maximum removal of MG was obtained at pH 7 as 86.11% for adsorbent dose of 0.2 g/ 50 mL and 25 mg L -1 initial dye concentration at room temperature. Furthermore, adsorption kinetics of MG was studied and the rate of adsorption was found to conform to pseudo-second –order kinetics with a good correlation (R2 > 0.99 with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from the Annona squmosa seed can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.

  15. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Manonmani Subbian

    2010-02-01

    Full Text Available The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated, and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. The optimum pH for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of each experiment. The adsorption of methylene blue followed the pseudo-second-order rate equation and fit the Langmuir, Freundlich, Dubinin-Radushekevich (D-R, and Tempkin equations well. Maximum removal of MB was obtained at pH 6 as 99.79% for adsorbent doses of 0.6 g/ 50 mL and 25 mg/L initial dye concentrations at room temperature. The maximum adsorption capacity obtained from the Langmuir equation was 46.73 mg g-1. The rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2 > 0.9677 with intraparticle diffusion as one of the rate-determining steps. Activated carbon developed from the peel of Cucumis sativa fruit can be an attractive option for dye removal from wastewater.

  16. Adsorption of gases on carbon molecular sieves

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. (Indian Inst. of Technology, Bombay (India). Dept. of Chemical Engineering); Ganesh, K.S. (Hindustan Petroleum Corp. Ltd., Bombay (India))

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  17. Fluoride and lead adsorption on carbon nanotubes

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  18. THERMODYNAMIC STUDY OF HIGH-PRESSURE ADSORPTION OF METHANE AND HEATS OF METHANE ADSORPTION ON MICROPOROUS CARBONS

    杨晓东; 林文胜; 郑青榕; 顾安忠; 鲁雪生; 宋燕

    2002-01-01

    The study was done for high-pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius-Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.

  19. Adsorption of gaseous pollutants on activated carbon filters. Modelling of the coupled exchanges of heat and mass; Adsorption de polluants gazeux sur des filtres de charbon actif. Modelisation des echanges couples de matiere et de chaleur

    Fiani, E.

    2000-01-27

    The aim of this work is to remove gasoline and odorous molecules vapors. Thermodynamics and kinetics studies have been carried out; they concern the fixation of representative gases on activated carbons. Hydrogen sulfide and n-butane are chosen to represent the odorous molecules. Different activated carbons are considered: only the adsorbent impregnated by KOH has satisfying performance. The adsorption of hydrocarbons on a granulated activated carbon is studied on four original devices specifically perfected for this work: gravimetry, calorimetry, thermal measurements and gaseous phase chromatography. The gravimetric measurements are coupled to thermal measurements inside the granulates. Strong temperature variations have then been observed inside a granulate during the adsorption. These experimental results have been taken into account to adapt the classical Langmuir kinetic model. This new model allows to predict all the curves: setting / internal temperature variation for the adsorption of the hydrocarbons alone. The competitive nature of the adsorption sites allows then to explain qualitatively the adsorption of binary mixtures of hydrocarbons. At last, the classical Langmuir model allows to explain correctly the thermodynamic results, for the hydrocarbons alone or in binary mixture. The proposed modelling allows then to treat both on a kinetic and thermodynamic way the case of a non isothermal adsorption at the scale of an activated carbon granulate and to predict the phenomena at the filter scale. (O.M.)

  20. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  1. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  2. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  3. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC

    Shehdeh Jodeh

    2016-06-01

    Freundlich model describes efficiently adsorption isotherm of DCF onto CTAC with n equal to 1.398 whose value indicates a favorable adsorption. This finding validates the assumption of multilayer physical adsorption process of DCF. The results showed that DCF was physically adsorbed onto CTAC, as confirmed by the values of ΔH° minor than 40 kJ/mol. As ΔG° had negative charge, the adsorption process is exothermic, and the adsorption process of the DCF onto CTAC is spontaneous, depending on temperature.

  4. Experimental Study On Thermal Wave Type Adsorption Refrigeration System Working On A Pair Of Activated Carbon And Methanol

    Grzebielec Andrzej

    2015-12-01

    Full Text Available The aim of the study was to examine the efficiency of the thermal wave type adsorption refrigerating equipment working on a pair of activated carbon and methanol. Adsorption units can work in trigeneration systems and in applications driven by waste heat. They can be built also as a part of hybrid sorption-compressor systems, and they are very popular in solar refrigeration systems and energy storage units. The device examined in this study operates in a special mode called thermal wave. This mode allows to achieve higher efficiency rates than the normal mode of operation, as a significant contributor to transport heat from one to the other adsorber. To carry out the experiment a test bench was built, consisting of two cylindrical adsorbers filled with activated carbon, condenser, evaporator, oil heater and two oil coolers. Thermal oil circulation was responsible for providing and receiving heat from adsorbers. In order to perform the correct action a special control algorithm device was developed and implemented to keep the temperature in the evaporator at a preset level. The experimental results show the operating parameters changes in both adsorbers. Obtained COP (coefficient of performance for the cycle was 0.13.

  5. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption.

    Santhi, T; Manonmani, S; Smitha, T

    2010-07-15

    The use of low-cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the epicarp of Ricinus communis for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 7.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of malachite green followed the pseudo-second-order rate equation and fits the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Tempkin equations well. The maximum removal of MG was obtained at pH 7 as 99.04% for adsorbent dose of 1 g 50 mL(-1) and 25 mg L(-1) initial dye concentration at room temperature. Activated carbon developed from R. communis can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.

  6. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    Kadirova, Zukhra C., E-mail: zuhra_kadirova@yahoo.com [Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77a, Tashkent 100170 (Uzbekistan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Katsumata, Ken-ichi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Isobe, Toshihiro [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Nakajima, Akira [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Okada, Kiyoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan)

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9–10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (S{sub BET} 50 m{sup 2}/g) and low crystallinity (as FeOOH and Fe{sub 2}O{sub 3} phases) in the BAU-HA and BAU-OA samples (S{sub BET} 4 and 111 m{sup 2}/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (k{sub app}) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015–0.025 mM; sample content – 10 mg/l; initial oxalic acid concentration – 0.43 mM; pH 3–4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  7. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.

  8. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    Harihastuti, Nani; Purwanto, P.; Istadi, I.

    2015-12-01

    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  9. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah [School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia); Ali, Umi Fazara Md [School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  10. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption