WorldWideScience

Sample records for activated carbon adsorption

  1. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  2. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  3. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    OpenAIRE

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  4. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  5. Adsorption of light alkanes on coconut nanoporous activated carbon

    Directory of Open Access Journals (Sweden)

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  6. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    Science.gov (United States)

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  7. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  8. Adsorption of radon from a humid atmosphere on activated carbon

    International Nuclear Information System (INIS)

    Temperature and relative humidity can influence the adsorption capacity of radon on activated carbon to a great extent, depending on the physical properties of the carbon. Experiments were carried out to measure the radon uptake by an activated carbon in the presence of water vapor in a specially designed adsorption apparatus. The radon concentrations in the gas and solid phases were measured simultaneously once the adsorption equilibrium and the radioactive equilibrium between the radon daughter products were reached. The experiments in the presence of water vapor were carried out using two approaches. In one case the activated carbon was preequilibrated with water vapor prior to exposing it to radon. In the other case the carbon was exposed to a mixture of water vapor and radon. The uptake capacity for radon decreased substantially when both components were introduced together compared to when carbon was preequilibrated with water

  9. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  10. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  11. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  12. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  13. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  14. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    Science.gov (United States)

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  15. Kinetics of salicylic acid adsorption on activated carbon.

    Science.gov (United States)

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  16. Factors governing the adsorption of ethanol on spherical activated carbons

    OpenAIRE

    Romero Anaya, Aroldo José; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2015-01-01

    Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close t...

  17. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  18. Adsorption of dyes onto activated carbon prepared from olive stones

    Institute of Scientific and Technical Information of China (English)

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  19. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  20. Adsorption of Remazol Black B dye on Activated Carbon Felt

    OpenAIRE

    Donnaperna Lucio; Duclaux Laurent; Gadiou Roger

    2008-01-01

    The adsorption of Remazol Black B (anionic dye) on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explai...

  1. Adsorptive preconcentration of rareearth oxine complexes onto activated carbon

    International Nuclear Information System (INIS)

    This paper describes a method for the determination of traces of rare earth using energy dispersive x-ray fluorescence spectrometry (EDXRF) after preconcentration of their oxine complexes onto activated carbon. Various parameters that influence adsorptive preconcentration of rare earth onto activated carbon viz. pH, amounts of activated carbon and oxine, time of stirring and aqueous phase volume were systematically studied. A numerical method based on simple least square procedure using fifth order polynomial with 25 consecutive values was developed for smoothing and differentiation of EDXRF data which was previously digitized and averaged. First order derivative EDXRF in conjunction with adsorptive preconcentration on activated carbon enables one to determine as low as 10 ppb of each individual rare earth elements

  2. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  3. Mechanism of phenol adsorption onto electro-activated carbon granules.

    Science.gov (United States)

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  4. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  5. Adsorption of dissolved natural organic matter by modified activated carbons.

    Science.gov (United States)

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  6. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    Science.gov (United States)

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  7. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    International Nuclear Information System (INIS)

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  8. ORGANIC CHELATING REAGENT ON REDOX ADSORPTION OF ACTIVATED CARBON FIBER TOWARDS Au3+

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Organic chelating reagent influences upon the redox adsorption of activated carbon fibertowards Au3- were systematically investigated. The experimental results indicated that the presenceof organic chelating reagent on activated carbon fiber strongly affects adsorption capacity ofactivated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three timesby the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended onthe pH value of adsorption and temperature.

  9. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  10. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  11. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  12. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  13. Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT

    Institute of Scientific and Technical Information of China (English)

    ZHOU; XiaoFang; CUI; Sheng; LIU; Yu; LIU; XueYong; SHEN; XiaoDong; WU; ZhanWu

    2013-01-01

    The adsorption properties of TNT from wastewater by hydrophobic silica aerogel/activated carbon composite materials were investigated. The effects of adsorption time, pH value, adsorption temperature, and the amount of the composite materials on the adsorption rate were studied. The adsorption principle and mechanism of the composite materials were discussed along with the Freundlich equation. The results showed that the best adsorption rate of the hydrophobic silica aerogel/activated car-bon composite materials could reach 96.5% with adsorption conditions of adsorption temperature 25°C, pH value 7, the amount of SiO2aerogel dosage 3.33 g/L, and adsorption time of 120 min. The adsorption of hydrophobic SiO2aero-gel/activated carbon composite materials for TNT solution is mainly surface adsorption, and also has some chemical adsorp-tion when the aerogel hydrophobicity is modified.

  14. Adsorption onto fibrous activated carbon: applications to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  15. Effect of calcium on adsorption capacity of powdered activated carbon.

    Science.gov (United States)

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  16. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  17. Enhanced mercury ion adsorption by amine-modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jianzhong [Center of Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102 (United States); Yang, John, E-mail: yangj@lincolnu.edu [Center of Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102 (United States); Deng Baolin [Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2009-07-30

    Mercury (Hg) is one of the most toxic metals found in water and sediments. In an effort to develop an effective adsorbent for aqueous Hg removal, activated carbon (AC) was modified with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified AC (MAC) were characterized by the scanning electron microscopy in conjunction with the energy-dispersive spectroscopy (SEM-EDS), the Fourier transform infrared spectroscopy (FT-IR), and potentiometry. The impacts of solvent, APTES concentration, reactive time and temperature on the surface modification were evaluated. The aqueous Hg adsorptive kinetics and capacity were also determined. Results demonstrated that the strong Hg-binding amine ligands were effectively introduced onto the AC surfaces through the silanol reaction between carbon surface functional groups (-COOH, -COH) and APTES molecules. The modification lowered the pH at the point of zero charge (pH{sub pzc}) to 4.54 from 9.6, favoring cation adsorption. MAC presented a faster rate of the Hg (II) adsorption and more than double adsorptive capacity as compared with AC.

  18. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    Science.gov (United States)

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  19. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  20. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems.......Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary...

  1. Adsorption Models and Structural Characterization for Activated Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-juan; WANG Ru-zhu; OLIVEIRA R.G.; HU Jin-qiang

    2009-01-01

    The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevich equation showed the best agreement with the experimental data, while the Langmuir equation showed a large deviation when employed at low relative pressures. The MP method, t-method and αs-method were used to analyze the pore size distribution. The calculated average pore widths and BET (Brunauer-Emmett-Teller) surface areas for the sample A-13 were 0.86 nm and 1 286.60 m2/g, while for the sample A-16, they were 0.82 nm and 1 490.64 m2/g. The sample with larger pore width was more suitable to be used as additive in chemical heat pumps, while the other one could be used as adsorbent in adsorption refrigeration systems.

  2. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  3. Adsorption of naphthenic acids on high surface area activated carbons.

    Science.gov (United States)

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  4. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  5. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    Science.gov (United States)

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  6. Activated Carbon Adsorption Properties of the Residual Matters in Textile Dyeing and Printing Secondary Effluent

    Institute of Scientific and Technical Information of China (English)

    TIAN Qing; LI Fang; LIU Fang; YANG Bo; CHEN Ji-hua

    2008-01-01

    The research employed the adsorption isotherm measurement, the batch kinetic adsorption and the rapid small-scale carbon column test (RSSCT) to find out the characteristics and main impacting factors of granular activated carbon (GAC) adsorption, in treating the textile dyeing-printing/polyester alkali de-weighting secondary effluent (TSE). The adsorption affinities and capacities for the organics surrogated by CODCr, color and UV254 (UV absorbency at λ= 254 nm) predicted by isotherm, small-scale-fixed bed were discussed. Adsorption rates for CODCr, color and UV254 are much different and carbon particle size dependent. The color adsorption rate and capacity should be taken as the main consideration factors in designing bio-activated carbon filter(BACF). The breakthrough of GAC adsorption column is mainly influenced by the low MW readily adsorbable organics in TSE. UVm is a good adsorption breakthrough indicator. The study provides References for BACFs' design and operation control in textile secondary effluent (TSE) tertiary treatment.

  7. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    Science.gov (United States)

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  8. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  9. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  10. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Kent E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 μg/g for the two Tusaar materials.

  11. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon

    International Nuclear Information System (INIS)

    The adsorption of uranium (VI), cesium and strontium ions from aqueous solutions onto a commercial activated carbon obtained by physical activation of coconut shell has been studied in batch systems. In particular the adsorption of uranium, studied as a function of contact time and metal ion concentration, followed pseudo-first-order kinetics. Equilibrium adsorption data were fitted by Langmuir and Freundlich isotherm models and the maximum adsorption capacity of the activated carbon resulted to be 55.32 mg/g. The study showed that the considered activated carbon could be successfully used for uranium adsorption from aqueous solutions. Feasibility of cesium and strontium adsorption onto the same activated carbon has been also investigated. Results showed that no affinities with both of these ions exist. (author)

  12. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles. PMID:21172719

  13. ADSORPTION ISOTHERMS AND POTENTIAL DISTRIBUTIONS OF NITROGEN ON VARIOUS ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The adsorption isotherms of four activated carbons (Norit RB1, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution.

  14. Adsorption of Phenols and Chlorophenols in Wastewaters on Activated Carbon and Dried Activated Sludge

    OpenAIRE

    YENER, Jülide

    1999-01-01

    One of the methods used for removal of phenols and chlorophenols from the wastewaters of petroleum refineries, coke, medicine, dye, plastics, pesticide, insecticide, and paper industry is the adsorption process. In this study, adsorption of phenol, o-chlorophenol and p-chlorophenol from aqueous solutions on to granular activated carbon and dried activated sludge was investigated as a function of pH, initial pollutant concentration and functional groups. Effects of these parameters on...

  15. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke

    Energy Technology Data Exchange (ETDEWEB)

    Wiessner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Dept. of Remediation Research

    1998-07-31

    This paper investigated activated carbon and activated coke adsorption for the treatment of highly contaminated discoloured industrial wastewater with a wide molecular size distribution of organic compounds. Lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments. The investigations were performed using water samples taken from various depths of the deposits ponds. A comparison of the capacities of the adsorption materials used showed, that because of its large number of macro and mesopores, activated coke is more suitable for wastewater treatment and in addition cheaper than activated carbon.

  16. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    OpenAIRE

    Izquierdo Pantoja, María Teresa; Yuso, A. M. de; Valenciano, Raquel; Rubio Villa, Begoña; Pino, María Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation...

  17. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  18. Characterization and Methanol Adsorption of Walnut-shell Activated Carbon Prepared by KOH Activation

    Institute of Scientific and Technical Information of China (English)

    YU Qiongfen; LI Ming; JI Xu; QIU Yu; ZHU Yuntao; LENG Congbin

    2016-01-01

    Walnut-shell activated carbons (WSACs) were prepared by the KOH chemical activation. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on the pore development of WSACs were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the microstructure and morphology of WSACs. Methanol adsorption performance onto the optimal WSAC and the coal-based AC were also investigated. The results show that the optimal preparation conditions are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636 m2/g, 0.641 cm3/g and 81.97%, respectively. There are a lot of micropores and a certain amount of meso- and macropores. The characteristics of the amorphous state are identified. The results show that the optimal WSAC is favorable for methanol adsorption. The equilibrium adsorption capacity of the optimal WSAC is 248.02mg/g. It is shown that the equilibrium adsorption capacity of the optimal WSAC is almost equivalent to that of the common activated carbon. Therefore the optimal WSAC could be a potential adsorbent for the solar energy adsorption refrigeration cycle.

  19. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    International Nuclear Information System (INIS)

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  20. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Science.gov (United States)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  1. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde.

    Science.gov (United States)

    Wen, Qingbo; Li, Caiting; Cai, Zhihong; Zhang, Wei; Gao, Hongliang; Chen, Lijun; Zeng, Guangming; Shu, Xin; Zhao, Yapei

    2011-01-01

    The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75°C, which is affordable and economical for recycling.

  2. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Science.gov (United States)

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pHadsorption sites of the activated carbon.

  3. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  4. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  5. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    Directory of Open Access Journals (Sweden)

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  6. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    Science.gov (United States)

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  7. Isosteric heats of adsorption for activated carbons made from corn cob

    Science.gov (United States)

    Beckner, M.; Olsen, R.; Romanos, J.; Burress, J.; Dohnke, E.; Carter, S.; Casteel, G.; Wexler, C.; Pfeifer, P.

    2010-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will present experimentally measured isosteric heats of adsorption for various activated carbons calculated using the Clausius-Clayperon equation and hydrogen isotherms at temperatures of 80 and 90K and pressures up to 100 bar measured on a volumetric instrument. We discuss differences observed between isosteric heats determined from Gibbs excess adsorption vs. absolute adsorption curves.

  8. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  9. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    Science.gov (United States)

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics. PMID:21179969

  10. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    Directory of Open Access Journals (Sweden)

    Khaled Okiel

    2011-06-01

    Full Text Available Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC and deposited carbon (DC. The results gave evidence of the ability of the adsorbents to adsorb oil and that the adsorptive property of the three adsorbents (bentonite, PAC, and DC has been influenced by different factors. The effects of contact time, the weight of adsorbents and the concentration of adsorbate on the oil adsorption have been studied. Oil removal percentages increase with increasing contact time and the weight of adsorbents, and decrease with increasing the concentration of adsorbate. Equilibrium studies show that the Freunlich isotherm was the best fit isotherm for oil removal by bentonite, PAC, and DC. The data show higher adsorptive capacities by DC and bentonite compared to the PAC.

  11. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  12. Characteristics of an activated carbon monolith for a helium adsorption compressor

    NARCIS (Netherlands)

    Lozano-Castello, D.; Jorda-Beneyto, M.; Cazorla-Amoros, D.; Linares-Solano, A.; Burger, J.F.; Brake, ter H.J.M.; Holland, H.J.

    2010-01-01

    An activated carbon monolith (ACM) with a high helium adsorption/desorption capacity, high density, low pressure drop, low thermal expansion and good mechanical properties was prepared and applied successfully in a helium adsorption compressor as a part of a 4.5 K sorption cooler. The activated carb

  13. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    Science.gov (United States)

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. PMID:26476807

  14. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Mohammad Hassan Mahaninia; Paria Rahimian; Tahereh Kaghazchi

    2015-01-01

    Activated carbons were prepared by two chemical methods and the adsorption of Cu (II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration, and pHzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also, adsorption mechanism and effect of pH on the adsorption of Cu (II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu (II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.

  15. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  16. Adsorption of Xe-133 by activated carbon. Experimental results

    International Nuclear Information System (INIS)

    In several nuclear power stations carbon filters in the off-gas system are now used to reduce the emission of radioactive noble gases. A gradual deterioration of the filters can be expected. Methods for measuring the efficiency of filters and the quality of the carbon should therefore be available. A reduction in the separative ability for krypton should be a useful way to indicate an impaired retention for xenon. The advantage of this method lies in the in-situ process which does not affect the operation of the system. An experimental set up and equipment has been tested to measure the dynamic adsorption constant of zenon. Two carbon qualities have been measured at 25degC and - 70degC.(G.B.)

  17. Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed

    International Nuclear Information System (INIS)

    In the present work, commercial coconut shell activated carbon was impregnated with alkaline NaOH to investigate the efficiency of modified activated carbon for CO2 adsorption in a fixed-bed column adsorption system. The modification parameters, such as the NaOH concentration (24–48%) and dwelling time (1–4 h), were also investigated. The results showed that a 32% NaOH concentration with a 3 h dwelling time provided the best CO2 adsorption capacity. Later, the modified activated carbon was characterized by nitrogen adsorption–desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The effects of the CO2 % in the feed, the adsorption temperature, the feed flow rate and the amount of adsorbent in the column were investigated in the adsorption experiments. The maximum CO2 adsorption capacity in this study was 27.10 mg/g at 35 °C. This study also suggests that NaOH-modified activated carbon is a state-of-the-art adsorbent for CO2 adsorption. - Highlights: • Coconut shell activated carbon was impregnated with alkaline NaOH. • CO2 was adsorbed in a fixed-bed column adsorption system. • The effects of CO2 concentration, temperature, flow rate and dose are analyzed. • Regeneration of modified activated carbons was effectively tested for ten cycles

  18. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    Science.gov (United States)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  19. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  20. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2

    Institute of Scientific and Technical Information of China (English)

    Hao Yang; Maochu Gong; Yaoqiang Chen

    2011-01-01

    Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD,FT-IR and texture property test.The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces.The texture property test reveals that the activated carbons displayed different texture properties,especially the micropore size distribution.The adsorption capacities of the activated carbons were investigated by adsorbing CH4,CO2,N2 and O2 at 25 ℃ in the pressure range of 0-200 kPa.The results reveal that all the activated carbons had high CO2 adsorption capacity,one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa.And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa.In the pressure range of 0-200 kPa,the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.

  1. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    Science.gov (United States)

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  2. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Science.gov (United States)

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon. PMID:26282767

  3. Adsorption of cationic dye methylene blue onto activated carbon obtained from horse chestnut kernel

    OpenAIRE

    Momčilović Milan Z.; Purenović Milovan M.; Miljković Milena N.; Bojić Aleksandar Lj.; Ranđelović Marjan S.

    2011-01-01

    Horse chestnut kernel was used as the precursor for the preparation of powdered activated carbon using phosphoric acid as the activating agent. Batch adsorption experiments for the adsorption of cationic dye methylene blue from aqueous solutions were carried out using the obtained carbon as adsorbent. Equilibrium and kinetic experiments were conducted. The equilibrium data were fitted with the Langmuir, Freundlich and Temkin theoretical isotherm models. The best results was obtained in ...

  4. Oxygen-induced Decrease in the Equilibrium Adsorptive Capacities of Activated Carbons

    OpenAIRE

    Ovín Ania, María Concepción; Parra Soto, José Bernardo; Pis Martínez, José Juan

    2004-01-01

    Special attention was paid in this work to the role of surface chemistry in the adsorption of phenol and salicylic acid onto activated carbons. To this end, two commercial activated carbons (granular and powdered) were oxidised using ammonium peroxodisulphate [(NH4) 2S2O8] and nitric acid in different concentrations. The structural and chemical properties of the oxidised adsorbents were characterised via nitrogen adsorption isotherms measured at –196 ° C and Boehm titrations. Phenol adsorptio...

  5. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    谢自立; 敦坤敏; 吴菊芳; 袁存禾

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  6. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    Science.gov (United States)

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-01

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  7. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Khairul; Koyama, Shigeru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 (Japan); Saha, Bidyut B. [Mechanical Engineering Department, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395 (Japan); Rahman, Kazi A.; Chakraborty, Anutosh; Ng, Kim Choon [Mechanical Engineering Department, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2010-06-15

    The objective of this article is to evaluate adsorption kinetics of R134a and R507A on pitch based activated carbon experimentally by a constant volume variable pressure method at different adsorption temperatures ranging from 20 to 60 C. These data are useful for the design of adsorption cooling and refrigeration systems and are unavailable in the literature. Data obtained from the kinetic studies were analyzed with various kinetic models and the Fickian diffusion model is found to be the most suitable overall. Guided by the experimental measurements, the surface diffusion is also estimated and is found that it follows the classical Arrhenius law within the experimental range. (author)

  8. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction. PMID:26302219

  9. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  10. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.;

    2008-01-01

    electron microscopy (SEM), Brunauer Emmett Teller (BET) N-2-gas adsorption, surface area and Energy Dispersive X-Ray (EDX) analysis. The comparison between untreated and ZnCl2 treated GAC indicates that treatment with ZnCl2 has significantly improved the adsorption efficacy of untreated GAC. The adsorption......Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  11. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi

    2009-07-01

    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1microm, but further particle size reduction produced little improvement.

  12. Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon

    OpenAIRE

    Di Biase, Emanuela; Sarkisov, Lev

    2015-01-01

    We employ a previously developed model of a high surface area activated carbon, based on a random packing of small fragments of a carbon sheet, functionalized with hydroxyl surface groups, to explore adsorption of water and multicomponent mixtures under conditions representing typical carbon capture processes. Adsorption of water is initialized and proceeds through the growth of clusters around the surface groups, in a process predominantly governed by hydrogen bond interactions. In contrast,...

  13. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    Science.gov (United States)

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process.

  14. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    Science.gov (United States)

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. PMID:24572271

  15. Adsorption of reactive brilliant red K-2BP on activated carbon developed from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    Jiankun XIE; Qinyan YUE; Hui YU; Wenwen YUE; Renbo LI; Shengxiao ZHANG; Xiaona WANG

    2008-01-01

    Activated carbon was prepared from the sewage sludge of municipal wastewater treatment plant by chemical activation (activation reagent is ZnCl2) and was used for the adsorption of dye (reactive brilliant red K-2BP). The impact of adsorbent amount, adsorption time and pH value on adsorption effect, the adsorption kinetics, and the adsorption thermodynamics were dis-cussed according to batch adsorption tests. The results indicated that the activated carbon developed from sewage sludge (ACSS), which was mesoporous, possessed opened porous structures. The iodine number of the ACSS was heavy metals in the leachate didn't exceed the contents limit. The adsorption kinetics of reactive brilliant red K-2BP on the ACSS was accorded with the two-step kinetics rate equation and pseudo-second-order kinetics equation. Compared to the Freundlich isotherm equation, the Langmuir isotherm equation showed better applicability for the adsorption. The adsorption which was favorable was an endothermic (enthalpy △H > 0) and spontaneous (flee energy △G 0).

  16. Error Analysis of Adsorption Isotherm Models for Acid Dyes onto Bamboo Derived Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    L.S. Chan; W.H. Cheung; S.J. Allen; G. McKay

    2012-01-01

    High surface area activated carbons were produced by thermal activation of waste bamboo scaffolding with phosphoric acid. Single component equilibrium dye adsorption was conducted on the carbons produced and comparedwith a commercially available carbon. Two acid dyes With different molecular sizes, namely Acid Yellow 117 (AY117) and Acid Blue 25 (AB25), were used to evaluate the adsorption capacity of the produced carbons. Itwas found that the dye with smaller molecular size, AB 25, was readily adsorbed onto the produced carbon, nearly three times, higher than a commercially available carbon, while the larger size dye, A.Y117, showed little adsorption.The experimental data were analyzed using isotherm equations including Langmuir, Freundlich, Tempkin,Toth, Redlich-Peterson and Sips equations. The equilibrium data were then analyzed using five different non-linear erroranalysis methods.

  17. Adsorption of cationic dye methylene blue onto activated carbon obtained from horse chestnut kernel

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2011-01-01

    Full Text Available Horse chestnut kernel was used as the precursor for the preparation of powdered activated carbon using phosphoric acid as the activating agent. Batch adsorption experiments for the adsorption of cationic dye methylene blue from aqueous solutions were carried out using the obtained carbon as adsorbent. Equilibrium and kinetic experiments were conducted. The equilibrium data were fitted with the Langmuir, Freundlich and Temkin theoretical isotherm models. The best results was obtained in the case of Langmuir model, which indicates that monolayer adsorption occurs on finite number of the active adsorption sites on the carbon surface. The kinetic data were fitted with pseudo-first, pseudo-second, Elovich and interparticle diffusion model. Pseudo-second order model and Elovich model showed the best results of the kinetic data. The increasing of the solution pH led to a higher uptake of methylene blue due to the fact that competitive adsorption of methylene blue cation and proton exists in acidic solutions. The adsorption capacity for methylene blue in equilibrium study was significant (168.93 mg g-1. Comparison of the adsorption capacities of methylene blue onto activated carbons derived from various alternative precursors proves chestnut kernel to be efficient and low-cost material which could be substantially deployed in the future.

  18. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. PMID:24721493

  19. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  20. Experimental Investigation on Adsorption Capacity of a Variety of Activated Carbon/Refrigerant Pairs

    Directory of Open Access Journals (Sweden)

    Ahmed N. Shmroukh

    2015-04-01

    Full Text Available This study aims to develop a device with minimum heat and mass transfer limitations between adsorbent and adsorbate, and subsequently to obtain practically applicable adsorption capacity data. Also, 5 kW adsorption chillers (evaporators, condensers and adsorbers are designed based on the experimental output data of the whole tested pairs. A finned-tube heat exchanger was employed and installed at the center adsorber, and each employed adsorbent was immobilized on its surfaces by using an adhesive agent. A variety of pairs: are activated carbon powder (ACP/R-134a, ACP/R-407c, ACP/R-507A, activated carbon granules (ACG/R-507A, ACG /R-407c and ACG /R-134a, were examined at different adsorption temperatures of 25, 30, 35 and 50°C. It was found that, at the adsorption temperature of 25°C the maximum adsorption capacity was 0.8352 kg kg-1 for ACP/R-134a, while at the adsorption temperature of 50°C the maximum adsorption capacity was 0.3207 kg kg-1 for ACP/R- 134a. Therefore, the ACP/R-134a pair is highly recommended to be employed as adsorption refrigeration working pair because of its higher maximum adsorption capacity higher than the other examined pairs.

  1. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark

    Institute of Scientific and Technical Information of China (English)

    Phussadee Patnukao; Apipreeya Kongsuwan; Prasert Pavasant

    2008-01-01

    Powdered activated carbon (PAC) prepared from Eucalyptus camaldulensis Dehn. bark was tested for its adsorption capacity for Cu(Ⅱ) and Pb(Ⅱ). The experiment was conducted to investigate the effects of pH, contact time, initial metal concentration, and temperature. The best adsorption of both Cu(Ⅱ) and Pb(Ⅱ) occurred at pH 5, where the adsorption reached equilibrium within 45 min for the whole range of initial heavy metal concentrations (0.1-10 mmol/L). The adsorption kinetics was found to follow the pseudo-second order model where equilibrium adsorption capacities and adsorption rate constants increased with initial heavy metal concentrations. The adsorption isotherm followed Langmuir better than Freundlich models within the temperature range (25-60℃). The maximum adsorption capacities (qm) occurred at 60℃, where qm for Cu(Ⅱ) and Pb(Ⅱ) were 0.85 and 0.89 mmol/g, respectively. The enthalpies of Cu(Ⅱ) and Pb(Ⅱ) adsorption were 43.26 and 58.77 kJ/mol, respectively. The positive enthalpy of adsorption indicated an endothermic nature of the adsorption.

  2. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm.

  3. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon

    Institute of Scientific and Technical Information of China (English)

    Yuxin WANG; Congmin LIU; Yaping ZHOU

    2008-01-01

    Activated carbon with high specific surface area and considerable mesopores was prepared from bam-boo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% H3PO4 at 80℃ for 9 days and activation at 500℃ for 4 h, the prepared acti-vated carbon had the highest mesopore volume of 0.67 cm3/g, a specific surface area of 1567 m2/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH4, CO2, N2 and O2on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO2 and the other gases was observed, which would be of interest for the adsorp-tive separation/purification of gaseous CO2 from its mix-tures, especially from mixtures with N2 and/or O2.

  4. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    Science.gov (United States)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  5. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon.

    Science.gov (United States)

    Selvi, K; Pattabhi, S; Kadirvelu, K

    2001-10-01

    Activated carbon (AC) prepared from coconut tree sawdust was used as an adsorbent for the removal of Cr(VI) from aqueous solution. Batch mode adsorption studies were carried out by varying agitation time, initial Cr(VI) concentration, carbon concentration and pH. Langmuir and Freundlich adsorption isotherms were applied to model the adsorption data. Adsorption capacity was calculated from the Langmuir isotherm and was 3.46 mg/g at an initial pH of 3.0 for the particle size 125-250 microm. The adsorption of Cr(VI) was pH dependent and maximum removal was observed in the acidic pH range. Desorption studies were carried out using 0.01-1 M NaOH solutions.

  6. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    OpenAIRE

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  7. Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Ozguer, E-mail: Ozgur.Aktas@mam.gov.tr [Bogazici University Institute of Environmental Sciences, 34342 Bebek, Istanbul (Turkey); Cecen, Ferhan [Bogazici University Institute of Environmental Sciences, 34342 Bebek, Istanbul (Turkey)

    2010-05-15

    The extent of cometabolic bioregeneration of activated carbons loaded with 2-nitrophenol was investigated in lab-scale batch activated sludge reactors. Bioregeneration was quantified by measuring the deterioration in adsorption capacity of a fresh activated carbon after a pre-loading and a subsequent bioregeneration sequence. Activated carbons loaded with 2-nitrophenol could be partially bioregenerated cometabolically in the presence of phenol as the growth substrate. The occurrence of exoenzymatic bioregeneration was also possible during cometabolic bioregeneration of thermally activated carbon. However, cometabolic bioregeneration of chemically activated carbon was higher in accordance with higher desorbability. Rather than biodegradation, desorption was the rate-limiting step in bi-solute bioregeneration of phenol and 2-nitrophenol. The absence of oxidative coupling reactions leads to sufficient reversible adsorption, which eventually makes 2-nitrophenol an ideal compound in terms of bioregenerability.

  8. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    Science.gov (United States)

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature. PMID:27232401

  9. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon.

    Science.gov (United States)

    Milenković, D D; Bojić, A Lj; Veljković, V B

    2013-05-01

    This study was aimed at removal of 4-dodecylbenzene sulfonate (DBS) ions from aqueous solutions by ultrasound-assisted adsorption onto the carbonized corn cob (AC). The main attention was focused on modeling the equilibrium and kinetics of adsorption of DBS onto the AC. The AC was prepared from ground dried corn cob by carbonization and activation by carbon dioxide at 880°C for 2h in a rotary furnace. The adsorption isotherm data were fitted by the Langmuir model in both the absence and the presence of ultrasound (US). The maximum adsorption capacities of the adsorbent for DBS, calculated from the Langmuir isotherms, were 29.41mg/g and 27.78mg/g in the presence of US and its absence, respectively. The adsorption process in the absence and the presence of US obeyed the pseudo second-order kinetics. The intraparticular diffusion model indicated that the adsorption of DBS ions on the AC was diffusion controlled as well as that US promoted intraparticular diffusion. The ΔG° values, -24.03kJ/mol, -25.78kJ/mol and -27.78kJ/mol, were negative at all operating temperatures, verifying that the adsorption of DBS ions was spontaneous and thermodynamically favorable. The positive value of ΔS°=187J/molK indicated the increased randomness at the adsorbent-adsorbate interface during the adsorption of DBS ions by the AC. PMID:23187067

  10. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree.

    Science.gov (United States)

    Senthilkumaar, S; Kalaamani, P; Subburaam, C V

    2006-08-25

    Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.

  11. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    Science.gov (United States)

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  12. Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment

    Science.gov (United States)

    Bouzid, Mohamed; Sellaoui, Lotfi; Khalfaoui, Mohamed; Belmabrouk, Hafedh; Lamine, Abdelmottaleb Ben

    2016-02-01

    In this work, we studied the adsorption of ethanol on three types of activated carbon, namely parent Maxsorb III and two chemically modified activated carbons (H2-Maxsorb III and KOH-H2-Maxsorb III). This investigation has been conducted on the basis of the grand canonical formalism in statistical physics and on simplified assumptions. This led to three parameter equations describing the adsorption of ethanol onto the three types of activated carbon. There was a good correlation between experimental data and results obtained by the new proposed equation. The parameters characterizing the adsorption isotherm were the number of adsorbed molecules (s) per site n, the density of the receptor sites per unit mass of the adsorbent Nm, and the energetic parameter p1/2. They were estimated for the studied systems by a non linear least square regression. The results show that the ethanol molecules were adsorbed in perpendicular (or non parallel) position to the adsorbent surface. The magnitude of the calculated adsorption energies reveals that ethanol is physisorbed onto activated carbon. Both van der Waals and hydrogen interactions were involved in the adsorption process. The calculated values of the specific surface AS, proved that the three types of activated carbon have a highly microporous surface.

  13. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons

    Science.gov (United States)

    Belhachemi, Meriem; Addoun, Fatima

    2011-12-01

    The adsorption of methylene blue (MB) on activated carbons prepared from date stones with different degree of activation has been investigated. Equilibrium adsorption data of MB was carried out at 298 K. Four isotherm models (Freundlich, Langmuir, Redlich-Peterson and Sips) were tested for modeling the adsorption isotherms by nonlinear method. The three-parameter equations (Redlich-Peterson and Sips) showed more applicability than the two-parameter equations (Freundlich and Langmuir), which can be explained by the fact that these have three adjustable parameters. The best fit was achieved with the Redlich-Peterson equation according to the high value of correlation coefficient. All the samples were capable of retaining the MB, with the best result being reached by the sample with higher burn-off. Date stones activated carbon showed high adsorption capacity of 460 mg/g, calculated from the Sips isotherm model.

  14. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    Science.gov (United States)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  15. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    Science.gov (United States)

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  16. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin

    2011-03-10

    This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.

  17. Phenol Adsorption on Nitrogen-enriched Activated Carbon Prepared from Bamboo Residues

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2013-12-01

    Full Text Available Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration. Adsorption equilibrium was achieved within 120 min at a phenol concentration of 250 mg/L. When the pH was 4 and 0.1 g of the carbon absorbent and 100 mL of phenol solution at 250 mg/L were used, the phenol adsorption of the ACs with melamine and urea modifications were 219.09 mg/g and 214.45 mg/g, respectively. Both were greater than the capacity of unmodified AC, which was 163.82 mg/g. The Langmuir isotherm adsorption equation well described the experimental adsorption isotherms. The adsorption kinetics was well explained by pseudo-second-order kinetics rather than the pseudo-first-order. In conclusion, the nitrogen-enriched activated carbon proposed as adsorbents of the phenol wastewater were shown to be effective, which also means that bamboo residues have promise as activated carbon precursors for liquid phase adsorbents for environmental protection.

  18. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char.

    Science.gov (United States)

    Acosta, R; Fierro, V; Martinez de Yuso, A; Nabarlatz, D; Celzard, A

    2016-04-01

    Tyre pyrolysis char (TPC), produced when manufacturing pyrolysis oil from waste tyre, was used as raw material to prepare activated carbons (ACs) by KOH activation. KOH to TPC weight ratios (W) between 0.5 and 6, and activation temperatures from 600 to 800 °C, were used. An increase in W resulted in a more efficient development of surface area, microporosity and mesoporosity. Thus, ACs derived from TPC (TPC-ACs) with specific surface areas up to 814 m(2) g(-1) were obtained. TPC, TPC-ACs and a commercial AC (CAC) were tested for removing Tetracycline (TC) in aqueous phase, and systematic adsorption studies, including equilibrium, kinetics and thermodynamic aspects, were performed. Kinetics was well described by the pseudo-first order model for TPC, and by a pseudo second-order kinetic model for ACs. TC adsorption equilibrium data were also fitted by different isotherm models: Langmuir, Freundlich, Sips, Dubinin-Radushkevich, Dubinin-Astokov, Temkin, Redlich-Peterson, Radke-Prausnitz and Toth. The thermodynamic study confirmed that TC adsorption onto TPC-ACs is a spontaneous process. TC adsorption data obtained in the present study were compared with those reported in the literature, and differences were explained in terms of textural properties and surface functionalities. TPC-ACs had similar performances to those of commercial ACs, and might significantly improve the economic balance of the production of pyrolysis oil from waste tyres. PMID:26855221

  19. Adsorption of Polycyclic Aromatic Hydrocarbons on Activated Carbons: Kinetic and Isotherm Curve Modeling

    Directory of Open Access Journals (Sweden)

    ROHADIN MORADI-RAD

    2015-10-01

    Full Text Available  The modeling of kinetic and isotherm curves acquired in adsorption of polycyclic aromatic hydrocarbons (PAHs as a model compound (phenanthrene on activated carbons in the organic solvent. All the runs were carried out in a batch system at atmospheric pressure, process temperature of 24±2°C, and using the 100 ml phenanthrene in cyclohexan. This experimental work was mainly focused on the study of how the variables properties such as adsorbent dosage, the initial phenanthrene concentration, contact time and pH of cyclohexane solutions influence the kinetic and isotherm of the adsorption process. The results indicated that pH did not play a key role in the process of phenanthrene adsorption. The considerable adsorption (8.34 mg/g was reached at pH 7, adsorbent dosage of 0.3 g/100 ml and agitation time of 11 h on activated carbons. The impact of adsorbent dose on phenanthrene concentration was not important after 0.3 g/100 ml. The results also showed that adsorption capacity became notably greater with an increase in contact time and initial phenanthrene concentration. Another important finding was that adsorption processes and equilibrium data well fitted by pseudo-second-order kinetic (R2=0.99 and Fraundlich adsorption models (R2=0.99. It can be concluded that there was a significant positive correlation between adsorption processes and the Freundlich isotherm model but Langmuir theory showed only a weak association.

  20. Adsorption kinetics of propane on energetically heterogeneous activated carbon

    KAUST Repository

    Ismail, Azhar Bin

    2014-11-01

    The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.

  1. Production and Characterization of Activated Carbon from Oil-Palm Shell for Carboxylic Acid Adsorption

    Directory of Open Access Journals (Sweden)

    Hector Ruiz

    2015-06-01

    Full Text Available In this study, the recovery of volatile carboxylic acids (VCA by adsorption onto activated carbon adsorbent (CA was explored. The CA was synthesized from palm-oil kernel shells using H3PO4 at 10 and 60% w/w as activating agent. The samples produced in this manner were labeled as CA10A, CA60A respectively. Also KOH was used as activating agent at 10 and 60% w/w. In this case, the produced samples were labeled as CA10B, CA60B respectively. After activation, the surface of all four CA samples was extensively characterized both physically and chemically. The obtained CA adsorption behavior for VCA was assessed by submerging samples of CA in solutions at a fixed initial VCA concentration. Because some of the acids were adsorbed on the CA surface, the VCA concentration in solution was reduced. Carbon CA60B exhibited the greatest adsorption capacity, reaching 1300 mg of adsorbed acids/g carbon. Five adsorption isotherms models were fitted to experimental data. The Langmuir-Freundlich model described best the adsorption phenomena. Desorption behavior was assessed by placing CA after adsorption in water and was not high, which forces to reconsider either de desorption mechanism proposed in this study and/or the use CA as synthesized here for VCA recovery.

  2. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane capacities. In addition, a thermodynamic study of the heat of adsorption of CH4 on the carbon spheres was carried out. Adsorption of CH4 on carbon spheres showed a decrease in the adsorption heat with CH4 occupancy, and the heat of adsorption fell from 20.51 to 12.50 kJ/mol at 298 K and then increased to a little higher values at a very high loading (>0.70, indicating that CH4/CH4 interactions within the adsorption layer became significant.

  3. STUDY ON THE PROPERTIES OF DIFFERENT ACTIVATED CARBON FIBERS AND THEIR ADSORPTION CHARACTERISTICS FOR FORMALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    H.Q. Rong; Z.Y. Ryu; J.T. Zheng

    2001-01-01

    Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a relative pressure range from 10 6to 1. The regularization method according to Density Functional Theory (DFT) wasemployed to calculate the pore size distribution in the samples. Their specific surfaceareas were calculated by BET method, micropore volume and microporous specificsurface area calculated by t-plot method and MPD by Horvath-Kawazoe equation. Mi-cropore volume of rayon-based ACF was higher than that of other samples. The staticand dynamic adsorption capacity for formaldehyde on different ACFs was determined.The results show that steam activated Rayon-based A CFs had higher adsorption capac-ity than that of steam and KOH activated PAN-A CFs. Breakthrough curves illustratedthat Rayon-ACFs had longer breakthrough time, thus they possessed higher adsorp-tion capacity for formaldehyde than that of PAN-ACFs. The entire sample had smalladsorption capacity and short breakthrough time for water. Rayon-A CFs had exccl-lent adsorption selectivity for formaldehyde than PAN-ACFs. And the samples withhigh surface areas had relatively high adsorption capacity for formaldehyde. Elementaicontent of different A CFs were performed. Rayon-based A CFs contained more oxygenthan PAN-ACFs, which may be attributed to their excellent adsorption capacity forformaldehyde.

  4. Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues

    Directory of Open Access Journals (Sweden)

    L. Giraldo

    2008-03-01

    Full Text Available Activated carbons obtained from cane sugar bagasse (ACB, African palm pit (ACP and sawdust (ACS were prepared through an impregnated with HNO3 and thermal treatment in an atmosphere in N2/steam water at 1173 K. Adsorption isotherms of N2 at 77 K and of CO2 at 273 K were determined for the activated carbons for which surface area and pore volume values were from 868 to 1100 m²g-1 and from 0.27 to 0.55cm³ g-1, respectively. These results were correlated, with the ones obtained for adsorption the adsorption isotherms of Pb2+ in aqueous solutions. Impregnation of the lignocellulosic materials with nitric acid produced acid-type activated carbons with total acid site contents between 4.13 and 6.93 mmol g-1 and pH at the point of zero charge values between 2.7 and 4.1, which were within range of the adsorption, at different pH values, since they determined, the surface charge of the activated carbons. Adsorption isotherms of Pb2+ at different pH values (2-8 at 298 K were determined. The ion adsorption capacity on ACB, ACP and ACS were 13.7, 15.2 and 17.5 mg.g-1, respectively. Experimental data were fitted to the Langmuir and Freundlich models and all cases the former fit better. The highest values for the quantity adsorbed on the monolayer, qm, were at pH 4, whereas the surface, charge of activated carbons was negative and the lead species mainly present was Pb2+. For higher pHs, the quantity of Pb2+ adsorbed decreased, and this had an important effect on adsorption, the surface characteristics of the solids and the hydroxilated lead species that were formed in the system.

  5. Adsorptive removal of geosmin by ceramic membrane filtration with super-powdered activated carbon

    OpenAIRE

    Matsui, Yoshihiko; Aizawa, Takako; Kanda, Fumiaki; Nigorikawa, Naoko; Mima, Satoru; Kawase, Yuji

    2007-01-01

    Tap water free from unpleasant taste and odour is important for consumer satisfaction. We applied a super-powdered activated carbon (S-PAC) and microfiltration (MF) system to the removal of geosmin, a taste- and odour-causing compound. We used a specially pulverised PAC with a submicron particle size, much smaller than the normal PAC (N-PAC) particle size, as an adsorption pretreatment agent. MF and adsorption pretreatment with S-PAC removed geosmin with considerably greater efficiency and at...

  6. Composition and structural effects on the adsorption of ionic liquids onto activated carbon

    OpenAIRE

    Lemus, Jesús; Freire, Mara G.; Palomar, Jose; Neves, Catarina M. S. S.; Marques, Carlos F. C.; Coutinho, João A. P.

    2013-01-01

    The applications and variety of ionic liquids (ILs) have increased during the last few years, and their use at a large scale will require their removal/recovery from wastewater streams. Adsorption on activated carbons (ACs) has been recently proposed for this aim and this work presents a systematic analysis of the influence of the IL chemical structures (cation side chain, head group, anion type and the presence of functional groups) on their adsorption onto commercial AC from water solution....

  7. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); College of Environmental Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou 225127 (China); Lv, Lu, E-mail: esellu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Lan, Pei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); College of Environmental Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou 225127 (China); Zhang, Shujuan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Pan, Bingcai, E-mail: bcpan@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Zhang, Weiming [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The presence of EfOM significantly reduced the adsorption capacities and rates of PFCs. Black-Right-Pointing-Pointer Low-molecular-weight EfOM compounds (<1 kDa) compete for adsorption sites of PFSs directly. Black-Right-Pointing-Pointer Large-molecular-weight EfOM compounds (>30 kDa) affect the adsorption through pore blockage or restriction effect. Black-Right-Pointing-Pointer Changes in surface properties of PAC caused by preloaded EfOM could affect PFCs adsorption. - Abstract: Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (<1 kDa) were found to be the major contributors to the significant reduction in PFC adsorption capacity, while large-molecular-weight compounds (>30 kDa) had much less effect on PFC adsorption capacity.

  9. p-Chlorophenol adsorption on activated carbons with basic surface properties

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.

  10. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS. PMID:27548948

  11. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Science.gov (United States)

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  12. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  13. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Science.gov (United States)

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties. PMID:27131303

  14. Kinetic for Adsorption of Dye Methyl Orange by the Modified Activated Carbon from Rice Husk

    Directory of Open Access Journals (Sweden)

    Muqing Qiu

    2015-08-01

    Full Text Available In this study, the modified activated carbon from rice husk is used as the low cost material to absorb dye Methyl Orange in aqueous solution. The effects of different process parameters like pH, initial dye concentration and contact time on the adsorption of dye are investigated. The kinetic data of adsorption studies are discussed by the pseudo first-order, pseudo second-order and intraparticle diffusion. The results were shown that the adsorption process is chemisorption, which involves a sharing of electrons between the adsorbate and the surface of the adsorbent.

  15. Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms

    OpenAIRE

    Heibati, B.; Rodriguez-Couto, S.; Amrane, A; M. Rafatullah; Hawari, A.; Al-Ghouti, M. A.

    2014-01-01

    The potential of using pumice and walnut wood activated carbon as low-cost adsorbents for the removal of the diazo dye Reactive Black 5 (RB5) from aqueous solutions was investigated. The Langmuir isotherm fit to the data specified the presence of two different natures of adsorption sites with different binding energies on the AC-W surface. Kinetic modelling showed that the adsorption behaviour and mechanism of RB5 for both adsorbents is believed to happen via surface adsorption followed by di...

  16. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    Institute of Scientific and Technical Information of China (English)

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui

    2008-01-01

    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  17. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  18. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ACTIVATED CARBON PRODUCED FROM SOYBEAN OIL CAKE BY KOH ACTIVATION

    OpenAIRE

    Turgay Tay; Murat Erdem; Burak Ceylan,; Selhan Karagöz

    2012-01-01

    This study presents the adsorption behavior of the methylene blue (MB) dye onto the activated carbon produced from soybean oil cake by chemical activation with KOH at 800 °C. The adsorption isotherms, kinetic models, and thermodynamic parameters of the adsorption were studied. The Langmuir isotherm showed a better fit than the Freundlich isotherm. The adsorption rate was described by pseudo-second-order kinetics. The negative values of ΔG° and the positive values of ΔH° indicate that the adso...

  19. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, K.D.

    1999-10-01

    The effect of anodic surface treatment of activated carbon on adsorption and ion exchange characteristics was investigated in the condition of 35 wt% NaOH electrolyte for 60 s. The acid and base values were determined by a titration technique, and surface and pore structures were studied in terms of BET volumetric measurement with N{sub 2} adsorption. The ion exchange capacity of the anodized activated carbons was characterized by a dry weight capacity technique. It was observed that an increase in current intensity leads to an increase in the surface functional groups of activated carbons, resulting in increasing pH, acid-base values, and anion-cation exchange capacities, without significant change of surface and pore structures (i.e., specific surface area, total pore volume, micropore volume, and average pore diameter). Also, anodically treated activated carbons are more effectively evaluated on the base value or cation exchange capacity than on the oppose properties in this electrolytic system.

  20. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    Science.gov (United States)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  1. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando M.; Bergmann, Carlos P. [Department of Material, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha 99, Laboratory 705C, ZIP 90035-190, Porto Alegre, RS (Brazil); Fernandes, Thais H.M. [Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, Postal Box 15003, ZIP 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, Postal Box 15003, ZIP 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Calvete, Tatiana [Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, Postal Box 15003, ZIP 91501-970, Porto Alegre, RS (Brazil); Fagan, Solange B. [Department of Nanoscience, UNIFRA, R. dos Andradas 1614, ZIP 97010-032, Santa Maria, RS (Brazil)

    2011-09-15

    Highlights: {yields} Multi-wall carbon nanotube (MWCNT) and powdered activated carbon (PAC) adsorbents. {yields} Reactive Red M-2BE textile dye adsorbate. {yields} Kinetics was followed by Avrami fractional-order. {yields} The maximum adsorption capacities were 335.7 and 260.7 mg g{sup -1} for MWCNT and PAC. {yields} Synthetic effluents treatment. - Abstract: Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N{sub 2} adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298 K was fixed at 1 h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323 K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment.

  2. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    Science.gov (United States)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  3. Effects of temperature and volumetric loading rate on phenol adsorption capacity by granular activated carbon

    Directory of Open Access Journals (Sweden)

    Bamrungsri, P.

    2004-02-01

    Full Text Available The effects of temperature and volumetric loading rate on adsorption capacity of phenol by granular activated carbon were studied using F-300 and C2-115 granular activated carbon. All the experiments were conducted both in a batch study and a fixed-bed adsorption column study with the initial phenol concentration of 10 mg/l. In the batch study, the effects of temperature on the adsorption capacity and the rate of adsorption were determined. The results from the batch study showed that the rate of adsorption of F-300 was higher than that of C2-115. Moreover, it was clearly shown that the adsorption capacity increased with increasing temperature in both types of activated carbon at a contact time of 5 hours. In addition, the results from the fixed-bed column study revealed that the adsorption capacity decreased with increasing volumetric loading rate. Regression analysis expressed that the constants of Bohart-Adams Model ( K at volumetric loading rate of 2.5 , 5.0 and 10.0 m3/m2-hr were 0.0027 , 0.0063 and 0.0128 l/mg-hr for F-300 and 0.0021, 0.0071 and 0.0127 l/mg-hr for C2-115, respectively. N0 constant at volumetric loading rates of 2.5, 5.0 and 10.0 m3/ m2-hr were 30,393, 19,502 and 13,997 mg/l for F-300 and 27,752, 13,873 and 10,535 mg/l for C2-115, respectively. Thus, it can be summarized that the performance of F-300 was higher than that of C2-115 activated carbon at the studied conditions.

  4. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  5. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    Science.gov (United States)

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures. PMID:24784997

  6. Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon.

    Science.gov (United States)

    Ocampo-Pérez, Raúl; Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Méndez-Díaz, José D; Sánchez-Polo, Manuel

    2012-11-01

    The overall adsorption rate of single micropollutants present in landfill leachates such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two commercial activated carbons was studied. The experimental data obtained were interpreted by using a diffusional model (PVSDM) that considers external mass transport, intraparticle diffusion, and adsorption on an active site. Furthermore, the concentration decay data were interpreted by using kinetics models. Results revealed that PVSDM model satisfactorily fitted the experimental data of adsorption rate on activated carbon. The tortuosity factor of the activated carbons used ranged from 2 to 4. The contribution of pore volume diffusion represented more than 92% of intraparticle diffusion confirming that pore volume diffusion is the controlling mechanism of the overall rate of adsorption and surface diffusion can be neglected. The experimental data were satisfactorily fitted the kinetic models. The second-order kinetic model was better fitted the experimental adsorption data than the first-order model. PMID:22858399

  7. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Sakamoto, Asuka; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku; Shirasaki, Nobutaka; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2014-09-16

    Decreasing the particle size of powdered activated carbon may enhance its equilibrium adsorption capacity for small molecules and micropollutants, such as 2-methylisoborneol (MIB) and geosmin, as well as for macromolecules and natural organic matter. Shell adsorption, in which adsorbates do not completely penetrate the adsorbent but instead preferentially adsorb near the outer surface of the adsorbent, may explain this enhancement in equilibrium adsorption capacity. Here, we used isotope microscopy and deuterium-doped MIB and geosmin to directly visualize the solid-phase adsorbate concentration profiles of MIB and geosmin in carbon particles. The deuterium/hydrogen ratio, which we used as an index of the solid-phase concentration of MIB and geosmin, was higher in the shell region than in the inner region of carbon particles. Solid-phase concentrations of MIB and geosmin obtained from the deuterium/hydrogen ratio roughly agreed with those predicted by shell adsorption model analyses of isotherm data. The direct visualization of the localization of micropollutant adsorbates in activated carbon particles provided direct evidence of shell adsorption. PMID:25162630

  8. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Directory of Open Access Journals (Sweden)

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  9. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    Science.gov (United States)

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180. PMID:19295102

  10. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    Science.gov (United States)

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  11. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    Science.gov (United States)

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  12. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon.

    Science.gov (United States)

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-07-30

    Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (30kDa) had much less effect on PFC adsorption capacity. PMID:22609392

  13. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    Science.gov (United States)

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. PMID:24463242

  14. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    Science.gov (United States)

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions.

  15. Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant Kd was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants and isotherms, respectively. The average change of standard adsorption heat ΔHo is -25.29 kJ/mol. Negative ΔHo and ΔGo values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy ΔSo is also negative, which suggests a decrease in the freedom of the system.

  16. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed

    Directory of Open Access Journals (Sweden)

    Nelson Giovanny Rincón-Silva

    2015-01-01

    Full Text Available Activated carbons from shell eucalyptus (Eucalyptus globulus were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1 and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.

  17. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  18. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian;

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...

  19. Condensate water treatment by adsorption onto an activated carbon grade with high-activity and low-silicate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Herzer, J. [NORIT Germany, Kempen (Germany); Ernhofer, R. [BAYERNOIL Refineries, Ingolstadt (Germany); Dikkenberg, J. van den [NORIT Activated Carbon, Amersfoort (Netherlands)

    2006-07-01

    Granular activated carbon (GAC) is frequently used to remove dissolved organic impurities from condensate water. An optimal adsorption capacity and GAC life time are achieved by matching the size of the target organics versus the pore size distribution of the activated carbon. From a product range of over 150 activated carbon grades, eight different NORIT GAC types are available for condensate water polishing. Differences between these grades apply to adsorption properties, hydraulic properties and purity. Guidelines for design and operation of the GAC stage are provided. (orig.)

  20. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    Directory of Open Access Journals (Sweden)

    Y. S. Mohammad

    2014-01-01

    Full Text Available Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.

  1. Batch Study for Insecticide Carbofuran Adsorption onto Palm-Oil-Fronds-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Jassem M. Salman

    2013-01-01

    Full Text Available The adsorption of insecticide, carbofuran from aqueous solution onto activated carbon derived from palm oil fronds (PFAC was investigated through batch study. The effects of both initial concentration and pH of the carbofuran over the range of 25 to 250 mg/L and 2 to 12, respectively, on the adsorption of the prepared PFAC were studied in batch experiments. Equilibrium data were fitted to the Langmuir, the Freundlich, and the Temkin isotherm models. The results obtained from application of these models show that the best fits were achieved with the Langmuir model, and a maximum monolayer adsorption capacity of 164 mg/g was obtained at 30°C. The regeneration efficiency of spent activated carbon was studied and it was found to be 90.0–96.4%. The results indicated that PFAC has good capability as adsorbent for the removal of carbofuran from aqueous solutions.

  2. Adsorption of iron (III ion on activated carbons obtained from bagasse, pericarp of rubber fruit and coconut shell

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2002-04-01

    Full Text Available The adsorptions of iron (III from aqueous solution at room temperature on activated carbons obtaining from bagasse, pericarp of rubber fruit and coconut shell have been studied by atomic absorption spectrophotometry. The activated carbons were prepared by carbonization of these raw materials and followed by activation with ZnCl2 . The adsorption behavior of iron (III on these activated carbons could be interpreted by Langmuir adsorption isotherm as monolayer coverage. The maximum amounts of iron (III adsorbed per gram of these activated carbons were 0.66 mmol/g, 0.41 mmol/g and 0.18 mmol/g, respectively. Study of the temperature dependence on these adsorptions has revealed them to be exothermic processes with the heats of adsorption of about -8.9 kJ/mol , -9.7 kJ/mol and -5.7 kJ/mol for bagasse, pericarp of rubber fruit and coconut shell, respectively.

  3. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  4. Kinetics of adsorption of di-n-butyl phthalate (DBP) by four different granule-activated carbons

    Institute of Scientific and Technical Information of China (English)

    Po keung TSANG; Zhanqiang FANG; Hui LIU; Xiaolei CHEN

    2008-01-01

    The kinetics of the adsorption of an endocrine disruptor,di,n,butyl phthalate (DBP),by four different granulated,activated carbons (GACs) is presented in this paper. Results showed that adsorption of DBP by the four GACs followed first,order kinetics and the adsorption constant of the four GAC was found to follow the order:nut shell>coconut shell>Coaly carbon 1.0>Coaly carbon 1.5. Batch adsorption studies were also conducted to investigate the effect of pH on the adsorption process. The optimum pH for the removal of DBP from aqueous solutions under the experimental conditions used in this work was found to be 5.0. The characterization of the carbon surfaces was conducted by using scanning electron microscopy (SEM). Furthermore,results from infrared spectroscopic (IR) studies showed that physical adsorption plays an important role in the adsorption of DBP by the four selected GACs.

  5. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  6. Use of activated carbon adsorption in conjunction with radiation treatment processes

    International Nuclear Information System (INIS)

    This report presents the results of an assessment of the potential applications of combined adsorption-irradiation treatment processes. The rationale for the study was to determine whether the cost of radiation treatment could be reduced by concentrating target species on an adsorbent in the radiation field. Several different studies on adsorption-irradiation treatment were identified in the literature, and experimental work was done on both the conversion of sulphur dioxide to elemental sulphur, and the removal of trihalomethanes from water by adsorption on activated carbon and subsequent irradiation. Adsorption-irradiation treatment would appear to be less costly than irradiation alone for radiolytic decomposition of target species at low concentration in liquid streams, in the presence of high-surface-area, electrically insulating adsorbents. 116 refs

  7. Characterization and adsorption behavior of a novel triolein-embedded activated carbon composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    RU Jia; LIU Huijuan; QU Jiuhui; WANG Aimin; DAI Ruihua

    2005-01-01

    A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemical properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204 μg·L-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.

  8. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu, C.X.; Zhou, J.S.; Luo, Z.Y.; He, S.; Wang, G.K.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2006-07-01

    Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was investigated. Both MnO{sub 2}-AC and FeCl{sub 3}-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO{sub 4}{sup -}, Mn{sup 4+}, NO{sub 3}{sup -}, Fe{sup 3+} Cl{sup -}, etc. The Hg sorption capacity on MnO{sub 2}-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied. It was found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could be concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.

  9. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon

    Institute of Scientific and Technical Information of China (English)

    HU Chang-xing; ZHOU Jin-song; LUO Zhong-yang; HE Sheng; WANG Guang-kai; CEN Ke-fa

    2006-01-01

    Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was inrestigated. Both MnO2-AC and FeCl3-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO4-, Mn4+, O, NO3-, Fe3+, Cl-, etc. The Hg sorption capacity on MnO2-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied, it found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.

  10. Adsorption and desorption of mixtures of organic vapors on beaded activated carbon.

    Science.gov (United States)

    Wang, Haiyan; Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2012-08-01

    In this study, adsorption and desorption of mixtures of organic compounds commonly emitted from automotive painting operations were experimentally studied. A mixture of two alkanes and a mixture of eight organic compounds were adsorbed onto beaded activated carbon (BAC) and then thermally desorbed under nitrogen. Following both adsorption and regeneration, samples of the BAC were chemically extracted. Gas chromatography-mass spectrometry (GC-MS) was used to quantify the compounds in the adsorption and desorption gas streams and in the BAC extracts. In general, for both adsorbate mixtures, competitive adsorption resulted in displacing low boiling point compounds by high boiling point compounds during adsorption. In addition to boiling point, adsorbate structure and functionality affected adsorption dynamics. High boiling point compounds such as n-decane and 2,2-dimethylpropylbenzene were not completely desorbed after three hours regeneration at 288 °C indicating that these two compounds contributed to heel accumulation on the BAC. Additional compounds not present in the mixtures were detected in the extract of regenerated BAC possibly due to decomposition or other reactions during regeneration. Closure analysis based on breakthrough curves, solvent extraction of BAC and mass balance on the reactor provided consistent results of the amount of adsorbates on the BAC after adsorption and/or regeneration. PMID:22742925

  11. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    OpenAIRE

    Liu Qiang; Ke Ming; Yu Pei; Hu Hai Qiang; Yan Xi Ming

    2016-01-01

    Coconut shell-based activated carbon (CAC) was used for the removal of methyl mercaptan (MM). CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high c...

  12. Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons

    OpenAIRE

    Matsui, Yoshihiko; Yoshida, Tomoaki; Nakao, Soichi; Knappe, Detlef R. U.; Matsushita, Taku

    2012-01-01

    When treating water with activated carbon, natural organic matter (NOM) is not only a target for adsorptive removal but also an inhibitory substance that reduces the removal efficiency of trace compounds, such as 2-methylisoborneol (MIB), through adsorption competition. Recently, superfine (submicron-sized) activated carbon (SPAC) was developed by wet-milling commercially available powdered activated carbon (PAC) to a smaller particle size. It was reported that SPAC has a larger NOM adsorptio...

  13. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    Science.gov (United States)

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested. PMID:23911830

  14. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  15. CO(2) adsorption on supported molecular amidine systems on activated carbon.

    Science.gov (United States)

    Alesi, W Richard; Gray, McMahan; Kitchin, John R

    2010-08-23

    The CO(2) capture capacities for typical flue gas capture and regeneration conditions of two tertiary amidine N-methyltetrahydropyrimidine (MTHP) derivatives supported on activated carbon were determined through temperature-controlled packed-bed reactor experiments. Adsorption-desorption experiments were conducted at initial adsorption temperatures ranging from 29 degrees C to 50 degrees C with temperature-programmed regeneration under an inert purge stream. In addition to the capture capacity of each amine, the efficiencies at which the amidines interact with CO(2) were determined. Capture capacities were obtained for 1,5-diazo-bicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) supported on activated carbon at a loading of approximately 2.7 mol amidine per kg of sorbent. Moisture was found to be essential for CO(2) capture on the amidines, but parasitic moisture sorption on the activated carbon ultimately limited the capture capacities. DBN was shown to have a higher capture capacity of 0.8 mol CO(2) per kg of sorbent and an efficiency of 0.30 mol CO(2) per mol of amidine at an adsorption temperature of 29 degrees C compared to DBU. The results of these experiments were then used in conjunction with a single-site adsorption model to derive the Gibbs free energy for the capture reaction, which can provide information about the suitability of the sorbent under different operating conditions. PMID:20730982

  16. Removal of Bi(Ⅲ) with Adsorption Technique Using Coconut Shell Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    SARTAPE Ashish; MANDHARE Aniruddha; SALVI Prathmesh; PAWAR Dattatraya; RAUT Prakash; ANUSE Mansing; KOLEKAR Sanjay

    2012-01-01

    In present study,we report the preparation of coconut shell activated carbon as adsorbent and its appli-cation for Bi(Ⅲ) removal from aqueous solutions.The developed adsorbent was characterized with scanning elec-tron microscope(SEM),Fourier Transform Infrared(FTIR),C,H,N,S analyzer,and BET surface area analyzer.The parameters examined include agitation time,initial concentration of Bi(Ⅲ),adsorbent dose and temperature.The maximum adsorption of Bi(Ⅲ)(98.72%) was observed at 250 mg·L-1 of Bi(Ⅲ) and adsorbent dose of 0.7 g when agitation was at 160 r·min-1 for 240 min at(299±2) K.The thermodynamic parameters such as Gibb's free energy(△Gθ),enthalpy(△Hθ) and entropy(△Sθ) were evaluated.For the isotherm models applied to adsorption study,the Langmuir isotherm model fits better than the Freundlich isotherm.The maximum adsorption capacity from the Langmuir isotherm was 54.35 mg?g?1 of Bi(Ⅲ).The kinetic study of the adsorption shows that the pseudo second order model is more appropriate than the pseudo first order model.The result shows that,coconut shell ac-tivated carbon is an effective adsorbent to remove Bi(Ⅲ) from aqueous solutions with good adsorption capacity.

  17. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    Science.gov (United States)

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate. PMID:27107386

  18. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay

    Energy Technology Data Exchange (ETDEWEB)

    Wasewar, Kailas L. [Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra (India); Kumar, Pradeep; Teng, Tjoon Tow [Environmental Technology Division, School of Industrial Technology, University Science of Malaysia, Minden, Penang (Malaysia); Chand, Shri; Padmini, Bina N. [Department of Chemical Engineering, Indian Institute of Technology, Roorkee (India)

    2010-07-15

    The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A-clay). GAC was of commercial grade where as the A-clay was prepared by acid treatment of clay with 1 mol/L of H{sub 2}SO{sub 4}. Bulk densities of A-clay and GAC were 1132 and 599 kg/m{sup 3}, respectively. The surface areas were 358 m{sup 2}/g for GAC and 90 m{sup 2}/g for A-clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A-clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A-clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Effect of Na+ impregnated activated carbon on the adsorption of NH+4-N from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Mo Shi; Zhengfang Wang; Zheng Zheng

    2013-01-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na,respectively),were used as adsorbents to remove NH4+-N.The surface features of samples were investigated by BET,SEM,XRD and FT-IR.The adsorption experiments were conducted in equilibrium and kinetic conditions.Influencing factors such as initial solution pH and initial concentration were investigated.A possible mechanism was proposed.Results showed that optimal NH4+-N removal efficiency was achieved at a neutral pH condition for the modified ACs.The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study.The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model.Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment,especially oxidation by nitric acid,thus increasing the removal efficiency of the modified ACs for NH4+-N.Na+-impregnated ACs had a higher removal capability in removing NH4+-N than unmodified AC,possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion.The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4+-N adsorption on the active homogenous sites within the adsorbents.The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism.The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  20. Enhancing activated carbon adsorption of 2-methylisoborneol: methane and steam treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kirk O. Nowack; Fred S. Cannon; David W. Mazyck [Pennsylvania State University, University Park, PA (United States). Department of Civil and Environmental Engineering

    2004-01-01

    This research investigated methods for tailoring a commercial, lignite-based granular activated carbon (GAC) to enhance its adsorption of 2-methylisoborneol (MIB) from natural water. Tailoring efforts focused on heat treatments in gas environments comprising steam and/or methane, since these gases can alter GAC pore structure and surface chemistry. Heat treatments that combined methane and steam enhanced MIB adsorption considerably, causing a 4-fold improvement (over untreated GAC) in fixed-bed adsorption performance relative to initial MIB breakthrough. These favorable effects, observed in rapid small-scale column tests, occurred following simultaneous and separate (sequential) applications of methane and steam. Moderately low temperature steam treatments also improved MIB uptake in fixed-bed adsorption tests but to a lesser extent (approximately 1.5-fold). In contrast, methane treatments alone, at various temperatures, led to significant carbon deposition within the GAC pore structure. As a result, total pore volume was reduced and MIB adsorption performance declined. 62 refs., 9 figs., 2 tabs.

  1. Nomographs for soil vapor extraction and off-gas treatment by activated carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Egemen, E.; Nirmalakhandan, N. [New Mexico State Univ., Las Cruces, NM (United States). Civil, Agricultural, and Geological Engineering Dept.

    1997-12-31

    Soil vapor extraction (SVE) is a widely accepted in-place treatment technology that uses forced air to remove contaminant vapors from zones of permeable vapor flow, thereby enhancing the volatilization of contaminants from the subsurface. The resulting off-gases are contaminated with volatiles and semi-volatiles and have to treated by catalytic or thermal destruction systems, activated carbon adsorbers, or bioreactors. Of these, activated carbon adsorption is the most commonly used technology. From the theoretical foundation of SVE and carbon adsorption, two nomographs were developed for remedial investigation, feasibility studies, planning, operation, and preliminary design purposes. An advantage of such nomographs is that they graphically indicate the sensitivity of the remediation process to different design parameters and critical ranges within a given parameter. In effect, nomographs can help to foster an intuitive understanding of the SVE and adsorption processes itself, which is of considerable value to a process engineer. In addition, such a nomograph provides a utilitarian resource to those who do not have direct access to a comparable computer model. The purpose of this paper is to present the design equations and their use in the development of nomographs for the design of SVE systems and treatment of contaminated air streams by activated carbon canisters.

  2. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  3. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  4. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    Science.gov (United States)

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  5. Carbon dioxide adsorption and activation on Ceria (110): A density functional theory study

    CERN Document Server

    Cheng, Zhuo; Lo, Cynthia S

    2012-01-01

    Ceria (CeO2) is a promising catalyst for the reduction of carbon dioxide (CO2) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO2 adsorption and initial activation on CeO2 surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (DFT+U), to explore various adsorption sites and configurations for CO2 on stoichiometric and reduced CeO2 (110). Our model of reduced CeO2 (110) contains oxygen vacancies at the topmost atomic layer and undergoes surface reconstruction upon introduction of these vacancies. We find that CO2 adsorption on reduced CeO2 (110) is thermodynamically favored over the corresponding adsorption on stoichiometric CeO2 (110). The most stable adsorption configuration consists of CO2 adsorbed parallel to the reduced CeO2 (110) surface, with the molecule situated near the site of the oxygen vacancy. Structural changes in the CO2 molecule are also observed upon adsorption, so t...

  6. Experimental study on high-pressure adsorption of hydrogen on activated carbon

    Institute of Scientific and Technical Information of China (English)

    周亚平; 周理

    1996-01-01

    A systematic measurement of H2 adsorption on activated carbon over a wide scope of conditions was completed for the first time using a novel cryostat developed by the present authors. The equilibrium temperatures covered 77-298 K with the space of about 20 K, and the equilibrium pressures increased from 0 to about 7MPa. A set of adsorption/desorption isotherms was obtained by a standard volumetric method. This set of experimental data was fitted to all the well-known models of type-I isotherms, and Dubinin-Astakhov (D-A) equation was found to be the best-fit one On the basis of D-A model one can predict adsorption with relative error of ±4%. A 3-dimensional adsorption surface was also constructed, and the isosteric heat of adsorption was analytically determined. Except in the low pressure area, the calculated values agreed well with the experimental ones. Finally, the troubles encountered in applying D-A equation to supercritical adsorption is discussed.

  7. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    Science.gov (United States)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  8. Adsorption isotherms and kinetics for dibenzothiophene on activated carbon and carbon nanotube doped with nickel oxide nanoparticles

    Indian Academy of Sciences (India)

    MAZEN K NAZAL; GHASSAN A OWEIMREEN; MAZEN KHALED; MUATAZ A ATIEH; ISAM H ALJUNDI; ABDALLA M ABULKIBASH

    2016-04-01

    Activated carbon (AC) and multiwall carbon nanotubes (CNT) doped with 1, 5 and 10% Ni in the form of nickel oxide nanoparticles were prepared using the wetness impregnation method. These percentages were denoted by the endings NI1, NI5 and NI10 in the notations ACNI1, ACNI5, ACNI10 and CNTNI1, CNTNI5, CNTNIL10, respectively. The physicochemical properties for these adsorbents were characterized using N$_2$ adsorption–desorption surface area analyzer, thermal gravimetric analysis (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy, field-emission transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectrometre. Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for DBT was $74\\pm 5$ mg g$^{−1}$ on ACNI5; the maximum adsorption capacities of the other adsorbents followed the trend ${\\rm ACNI1 > ACNI10 > AC > CNTNI5 > CNTNI1 > CNTNI10 > CNT}$. The adsorption rates for DBT and thiophene followed pseudo-second-order kinetics. The selective removal by these adsorbents of DBT relative to thiophene and naphthalene was evaluated. The adsorbents’ reusability and the effect of the percentage of aromaticcompounds on their adsorption capacity were also reported.

  9. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    Science.gov (United States)

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  10. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste

    Institute of Scientific and Technical Information of China (English)

    HUANG Yaji; JIN Baosheng; ZHONG Zhaoping; ZHONG Wenqi; XIAO Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal.A three-stage activation process (drying at 200℃,pyrolysis in N2 atmosphere,followed by CO2 activation) was used for the production of activated samples.The effects of carbonization temperature (400-600 ℃),activation temperature (700-900 ℃),and activation time (1-2.5 h) on the physicochemieal properties (weight-loss and BET surface) of the prepared carbon were investigated.Adsorptive removal of mercury from real flue gas onto activated carbon has been studied.The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (HgV:38.7% vs.53.5%,HgO:50.5% vs.68.8%),although its surface area is around 10 times smaller,89.5 m2/g vs.862 m2/g.The low cost activated carbon can be produced from chicken waste,and the procedure is suitable.

  11. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine

    International Nuclear Information System (INIS)

    Highlights: • The impregnated coal-based activated carbons as adsorbent for removing methyl iodide. • The coal-based activated carbons to remove stable iodine. • Iodine residues are under 0.5 μg/ml after adsorption treatment. • The decontamination factor is much higher than 1000. - Abstract: Nuclear power plant, nuclear reactors and nuclear powered ship exhaust contains a large amount of gaseous radioactive iodine, and can damage to the workplace and the surrounding environment. The quantitative test to remove methyl iodide and the qualitative test for removing stable iodine were investigated using the impregnated coal-based activated carbons and coal-based activated carbons as adsorbents. The research conducted in this work shows that iodine residues were under 0.5 μg/ml after adsorption treatment and the decontamination factor of the coal-based activated carbon for removing the stable iodine was more than 1000, which can achieve the purpose of removing harmful iodine, and satisfy the requirement of gaseous waste treatment of nuclear powered vessel and other nuclear plants

  12. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    KAUST Repository

    Rahman, Kazi Afzalur

    2010-11-11

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study adsorbed natural gas (ANG) storage systems when the low temperature natural gas regasified from the liquid phase is considered to charge in the storage chamber. Adsorption parameters were evaluated from the isotherm data using the Tóth and Dubinin-Astakhov models. The isosteric heat of adsorption, which is concentration- and temperature-dependent, is extracted from the data. The Henry\\'s law coefficients for the methane/Maxsorb III pairs are evaluated at various temperatures. © 2010 American Chemical Society.

  13. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    OpenAIRE

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  14. Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers

    OpenAIRE

    Eden Cavalcanti de Albuquerque Júnior; Manoel Orlando Alvarez Méndez; Aparecido dos Reis Coutinho; Telma Teixeira Franco

    2008-01-01

    Natural fibers from macadamia nut shell, dried coconut shell endocarp, unripe coconut mesocarp, sugarcane bagasse and pine wood residue were used to prepare activated carbon fibers (ACF) with potential application for removing microcystins. The ACF from pine wood and sugar cane bagasse were used to remove [D-Leucine¹]MCYST-LR from water. After 10 minutes of contact time, more than 98% of toxin was removed by the ACF. The microcystin adsorption monolayer, q m, in the ACF recovered 200 and 161 ...

  15. Removal of Triclocarban (TCC) and Diethyl Phthalate (DEP) from Greywater by Adsorption onto Activated Carbon

    OpenAIRE

    Skår, Ingrid Frogner

    2014-01-01

    This Thesis is based on the findings from my specialization project, where an investigation of priority micropollutants in greywater from PCPs was conducted (Skår, 2013). The objective of the Master Thesis was to select two or three compounds from the list of priority compounds that was suitable for analyzing and monitoring in a greywater recycling scheme, and investigate the removal of those compounds with adsorption onto activated carbon. This was done by performing kinetic and isothe...

  16. Adsorption of mercury (II) from liquid solutions using modified activated carbons

    OpenAIRE

    Hugo Soé Silva; Silvia Virginia Ruiz; Dolly Lucía Granados; Juan Manuel Santángelo

    2010-01-01

    Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent...

  17. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    Science.gov (United States)

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  18. Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    董亚楠; 苏延磊; 陈文娟; 彭金明; 张岩; 姜忠义

    2011-01-01

    In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.

  19. Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers

    Directory of Open Access Journals (Sweden)

    Eden Cavalcanti de Albuquerque Júnior

    2008-09-01

    Full Text Available Natural fibers from macadamia nut shell, dried coconut shell endocarp, unripe coconut mesocarp, sugarcane bagasse and pine wood residue were used to prepare activated carbon fibers (ACF with potential application for removing microcystins. The ACF from pine wood and sugar cane bagasse were used to remove [D-Leucine¹]MCYST-LR from water. After 10 minutes of contact time, more than 98% of toxin was removed by the ACF. The microcystin adsorption monolayer, q m, in the ACF recovered 200 and 161 µg.mg-1, with the Langmuir adsorption constant, K L, of 2.33 and 1.23 L.mg-1. Adsorption of [D-Leucine¹]MCYST-LR in continuous process was studied for a fixed-bed ACF prepared from coconut shell and sugar cane bagasse and for two commercial activated carbon samples from treatment water plants of two Brazilian hemodialysis centers. Saturation of the beds occurred after 80 to 320 minutes, and the adsorption capacity for that toxin varied from 4.11 to 12.82 µg.mg-1.

  20. Self-flocculated powdered activated carbon with different oxidation methods and their influence on adsorption behavior.

    Science.gov (United States)

    Gong, Zailin; Li, Shujin; Ma, Jun; Zhang, Xiangdong

    2016-03-01

    The commercial powdered activated carbon (PAC) has been selectively oxidized by two methods. The two oxidized methods are wet oxidation with ammonium persulfate and thermal treatment after acidification with hydrochloride acid, respectively. The two oxidized PAC were then functionalized with thermoresponsive poly (N-isopropylacrylamide) (PNIPAM) in aqueous solution at ambient temperature. Comparing the two oxidized PAC products and their grafted derivatives, the oxidized PAC modified with thermal treatment after acidification shows larger surface area of 1184 m(2)/g and better adsorption of bisphenol A. Its derivative also exhibits relatively large surface area and adsorption capacity after grafted with PNIPAM. The maximum surface adsorption capacity simulated under Langmuir Models reached 156 mg/g. In addition, the grafted PAC products show self-flocculation behaviors with rapid response to temperature because of the thermal phase transition and entanglement behaviors of PNIPAM. The present study provides a new way to obtain carboxyl-rich activated carbon with large surface area and better adsorption capacity. The retrievable grafted PAC with good self-flocculation effect responsive to temperature will have high potential application in water remediation which requires pre-heating and emergency water treatment in the wild. PMID:26551226

  1. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption.

    Science.gov (United States)

    Beita-Sandí, Wilson; Ersan, Mahmut Selim; Uzun, Habibullah; Karanfil, Tanju

    2016-01-01

    The main objective of this study was to examine the roles of powdered activated carbon (PAC) characteristics (i.e., surface chemistry, pore size distribution, and surface area) in the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) in surface and wastewater-impacted waters. Also, the effects of natural attenuation of NDMA precursors in surface waters, NDMA FP concentration, and carbon dose on the removal of NDMA FP by PAC were evaluated. Finally, the removal of NDMA FP by PAC at two full-scale DWTPs was monitored. Wastewater-impacted and surface water samples were collected to conduct adsorption experiments using different PACs and activated carbon fibers (ACFs) with a wide range of physicochemical characteristics. The removal efficiency of NDMA FP by PAC was significantly higher in wastewater-impacted than surface waters. Adsorbable NDMA precursors showed a size distribution in the waters tested; the adsorbable fraction included precursors accessing the pore size regions of 10-20 Å and carbons showed higher removal of NDMA FP than acidic carbons on a surface area basis. The overall removal of NDMA FP by PAC on a mass basis depended on the surface area, pore size distribution and pHPZC. Thus, PACs with hybrid characteristics (micro and mesoporous), higher surface areas, and basic surface chemistry are more likely to be effective for NDMA precursor control by PAC adsorption. The application of PAC in DWTPs for taste and odor control resulted in an additional 20% removal of NDMA FP for the PAC doses of 7-10 mg/L. The natural attenuation of NDMA precursors through a combination of processes (biodegradation, photolysis and adsorption) decreased their adsorbability and removal by PAC adsorption. PMID:26584342

  2. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    Science.gov (United States)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  3. Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons.

    Science.gov (United States)

    Matsui, Yoshihiko; Yoshida, Tomoaki; Nakao, Soichi; Knappe, Detlef R U; Matsushita, Taku

    2012-10-01

    When treating water with activated carbon, natural organic matter (NOM) is not only a target for adsorptive removal but also an inhibitory substance that reduces the removal efficiency of trace compounds, such as 2-methylisoborneol (MIB), through adsorption competition. Recently, superfine (submicron-sized) activated carbon (SPAC) was developed by wet-milling commercially available powdered activated carbon (PAC) to a smaller particle size. It was reported that SPAC has a larger NOM adsorption capacity than PAC because NOM mainly adsorbs close to the external adsorbent particle surface (shell adsorption mechanism). Thus, SPAC with its larger specific external surface area can adsorb more NOM than PAC. The effect of higher NOM uptake on the adsorptive removal of MIB has, however, not been investigated. Results of this study show that adsorption competition between NOM and MIB did not increase when NOM uptake increased due to carbon size reduction; i.e., the increased NOM uptake by SPAC did not result in a decrease in MIB adsorption capacity beyond that obtained as a result of NOM adsorption by PAC. A simple estimation method for determining the adsorbed amount of competing NOM (NOM that reduces MIB adsorption) is presented based on the simplified equivalent background compound (EBC) method. Furthermore, the mechanism of adsorption competition is discussed based on results obtained with the simplified EBC method and the shell adsorption mechanism. Competing NOM, which likely comprises a small portion of NOM, adsorbs in internal pores of activated carbon particles as MIB does, thereby reducing the MIB adsorption capacity to a similar extent regardless of adsorbent particle size. SPAC application can be advantageous because enhanced NOM removal does not translate into less effective removal of MIB. Molecular size distribution data of NOM suggest that the competing NOM has a molecular weight similar to that of the target compound. PMID:22763287

  4. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  5. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  6. Geosmin and 2-methylisoborneol adsorption on super-powdered activated carbon in the presence of natural organic matter.

    Science.gov (United States)

    Matsui, Y; Nakano, Y; Hiroshi, H; Ando, N; Matsushita, T; Ohno, K

    2010-01-01

    Geosmin and 2-methylisoborneol (2-MIB) are naturally occurring compounds responsible for musty-earthy-odors in surface water supplies. They are a severe problem confronting utilities worldwide. Adsorption by powdered activated carbon (PAC) is a widely used process to control this problem, but it has low efficiency, which engenders large budget spending for utilities services. Super-powdered activated carbon (S-PAC) is activated carbon with much finer particles than those of PAC. Experiments on geosmin and 2-MIB adsorptions on S-PAC and PAC were conducted. Geosmin and 2-MIB adsorption capacities on S-PAC were not smaller than those on PAC although natural organic matter, which adversely impacted the adsorption capacity of geosmin and 2-MIB, was more adsorbed on S-PAC than on PAC, meaning that the adsorption competition is less severe for S-PAC than for PAC.

  7. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  8. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS)

    Science.gov (United States)

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    A series of activated carbon fibers (ACFs) and heat-treated oxidized ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore surface chemistry and pore volume for the adsorption of SO2 and its catalytic conversion to H2SO4. For untreated ACFs, the initial rate of SO2 adsorption from flue gas was shown to be inversely related to pore size. At longer times, the amount of SO2 adsorbed from flue gas was dependent on both the pore size and pore volume. Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper. ?? 1997 Elsevier Science Ltd. All rights reserved.

  9. Adsorption behaviour of aromatic in different activated carbon: (Frendlich and Langmuir models)

    International Nuclear Information System (INIS)

    Adsorption behavior of p-Cresol, Benzoic acid and nitrobenzene on the two different activated carbons was carried out at 301 K and at controlled ph conditions. In acidic conditions, well below the pKa of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent on adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular form of the aromatic solute was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher ph values was found to be dependent on the concentration of anionic form of the solutes. All isotherms on the F 100 and S E I were fitted into Langmuir and Freundlich isotherm Equations, respectively to find the relative factors

  10. Kinetics of enhanced adsorption by polarization for organic pollutants on activated carbon fiber

    Institute of Scientific and Technical Information of China (English)

    HAN Yanhe; QUAN Xie; ZHAO Huimin; CHEN Shuo; ZHAO Yazhi

    2007-01-01

    The adsorption kinetics for model pollutants on activated carbon fiber(ACF)by polarization was investigated in this work.Kinetics data obtained for the adsorption of these model pollutants at open-circuit.400 mV,and -400 mV polarization were applied to the Lagergren equation,and adsorption rate constants(Ka)were determined.With the anodic polarization of 400 mV,the capacity of sodium phenoxide was increased from 0.0083 mmol/g at open circuit to 0.18 mmol/g,and a 17-fold enhancement was achieved;however,the capacity of p-nitrophenol was decreased from 2.93 mmol/g at open-circuit to 2.65 mmol/g.With the cathodal polarization of -400 mV,the capacity of aniline was improved from 3.60 mmol/g at open-circuit to 3.88 mmol/g;however,the capacity of sodium dodecylben zene sulfonate was reduced from 2.20 mmol/g at open-circuit to 1.59 mmol/g.The enhancement for electrosorption changed with different groups substituting.Anodic polarization enhances the adsorption of benzene with the electron donating group.But whether anodic or not,cathodal polarization had less effect on the adsorption of electron-accepting aromatic compounds,and decreased the adsorption capacity of benzene-bearing donor-conjugate bridge-acceptor,while increasing its adsorption rate.Electrostatic interaction played a very important role in the electrosorption of ion-pollutants.

  11. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  12. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane.

    Science.gov (United States)

    Zhou, Xu-Jian; Buekens, Alfons; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2016-02-01

    Activated carbon is widely used to abate dioxins and dioxin-like compounds from flue gas. Comparing commercial samples regarding their potential to adsorb dioxins may proceed by using test columns, yet it takes many measurements to characterise the retention and breakthrough of dioxins. In this study, commercial activated carbon samples are evaluated during tests to remove trace amounts of dioxins dissolved in n-hexane. The solution was prepared from fly ash collected from a municipal solid waste incinerator. The key variables selected were the concentration of dioxins in n-hexane and the dosage of activated carbon. Both polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) showed very high removal efficiencies (94.7%-98.0% for PCDDs and 99.7%-99.8% for PCDFs). The presence of a large excess of n-hexane solvent had little effect on the removal efficiency of PCDD/Fs. The adsorbed PCDD/Fs showed a linear correlation (R(2) > 0.98) with the initial concentrations. Comparative analysis of adsorption isotherms showed that a linear Henry isotherm fitted better the experimental data (R(2) = 0.99 both for PCDDs and PCDFs) than the more usual Freundlich isotherm (R(2) = 0.88 for PCDDs and 0.77 for PCDFs). Finally, the results of fingerprint analysis indicated that dioxin fingerprint (weight proportion of different congeners) on activated carbon after adsorption did not change from that in hexane.

  13. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Directory of Open Access Journals (Sweden)

    Barthélemy J.-P.

    2003-01-01

    Full Text Available In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC. Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results. Nevertheless, this kind of experiment allows us to assess the adsorption performances of an activated carbon for different pesticides. Because of the lack of comparable available results, we have eveloped a standardized methodology based on the experiment in mini-column of granular activated carbon. The main experimental conditions are activated carbon: Filtrasorb 400 (Chemviron Carbon; water: mineral and organic reconstituted water (humic acid concentration: 0,5 mg/l; influent concentration 500 g . l -1 ; activated carbon weight: 200 mg; EBCT (Empty Bed Contact Time: 0.16 min.; linear speed: 0.15 m . s -1 . In these conditions, it appears that diuron is highly adsorbed in comparison with other active substances like chloridazon, atrazine or MCPA. From the ratio of effluent volume for the breakthrough point with respect to diuron, it is suggested that products of which the difference factor ratio is – (a below 0.40: may be reckoned as weakly adsorbed (MCPA; (b from 0.41 to 0.80: may be reckoned as moderately adsorbed (chloridazon and atrazine; (c above 0.80: as highly adsorbed on granular activated carbon. Active substances that are weakly adsorbed and have to be removed from drinking water, may highly reduce the lifetime of an activated carbon bed. This kind of information is particularly useful for water suppliers and for regulatory authorities.

  14. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    Science.gov (United States)

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate. PMID:27034157

  15. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  16. Natural gas adsorption on biomass derived activated carbons: A mini review

    Directory of Open Access Journals (Sweden)

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  17. K2S-activated carbons developed from coal and their methane adsorption behaviors

    Science.gov (United States)

    Feng, Yan-Yan; Yang, Wen; Chu, Wei

    2014-10-01

    The main purpose of this work is to prepare various activated carbons by K2S activation of coal with size fractions of 60-80 meshes, and investigate the microporosity development and corresponding methane storage capacities. Raw coal is mixed with K2S powder, and then heated at 750 °C-900 °C for 30 min-150 min in N2 atmosphere to produce the adsorbents. The texture and surface morphology are characterized by a N2 adsorption/desorption isotherm at 77 K and scanning electron microscopy (SEM). The chemical properties of carbons are confirmed by ultimate analysis. The crystal structure and degree of graphitization are tested by X-ray diffraction and Raman spectra. The relationship between sulfur content and the specific surface area of the adsorbents is also determined. K2S activation is helps to bring about better development of pore texture. These adsorbents are microporous materials with textural parameters increasing in a range of specific surface area 72.27 m2/g-657.7 m2/g and micropore volume 0.035 cm3/g-0.334 cm3/g. The ability of activated carbons to adsorb methane is measured at 298 K and at pressures up to 5.0 MPa by a volumetric method. The Langmuir model fits the experimental data well. It is concluded that the high specific surface area and micropore volume of activated carbons do determine methane adsorption capacity. The adsorbents obtained at 800 °C for 90 min with K2S/raw coal mass ratios of 1.0 and 1.2 show the highest methane adsorption capacities amounting to 106.98 mg/g and 106.17 mg/g, respectively.

  18. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Min Gao; Junxin Liu; Xuesong Guo

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols.Most previous work has focused on the evaluation of their biological risks.In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch.Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms.The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr.Over 85%of airborne bacteria and fungi emitted from thc oxidation ditch were adsorbed within 80 hr of continuous operation mode.Most of them had a particle size of 0.65-4.7 μm.Those airborne microorganisms with small particle size were apt to be adsorbed.The SEM/EDAX,BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC.Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms.Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon.High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon.Microscopic observation was also carried out to investigate original and used adsorbents.

  19. Artificial neural network and multiple regression model for nickel(II) adsorption on powdered activated carbons.

    Science.gov (United States)

    Hema, M; Srinivasan, K

    2011-07-01

    Nickel removal efficiency of powered activated carbons of coconut oilcake, neem oilcake and commercial carbon was investigated by using artificial neural network. The effective parameters for the removal of nickel (%R) by adsorption process, which included the pH, contact time (T), distinctiveness of activated carbon (Cn), amount of activated carbon (Cw) and initial concentration of nickel (Co) were investigated. Levenberg-Marquardt (LM) Back-propagation algorithm is used to train the network. The network topology was optimized by varying number of hidden layer and number of neurons in hidden layer. The model was developed in terms of training; validation and testing of experimental data, the test subsets that each of them contains 60%, 20% and 20% of total experimental data, respectively. Multiple regression equation was developed for nickel adsorption system and the output was compared with both simulated and experimental outputs. Standard deviation (SD) with respect to experimental output was quite higher in the case of regression model when compared with ANN model. The obtained experimental data best fitted with the artificial neural network. PMID:23029923

  20. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    Science.gov (United States)

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  1. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Activated carbons with different pore structure and surface chemical properties were prepared by modification process. • HgCl2 as a pollution target to evaluate the adsorption performance. • Influence of pore structure and surface chemical properties of activated carbon on adsorption of mercury was investigated. -- Abstract: Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg2+ adsorption ability of samples was investigated. The results show that the Hg2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction

  2. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    Science.gov (United States)

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-01

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties. PMID:17073487

  3. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    Science.gov (United States)

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  4. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    Science.gov (United States)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  5. Sustainable Activated Carbons from Agricultural Residues Dedicated to Antibiotic Removal by Adsorption

    Institute of Scientific and Technical Information of China (English)

    Jonatan Torres-Perez; Claire Gerente; Yves Andres

    2012-01-01

    The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracycline removal, a common antibiotic. Two new ACs were produced by direct activation with steam from beet pulp (BP-H2O) and peanut hu_lls (PH-H2O) in environmental friendly conditions BP-H2O and PH-H2Opresentcarbon content rangedcarbons with different intrinsic properties.

  6. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    Science.gov (United States)

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  7. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay.

    Science.gov (United States)

    Younker, Jessica M; Walsh, Margaret E

    2015-12-15

    Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions. PMID:26259095

  8. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  9. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.

    Science.gov (United States)

    Li, Xueqing; Hai, Faisal I; Nghiem, Long D

    2011-05-01

    Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better removal rate during operation under no or low (0.1g/L) PAC dosage. When the PAC concentration in MBR was raised to 1.0 g/L, a sustainable and significantly improved performance in the removal of both compounds was observed - the removal efficiencies of sulfamethoxazole and carbamazepine increased to 82 ± 11% and 92 ± 15% from the levels of 64 ± 7%, and negligible removal, respectively. The higher removal efficiency of carbamazepine at high (1.0 g/L) PAC dosage could be attributed to the fact that carbamazepine is relatively more hydrophobic than sulfamethoxazole, which subsequently resulted in its higher adsorption affinity toward PAC. PMID:21145232

  10. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    Science.gov (United States)

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  11. Adsorption studies of recalcitrant compounds of molasses spentwash on activated carbons.

    Science.gov (United States)

    Figaro, S; Louisy-Louis, S; Lambert, J; Ehrhardt, J-J; Ouensanga, A; Gaspard, S

    2006-10-01

    Due to high levels of residual chemical oxygen demand (COD) in the effluent of molasses spentwash (MSW) after anaerobic treatment, acceptable COD levels for discharge cannot be achieved without some form of post-treatment. In this study, the particulate composition of molasses spentwash after anaerobic digestion (MSWD), is characterised as to its particle size distribution, using micro- and ultrafiltration and three activated carbons are characterised as to their ability to reduce significantly the COD of MSWD effluent. The activated carbons tested as adsorbent, were characterised by XPS spectroscopy, elemental analysis, surface area, pore size distribution, and acid-base titration using the Boehm's method. Adsorption of phenol, used here as a reference compound, and of some organic compounds contained in MSWD (gallic acid, tannic acid, and melanoidin, respectively), was studied. It was clearly demonstrated that an activated carbon with a significant distribution of both micropores and mesopores and a significant amount of macropores that are assumed to act as conduits providing access to micro- and mesopores, have a good adsorption efficiency for compounds such as tannic acid and melanoidins. It is a good adsorbent for melanoidin and coloured compounds of MSWD, which represents a large source of the aqueous pollution in sugar cane industries. PMID:16987542

  12. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  13. Optimum operating conditions for an adsorption cryocooler: a case of activated carbon + nitrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Rani Rao [Don Bosco Institute of Technology, Bangalore (India). Dept. of Physics; Madhu Prasad [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Kandadai Srinivasan [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    2005-03-01

    Adsorption cryocoolers are among the possible options for obtaining cryogenic temperatures, in particular for small cooling capacity applications such as cooling of infra red detectors. They need to be optimized for liquid yield. The performance of thermal compressors therein pivots around the adsorption characteristics of the adsorbent + adsorbate combination and how effectively one could pack requisite amounts of adsorbent into a given volume of the compressor housing. In addition, the overall performance of the cooler is a function of limits of operating temperatures and pressures across the compressor. This paper proposes a performance indicator-the product of liquid yield and the uptake efficiency of the compressor - and evaluates its values for various possible operating conditions for one specimen of activated carbon. It is shown that there is a limited domain of operation and that there is a condition of best performance within that domain. (author)

  14. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  15. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems.

    Science.gov (United States)

    Abromaitis, V; Racys, V; van der Marel, P; Meulepas, R J W

    2016-04-01

    In Biological Activated Carbon (BAC) systems, persistent organic pollutants can be removed through a combination of adsorption, desorption and biodegradation. These processes might be affected by the presence of other organics, especially by the more abundant easily-biodegradable organics, like acetate. In this research these relations are quantified for the removal of the persistent pharmaceutical metoprolol. Acetate did not affect the adsorption and desorption of metoprolol, but it did greatly enhance the metoprolol biodegradation. At least part of the BAC biomass growing on acetate was also able to metabolise metoprolol, although metoprolol was only converted after the acetate was depleted. The presence of easily-degradable organics like acetate in the feeding water is therefore beneficial for the removal of metoprolol in BAC systems. The isotherms obtained from metoprolol adsorption and desorption experiments showed that BAC systems are subject to hysteresis; for AC bioregeneration to take place the microbial biomass has to reduce the concentration at the AC-biomass interface 2.7 times compared to the concentration at which the carbon was being loaded. However, given the threshold concentration of the MET degrading microorganisms (<0.08 μg/L) versus the average influent concentration (1.3 μg/L), bioregeneration is feasible.

  16. Adsorption of Cu(II from aqueous solution using activated carbon derived from mangosteen peel

    Directory of Open Access Journals (Sweden)

    Yandan Chen

    2012-11-01

    Full Text Available Effects of the mixing method of K2CO3 with the source biomass and thermal history on the properties of the mangosteen peel activated carbons (MSACs were investigated. The one-step impregnation activation process was found to be remarkably effective in increasing the mesoporosity of the activated carbon (L-MSAC as well as BET surface area (SBET and total pore volume, compared to the solid-solid dry mixing method in a two-stage process. The better fit of Langmuir isotherm indicates a maximum adsorption capacity of Cu(II to be 21.74 mg•g−1 for L-MSAC, which makes it a promising adsorbent for the removal of copper ion from aqueous solutions.

  17. Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25 ℃

    Institute of Scientific and Technical Information of China (English)

    E. Salehi; V. Taghikhani; C. Ghotbi; E. Nemati Lay; A. Shojaei

    2007-01-01

    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 ℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.

  18. Adsorption of some metal complexes derived from acetyl acetone on activated carbon and purolite S-930

    Directory of Open Access Journals (Sweden)

    Salam A.H. Al-Ameri

    2014-12-01

    Full Text Available A new Schiff base (HL derived from condensation of p-anisidine and acetyl acetone has been prepared and used as a chelating ligand to prepare Cr(III, Mn(II, Co(II, Ni(II and Cu(II complexes. The study of the nature of these complexes formed in ethanol solution following the mole ratio method (2:1, L:M gave results which were compared successfully with these obtained from isolated solid state studies. These studies revealed that the complexes having square planner geometry of the type (ML2, M = Co(II, Ni(II and Cu(II, and octahedral geometry of the type [CrIIIL2(H2O2]Cl and [MNIIL2(H2O2]. The adsorption studies of three complexes Cr(III, Mn(II, and Co(II on activated carbon, H and Na-forms of purolite S-930 resin show high adsorption percentage for Cr(III on purolite S-930 due to ion exchange interaction compared with high adsorption of neutral Mn(II, Co(II complexes on activated charcoal. Linear plot of log Qe versus log Ce showed that the adsorption isotherm of these three complexes on activated carbon, H and Na-forms of purolite S-930 surface obeys Freundlich isotherm and was similar to S-curve type according to Giles classification which investigates heterogeneous adsorption. The regression values indicate that the adsorption data for these complexes fitted well within the Freundlich isothermal plots for the concentration studied. The accuracy and precision of the concentration measurements of these complexes were determined by preparing standard laboratory samples, the results show relative error ranging from ±1.08 to 5.31, ±1.04 to 4.82 and ±0.28 to 3.09 and the relative standard deviation did not exceed ±6.23, ±2.77 and ±4.38% for A1, A2 and A3 complexes, respectively.

  19. Xe-133 recuperation by adsorption in active carbon impregnated with PF5

    International Nuclear Information System (INIS)

    Since the Mo-99 Fission Project has the aim to produce Xe-133 from gases generated in the alkaline dissolution of Al-U plates irradiated with thermal neutrons and, considering the importance of this radioisotope from the nuclear medicine point of view, studies to improve and optimize the Xe-133 recuperation were continued. Experiences were made on 'static' equilibrium employing high purity xenon and for the 'dynamic' case, Xe-133 mixed with a carrier and nitrogen as gas carrier; in this case, a 44% and a 34% increase in the capacity of xenon adsorption relaxed with activated carbon without being impregnated and impregnated with AgF, were respectively achieved. (Author)

  20. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture

    OpenAIRE

    García López, Susana; Gil Matellanes, María Victoria; Fernández Martín, Claudia; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga

    2011-01-01

    In this study a commercial activated carbon (Norit R2030CO2) was assessed as a solid sorbent for precombustion CO2 capture. This technology involves the removal of CO2 from the shifted-syngas prior to the generation of electricity and the production of high-purity clean H2. The CO2 equilibrium adsorption capacity and breakthrough time were evaluated in a flow-through system where the adsorbent was subjected to four consecutive adsorption–desorption cycles. A CO2/H2/N2 gas mixture (20/70/10 vo...

  1. Transient Behavior of Activated Carbon Fiber-Ethanol Based Two-Stage Adsorption Chiller

    OpenAIRE

    El-Sharkawy, Ibrahim Ibrahim; Saha, Bidyut Baran; Hassan, Mahmoud; Koyama, Shigeru

    2008-01-01

    In this study, an analytical investigation on the performance of a low temperature solar or waste heat driven two-stage adsorption chiller is performed. Activated carbon fiber (ACF) of type (A-20) and ethanol are used as adsorbent-refrigerant pair. This innovative system can be driven by heat source of temperature between 50 and 70 degree C in combination with a heat sink of 30 degree C. A mathematical model is developed to analyze the dynamic behavior of the cycle as well as the influence of...

  2. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. PMID:27107611

  3. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  4. Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption

    International Nuclear Information System (INIS)

    Carbonaceous adsorbents with controllable surface areas were chemically activated with KOH at 780 deg. C from char that had been carbonized from cane pith at 450 deg. C. The pore properties including the BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons were characterized and derived using the t-plot method based on N2 adsorption isotherms. The activated cane pith carbons, with KOH/char ratios of 2-6, exhibited BET surface areas ranging from 912 to 2299 m2 g-1. The scanning electron microscopic (SEM) observations revealed that the surface morphology of honeycombed holes on all activated cane pith carbons was significantly influenced by the KOH/char ratio. The adsorption kinetics and equilibrium isotherms of acid blue 74, methylene blue, basic brown 1, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water at 30 deg. C on the activated carbons were studied. The adsorption kinetics were suitably described by a simplified kinetic model, the Elovich equation. All adsorption equilibrium isotherms were in agreement with the Langmuir equation, and were used to compare the covered area (S c/S p) of the activated carbons at different KOH/char ratios. The high-surface-area activated carbons were proven to be promising adsorbents for pollution control and for other applications

  5. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid

    Institute of Scientific and Technical Information of China (English)

    LU Hai-jun; LUAN Mao-tian; ZHANG Jin-li; YU Yong-xian

    2008-01-01

    The adsorption capacity of landfill liners containing granular activated carbon (GAC), or bentonite activated by acid, for Cr(VI) was investigated by batch testing. The results show that both GAC and activated bentonite could be used as sorptive amendments for trapping Cr(VI) in landfill liners. The Cr(VI) sorption to GAC and activated bentonite is much greater than Cr(VI) sorption to natural clay. The adsorption capacity of Cr(VI) onto all the soils increases with increasing temperature; adsorption ca-pacity is also significantly influenced by soil-solid concentration. As the soil-solid concentration increases the adsorption capacity first decreases logarithmically, but then stabilizes when the soil-solid concentration exceeds a critical value (e.g. 400 g/L). Perme-ability tests were conducted in the laboratory. The results indicate that the hydraulic conductivity of landfill liners containing GAC or activated bentonite can meet the engineering requirement of 1 nm/s. One-dimensional transport simulations for Cr(VI) were performed to evaluate the effect of GAC and activated bentonite on landfill liners. The results of the simulations indicate that land-fill liners containing GAC, or activated bentonite, significantly retard the transport of Cr(VI) relative to a conventional clay liner.

  6. Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl2 Activated Corn Husk Carbon Equilibrium Studies

    OpenAIRE

    Maryam Khodaie; Nahid Ghasemi; Babak Moradi; Mohsen Rahimi

    2013-01-01

    The removal of methylene blue by activated carbon of corn husk by ZnCl2 activation () was investigated in the present study. Adsorption studies were performed by batch experiments. The effect of pH, initial dye concentration, adsorbent dose, the particle size of , agitation speed, temperature, and contact time was explored. The equilibrium adsorption data were analyzed using two widely applied isotherms: Langmuir, Freundlich. Best fits were found to be Freundlich isotherm. Langmuir adsorptio...

  7. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    Science.gov (United States)

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  8. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon

    Directory of Open Access Journals (Sweden)

    N.T. Abdel-Ghani

    2016-01-01

    Full Text Available The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120min. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intraparticle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986. The intraparticle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944. The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

  9. Elucidating the role of phenolic compounds in the effectiveness of DOM adsorption on novel tailored activated carbon.

    Science.gov (United States)

    Yan, Liang; Fitzgerald, Martha; Khov, Cindy; Schafermeyer, Amy; Kupferle, Margaret J; Sorial, George A

    2013-11-15

    Two novel tailored activated carbons (BC-41-OG and BC-41-MnN) with favorable physicochemical characteristics were successfully prepared for adsorption of dissolved natural organic matter (DOM) by applying systematically chemical and thermal treatment. This research was conducted to investigate the impact of the presence of phenolics on the adsorption capacity of DOM. Isotherm tests were performed for both humic acid (HA) and phenolics on both novel tailored activated carbons and commercial activated carbon F400. The presence of phenolics display a significant effect on hindering the adsorption of HA, however; the physicochemical characteristics of novel activated carbons (surface metal oxides and mesoporosity) can play an important role in alleviating this effect. In contrast, F400, with a relatively lower mesoporosity and surface basicity as compared to the developed adsorbents, was severely impacted by the oligomerization of phenolic compounds. The adsorption capacity of DOM in presence of phenolics was further studied in a continuous flow microcolumn system. The column results showed that both BC-41-OG and BC-41-MnN have not only higher HA adsorption capacity but also better selective adsorption ability than F400.

  10. Efficient adsorption of 4-Chloroguiacol from aqueous solution using optimal activated carbon: Equilibrium isotherms and kinetics modeling

    Directory of Open Access Journals (Sweden)

    Afidah Abdul Rahim

    2016-10-01

    Full Text Available The optimal activated carbon produced from Prosopis africana seed hulls (PASH-AC was obtained using the impregnation ratio of 3.19, activation temperature of 780 °C and activation time of 63 min with surface area of 1095.56 m2/g and monolayer adsorption capacity of 498.67 mg/g. The adsorption data were also modeled using five various forms of the linearized Langmuir equations as well as Freundlich and Temkin adsorption isotherms. In comparing the legitimacy of each isotherm model, chi square (χ2 was incorporated with the correlation coefficient (R2 to justify the basis for selecting the best adsorption model. Langmuir-2 > Freundlich > Temkin isotherms was the best order that described the equilibrium adsorption data. The results revealed pseudo-second-order to be the most ideal model in describing the kinetics data.

  11. Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation.

    Science.gov (United States)

    Vega, Esther; Sánchez-Polo, Manuel; Gonzalez-Olmos, Rafael; Martin, María J

    2015-11-01

    A commercial activated carbon (AC) was modified by gamma irradiation and was tested as adsorbent for the removal of ethyl mercaptan, dimethyl disulfide and dimethyl disulfide in wet conditions. Modifications were carried out under five different conditions: irradiation in absence of water, in presence of ultrapure water, in ultrapure water at pH=1.0 and 1000 mg L(-1) Cl(-), in ultrapure water at pH=7.5 and 1000 mg L(-1) Br(-), and in ultrapure water at pH=12.5 and 1000 mg L(-1) NO3(-). The chemical properties of each AC were characterized by elemental analysis, temperature programmed desorption and X-ray photoelectron spectroscopy. Outcomes show that a large number of oxygen functional groups were incorporated in the AC surface by gamma irradiation, especially in the AC irradiated in the presence of ultrapure water. The dynamic adsorption test results reveal that the incorporation of oxygen functional groups did not enhance the adsorption capacities for dimethyl sulfide and dimethyl disulfide. A significant improvement in the ethyl mercaptan adsorption capacity was correlated with the incorporation of phenolic groups in the AC surface. Moreover, diethyl disulfide was detected as by-product of ethyl mercaptan oxidation process under wet conditions and its formation depended on the chemical properties of ACs. PMID:26160734

  12. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    International Nuclear Information System (INIS)

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs

  13. The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors.

    Science.gov (United States)

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-11-01

    The objective of this study is to determine the contribution of surface oxygen groups to irreversible adsorption (aka heel formation) during cyclic adsorption/regeneration of organic vapors commonly found in industrial systems, including vehicle-painting operations. For this purpose, three chemically modified activated carbon samples, including two oxygen-deficient (hydrogen-treated and heat-treated) and one oxygen-rich sample (nitric acid-treated) were prepared. The samples were tested for 5 adsorption/regeneration cycles using a mixture of nine organic compounds. For the different samples, mass balance cumulative heel was 14 and 20% higher for oxygen functionalized and hydrogen-treated samples, respectively, relative to heat-treated sample. Thermal analysis results showed heel formation due to physisorption for the oxygen-deficient samples, and weakened physisorption combined with chemisorption for the oxygen-rich sample. Chemisorption was attributed to consumption of surface oxygen groups by adsorbed species, resulting in formation of high boiling point oxidation byproducts or bonding between the adsorbates and the surface groups. Pore size distributions indicated that different pore sizes contributed to heel formation - narrow micropores (<7Å) in the oxygen-deficient samples and midsize micropores (7-12Å) in the oxygen-rich sample. The results from this study help explain the heel formation mechanism and how it relates to chemically tailored adsorbent materials. PMID:27295065

  14. Experimental study on activated carbon-nitrogen pair in a prototype pressure swing adsorption refrigeration system

    Science.gov (United States)

    Anupam, Kumar; Palodkar, Avinash V.; Halder, G. N.

    2016-04-01

    Pressure swing adsorption of nitrogen onto granular activated carbon in the single-bed adsorber-desorber chamber has been studied at six different pressures 6-18 kgf/cm2 to evaluate their performance as an alternative refrigeration technique. Refrigerating effect showed a linear rise with an increase in the operating pressure. However, the heat of adsorption and COP exhibited initial rise with the increasing operating pressure but decreased later after reaching a maximum value. The COP initially increases with operating pressures however, with the further rise of operating pressure it steadily decreased. The highest average refrigeration, maximum heat of adsorption and optimum coefficient of performance was evaluated to be 415.38 W at 18 kgf/cm2, 92756.35 J at 15 kgf/cm2 and 1.32 at 12 kgf/cm2, respectively. The system successfully produced chilled water at 1.7 °C from ambient water at 28.2 °C.

  15. Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.

    Science.gov (United States)

    Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas

    2013-03-01

    The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.

  16. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  17. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    Science.gov (United States)

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  18. Removal of Cu(II Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Derived From Olive Waste Cakes

    Directory of Open Access Journals (Sweden)

    Hesham G. Ibrahim

    2016-04-01

    Full Text Available This paper studied the ability of using local activated carbon (LAC derived from olive waste cakes as an adsorbent for the removal of Cu(II ions from aqueous solution by batch operation. Various operating parameters such as solution pH, adsorbent dosage, initial metal ions concentration, and equilibrium contact time have been studied. The results indicated that the adsorption of Cu(II increased with the increasing pH, and the optimum solution pH for the adsorption of Cu(II was found to be 5. The adsorption process increases with increasing dosage of LAC, also the amount of Cu(II removed changes with Cu(II initial concentration and contact time. Adsorption was rapid and occurred within 25 min. for Cu(II concentration range from 60 to 120 mg/l isothermally at 30±1 oC. Maximum adsorption occurs at Cu(II initial concentration lesser than 100 mg/l by using adsorbent dosage (1.2 g/l. The equilibrium adsorption data for Cu(II were fitted well with the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of LAC was found to be 106.383 mg/g. So, the results indicated the suitability use of the activated carbon derived from olive waste cakes (LAC as low cost and natural material for reliable removal of Cu(II from water and wastewater effluents.

  19. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  20. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    International Nuclear Information System (INIS)

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO4 as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu2+ ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO4 into insoluble manganese (IV) oxide (MnO2) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon

  1. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  2. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    Science.gov (United States)

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. PMID:26731310

  3. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Cherifi, Hakima, E-mail: ha_cherifi@yahoo.fr [Université de Médéa, Laboratoire des Biomatériaux et Phénomènes de Transferts, 26000 Médéa (Algeria); Fatiha, Bentahar [Laboratoire des Phénomènes de Transferts, Université des Sciences et de la Technologie Houari Boumedien, Bab Ezzouar, BP 32, EL Alia, 16111 Alger (Algeria); Salah, Hanini [Laboratoire des Phénomènes de Transferts, Université des Sciences et de la Technologie Houari Boumedien, Bab Ezzouar, BP 32, EL Alia, 16111 Alger (Algeria); Université de Médéa, Laboratoire des Biomatériaux et Phénomènes de Transferts, 26000 Médéa (Algeria)

    2013-10-01

    The vegetable sponge of cylindrical loofa (CL), a natural product which grows in the north of Algeria, was used to prepare activated carbons. Two activated carbons, AC1 and AC2, by two physiochemical activation methods to be used for methylene blue removal from wastewater. The surface structure of AC1, AC2 and CL were analyzed by scanning electron microscopy. Adsorption isotherm of methylene blue onto the prepared activated carbons was determined by batch tests. The effects of various parameters such as contact time, initial concentration, pH, temperature, adsorbent dose and granulometry were investigated, at agitation rate 150 rpm. The results showed that the equilibrium uptake increased with increasing initial MB concentration. The maximum % removal of MB obtained was 99% at 50 °C for AC1 and 82% at 30 °C for AC2. The increase in initial pH in the ranges of 2–10 increases the yields removal of MB on AC2. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  4. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons

    International Nuclear Information System (INIS)

    The vegetable sponge of cylindrical loofa (CL), a natural product which grows in the north of Algeria, was used to prepare activated carbons. Two activated carbons, AC1 and AC2, by two physiochemical activation methods to be used for methylene blue removal from wastewater. The surface structure of AC1, AC2 and CL were analyzed by scanning electron microscopy. Adsorption isotherm of methylene blue onto the prepared activated carbons was determined by batch tests. The effects of various parameters such as contact time, initial concentration, pH, temperature, adsorbent dose and granulometry were investigated, at agitation rate 150 rpm. The results showed that the equilibrium uptake increased with increasing initial MB concentration. The maximum % removal of MB obtained was 99% at 50 °C for AC1 and 82% at 30 °C for AC2. The increase in initial pH in the ranges of 2–10 increases the yields removal of MB on AC2. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  5. Studies on the Physical Adsorption Equilibria of Gases on Porous Solids over a Wide Temperature Range Spanning the Critical Region——Adsorption on Microporous Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    周亚平; 白书培; 周理; 杨斌

    2001-01-01

    Adsorption equilibria of nitrogen and methane on microporous (<2 nm) activated carbon were measured for a wide temperature range (103—298 K) spanning the critical region. Information relating to Henry constants, the isosteric heat of adsorption, and the amnount of limiting adsorption were evaluated. All isotherms show type-I features for both sub- and supercritical temperatures. A new isotherm equation and a consideration for the importance of the effect of the adsorbed phase volume allow this kind of isotherms to be modeled satisfactorily. The model parameter of the saturated amount of absolute adsorpaon (nt0) equals the limiting adsorption amount (nlim), leaving the physical meaning of the latter clarified, and the exponent parameter (q) proves to be an appropriate index of surface heterogeneity.

  6. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  7. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    Science.gov (United States)

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater. PMID:18178431

  8. Adsorption of Reactive Dyes by Palm Kernel Shell Activated Carbon: Application of Film Surface and Film Pore Diffusion Models

    OpenAIRE

    2009-01-01

    The rate of adsorption of two reactive dyes, Reactive Black 5 and Reactive Red E onto palm kernel shell-based activated carbon was studied. The experiment was carried out to investigate three models: film diffusion model, film-surface and film-pore diffusion models. The results showed that the external coefficients of mass transfer decreased with increasing of initial adsorbate concentration. In addition, it was found that the adsorption process was better described by using the two resistanc...

  9. Effect of aromatics on the adsorption of thiophenic sulfur compounds from model diesel fuel by activated carbon cloth

    OpenAIRE

    NAVIRI FALLAH, Rahimeh; Azizian, Saeid; REGGERS, Guy; Carleer, Robert; SCHREURS, Sonja; Ahenach, Janat; Meynen, Vera; Yperman, Jan

    2014-01-01

    The effects of aromatic compound presence in real diesel fuel on the adsorption of sulfur species onto activated carbon cloth (ACC) were investigated. Equilibrium and kinetics adsorption of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) in the presence of naphthalene (NP) and 1-methylnaphthalene (1-MNP) from prepared model diesel fuels onto ACC and its oxidized forms were studied. The total sulfur concentration inmodel diesel fuelwas 300 ppmw. The initial...

  10. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    Science.gov (United States)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  11. Adsorptive Removal of Para-chlorophenol Using Stratified Tapered Activated Carbon Column

    Institute of Scientific and Technical Information of China (English)

    M.EE Sze; G. McKay

    2012-01-01

    The feasibility of adsorptive removal of single component organic compound (para-chlorophenol) by Calgon Filtrasorb 400 (F400) carbon was investigated. The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon. Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons. The Bed Depth Service Time (BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables. When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested, the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics, in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.

  12. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  13. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H2O2. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H2O2 concentration 1.0 mol l−1, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I2). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l−1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  14. Predicting the adsorption properties of carbon dioxide corrosion inhibitors using a structure-activity relationship

    Energy Technology Data Exchange (ETDEWEB)

    Kinsella, B.; De Marco, R.; Jefferson, A.; Pejcic, B. [Western Australian Corrosion Research Group, Department of Applied Chemistry, Curtin University of Technology, GPO Box U1987, Perth, 6845, WA (Australia); Durnie, W. [Nalco/Exxon Energy Chemicals Ltd, Hardley, Hythe, Southampton (Australia)

    2004-07-01

    This paper presents a study of the influence of various chemical inhibitors on the corrosion rate of mild steel in brine electrolyte under carbon dioxide conditions. The performances as corrosion inhibitors were fitted to a Temkin adsorption isotherm, and various constants of adsorption (i.e., adsorption equilibrium constants and molecular interaction constants) have been obtained. The inhibitor adsorption mechanism has been discussed in terms of thermodynamics (i.e., {delta}H, {delta}G and {delta}S) and this revealed that some compounds chemisorbed onto the steel electrode. In addition, molecular modelling was undertaken using PCSPARTAN Plus and HyperChem Professional, and the various molecular parameters have been correlated with the thermodynamic adsorption properties of the inhibitors. A four-parameter fit for both negative and positive charged molecules is discussed. (authors)

  15. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    OpenAIRE

    Camilo Hernán Cruz Vélez; Magally González; Héctor Mario Gutiérrez; Luz Edith Barba; Juan Carlos Escobar; Luis Germán Delgado; Patricia Torres

    2010-01-01

    Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance)) was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC); adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate) significantly i...

  16. Removal of ethylenthiourea and 1,2,4-triazole pesticide metabolites from water by adsorption in commercial activated carbons.

    Science.gov (United States)

    Amorim, Camila C; Bottrel, Sue Ellen C; Costa, Elizângela P; Teixeira, Ana Paula C; Leão, Mônica M D

    2013-01-01

    This study evaluated the adsorption capacity of ethylenthiourea (ETU) and 1H-1,2,4-triazole (1,2,4-T) for two commercial activated carbons: charcoal-powdered activated carbon (CPAC) and bovine bone-powdered activated carbon (BPAC). The tests were conducted at a bench scale, with ETU and 1,2,4-T diluted in water, for isotherm and adsorption kinetic studies. The removal of the compounds was accompanied by a total organic carbon (TOC) analysis and ultraviolet (UV) reduction analysis. The coals were characterized by their surface area using nitrogen adsorption/desorption, by a scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) and by a zero charge point analysis (pHpcz). The results showed that adsorption kinetics followed a pseudo-second-order model for both coals, and the adsorption isotherms for CPAC and BPAC were adjusted to the Langmuir and Freundlich isotherms, respectively. The CPAC removed approximately 77% of the ETU and 76% of the 1,2,4-T. The BPAC was ineffective at removing the contaminants. PMID:23356339

  17. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    OpenAIRE

    Shanmugam Arivoli; M. Thenkuzhali; P. Martin Deva Prasath

    2009-01-01

    A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB). The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm p...

  18. Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.

    Science.gov (United States)

    Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V

    2006-01-01

    Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology. PMID:16112680

  19. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    Science.gov (United States)

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  20. Magnetic properties and adsorptive performance of manganese–zinc ferrites/activated carbon nanocomposites

    International Nuclear Information System (INIS)

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese–zinc ferrites (Mn0.5Zn0.5Fe2O4: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m2 g−1 (close to 1243 m2 g−1 of AC) and Ms of 3.96 emu g−1. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique. - Graphical abstract: The Sample-5 presented both good magnetic response and high BET surface area up to 1129 m2 g−1 (close to AC of 1243 m2 g−1), which could be separated completely for about 60 s. MZF/AC nanocomposites (Sample-3, 4, 5) in our work could be used as the magnetic absorbents, which could be separated easily by an outer magnet after the MB adsorption. - Highlights: • Mn0.5Zn0.5Fe2O4 (MZF) as few as possible was implanted into activated carbon (AC) for the higher surface area. • Sample-5 possessed the high specific surface area (1129 m2 g−1) and the suitable Ms (3.96 emu g−1). • Methylene blue was adsorbed almost completely by MZF/AC nanocomposites in 30 min. • MZF/AC nanocomposites were separated easily from solution by magnetic separation technique

  1. Preparation and Characteristics of Activated Carbon from Wood Bark and Its Use for Adsorption of Cu (II

    Directory of Open Access Journals (Sweden)

    Jiahui ZHANG

    2014-12-01

    Full Text Available In this study, wood bark activated carbon (bark activated carbon, BAC were prepared by the method of steam activation at the activation temperature of 700 °C and 800 °C. The pore structures of BAC samples obtained were analysed via means of low temperature nitrogen adsorption. Iodine adsorption value and Cu (II ions adsorption capacity were also investigated. The results indicated that micropores and mesopores were abundant in BACs, which indicated a better adsorption effect in iodine and Cu (II ions adsorption capacities than wood bark carbon. The efficiency for the removal of Cu (II ions were carried out as a function of contact time. The optimal dosage of Cu (II ions by BAC700 and BAC800 samples is 5 g/L with an optimal time of 30 min. The kinetic studies of BACs revealed a better correlation with the Lagergren pseudo-second order model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6400

  2. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon.

    Science.gov (United States)

    Luo, Xiaogang; Zhang, Lina

    2009-11-15

    Maghemite (gamma-Fe(2)O(3)) nanoparticles were created with a submerged circulation impinging stream reactor (SCISR) from FeCl(3) x 6H(2)O and FeCl(2).4H(2)O by using precipitation followed by oxidation. Subsequently, by blending cellulose with the Fe(2)O(3) nanoparticles and activated carbon (AC) in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to -12 degrees C, millimeter-scale magnetic cellulose beads, coded as MCB-AC, was fabricated via an optimal dropping technology. The cellulose beads containning Fe(2)O(3) nanoparticles exhibited sensitive magnetic response, and their recovery could facilitate by applying a magnetic field. The adsorption and desorption of the organic dyes on MCB-AC were investigated to evaluate the removal of dyes (methyl orange and methylene blue) with different charges from aqueous solution. Their adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the MCB-AC sorbent could efficiently adsorb the organic dyes from wastewater, and the used sorbents could be recovered completely. Therefore, we developed a highly efficient sorbent, which were prepared by using simple and "green" process, for the applications on the removal of hazardous materials.

  3. Study on two stage activated carbon/HFC-134a based adsorption chiller

    Science.gov (United States)

    >K Habib,

    2013-06-01

    In this paper, a theoretical analysis on the performance of a thermally driven two-stage four-bed adsorption chiller utilizing low-grade waste heat of temperatures between 50°C and 70°C in combination with a heat sink (cooling water) of 30°C for air-conditioning applications has been described. Activated carbon (AC) of type Maxsorb III/HFC-134a pair has been examined as an adsorbent/refrigerant pair. FORTRAN simulation program is developed to analyze the influence of operating conditions (hot and cooling water temperatures and adsorption/desorption cycle times) on the cycle performance in terms of cooling capacity and COP. The main advantage of this two-stage chiller is that it can be operational with smaller regenerating temperature lifts than other heat-driven single-stage chillers. Simulation results shows that the two-stage chiller can be operated effectively with heat sources of 50°C and 70°C in combination with a coolant at 30°C.

  4. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    Science.gov (United States)

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent.

  5. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    Science.gov (United States)

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent. PMID:26707777

  6. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  7. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    Science.gov (United States)

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  8. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  9. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shay, M.A.

    1989-01-01

    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  10. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.

    Science.gov (United States)

    Ikari, Mariya; Matsui, Yoshihiko; Suzuki, Yuta; Matsushita, Taku; Shirasaki, Nobutaka

    2015-01-01

    Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br⁻), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl₂/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbon concentration, 1.5 mg-C/L). Iodine removal in NOM-containing water increased with increasing chlorine dose up to 0.1 mg-Cl₂/L but decreased at chlorine doses of >1.0 mg-Cl₂/L. At a low chlorine dose, nonadsorbable iodide ion (I⁻) was oxidized to adsorbable hypoiodous acid (HOI). When the chlorine dose was increased, some of the HOI reacted with NOM to form adsorbable organic iodine (organic-I). Increasing the chlorine dose further did not enhance iodine removal, owing to the formation of nonadsorbable iodate ion (IO₃⁻). Co-existing Br⁻ depressed iodine removal, particularly in NOM-free water, because hypobromous acid (HOBr) formed and catalyzed the oxidation of HOI to IO₃⁻. However, the effect of Br⁻ was small in the NOM-containing water because organic-I formed instead of IO₃⁻. SPAC (median particle diameter, 0.62 μm) had a higher equilibrium adsorption capacity for organic-I than did conventional PAC (median diameter, 18.9 μm), but the capacities of PAC and SPAC for HOI were similar. The reason for the higher equilibrium adsorption capacity for organic-I was that organic-I was adsorbed principally on the exterior of the PAC particles and not inside the PAC particles, as indicated by direct visualization of the solid-phase iodine concentration profiles in PAC particles by field emission electron probe microanalysis. In contrast, HOI was adsorbed evenly throughout the entire PAC particle. PMID:25462731

  11. Impact of Nanoparticles and Natural Organic Matter on the Removal of Organic Pollutants by Activated Carbon Adsorption

    Science.gov (United States)

    Isotherm experiments evaluating trichloroethylene (TCE) adsorption onto powdered activated carbon (PAC) were conducted in the presence and absence of three commercially available nanomaterials— iron oxide (Fe2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2). Isotherm exp...

  12. Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

    2009-02-15

    A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

  13. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    Directory of Open Access Journals (Sweden)

    Shidvash Dowlatshahi

    2014-11-01

    Full Text Available Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from aqueous solutions. Methods: The activated carbon was produced from the dried. Batch experiments were performed on real and synthetic samples at room temperature. The effect of pH, adsorbent dose, initial concentration, and contact time were studied, and the adsorption isotherms of heavy metals were determined. The removal efficiency was evaluated on real wastewater. Results: The maximum removal efficiency of heavy metals (copper, cadmium and lead by activated carbon adsorbent prepared from saffron leaves was obtained in pH 7. The optimum amount of adsorbent was 0.6 g, and the optimum contact times were 45 min for copper and cadmium ions and 90 min for lead ion, respectively. In these optimum conditions the removal efficiencies were 76.36%, 91.25% and 97.5%, respectively. The removal efficiencies of heavy metals from actual samples (copper industry and the battery industry in the optimum conditions were 82.25%, 69.95% and 91.23%, respectively. The results obtained showed the highest correlation with Langmuir isotherm model. Conclusion: Based on the results obtained, the activated carbon produced from saffron leaves has a good capability in removal of the metal ions from the aqueous solutions. Considering the availability of saffron leaves in Khorasan, its cost-effectiveness, and high uptake capacity, it can be applied as a proper absorbent to remove the heavy metals from industrial wastewater.

  14. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Science.gov (United States)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  15. Studies of Adsorption Characteristics of Activated Carbons in between 4.5 to 10 K for Cryopump Applications

    Science.gov (United States)

    Krishnamoorthy, V.; Swarup Udgata, Satya; Shankar Tripathi, Vijai; Gangradey, Ranjana; Kasthurirengan, Srinivasan; Behera, Upendra

    2012-11-01

    Cryosorption pump is the only solution to pump helium, hydrogen and its isotopes in fusion devices. To design such pumps, knowledge of adsorption characteristics of activated carbons in the temperature range from 4.5 to 77 K is needed, but is very scarce in the open literature. Hence an experimental setup is designed and developed to measure adsorption characteristics of activated carbons down to 4.5 K. For this purpose, a commercial micropore analyzer operating down to 77K is coupled to a two-stage GM cryocooler, to enable cooling the sample temperature down to 4.5 K. A heat switch is mounted in between the second stage cold head and the sample chamber helps to vary the sample temperature from 4.5 K to 77K without affecting the performance of the cryocooler. The details of the experimental setup is presented elsewhere. We present here the experimental results of adsorption of different types of activated carbons in the temperature range 4.5K to 10 K using Helium gas as adsorbate. These results are evaluated in terms of surface area, pore sizes and their distributions. Also the effect of epoxy based adhesive used in bonding the activated carbons to the panels is evaluated. These results will be useful towards the selection of the right activated carbons for the development of cryosorption pumps.

  16. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    Science.gov (United States)

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  17. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    Science.gov (United States)

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  18. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    Science.gov (United States)

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  19. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    Science.gov (United States)

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC. PMID:26877044

  20. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found. PMID:26231581

  1. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  2. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Directory of Open Access Journals (Sweden)

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  3. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  4. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  5. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted

  6. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution. PMID:25185390

  7. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    Science.gov (United States)

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  8. Effect of HNO{sub 3} treatment on the SO{sub 2} adsorption capacity of activated carbon prepared from Chinese low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Hang Wenhui; Wang ling; Li Shurong [China Coal Research Institute, Beijing (China)

    1999-11-01

    SO{sub 2} removal from flue gas by activated carbon and HNO{sub 3} treated activated carbon from Chinese low-rank coal was studied. SO{sub 2} adsorption on activated carbon is mainly chemisorption. There was shown to be a correlation between adsorption capacity and the number of active sites on the carbon surface. HNO{sub 3} treatment transforms C-H bonds in activated carbon into active sites, for removal of SO{sub 2}. 2 figs., 2 tabs.

  9. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SO_x and NO_x of flue gas at low temperature

    Institute of Scientific and Technical Information of China (English)

    S.; SUMATHI; S.; BHATIA; K.T.; LEE; A.; R.; MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100―300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) impregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOx and NOx simultaneously.

  10. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOx and NOx of flue gas at low temperature

    Institute of Scientific and Technical Information of China (English)

    S.SUMATHI; S.BHATIA; K.T.LEE; A.R.MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100-300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) im-pregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOxand NOx simultaneously.

  11. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    Science.gov (United States)

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal. PMID:27504258

  12. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Directory of Open Access Journals (Sweden)

    Camilo Hernán Cruz Vélez

    2010-05-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  13. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  14. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    Science.gov (United States)

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing. PMID:25582393

  15. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    Science.gov (United States)

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing.

  16. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    OpenAIRE

    Sumrit Mopoung; Phansiri Moonsri; Wanwimon Palas; Sataporn Khumpai

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carr...

  17. Sulfide treatment to inhibit mercury adsorption onto activated carbon in carbon-in-pulp gold recovery circuits

    Energy Technology Data Exchange (ETDEWEB)

    Touro, F.J.; Lipps, D.A.

    1988-03-29

    A process for treating a mercury-contaminated, precious metal-containing ore slurry is described comprising: (a) reacting sulfide anions in an aqueous ore slurry of a mercury and precious metal-containing carbonaceous ore, and (b) conducting a simultaneous cyanide leach and carbon-in-pulp adsorption of the precious metal from the carbonaceous ore in the sulfide-containing ore slurry.

  18. Adsorption of the reactive azo dyes onto NH4Cl-induced activated carbon

    Directory of Open Access Journals (Sweden)

    Sakine Shekoohiyan

    2016-03-01

    Full Text Available Background: The efficacy of NH4Cl-induced activated carbon (NAC was examined in order to adsorb RR198, an azo reactive model dye, from an aqueous solution. Methods: The effects of pH (3 to 10, adsorbent dose (0.1 to 1.2 g/L, dye concentration and contact time on the adsorption efficiency were investigated. Results: The results showed that the removal of dye was highest at a solution pH of 7 and a powder dose of 1.1 g/L. The 85.9%, 72.6% and 65.4% removal of RR198 was obtained for a concentration of 25, 50 and 100 mg/L, respectively, at a relatively short contact time of 30 minutes, and at optimum pH and NAC concentrations of 1 g/L. The experimental data for kinetic analysis illustrated a best fit to the pseudo-second-order model. The study data on equilibrium were modeled using Langmuir, Freundlich and Dubinin–Radushkevich models; the Langmuir equation provided the best fit for the data. Conclusion: Therefore, the NAC appears to be an efficient and appropriate adsorbent for the removal of reactive azo dyes from waste streams.

  19. Adsorption of acid and basic dyes by sludge-based activated carbon:Isotherm and kinetic studies

    Institute of Scientific and Technical Information of China (English)

    李鑫; 王广智; 李伟光; 王萍; 宿程远

    2015-01-01

    A batch experiment was conducted to investigate the adsorption of an acid dye (Acid Orange 51) and a basic dye (Safranine) from aqueous solutions by the sludge-based activated carbon (SBAC). The results show that the adsorption of Acid Orange 51 decreases at high pH values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich−Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.

  20. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst

    Institute of Scientific and Technical Information of China (English)

    HUANG Shaoyong; ZHANG Changbin; HE Hong

    2009-01-01

    An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H2O by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140℃. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.

  1. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Science.gov (United States)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook

    2015-08-01

    Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25-40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  2. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  3. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    Science.gov (United States)

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  4. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.

    Science.gov (United States)

    Seckler, Ferreira Filho Sidney; Margarida, Marchetto; Rosemeire, Alves Laganaro

    2013-08-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water. This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption, combined with coagulation using iron as a coagulant. The adsorption and coagulation process were studied through different case scenarios of jar tests. The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition. Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L, and PAC dosages varied from 10 to 40 mg/L. The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L). Lower MIB removal efficiencies were observed in the presence of coagulant, showing a clear interference of the iron precipitate or coagulant in the adsorption process. The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass. For both cases of PAC dosing, upstream and downstream of the coagulant injection point, the MIB removal efficiency was similar. However, MIB removal efficiency was 15% lower when compared with experiments without the coagulant application. This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores. This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation. PMID:24520695

  5. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    Science.gov (United States)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  6. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  7. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  8. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. PMID:26898679

  9. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. PMID:20851447

  10. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  11. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  12. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.

    Science.gov (United States)

    Pan, Long; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2016-10-01

    Superfine powdered activated carbon (SPAC), which is produced from conventionally sized powdered activated carbon (PAC) by wet milling in a bead mill, has attracted attention for its high adsorptive removal ability in both research and practice. In this study, the performance of dry-milled SPAC was investigated. 2-Methylisoborneol (MIB), an earthy-musty compound commonly targeted by water treatment systems, was used as the target adsorbate. Dry-milled SPAC exhibited lower adsorptive removal of MIB than wet-milled SPAC, even when both SPACs were produced from the same PAC and were composed of particles of the same size. One reason for the lower removal of MIB by the dry-milled SPAC was a higher degree of aggregation in the dry-milled SPAC after production; as a result the apparent particle size of dry-milled SPAC was larger than that of wet-milled SPAC. The dry-milled SPAC was also more negatively charged than the wet-milled SPAC, and, owing to its higher repulsion, it was more amenable to dispersion by ultrasonication. However, even after the dry-milled SPAC was ultrasonicated so that its apparent particle size was similar to or less than that of the wet-milled SPAC, the dry-milled SPAC was still inferior in adsorptive removal to the wet-milled SPAC. Therefore, another reason for the lower adsorptive removal of dry-milled SPAC was its lower equilibrium adsorption capacity due to the oxidation during the milling. The adsorption kinetics by SPACs with different degrees of particle aggregation were successfully simulated by a pore diffusion model and a fractal aggregation model. PMID:27403874

  13. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bastos-Neto, M. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Canabrava, D.V. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Torres, A.E.B. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Jimenez-Lopez, A. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Azevedo, D.C.S. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)]. E-mail: diana@gpsa.ufc.br; Cavalcante, C.L. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)

    2007-04-30

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N{sub 2} adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage.

  14. Adsorption Study of Methane on Activated Meso-carbon Microbeads by Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    SHAO, Xiao-Hong(邵晓红); HUANG, Shi-Ping(黄世萍); SHEN, Zhi-Gang(沈志刚); CHEN, Jian-Feng(陈建峰)

    2004-01-01

    A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determination of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen on activated mesocarbon microbead (AMCMB) at 77 K. The pores of AMCMB are described as slit-shaped with PSD. Based on the PSD, methane adsorption and phase behavior are studied by the DFT method. Both nitrogen and methane molecules are modeled as Lennard-Jones spherical molecules, and the well-known Steele's 10-4-3 potential is used to represent the interaction between the fluid molecule and the solid wall. In order to test the combined method and the PSD model, the Intelligent Gravimetric Analyzer (IGA-003) was used to measure the adsorption of methane on the AMCMB. The DFT results are in good agreement with the experimental data. Based on these facts, we predict the adsorption amount of methane, which can reach 32.3 w at 299 K and 4 MPa. The results indicate that the AMCMBs are a good candidate for adsorptive storage of methane and natural gas. In addition, the capillary condensation and hysteresis phenomenon of methane are also observed at 74.05 K.

  15. Investigation of the usability of activated carbon produced from sugar beet pulp for the adsorption of 2,4-D and Metribuzin pesticides in wastewaters

    OpenAIRE

    SEZER, Kazım; AKSU, Zümriye

    2013-01-01

    In this study the adsorption of 2,4-D and Metribuzin herbicides, present in wastewaters and used in Turkey intensively, on activated carbon produced from dried sugar beet pulp by heat activation and on commercial powdered activated carbon was comparatively investigated in a batch system. At studies, effect of initial herbicide concentration, temperature and pH parameters on adsorption rate and yield was investigated and optimum working conditions determined. Defining parameters of the system,...

  16. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    Science.gov (United States)

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  17. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    Science.gov (United States)

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills. PMID:26744931

  18. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  19. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Pita Rengga Wara Dyah

    2016-01-01

    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.

  20. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  1. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations

    OpenAIRE

    Fallou, Hélène; Cimetiere, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-01

    International audience Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are mo...

  2. [Effect of physico-chemical characteristics of activated carbon on the adsorption of organic pollutants in natural water].

    Science.gov (United States)

    Zhang, Jing-Yi; Shi, Bao-You; Xie, Jian-Kun; Yuan, Hong-Lin; Wang, Dong-Sheng

    2011-02-01

    In this paper, the adsorption characteristics of two synthetic organic compounds (SOCs), i. e., methyl parathion(MP) and trichloroethylene (TCE), and natural organic matter (NOM) on powdered activated carbons (PAC) in natural water were studied. On the basis of fully characterizing the physical and chemical characteristics of PAC, the effect of physical and chemical properties of PAC on the adsorption of low molecular weight SOCs in natural water was studied by correlation analysis. The effect of molecular weight fractionation on the adsorption of NOM on PAC was investigated using high performance size exclusion chromatography (HPSEC). It was found that, compared to the surface chemistry, the physical property (pore properties) of PAC was the critical factor to determine its adsorption capacity of MP and TCE in natural water. The adsorption of the low molecular weight SOC and NOM with apparent molecular weight (AMW) < 500 on PAC was primarily impacted by the micropore surface area, and that of NOM with 500 < AMW < 3 000 was affected by the mesopore surface area combined with the mesopore size distribution. PMID:21528573

  3. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III Adsorption from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Sumrit Mopoung

    2015-01-01

    Full Text Available This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III adsorption were also studied. Fe(III adsorption was carried out by 30 mL column with 5–20 ppm Fe(III initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III adsorption test. It was shown that Fe(III was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g.

  4. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon.

    Science.gov (United States)

    Ie, Iau-Ren; Chen, Wei-Chin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Yuan-Chung; Tsai, Hsieh-Hung; Jen, Yi-Shiu

    2012-05-30

    Mercury chloride (HgCl(2)) is the major mercury derivate emitted from municipal solid waste incinerators, which has high risk to the environment and human health. This study investigated the adsorption of vapor-phase HgCl(2) with an innovative composite sulfurized activated carbon (AC), which was derived from the pyrolysis, activation, and sulfurization of waste tires. The composite sulfur-impregnation process impregnated activated carbon with aqueous-phase sodium sulfide (Na(2)S) and followed with vapor-phase elemental sulfur (S(0)). Thermogravimetric analysis (TGA) was applied to investigate the adsorptive capacity of vapor-phase HgCl(2) using the composite sulfurized AC. The operating parameters included the types of composite sulfurized AC, the adsorption temperature, and the influent HgCl(2) concentration. Experimental results indicated that the sulfur-impregnation process could increase the sulfur content of the sulfurized AC, but decreased its specific surface area. This study further revealed that the composite sulfurized AC impregnated with aqueous-phase Na(2)S and followed with vapor-phase S(0) (Na(2)S+S(0) AC) had much higher saturated adsorptive capacity of HgCl(2) than AC impregnated in the reverse sequence (S(0)+Na(2)S AC). A maximum saturated adsorptive capacity of HgCl(2) up to 5236 μg-HgCl(2)/g-C was observed for the composite Na(2)S+S(0) AC, which was approximately 2.00 and 3.17 times higher than those for the single Na(2)S and S(0) ACs, respectively.

  5. Application of shrinking core model to the adsorption of oxytetracycline onto peanut hull-derived activated carbon in a closed-loop fixed-bed reactor

    OpenAIRE

    Djedouani, D.; Chabani, M.; Amrane, Abdeltif; Bensmaili, A

    2016-01-01

    International audience In the present paper, the ability of peanut hull-derived activated carbon AC(PH-800) to adsorb oxytetracycline (OTC) was investigated using batch adsorption with fixed-bed reactor. The factors influencing adsorption, such as contact time and sorbent concentration, were evaluated. Sorption kinetic and equilibrium data of OTC sorption onto AC(PH-800) were submitted to kinetics and equilibrium models in order to calculate the adsorption constant rate and the maximum cap...

  6. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon

    OpenAIRE

    Ikari, Mariya; Matsui, Yoshihiko; Suzuki, Yuta; Matsushita, Taku; Shirasaki, Nobutaka

    2015-01-01

    Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br-), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl-2/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbo...

  7. Efficiency of powder activated carbon magnetized by Fe3O4 nanoparticles for amoxicillin removal from aqueous solutions: Equilibrium and kinetic studies of adsorption process

    Directory of Open Access Journals (Sweden)

    Babak Kakavandi

    2014-07-01

    Conclusion: The present study showed that the magnetic activated carbon has high potential for adsorption of amoxicillin, in addition to features like simple and rapid separation. Therefore, it can be used for adsorption and separation of such pollutants from aqueous solutions.

  8. INCREASING ADSORPTION OF ACTIVATED CARBON FROM PALM OIL SHELL FOR ADSORB H2S FROM BIOGAS PRODUCTION BY IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Wasan Phooratsamee

    2014-01-01

    Full Text Available Biogas is the combustible gas produced through a biological process, known as anaerobic digestion which is the process operated at low-temperature and without air. Biogas consists of 55-80% CH4, 20-45% CO2 with trace amount of H2S and other impurities. Common H2S removal technologies from biogas fall into one of adsorption on a solid such as iron oxide based materials, activated carbon or impregnated activated carbon. Conventionally, activated carbon is produced from biomass residues and agricultural residues such as palm oil shell which promising approach for the production of cheap. It is so due to the palm oil shell carries a large amount of carbon content which it is the main composition of activated carbon. Therefore, it is usable as raw material for producing impregnated activated carbon and used as adsorbents. The aim of this study is a produce the activated carbon from palm oil shells by chemical activation using ZnCl2 and optimal conditions after impregnated them with NaOH, KI and K2CO3 for H2S absorption from biogas product. In this research, production of activated carbon involved three stages; (i carbonization of raw material in an inert atmosphere which was carbonized in a muffle furnace at 600°C for 1 h; (ii secondly activation of char product from the first stages at fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length which was studied to observe the effect of char product: Chemical agent ratio (ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h; and (iii finally alkali impregnated activated carbon which were immersed 1:3 ratio in 500 mL of 1 N NaOH, KI and K2CO3 solutions and stirred for 30 min. The result showed that the surface area and the pore volume increased progressively with increasing the char product: Chemical agent ratio. The maximum

  9. Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature.

    Science.gov (United States)

    Levasseur, Benoit; Gonzalez-Lopez, Eugene; Rossin, Joseph A; Bandosz, Teresa J

    2011-05-01

    Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.

  10. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    Science.gov (United States)

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.

  11. Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compound (VOCs): A Specific Review

    Institute of Scientific and Technical Information of China (English)

    Pierre Le Cloirec

    2012-01-01

    A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.

  12. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 oC) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions

  13. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions.

    Science.gov (United States)

    Gupta, Vinod Kumar; Nayak, Arunima; Agarwal, Shilpi; Tyagi, Inderjeet

    2014-03-01

    Rubber tire activated carbon modification (RTACMC) and rubber tire activated carbon (RTAC) were prepared from waste rubber tire by microwave assisted chemical treatment and physical heating respectively. A greater improvement in porosity and total pore volume was achieved in RTACMC as compared to that of RTAC. But both have a predominantly mesoporous structure. Under identical operating conditions, an irradiation time of 10 min, chemical impregnation ratio of 1.50 and a microwave power of 600 W resulted in maximizing the efficiency of RTACMC for p-cresol (250 mg/g) at a contact time of 90 min while RTAC showed a 71.43 mg/g adsorption capacity at 150 min. Phenol, due to its higher solubility was adsorbed to a lesser extent by both adsorbents. Physical nature of interactions, pore diffusion mechanism and exothermicity of the adsorption process was operative in both adsorbents. The outcomes support the feasibility of preparing high quality activated carbon from waste rubber tire by microwave assisted chemical activation.

  14. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  15. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    International Nuclear Information System (INIS)

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L-1 sorbed 82% of RB5 (100 mg L-1) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH0 of 7, current density of 277 A m-2, and NaCl of 1 g L-1. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L-1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L-1, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  16. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    Science.gov (United States)

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages. PMID:26117373

  17. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons

    Institute of Scientific and Technical Information of China (English)

    T. S. Anirudhan; S. S. Sreekumari

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(Ⅱ),Hg(Ⅱ) and Cu(Ⅱ) from industrial effluents through batch adsorption process.The AC was characterized by elemental analysis,fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,thermal gravimetric and differential thermal analysis,surface area analyzer and potentiometric titrations.The effects of initial metal concentration,contact time,pH and adsorbent dose on the adsorption of metal ions were studied.The adsorbent revealed a good adsorption potential for Pb(Ⅱ) and Cu(Ⅱ) at pH 6.0 and for Hg(Ⅱ) at pH 7.0.The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation.The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model.The adsorption capacities of the AC decreased in the order:Pb(Ⅱ) >Hg(Ⅱ) > Cu(Ⅱ).

  18. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study

    Science.gov (United States)

    Nazari, Ghadir; Abolghasemi, Hossein; Esmaieli, Mohamad; Sadeghi Pouya, Ehsan

    2016-07-01

    The walnut shell was used as a low cost adsorbent to produce activated carbon (AC) for the removal of cephalexin (CFX) from aqueous solution. A fixed-bed column adsorption was carried out using the walnut shell AC. The effect of various parameters like bed height (1.5, 2 and 2.5 cm), flow rate (4.5, 6 and 7.5 mL/min) and initial CFX concentration (50, 100 and 150 mg/L) on the breakthrough characteristics of the adsorption system was investigated at optimum pH 6.5. The highest bed capacity of 211.78 mg/g was obtained using 100 mg/L inlet drug concentration, 2 cm bed height and 4.5 mL/min flow rate. Three kinetic models, namely Adam's-Bohart, Thomas and Yoon-Nelson were applied for analysis of experimental data. The Thomas and Yoon-Nelson models were appropriate for walnut shell AC column design under various conditions. The experimental adsorption capacity values were fitted to the Bangham and intra-particle diffusion models in order to propose adsorption mechanisms. The effect of temperature on the degradation of CFX was also studied.

  19. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters

    Institute of Scientific and Technical Information of China (English)

    Ferreira Filho SIDNEY SECKLER; Marchetto MARGARIDA; Alves Laganaro ROSEMEIRE

    2013-01-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water.This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption,combined with coagulation using iron as a coagulant.The adsorption and coagulation process were studied through different case scenarios of jar tests.The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition.Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L,and PAC dosages varied from 10 to 40 mg/L.The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L).Lower MIB removal efficiencies were observed in the presence of coagulant,showing a clear interference of the iron precipitate or coagulant in the adsorption process.The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass.For both cases of PAC dosing,upstream and downstream of the coagulant injection point,the MIB removal efficiency was similar.However,MIB removal efficiency was 15% lower when compared with experiments without the coagulant application.This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores.This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation.

  20. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  1. Removal of Direct Yellow-12 Dye from Water by Adsorption on Activated Carbon Prepared from Ficus Racemosa L.

    OpenAIRE

    Revathi, G.; Ramalingam, S; P. Subramaniam; A. Ganapathi

    2011-01-01

    The adsorption of direct yellow-12 dye (DY-12) by Atti leaf (Ficus racemosa) powder carbon (ATC) was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order kinetics. The adsorption capacity was found to be 6.7 mg dye per gram of the adsorbent. Acidic pH was favorable for the adsorption of DY-12. Desorption studies suggest t...

  2. Investigation of SO{sub 2} adsorption capacity of the activated carbon with O{sub 2}-NH{sub 3} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yoon Hee; Seo, Kyung Won [Ajou University, Suwon (Korea, Republic of); Park, Dal Keun [KIST, Seoul (Korea, Republic of)

    1995-05-01

    Activated carbons, modified by oxygen and ammonia treatment, were tested for their catalytic activity in the SO{sub 2} adsorption. The modified activated carbons showed higher SO{sub 2} adsorption capacity compared with the untreated activated carbons. In this study the surface of activated carbon was modified to introduce the surface oxygen and nitrogen functional groups from NH{sub 3} and/or O{sub 2} treatment. In this experiment the conditions of modification varied with the NH{sub 3} concentrations(0{approx}25 vol%) and temperature (473{approx}1273 K) of the furnace, which directly affect surface functionalities, elemental composition, surface area and pore structure. The adsorption capacities were measured in an electric torsion balance(Cahn 2000). The activated carbons were characterized by temperature programmed desorption(TPD), Fourier transform infrared spectroscopy(FTIR), and acid-base titration. The maximum capacity of SO{sub 2} adsorption of the carbon sample(SO{sub 2} mg/m{sup 2} surface area) was obtained in the temperature range of 973{approx}1173 K. The activated carbons, treated with NH{sub 3}(up to 25% with O{sub 2} 3% of fixed amount), adsorbed SO{sub 2} about 48% more than the untreated activated carbons. (author). 9 refs., 11 figs., 1 tab.

  3. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  4. Adsorption of Purine Compounds in Beer with Activated Carbon Prepared from Beer Lees

    OpenAIRE

    Shibata, Junji; MURAYAMA, Norihiro; TAKEYAMA, Masato

    2009-01-01

    Six hundred thousand tons of beer lees are discharged annually in Japanese breweries. It is well known that purine compounds are one of substances which cause the gout and beer especially contains a lot of purine compounds such as adenosine, adenosine 5’-phosphate and so on, compared with the other alcoholic drinks. The application of activated carbon prepared from beer lees was investigated in order to remove purine compounds in beer. The reuse and recycling of beer lees to activated carbon ...

  5. CARBON DIOXIDE ADSORPTION PROPERTY OF ACTIVATED CARBON FROM BIOMASS%生物质活性炭吸附二氧化碳的性能研究

    Institute of Scientific and Technical Information of China (English)

    廖景明; 肖军; 沈来宏; 常连成

    2013-01-01

    利用农业废弃物玉米秆、麦壳和稻壳为原料,二氧化碳为活化剂一步法制备生物质活性炭,研究活性炭制备时间和活化剂浓度对二氧化碳吸附性能的影响.结果表明,玉米秆为原料制备的活性炭比稻壳和麦壳活性炭具有更发达的孔隙结构,二氧化碳吸附能力更强;该文获得的活性炭的最适宜制备条件为制备温度800℃,制备时间30min,活化剂浓度为20%;在二氧化碳吸附分压为10%时,吸附率达到1.86%,当分压增大到100%时,吸附率可达6.3%以上;且中孔孔容对二氧化碳吸附性能的影响作用明显.%Activated carbons were prepared from agricultural wastes (corn stalk, wheat hull and rice hull) with one-step process by utilizing carbon dioxide as activator. The effects of both preparation time and concentration of activator on the CO2 adsorption property of activated carbons were studied in this paper. The results show that the activated carbons prepared from corn stalks have more developed porous structure than those from wheat hulls and rice hulls and consequently have higher CO2 adsorption capacity. The suitable preparation condition of activated carbons for CO2 capture is at 800℃ with 20% CO2 flow for 30 minutes. The adsorption rate reaches to 1. 86% while CO2 partial pressure is 10%. When increasing the CO2 partial pressure from 10% to 100% , the adsorption rate could be more than 6.3%. Particularly, the CO2 adsorption property of activated carbons is affected obviously by meso-pore volume.

  6. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.

    Science.gov (United States)

    Zietzschmann, Frederik; Aschermann, Geert; Jekel, Martin

    2016-10-01

    The adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC) was compared between regionally different waters within two groups, namely five drinking waters and seven wastewater treatment plant (WWTP) effluents. In all waters, OMP were spiked to adjust similar ratios of the initial OMP and DOC concentrations (c0,OMP/c0,DOC). PAC was dosed specific to the respective DOC (e.g. 2 mg PAC/per mg DOC). Liquid chromatography with online carbon detection shows differences of the background organic matter (BOM) compositions. The OMP removals at given DOC-specific PAC doses vary by ±15% (drinking waters) and ±10% (WWTP effluents). Similar BOM-induced adsorption competition in the waters of the respective group results in overall relationships between the PAC loadings and the liquid phase concentrations of each OMP (in the case of strong adsorbates). Weaker adsorbates show no overall relationships because of the strong BOM-induced adsorption competition near the initial OMP concentration. Correlations between OMP removals and UV254 removals were independent of the water (within the respective group). The equivalent background compound (EBC) model was applied to the experimental data. Using global EBC Freundlich coefficients, the initial EBC concentration correlates with the DOC (both water groups separately) and the low molecular weight (LMW) organics concentrations (all waters combined). With these correlations, the EBC could be initialized by using the DOC or the LMW organics concentration of additional drinking water, WWTP effluent, and surface water samples. PMID:27344250

  7. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition.

    Science.gov (United States)

    Shimabuku, Kyle K; Cho, Hyukjin; Townsend, Eli B; Rosario-Ortiz, Fernando L; Summers, R Scott

    2014-12-01

    This study demonstrates that the ideal adsorbed solution theory-equivalent background compound (IAST-EBC) as a stand-alone model can simulate and predict the powdered activated carbon (PAC) adsorption of organic micropollutants found in drinking water sources in the presence of background dissolved organic matter (DOM) under nonequilibrium conditions. The IAST-EBC represents the DOM competitive effect as an equivalent background compound (EBC). When adsorbing 2-methylisoborneol (MIB) with PAC, the EBC initial concentration was a similar percentage, on average 0.51%, of the dissolved organic carbon in eight nonwastewater impacted surface waters. Using this average percentage in the IAST-EBC model yielded good predictions for MIB removal in two nonwastewater impacted waters. The percentage of competitive DOM was significantly greater in wastewater impacted surface waters, and varied markedly in DOM size fractions. Fluorescence parameters exhibited a strong correlation with the percentage of competitive DOM in these waters. Utilizing such correlations in the IAST-EBC successfully modeled MIB and sulfamethoxazole adsorption by three different PACs in the presence of DOM that varied in competitive effect. The influence of simultaneous coagulant addition on PAC adsorption of micropollutants was also investigated. Coagulation caused the DOM competitive effect to increase and decrease with MIB and sulfamethoxazole, respectively. PMID:25371136

  8. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pKa of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  9. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    Manonmani Subbian

    2010-02-01

    Full Text Available The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated, and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. The optimum pH for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of each experiment. The adsorption of methylene blue followed the pseudo-second-order rate equation and fit the Langmuir, Freundlich, Dubinin-Radushekevich (D-R, and Tempkin equations well. Maximum removal of MB was obtained at pH 6 as 99.79% for adsorbent doses of 0.6 g/ 50 mL and 25 mg/L initial dye concentrations at room temperature. The maximum adsorption capacity obtained from the Langmuir equation was 46.73 mg g-1. The rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2 > 0.9677 with intraparticle diffusion as one of the rate-determining steps. Activated carbon developed from the peel of Cucumis sativa fruit can be an attractive option for dye removal from wastewater.

  10. Adsorption of gaseous pollutants on activated carbon filters. Modelling of the coupled exchanges of heat and mass; Adsorption de polluants gazeux sur des filtres de charbon actif. Modelisation des echanges couples de matiere et de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Fiani, E.

    2000-01-27

    The aim of this work is to remove gasoline and odorous molecules vapors. Thermodynamics and kinetics studies have been carried out; they concern the fixation of representative gases on activated carbons. Hydrogen sulfide and n-butane are chosen to represent the odorous molecules. Different activated carbons are considered: only the adsorbent impregnated by KOH has satisfying performance. The adsorption of hydrocarbons on a granulated activated carbon is studied on four original devices specifically perfected for this work: gravimetry, calorimetry, thermal measurements and gaseous phase chromatography. The gravimetric measurements are coupled to thermal measurements inside the granulates. Strong temperature variations have then been observed inside a granulate during the adsorption. These experimental results have been taken into account to adapt the classical Langmuir kinetic model. This new model allows to predict all the curves: setting / internal temperature variation for the adsorption of the hydrocarbons alone. The competitive nature of the adsorption sites allows then to explain qualitatively the adsorption of binary mixtures of hydrocarbons. At last, the classical Langmuir model allows to explain correctly the thermodynamic results, for the hydrocarbons alone or in binary mixture. The proposed modelling allows then to treat both on a kinetic and thermodynamic way the case of a non isothermal adsorption at the scale of an activated carbon granulate and to predict the phenomena at the filter scale. (O.M.)

  11. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  12. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    Science.gov (United States)

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units. PMID:27586364

  13. THERMODYNAMIC STUDY OF HIGH-PRESSURE ADSORPTION OF METHANE AND HEATS OF METHANE ADSORPTION ON MICROPOROUS CARBONS

    Institute of Scientific and Technical Information of China (English)

    杨晓东; 林文胜; 郑青榕; 顾安忠; 鲁雪生; 宋燕

    2002-01-01

    The study was done for high-pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius-Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.

  14. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    Science.gov (United States)

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  15. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Science.gov (United States)

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. PMID:24934321

  16. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Science.gov (United States)

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  17. Experimental Study On Thermal Wave Type Adsorption Refrigeration System Working On A Pair Of Activated Carbon And Methanol

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2015-12-01

    Full Text Available The aim of the study was to examine the efficiency of the thermal wave type adsorption refrigerating equipment working on a pair of activated carbon and methanol. Adsorption units can work in trigeneration systems and in applications driven by waste heat. They can be built also as a part of hybrid sorption-compressor systems, and they are very popular in solar refrigeration systems and energy storage units. The device examined in this study operates in a special mode called thermal wave. This mode allows to achieve higher efficiency rates than the normal mode of operation, as a significant contributor to transport heat from one to the other adsorber. To carry out the experiment a test bench was built, consisting of two cylindrical adsorbers filled with activated carbon, condenser, evaporator, oil heater and two oil coolers. Thermal oil circulation was responsible for providing and receiving heat from adsorbers. In order to perform the correct action a special control algorithm device was developed and implemented to keep the temperature in the evaporator at a preset level. The experimental results show the operating parameters changes in both adsorbers. Obtained COP (coefficient of performance for the cycle was 0.13.

  18. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    Energy Technology Data Exchange (ETDEWEB)

    Kadirova, Zukhra C., E-mail: zuhra_kadirova@yahoo.com [Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77a, Tashkent 100170 (Uzbekistan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Katsumata, Ken-ichi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Isobe, Toshihiro [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Nakajima, Akira [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Okada, Kiyoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan)

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9–10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (S{sub BET} 50 m{sup 2}/g) and low crystallinity (as FeOOH and Fe{sub 2}O{sub 3} phases) in the BAU-HA and BAU-OA samples (S{sub BET} 4 and 111 m{sup 2}/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (k{sub app}) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015–0.025 mM; sample content – 10 mg/l; initial oxalic acid concentration – 0.43 mM; pH 3–4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  19. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.

  20. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    Science.gov (United States)

    Harihastuti, Nani; Purwanto, P.; Istadi, I.

    2015-12-01

    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  1. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah [School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia); Ali, Umi Fazara Md [School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  2. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    International Nuclear Information System (INIS)

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m2/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes

  3. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    OpenAIRE

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS), which is the main contaminant in rinsing water. The main research question is to identify adsorption kinetics of LAS onto GAC-1240 and LDH. The influence of pre-treatment of the adsorbent, ...

  4. Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni

    2016-04-01

    Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.

  5. Treatment of semi-aerobic landfill leachate using durian peel-based activated carbon adsorption- Optimization of preparation conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Anuar Kamaruddin, Mohd Suffian Yusoff, Mohd Azmier Ahmad

    2012-01-01

    Full Text Available The treatability of semi-aerobic landfill leachate parameters using durian peel-based activated carbon (DPAC was investigated. An ideal experimental design was conducted based on central composite design (CCD using response surface methodology to evaluate individual and interactive effects of operational variables namely activation temperature, activation time and carbon dioxide (CO2 flow rate on treatment performance in terms of chemical oxygen demand (COD and colour removal efficiencies. The DPAC was prepared using physical activation method which consists of CO2 gasification. The adsorptions of COD and colour were described by Langmuir and Freundlich isotherm models. Based on the CCD, quadratic model was developed to correlate preparation variables to the two responses. The optimum DPAC preparation conditions were obtained using 800 °C activation temperature, 2.1 h activation time and 68.68 ml/s of CO2 flow rate. From the experimental work, the maximum removal of COD and colour obtained were 41.98 and 39.86%, respectively.

  6. Treatment of semi-aerobic landfill leachate using durian peel-based activated carbon adsorption- Optimization of preparation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian [School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Mohd Azmier [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-07-01

    The treatability of semi-aerobic landfill leachate parameters using durian peel-based activated carbon (DPAC) was investigated. An ideal experimental design was conducted based on central composite design (CCD) using response surface methodology to evaluate individual and interactive effects of operational variables namely activation temperature, activation time and carbon dioxide (CO2) flow rate on treatment performance in terms of chemical oxygen demand (COD) and colour removal efficiencies. The DPAC was prepared using physical activation method which consists of CO2 gasification. The adsorptions of COD and colour were described by Langmuir and Freundlich isotherm models. Based on the CCD, quadratic model was developed to correlate preparation variables to the two responses. The optimum DPAC preparation conditions were obtained using 800 C activation temperature, 2.1 h activation time and 68.68 ml/s of CO2 flow rate. From the experimental work, the maximum removal of COD and colour obtained were 41.98 and 39.86%, respectively.

  7. 二苯并呋喃在活性炭上的吸附相平衡和动力学%Adsorption Isotherm and Kinetics of Dibenzofuran on Granular Activated Carbons

    Institute of Scientific and Technical Information of China (English)

    李湘; 李忠; 罗灵爱

    2005-01-01

    The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.

  8. 活性炭与分子筛吸附性能比较研究%Study on Adsorption of Activated Carbon and Zeolite

    Institute of Scientific and Technical Information of China (English)

    李文明; 袁东; 付大友; 李红然; 谭文渊

    2011-01-01

    设计一套动态吸附装置.选取了三种室内空气中含量较大的有害气体:甲醛、苯和甲苯作为吸附质.利用气相色谱仪测定其穿透曲线,对活性炭和分子筛的吸附性能进行了比较.结果显示分子筛吸收低浓度的甲醛和甲苯性能较好,而活性炭吸收低浓度的苯性能较好.综合平衡吸附量、穿透时间和平衡时间三个指标进行比较,活性炭的吸附性能要优于分子筛.%A dynamic adsorption device was designed for the study. Three types of harmful gases with high level in indoor air that were formaldehyde, benzene and toluene were selected as adsorbate. Its breakthrough curves were determined by gas chromatograph. The adsorption of activated carbon and zeolite were compared. The conclusion is that zeolite is better to adsorpt low concentration of formaldehyde and toluene and activated carbon is better to adsorpt low concentration of benzene. The adsorption of activated carbon is better than zeolite through the comparison of equilibrium adsorption capacity ,breakthrough time and equilibration time.

  9. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xitao [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Yu Gang [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: yg-den@tsinghua.edu.cn; Han Wenya [Persistent Organic Pollutants Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-25

    The treatment of 2,4,5-trichlorobiphenyl (PCB29) in simulated soil-washing solution by granular activated carbon (GAC) adsorption and microwave (MW) regeneration was investigated in this study. The PCB29 adsorption process was carried out in a continuous flow adsorption column. After adsorption, the PCB29-loaded GAC was dried at 103 deg. C, and regenerated in a quartz reactor by 2450 MHz MW irradiation at 700 W for 5 min. The efficacy of this procedure was analyzed by determining the rates and amounts of PCB29 adsorbed in successive adsorption/MW regeneration cycles. Effects of the regeneration on the textural properties and the PCB29 adsorption capacity of GAC were examined. It was found that after several adsorption/MW regeneration cycles, the adsorption rate of GAC increased, whereas, the adsorption capacity decreased, which could be explained according to the change of textural properties. Most of the PCB29 adsorbed on GAC was degraded within 3 min under MW irradiation, and the analysis of degradation products by GC-MS demonstrated that PCB29 experienced dechlorination during this treatment.

  10. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO{sub 2} and extractability of the acid formed

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskii, A.; Semiat, R.; Aharoni, C. [Technion-Israle Institute of Technology, Haifa (Israel). Chemical Engineering Dept.

    1997-12-31

    Activated carbon is used as an adsorbent in flue gas cleaning. The process of adsorptive-catalytic cleaning of gas from sulfur dioxide using active carbon, treated by concentrated nitric acid, was studied. After oxidative treatment the acidity of the carbon increases and the basicity decreases. This results in an increase of the SO{sub 2} adsorption and its oxidation to SO{sub 3}, and in weaker retention of the sulfuric acid formed. This facilitates the removal of H{sub 2}SO{sub 4} by washing of the carbon and allows to obtain a more concentrated acid. The efficiency of the treated carbon is also higher in the process of SO{sub 2} removal from a gas similar in composition to stack gases. 13 refs., 1 fig., 7 tabs.

  11. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). PMID:26803903

  12. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku

    2013-05-15

    2-Methylisoborneol (MIB) and geosmin are naturally occurring compounds responsible for musty-earthy taste and odor in public drinking-water supplies, a severe problem faced by many utilities throughout the world. In this study, we investigated adsorptive removal of these compounds by superfine powdered activation carbon (SPAC, particle size powdered activated carbon; we also discuss the optimization of carbon particle size to efficiently enhance the adsorptive removal. After grinding, the absorptive capacity remained unchanged for a 2007 carbon sample and was increased for a 2010 carbon sample; the capacity increase was quantitatively described by the shell adsorption model, in which MIB and geosmin adsorbed more in the exterior of a carbon particle than in the center. The extremely high uptake rates of MIB and geosmin by SPAC were simulated well by a combination of the branched-pore kinetic model and the shell adsorption model, in which intraparticle diffusion through macropores was followed by diffusion from macropore to micropore. Simulations suggested that D40 was on the whole the best characteristic diameter to represent a size-disperse group of adsorbent particles; D40 is the diameter through which 40% of the particles by volume pass. Therefore, D40 can be used as an index for evaluating the improvement of adsorptive removal that resulted from pulverization. The dose required for a certain percentage removal of MIB or geosmin decreased linearly with carbon particle size (D40), but the dose reduction became less effective as the activated carbon was ground down to smaller sizes around a critical value of D40. For a 60-min contact time, critical D40 was 2-2.5 μm for MIB and 0.4-0.5 μm for geosmin. The smaller critical D40 was when the shorter the carbon-water contact time was or the slower the intraparticle mass transfer rate of an adsorbate was. PMID:23528781

  13. Pressure swing adsorption modeling of acetone and toluene on activated carbon

    Institute of Scientific and Technical Information of China (English)

    唐琳; 李立清; 邢俊东; 刘峥; 姚小龙

    2013-01-01

    A five steps pressure swing adsorption process was designed for acetone and toluene mixtures separation and recovery. Dynamic distributions of gas phase content and temperature were investigated. Based on the theory of Soret and Dufour, a non-isothermal mathematical model was developed to simulate the PSA process. Effects of heat and mass transfer coefficients were studied. The coupled Soret and Dufour effects were also evaluated. It is found that the heat transfer coefficient has little effect on mass transfer in adsorption stage. However, it has some impacts in desorption stage. The maximum value of C/C0 increases by about 25% as heat transfer coefficient decreases. The temperature variation is less than 0.05 K with the change of mass transfer coefficient, so that the effect of mass transfer coefficient on heat transfer can be ignored. It is also concluded that the Soret and Dufour coupled effects are not obvious in pressure swing adsorption compared with fixed-bed adsorption.

  14. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki Sebastian; Zietzschmann, Frederik; Jekel, Martin

    2014-05-15

    Organic micropollutants (OMPs) may occur ubiquitously in the aquatic environment. In order to protect the ecosystem and drinking water sources from potentially toxic effects, discharges of an increasing number of OMPs are being regulated. OMP removal from wastewater treatment plant (WWTP) effluents as a point source is a preferred option with removal by adsorption onto powdered activated carbon (PAC) and OMP transformation to presumably harmless compounds by ozonation as the most promising techniques. In this study, effluents of four WWTPs were treated with PAC and ozone in bench-scale experiments to compare the removal efficiencies of seven relevant OMPs. Concentrations of carbamazepine and diclofenac were reduced by more than 90% with 20 mg/L PAC or 5-7 mg/L ozone (0.5 mg O3 per mg dissolved organic carbon (DOC)). Comparing typical doses for practical applications ozonation proved to be more efficient for abatement of sulfamethoxazole, while removal of benzotriazole and iomeprol was comparatively more efficient with activated carbon. While well known for ozonation, DOC-normalized doses were also applied to PAC and correlated better to relative OMP removal than volume proportional PAC addition. Furthermore, OMP removal efficiencies corresponded well with the reduction of ultraviolet light absorption at 254 nm for both treatment options.

  15. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki Sebastian; Zietzschmann, Frederik; Jekel, Martin

    2014-05-15

    Organic micropollutants (OMPs) may occur ubiquitously in the aquatic environment. In order to protect the ecosystem and drinking water sources from potentially toxic effects, discharges of an increasing number of OMPs are being regulated. OMP removal from wastewater treatment plant (WWTP) effluents as a point source is a preferred option with removal by adsorption onto powdered activated carbon (PAC) and OMP transformation to presumably harmless compounds by ozonation as the most promising techniques. In this study, effluents of four WWTPs were treated with PAC and ozone in bench-scale experiments to compare the removal efficiencies of seven relevant OMPs. Concentrations of carbamazepine and diclofenac were reduced by more than 90% with 20 mg/L PAC or 5-7 mg/L ozone (0.5 mg O3 per mg dissolved organic carbon (DOC)). Comparing typical doses for practical applications ozonation proved to be more efficient for abatement of sulfamethoxazole, while removal of benzotriazole and iomeprol was comparatively more efficient with activated carbon. While well known for ozonation, DOC-normalized doses were also applied to PAC and correlated better to relative OMP removal than volume proportional PAC addition. Furthermore, OMP removal efficiencies corresponded well with the reduction of ultraviolet light absorption at 254 nm for both treatment options. PMID:24607314

  16. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    Science.gov (United States)

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon.

  17. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  18. Applicability of the theory of volume filling of micropores to adsorption of caprolactam from aqueous solutions with active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khodorov, E.I.; Kazakov, V.A.; Semerikova, V.V.; Surinova, S.I.

    1985-06-10

    The absence of a scientifically based method of selecting adsorbents in the extraction of organic substances from waste water and solution which would allow for their multicycle use in adsorption-desorption stages often prevents the introduction of adsorption technology into industrial practice. This paper demonstrates the possibility of calculating the adsorption equilibrium of highly soluble organic compounds with the theory of volume filling of micropores equations in consideration of the activities of the extracted component in the solution and the change in the partial affinity coefficient with the degree of filling of the adsorption volume on the example of extraction of caprolactam from aqueous solutions.

  19. Adsorption Kinetics of Dibenzofuran in Activated Carbon Packed Bed%二苯并呋喃在活性炭床层中的吸附动力学

    Institute of Scientific and Technical Information of China (English)

    李湘; 李忠; 罗灵爱

    2008-01-01

    The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was in-vestigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the ac-tivated carbons. All the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilib-rium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the ob- tained Langmuir isotherm was developed for predicting the fixed bed adsorption of dibenzofuran. The result indi- cated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microperosity is found. As it was expected, the diben-zofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.

  20. Synergetic effects for p-nitrophenol abatement using a combined activated carbon adsorption-electrooxidation process

    Institute of Scientific and Technical Information of China (English)

    周明华; 戴启洲; 雷乐成; 汪大翚

    2004-01-01

    A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regen erated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.

  1. Mercury Removal from Aqueous Solution and Flue Gas by Adsorption on Activated Carbon Fibres

    OpenAIRE

    Nabais, Joao; Carrott, Peter; Ribeiro Carrott, Manuela

    2006-01-01

    The use of two activated carbon fibres, one laboratorial sample prepared from a commercial acrylic textile fibre and one commercial sample of Kynol1, as prepared/received and modified by reaction with powdered sulfur and H2S gas in order to increase the sulfur content were studied for the removal of mercury from aqueous solution and from flue gases from a fluidized bed combustor. The sulfur introduced ranged from 1 to 6 wt.% depending on the method used. The most important parameter ...

  2. Adsorption Behavior of Quinine Sulfate onto Medicinal Activated Carbon%药用活性炭对硫酸奎宁吸附性能的研究

    Institute of Scientific and Technical Information of China (English)

    付国家; 郭庆杰

    2011-01-01

    研究了药用活性炭对硫酸奎宁吸附性能的影响,并采用Langmuir和Freundlich 吸附等温线模型拟合了活性炭对硫酸奎宁的吸附行为.结果表明:硫酸奎宁吸附量随药用活性炭用量的增加呈上升趋势,但吸附效率却呈下降趋势.在所研究的条件下,活性炭对硫酸奎宁的吸附量随温度和初始浓度的升高而增大,在313 K吸附值最大为123.457mg·g-1.与Freundlich吸附模型(r2f<0.95)相比,Langmuir吸附等温线拟合较好(r21>0.97),说明Langmuir模型适用于所研究的体系.%In this study, the adsorption effect of medicinal activated carbon for quinine sulfate(QS) removal from aqueous solutions was investigated. The adsorption behavior of QS onto medicinal activated carbon was fitted with Langmuir and Freundlich adsorption isotherm models. The results showed that an increase the dosage of activated carbon enhanced the adsorption capacity, but failed to increase the QS removal efficiency. In the studied conditions, the adsorption of QS onto activated carbon rised with increasing temperature and the initial QS concentration, and the calculated maximum adsorption capacity of activated carbon was 123. 457 mg ? G-1 at 313 K. Compared with Freundlich model (r120. 97).

  3. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  4. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling. PMID:26685062

  5. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon.

    Science.gov (United States)

    Hanigan, David; Zhang, Jinwei; Herckes, Pierre; Krasner, Stuart W; Chen, Chao; Westerhoff, Paul

    2012-11-20

    Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs). NDMA formation potential (FP) was used as a surrogate for precursor removal. NDMA FP was reduced by 37, 59, and 91% with 3, 8, and 75 mg/L of one PAC, respectively, with a 4-h contact time. In RSSCTs and in full-scale GAC contactors, NDMA FP removal always exceeded that of the bulk dissolved organic carbon (DOC) and UV absorbance at 254 nm. For example, whereas DOC breakthrough exceeded 90% of its influent concentration after 10,000 bed volumes of operation in an RSSCT, NDMA FP was less than 40% of influent concentration after the same bed life of the GAC. At full or pilot scale, high NDMA FP reduction ranging from >60 to >90% was achieved across GAC contactors, dependent upon the GAC bed life and/or use of a preoxidant (chlorine or ozone). In all experiments, NDMA formation was not reduced to zero, which suggests that although some precursors are strongly sorbed, others are not. This is among the first studies to show that AC is capable of adsorbing NDMA precursors, but further research is needed to better understand NDMA precursor chemical properties (e.g., hydrophobicity, molecular size) and evaluate how best to incorporate this finding into full-scale designs and practice.

  6. Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid.

    Science.gov (United States)

    Gong, Xujin; Li, Weiguang; Wang, Ke; Hu, Jinhua

    2013-08-01

    The adsorption of Cr(VI) (0.500 mg/L) onto food-grade tannic-acid immobilised powdered activated carbon (TA-PAC) in the presence of dissolved humic acid (DHA) was investigated at 280 K as a function of pH, along with the adsorption capacities and the adsorption isotherms for chromium ions. The results showed that the presence of DHA improved the adsorption capacities of Cr(VI) and its reduction product (Cr(III)) over a wide pH range (4.0-8.0). The main mechanism for metal-DHA complexation in the Cr(VI) system was the reduction of Cr(VI) followed by complexation between Cr(III) and DHA. The Freundlich isotherms yielded the best fits to all data (R(2)=0.9951, qm=5.639 mg/g) in the presence of DHA. The adsorption mechanisms of Cr(VI) onto TA-PAC in the presence of DHA were summarized into three categories: (i) binding by anion adsorption, (ii) Cr(VI) reduction followed by Cr(III) adsorption, and (iii) adsorption of Cr(III)-DHA complexes. PMID:23453800

  7. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    Science.gov (United States)

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent.

  8. Influence of the Surface and Structural Characteristics of Activated Carbons on Adsorptive Removal of Halo-Olefinic Impurities from 1,1,1,3,3-Pentafluoropropane

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Chuang Zhang; Mingquan Wei

    2014-01-01

    abstract Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCl, HNO3 and NaOH, respec-tively. The adsorptive performance of unmodified and modified activated carbons for the removal of a low con-tent of 1-chloro-3,3,3-trifluoro-1-propene (HCFC-1233zd), 1,3,3,3-tetrafluoro-1-propene (HFC-1234ze), 1-chloro-1,3,3,3-tetrafluoro-1-propene (HFC-1224zb) and 2-chloro-1,3,3,3-tetrafluoro-1-propene (HFC-1224xe) halo-olefins in the 1,1,1,3,3-pentafluoropropane (HFC-245fa) product was investigated. These halo-olefinic im-purities could be substantially removed from the HFC-245fa product via the adsorption over activated carbon when the adsorption temperature was under 333 K, which can be attributed to theπ-πdispersion interactions between the halo-olefins and carbon graphite layer. The basic surface groups of activated carbon could catalyze the decomposition of HFC-245fa to form HFC-1234ze. However, the significant increase in the amount of surface acidic groups of activated carbon led to a distinct decrease of adsorption capacity due to the reduction in the mi-cropore volume of adsorbent and a decrease in the strength of theπ-πdispersive interactions between halo-olefin molecules and carbon basal. The breakthrough time of halo-olefinic impurities on activated carbon in-creased with the increase of molecular mass and the decrease of molecular symmetry.

  9. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  10. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: Shell adsorption and branched-pore kinetic model analysis and optimal particle size

    OpenAIRE

    Matsui, Yoshihiko; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku

    2013-01-01

    2-Methylisoborneol (MIB) and geosmin are naturally occurring compounds responsible for musty-earthy taste and odor in public drinking-water supplies, a severe problem faced by many utilities throughout the world. In this study, we investigated adsorptive removal of these compounds by superfine powdered activation carbon (SPAC, particle size

  11. Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon

    Science.gov (United States)

    The present study suggests a combined adsorption and Fenton oxidation using an acid treated Fe-amended granular activated carbon (Fe-GAC) for effective removal of bisphenol A in water. When the Fe-GAC adsorbs and is saturated with BPA in water, Fenton oxidation of BPA occurs in ...

  12. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    Science.gov (United States)

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  13. Experimental tests for FE(2.) and M(2.) removal from contaminated groundwater by adsorption: a comparison between activated carbon and pine bark

    International Nuclear Information System (INIS)

    In this paper a study on the adsorption process by activated carbon and pine bark is presented; the experimental activity aimed at comparing the performances of these two reactive materials in terms of removal efficiency and adsorption capacity. Moreover, the environmental compatibility of both materials was checked for their possible use as reactive media in a permeable reactive barrier for the in situ treatment of contaminated groundwater. Thus batch tests were carried out with a liquid-to-solid ratio equal to 10 1 kg; three different iron and manganese, alone and mixed, concentrations (100, 1000 e 10000 μg l-1) and different particle size distributions (< 1 mm and in the range 1-4 mm) were tested, in order to evaluate the influence of both the initial pollutant concentration and the surface area of the adsorbent on the adsorption process. Moreover, the adsorption process was modelled through the Langmuir and Freundlichm isotherms. Removal efficiencies near 100% can be reached at the end of the experimental activity by both the reactive media; the initial iron concentration influenced the adsorption kinetic only for activated carbons, with faster removal in correspondence to the highest concentration. The particle size distribution seemed not to influence significantly the process in the experimental conditions. The iron and manganese released during the dead sorption tests were quite negligible, thus proving that the immobilization process on the reactive media used in this experimental activity can be considered almost irreversible.

  14. 基于 Aspen Adsorption 的活性炭吸附溶液中镍离子的模拟研究%Simulation study on adsorption of nickel ion onto activated carbon from aqueous solution based on Aspen Adsorption

    Institute of Scientific and Technical Information of China (English)

    刘金昌; 曹俊雅; 刘娟; 解强

    2013-01-01

      利用 Aspen Adsorption 对活性炭吸附溶液中镍离子的过程进行模拟研究。通过静态吸附实验数据拟合、吸附等温线常数项估算,建立了实验室规模的活性炭吸附溶液中镍离子的单塔吸附模型;在设置的进料流量为0.001 m3/s、进料浓度为50 mg/m3的初始条件下,模拟计算获得了吸附塔出口液相中镍离子浓度随时间的变化和沿床层轴向的分布,并考察了进料浓度、进料流量和传质系数等对吸附过程和穿透曲线的影响。结果表明:模拟计算结果与实验结果基本吻合,模型假设、参数设置合理,研究条件下吸附床层在15000 s 后被完全穿透;随进料镍离子浓度、进料流量的增大,吸附床层的穿透曲线均前移,进料流量的影响更为显著,进料镍离子浓度由50 mg/m3增大至5000 mg/m3时,穿透时间从3500 s 提前至1500 s,而进料量由0.001 m3/s 提高到0.002 m3/s 时,穿透时间从3500 s 即提前至1700 s;传质系数≤0.1 s-1时对吸附性能影响显著。模拟研究、计算为放大试验及实际工程应用工艺参数的选择提供了依据。%  Adsorption process of nickel ion onto activated carbon from aqueous solution was simulated and studied with the aid of Aspen Adsorption. The model of a laboratory scale column for nickel adsorption was built on the basis of the experimental data fitting and the adsorption isotherm constants estimating. The nickel ion concentration at exit of adsorption column vs time curve and bed axial loading distribution of nickel ion were obtained from simulation results with the assumption of process parameters, including feed flow rate of 0.001 m3/s and feed concentration of 50 mg/m3. Also, the influences of feed concentration, feed flow rate and mass transfer coefficient on adsorption process and breakthrough curve were investigated. The results reveal that the simulated values of the model are consistent with

  15. Removal of cyanobacteria and cyanotoxins from drinking water by powdered activated carbon adsorption/ultrafiltration

    OpenAIRE

    Campinas, Margarida Páscoa

    2009-01-01

    Tese dout., Ciências e Tecnologias do Ambiente, Universidade do Algarve, 2009 PAC/UF was investigated to remove the cyanobacterium Microcysis aeruginosa and microcystins, focusing on toxins adsorption onto PAC and the combined effect of the water organic and inorganic matrices, the cells removal and lysis by UF, and PAC contribution to membrane fouling control and microcystins removal by PAC/UF. The fine-grade mesoporous PAC presented high capacity and fast kinetics for microc...

  16. Experimental and Theoretical Study of the Effect of Moisture on Methane Adsorption and Desorption by Activated Carbon at 273.5 K

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Adsorption and desorption of methane by activated carbon (AC) at constant temperature and at various pressures were investigated. The effect of moisture was also studied. A volumetric method was used, up to 40 bar, at a temperature of 273.5 K. Results of a dry AC sample were compared with those obtained from a moist sample and two different ACs with different physical and surface properties were used. As expected, the results showed that the existence of moisture, trapped in the AC pores, could lead to a decrease in the amount of methane adsorbed and a decrease in the amount of methane delivered during desorption. To model the experimental results, a large variety of adsorption isotherms were used. The regressed parameters for the adsorption isotherms were obtained using the experimental data generated in the present study. The accuracy of the results obtained from the different adsorption isotherms was favorably compared.

  17. Surface modification of pitch-based spherical activated carbon by CVD of NH{sub 3} to improve its adsorption to uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chaojun [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China); Liang Xiaoyi [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)], E-mail: xyliang@ecust.edu.cn; Liu Xiaojun; Wang Qin; Zhan Liang; Zhang Rui; Qiao Wenming; Ling Licheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)

    2008-08-30

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH{sub 3} (NH{sub 3}-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N{sub 2} adsorption, pH{sub PZC} (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH{sub 3}-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH{sub 3}-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH{sub PZC}, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  18. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  19. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    Science.gov (United States)

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did. PMID:26040727

  20. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied withcyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquorwas analyzed by atomic emission spectroscopy and colorimetric method. The contents of variouskinds of ions in ACFF were determined with X-ray photoctron spectroscopy. ACFF not onlyadsorbed gold but also adsorbed arsenic, nickel, zinc, calcium, sulphur, bismuth, copper, iron. silverand cyanide anion. Atomic percentage of C and those of O, N, Zr, Fe increase and decreaserespectively with the increase of the layer depth, while those of Ca, Au, Ag keep constant.

  1. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon.

    Science.gov (United States)

    Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng

    2014-03-01

    A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.

  2. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.

    Science.gov (United States)

    Zoschke, Kristin; Engel, Christina; Börnick, Hilmar; Worch, Eckhard

    2011-10-01

    The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration. PMID:21752419

  3. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.

    Science.gov (United States)

    Zoschke, Kristin; Engel, Christina; Börnick, Hilmar; Worch, Eckhard

    2011-10-01

    The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration.

  4. Energetic investigation of the adsorption process of CH4, C2H6 and N2 on activated carbon: Numerical and statistical physics treatment

    Science.gov (United States)

    Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb

    2014-01-01

    The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.

  5. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasthurirengan, S.; Behera, U.; Vivek, G. A. [Centre for Cryogenic Technology, Indian institute of Science, Bangalore 560012 (India); Krishnamoorthy, V.; Gangradey, R. [Cryopump Group, Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Udgata, S. S.; Tripati, V. S. [I-Design Engineering Solutions Ltd., Ubale Nagar, Wagholi, Pune 412207 (India)

    2014-01-29

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.

  6. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    Science.gov (United States)

    Kasthurirengan, S.; Behera, U.; Vivek, G. A.; Krishnamoorthy, V.; Gangradey, R.; Udgata, S. S.; Tripati, V. S.

    2014-01-01

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.

  7. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    LIUXiaozhen

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores,containing various kinds of ions.The adsorbed leaching liquor was analyzed by atomic emission spectroscopy and colorimetric method.The contents of various kinds. of ions in ACFF were determined with X-ray photoctron spectroscopy.ACFF not only adsorbed gold but also adsorbed arsenic,nickel,zinc,calcium,sulphur,bismuth,copper,iron,silver and cyanide,anion.Atomic percentage of C and those of O,N,Zn,Fe increase and decrease respectively with the increase of the layer depth,while those of Ca,Au,Ag keep constant.

  8. Removal of pharmaceutical compounds from water by adsorption on activated carbon and degradation with ozone; Eliminacion de compuestos farmaceuticos de las aguas por adsorcion en carbon activado y degradacion con ozono

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Polo, M.; Prado Joya, G.; Rivera Utrilla, J.; Ferro Garcia, M. A.; Bautista Toledo, M. I.; Lopez Penalver, J. J.; Gomez Merlo de la fuente, C.

    2007-07-01

    The removal of pharmaceutical compounds from water, using nitroimidazoles as model compounds, by means of both adsorption on activated carbon and ozonization has been studied. The results obtained have shown that activated carbon presents a great efficiency to remove these contaminants from waters because: the adsorption kinetics is very fast, and it is not affected by diffusion problems; the maximum adsorption capacity is very high (400-96 mg/g); and the nitroimidazole adsorption capacity is enhanced in natural waters. Regarding to the ozonization process, a low reactivity of these compounds with ozone has been observed (k{sub 0}3{approx_equal}100 M{sup -}1 s{sup -}1) although, nevertheless, they present a high affinity to the hydroxyl radicals (k{sub O}H{approx_equal}10{sup 1}0 M{sup -}1s{sup -}1). (Author) 13 refs.

  9. 玉米秸秆制备活性炭的吸附性能研究%Experiment on Adsorption Performance of Activated Carbon Prepared by Corn Straws

    Institute of Scientific and Technical Information of China (English)

    刘恩海; 刘圣勇; 王长忠; 潘嘉信; 赵坤正; 徐云婷; 苏之勇

    2016-01-01

    Objective] To study the adsorption performance of activated carbon prepared by corn straws.[ Methods] Activated carbon pre-pared by corn straws was taken as research object, adsorption performance simulation test equipment was set up, and the static weight method was used to measure the activated carbon adsorption capacity of methanol.Also, adsorption bed structure, adsorption bed containing different particle size carbon particle, activated carbon supplemented with different amounts of graphite powder and modified activated carbon adsorption performance impact on the system were studied.[Results] For the bed material containing the same kinds of carbon adsorption samples at the same temperature, the new adsorption bed A adsorption performance was significantly better than for bed B whose structure is not transformed;when it reached the same absorption capacity 0.22 g/g, bed A will absorb five minutes earlier;in the comparison test of different size and the same diameter of the activated carbon bed, for adsorption at the same temperature, the adsorption performance was significantly better than containing the same diameter, and achieved the same adsorption capacity 0.22 g/g, the adsorption was implemented 16 minutes ahead of time;add proper amount of activated carbon graphite in the bed can enhance thermal conductivity and strengthen adsorption properties;the op-timum dosage was 20% of total activated carbon; in the modified activated carbon test, after a weak acid solution soak charcoal, it can en-hance the adsorption performance, compared to the control group, the absorption was completed 3 minutes ahead of time when reaching 87. 1% of the balanced adsorption capacity.[Conclusion] This study is expected to provide reference for optimizing structural design of absorption bed and absorption type refrigeration system.%[目的]研究玉米秸秆制备活性炭的吸附性能。[方法]以玉米秸秆制备的粒状活性炭为研究对象,搭建了吸附性能模

  10. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  11. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    Institute of Scientific and Technical Information of China (English)

    LI Youdi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2008-01-01

    TiO2 nanoparUcle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatslytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  12. Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon.

    Science.gov (United States)

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva

    2007-11-01

    The majority of the nutrients in domestic waste originate from human urine. This study deals with methods for recovery of N and P from urine. Results from a freezing-thawing method (FTM) together with struvite recovery and nitrogen adsorption on zeolite and active carbon (AC) are presented. Various amounts of MgO, zeolite and AC were added to samples of 100ml urine. After 3 days the supernatants were analysed for pH, total-N, total-P and acute toxicity for Daphnia magna. One set of samples was frozen and then thawed and the supernatants collected were tested as before. The FTM method concentrated 60% of the nutrients in 40% of the initial volume and significantly improved the N reduction and D. magna survival. The P recovery was 95-100%, mainly as struvite. No significant effect of AC was found. Zeolite improved the P recovery and in some combinations of MgO also the N recovery. PMID:17321132

  13. Removal of radio N-nitrosodimethylamine (NDMA from drinking water by coagulation and Powdered Activated Carbon (PAC adsorption

    Directory of Open Access Journals (Sweden)

    C.-K. Choi

    2009-03-01

    Full Text Available The presence of N-nitrosodimethylamine (NDMA in drinking water supplies has raised concern over its removal by common drinking water treatment processes. A simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid, respectively. The scintillation intensity in all cases is linear (R2>0.99 and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC, as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The commonly used coagulation process for particulate control and biosorption is ineffective for removing NDMA (<10% by coagulation and <20% by biosorption. However, high doses of PAC may be applied to remove NDMA.

  14. Adsorption of some transition metal ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Paunka St. Vassileva; Albena K. Detcheva [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of General and Inorganic Chemistry

    2010-03-15

    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  15. Adsorption of Some Transition Metal Ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Vassileva, P.S.; Detcheva, A.K. [Bulgarian Academy of Science, Sofia (Bulgaria)

    2010-07-01

    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  16. 改性活性炭对土壤镉的吸附性影响%Study of Soil Cadmium Adsorption by Modified Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    洪博; 黄树辉; 丁凯翔; 汤炀斌

    2014-01-01

    Objective Research the effect of three kinds of modified activated carbon for cadmium adsorption of vegetable field , river sediment and lotus sediment .Method This experiment was carried out on the activated carbon on acid modification , alkali modification and oxidation modification , and determination of cadmium content dithizone spectrophotometry .Results The best activated carbon content is 0.025 g/g in the soil sample for experiment .With the increase of initial concentration of cadmium , soil of cadmium adsorption quantity is increasing .Conclusion Compared with common active carbon , three kinds of modified activated carbon cadmium adsorption quantity of the wetland soil all have different degrees of ascension .And compared to common activated carbon , the cadmium adsorption of the activated carbon with acid modified and oxidation modified increased by 7.7%, 8.3%, the adsorption increases significantly .%目的:研究3种改性活性炭对菜地、河流底泥、荷花底泥镉吸附性的影响。方法对活性炭进行酸改性、碱改性和氧化改性,采用双硫腙分光光度法测定镉含量。结果对实验土样,最佳活性炭添加量为0.025 g/g。随着初始镉含量的升高,土壤对镉的吸附量不断增大。结论3种改性活性炭相比普通活性炭对湿地土壤的镉吸附量均有不同程度的提升,荷花底泥中,酸性、氧化改性活性炭相比普通活性炭,吸附效果提高7.7%,8.3%,吸附效果提升显著。

  17. Improvement of soluble coffee aroma using an integrated process of supercritical CO2 extraction with selective removal of the pungent volatiles by adsorption on activates carbon

    Directory of Open Access Journals (Sweden)

    S. Lucas

    2006-06-01

    Full Text Available In this paper a two-step integrated process consisting of CO2 supercritical extraction of volatile coffee compounds (the most valuable from roasted and milled coffee, and a subsequent step of selective removal of pungent volatiles by adsorption on activated carbon is presented. Some experiments were carried out with key compounds from roasted coffee aroma in order to study the adsorption step: ethyl acetate as a desirable compound and furfural as a pungent component. Operational parameters such as adsorption pressure and temperature and CO2 flowrate were optimized. Experiments were conducted at adsorption pressures of 12-17 MPa, adsorption temperatures of 35-50ºC and a solvent flow rate of 3-5 kg/h. In all cases, the solute concentration and the activated particle size were kept constant. Results show that low pressures (12 MPa, low temperatures (35ºC and low CO2 flowrates (3 kg/h are suitable for removing the undesirable pungent and smell components (e.g. furfural and retaining the desirable aroma compounds (e.g. ethyl acetate. The later operation with real roasted coffee has corroborated the previous results obtained with the key compounds.

  18. Catalytic Role Of Palladium And Relative Reactivity Of Substituted Chlorines During Adsorption And Treatment Of PCBs On Reactive Activated Carbon

    Science.gov (United States)

    The adsorption-mediated dechlorination of polychlorinated biphenyls (PCBs) is a unique feature of reactive activated cabon (RAC). Here, we address the RAC system, containing a tunable amount of Fe as a primary electron donor coupled with Pd as an electrochemical catalyst to pote...

  19. Activated carbon adsorption for chromium treatment and recovery; Adsorbimento di cromo su carboni attivi a scopo di recupero e decontaminazione

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Castelli, S.; De Francesco, M. [ENEA, Casaccia (Italy). Area Energia e Innovazione

    1994-05-01

    The capability of actived carbon systems to adsorb chromium from wastewater of galvanic industry is valued. Batch tests and column tests are carried out with good results. An activated carbon with acidic surface oxides can adsorb both chromate and chromium (III); chromate is reduced in situ and then adsorbed as chromium (III). Chromium can be desorbed from carbon by an acid or basic treatment obtaining respectively chromium (III) or chromate solutions. Carbon can be regenerated many times without evident signs of deterioration.

  20. CHARACTERIZATION AND ADSORPTION PROPERTIES OF POROUS CARBON NANOFIBER GRANULES

    Institute of Scientific and Technical Information of China (English)

    Jiuling Chen; Qinghai Chen; Yongdan Li

    2006-01-01

    The properties of the porous granules produced by agglomeration of catalytically grown carbon nanofibers were investigated in this work. The single pellet crushing strength of the granules is high, e.g., 1.6-2.5 MPa. They have adsorption at 298 K of benzene or phenol on the granules is much lower than that on activated carbon and depends not only on the specific surface area of the carbon material but also on the sewing structure of the granules and the morphology of the carbon nanofibers. Treatment in dilute nitric acid appreciably reduces such adsorption.

  1. STUDIES ON THE DYNAMIC COMPETITIVE ADSORPTION OF ORGANIC VAPORS ON THE ACTIVATED CARBON FIBERS ACTIVATED WITH PHOSPHORIC ACID

    Institute of Scientific and Technical Information of China (English)

    FURuowen; LIULing; 等

    2000-01-01

    The dynamic competititve adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditons were investigated by gas chromatography in this paper,The studied mixtrues included benzene/toluene,toluene/xylene,benzene/isopropylbenzene ethly acetate/toluene and benzene/ethyl acetate.Experimental results show that various ACF-Ps,as with ACF-W,can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor,In dynamic competitive adsorption,the more weakly weakle adsorbed vapor noe only penetrates early,but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve,The ACF-Ps prepared at different temperatuers have somewhat different adsorption selectivity,The feed concentration ratio of vapros,the length/diameter ratio and the thick of bed have effect on competitive adsorption.The competitive adsorption ability of a vapor is mainly related to its boiling point.Usually,the higher the boiling point ,the stronger the vapor adsorbed on ACF-P.

  2. 苯-水混合蒸气在活性炭上的二元吸附平衡%Binary Adsorption Equilibrium of Benzene-Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg@m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon. A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal, non-similar binary adsorption systems. A modified Polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculate the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  3. Effect of the physical properties of activated carbon in the gold adsorption from cyanide media; Efecto de las propiedades fisicas del carbon activado en la adsorcion de oro desde medio cianuro

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.

    2010-07-01

    The effect of the physical properties of an activated carbon such as pore size distribution, specific surface, pore average diameter, in the gold adsorption from cyanide solution with the gold to the Au (CN){sup -}{sub 2} form, was studied. To meet the proposed objectives two carbons were studied: carbon A with specific surface of 985 m{sup 2} / g, 57 % of micropores and 1.85 nm as average diameter of pores and carbon B with specific surface of 786 m{sup 2} / g, 27 % and pores of 2.35 nm as average diameter of pores; both granular carbons made from coconut shell. Batch adsorption tests were performed in a reactor of 500 ml of capacity with mechanical stirring at constant temperature. The effect of cations present in the aqueous solutions such as Ca{sup 2}+, Na+, K+ and Li+, the effect of pore size distribution, the effect of average pore diameter and surface area were evaluated in function of the rate and amount of gold adsorbed on the activated carbons denominated as A and B. The results to indicate that the physical properties of an activated carbon are an important factor in the gold adsorption process in terms of rate and amount of adsorbed gold. The carbon B with 786 m{sup 2} / g of specific surface area reached a higher load per unit area (0.02 mg Au/m{sup 2}) in relation to the carbon B of 985 m{sup 2} / g which had a load of 0.01 mg Au / m{sup 2}, after 6 h of contact carbon-solution. The rate adsorption of gold in both carbons is controlled by mass transfer in the liquid film surrounding the carbon particles to short times or small loads of gold in the particles, far from equilibrium. Applying a first order kinetic model, it was obtained that the ratio of the kinetic constants for carbons A and B, ie (kB / kA), fluctuates in a value of 3 for the different cations in study. In general it is possible to say that the rate adsorption and the amount of adsorbed gold increased with the increase in macropores and with the increasing pore average diameter. The

  4. Removal of radio N-nitrosodimethylamine (NDMA from drinking water by coagulation and Powdered Activated Carbon (PAC adsorption

    Directory of Open Access Journals (Sweden)

    C.-K. Choi

    2009-10-01

    Full Text Available The presence of N-nitrosodimethylamine (NDMA in drinking water supplies has raised concern over its removal by common drinking water treatment processes. However, only limited studies have been examined to evaluate the potential removal of NDMA by numerous water treatment technologies within a realistic range (i.e., sub μg/L of NDMA levels in natural water due to analytical availability. In this study, a simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid, respectively. The scintillation intensity in all cases is linear (R2>0.99 and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC, as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The results show that coagulation and biosorption may not be appropriate mechanisms to remove NDMA (i.e., hydrophilic based on its low octanol-water partitioning coefficient, Log Kow=0.57. However, relatively high removal of NDMA (approximately 50% was obtained by PAC at high PAC dosages and longer contact times.

  5. Adsorption characteristics of trichloroethylene and 1,1,1-trichloroethane onto activated carbon fiber in gaseous phase

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, Seiki; Nakamura, Takeo; Xiaohong, Ma; Higuchi, Toshikazu; Shinoda, Sanji [Kinki Univ., Osaka (Japan)

    1992-07-01

    Trichloroethylene (TCE) and 1,1,1-trichloroethane (methylchloroform:MC) are major volatile chlorinated hydrocarbons, and the production amounts of these compounds run up to about 80,000-100,000 tons a year in Japan. TCE and MC were observed in groundwater in Japan as well as in the United States, so that the environmental contamination by these compounds became a serious problem. TCE and MC cause vertigo, headache, drunkenness and fatigue depending on central nervous system depress, and also liver or kidney lesion by inhalation as general toxicities. For prevention of the poisoning to workers, the permissible concentrations of TCE and MC vapors in work area have been set at 50ppm and 200ppm, respectively by Japan Association of Industrial Health. In the United States, those values are set at 100ppm and 350ppm by American Conference of Governmental Industrial Hygienists, respectively. In addition, TCE is considered to be carcinogenic because it causes liver cancer in mice. Furthermore, MC is considered to destroy the Ozone Layer. Though it is presumed that 40-70% of used TCE and MC in factories is exhausted to the atmosphere, there is no regulation now concerning the exhaustion of TCE and MC to the atmosphere. So that regards should be paid to the intake of TCE and MC from the atmosphere as well as from drinking water. In this paper, we studied the adsorption removal of TCE and MC by activated carbon fibers (ACFs) in gaseous phase pointing to the prevention against TCE and MC diffusion to the atmosphere and inhalation to workers. 9 refs., 3 figs., 2 tabs.

  6. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Science.gov (United States)

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.

  7. Adsorption Equilibrium Study Of Dyestuff from Petroleum Industry Effluent Using the Biomass and Activated Carbon Of The Prop Root Of Rhizophora Mangleplant

    Directory of Open Access Journals (Sweden)

    B. S. Kinigoma

    2014-06-01

    Full Text Available The comparative equilibrium adsorption study of three different types of dyestuff effluent on the biomass and activated carbon prepared from wastes of rhizophora mangle root has been carried out as a function of initial concentration, contact time and pH variations. The sorption processes which were examined by means of Freundlich and Langmuir models revealed the effectiveness of both BRR and ACRR adsorbents in uptaking the dyes investigated by the level of agreement of the adsorption constants. Acidic and disperse dyes show higher adsorption at higher pH whereas basic dyes showed higher adsorption at lower pH. The binding capacity experiments revealed the following amounts of dyestuff bound per gram of adsorbent (mg/g: 2.67 BG4, 4.97 DB6 and 1.30 DB26 on biomass and 2.16 BG4, 3.73 DB6 and 6.78 DB26 on carbon. The separation factor (SF, values obtained for the three dyes showed that the interactive processes on both adsorbents were a mixture of physisorption and chemisorption mechanisms . A single factor analysis of variance (ANOVA showed that there is no significant difference in the sorption behaviour of the three dyes between the two adsorbents. The study also revealed that the rhizophora based adsorbents compared favourably with commercially available grades. The optimum conditions obtained in this investigation are relevant for the optimal design of a dyestuff effluent treatment column.

  8. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  9. Influence of the activated carbon nature and the aqueous matrix in the pesticides adsorption; Influencia de la naturaleza del carbon activo y la matriz acuosa en la adsorcion de plaguicidas

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, N.; Ormad, M. P.; Lanao, M.; Mosteo, R.; Ovelleiro, J. L.

    2008-07-01

    The aim of this research work is to study the effectiveness of the activated carbon adsorption to remove 44 organic pesticides controlled systematically in waters of the Ebro river basin. The treatment is carried out with solutions of 5000 ng L{sup -}1 of pesticides using powered activated carbon (PAC) which origin is mineral or vegetal. Pesticides removal percentages around 25-45% are achieved using 10 mg L{sup -}1 of PAC and with a residence time of 10 minutes. In general, the adsorption capacity of the vegetal PAC is higher than of the mineral one when experiments are carried out with pesticides dissolved in distilled water. However, the presence of organic matter in natural water decreases the adsorption power of the vegetal PAC, being the behaviour of both PAC similar. (Author) 11 refs.

  10. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  11. PREPARATION OF ACTIVATED CARBON FIBERS AND THEIR XENON ADSORPTION PROPERTIES (Ⅰ)-PREPARATION AND PORE STRUCTURE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of sisal based activated carbon fibers were prepared with steam activation attemperature from 750 ℃ to 900 ℃. Their pore structures were characterized through their nitrogenadsorption isotherms at 77K using different theories. The results showed that t-plot method andDR-plot method could suitably be used to characterize the mesopore structure and the multi-stagedistribution of pore size of activated carbon fibers. It also showed that the pore size widens with theincrease of activation temperature.

  12. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    Science.gov (United States)

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.

  13. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku

    2013-05-15

    2-Methylisoborneol (MIB) and geosmin are naturally occurring compounds responsible for musty-earthy taste and odor in public drinking-water supplies, a severe problem faced by many utilities throughout the world. In this study, we investigated adsorptive removal of these compounds by superfine powdered activation carbon (SPAC, particle size geosmin adsorbed more in the exterior of a carbon particle than in the center. The extremely high uptake rates of MIB and geosmin by SPAC were simulated well by a combination of the branched-pore kinetic model and the shell adsorption model, in which intraparticle diffusion through macropores was followed by diffusion from macropore to micropore. Simulations suggested that D40 was on the whole the best characteristic diameter to represent a size-disperse group of adsorbent particles; D40 is the diameter through which 40% of the particles by volume pass. Therefore, D40 can be used as an index for evaluating the improvement of adsorptive removal that resulted from pulverization. The dose required for a certain percentage removal of MIB or geosmin decreased linearly with carbon particle size (D40), but the dose reduction became less effective as the activated carbon was ground down to smaller sizes around a critical value of D40. For a 60-min contact time, critical D40 was 2-2.5 μm for MIB and 0.4-0.5 μm for geosmin. The smaller critical D40 was when the shorter the carbon-water contact time was or the slower the intraparticle mass transfer rate of an adsorbate was.

  14. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells:kinetics, equilibrium, and thermodynamics studies

    Institute of Scientific and Technical Information of China (English)

    Jun-jie GAO; Ye-bo QIN; Tao ZHOU; Dong-dong CAO; Ping XU; Danielle HOCHSTETTER; Yue-fei WANG

    2013-01-01

    Tea (Camellia sinensis L.) seed shells,the main byproduct of the manufacture of tea seed oil,were used as precursors for the preparation of tea activated carbon (TAC) in the present study.A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCI2 as an agent.The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g,respectively.The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue.Adsorption kinetics studies indicated that the pseudosecond-order model yielded the best fit for the kinetic data.An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step.Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process.These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  15. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  16. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    Science.gov (United States)

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2015-08-01

    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions. PMID:26070009

  17. Adsorption of fluoride in aqueous solutions using KMnO{sub 4}-modified activated carbon derived from steam pyrolysis of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Daifullah, A.A.M. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Yakout, S.M. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)]. E-mail: yakout_2004@yahoo.com; Elreefy, S.A. [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    2007-08-17

    Fluoride in drinking water above permissible levels is responsible for human and skeletal fluorosis. In this study, activated carbons (AC) prepared by one-step steam pyrolysis of rice straw at 550, 650, 750 deg. C, respectively, were modified by liquid-phase oxidation using HNO{sub 3}, H{sub 2}O{sub 2} and KMnO{sub 4}. Characterization of these 12 carbons was made by their surface area, porosity, acidity, basicity, pH{sub pzc}, pH and ability to remove fluoride anion. Based on the data of the latter factor, the RS{sub 2}/KMnO{sub 4} carbon was selected. Along with batch adsorption studies, which involve effect of pH, adsorbate concentration, adsorbent dosage, contact time, temperature, and Co-ions (SO{sub 4} {sup 2-}, Cl{sup -}, Br{sup -}). The effects of natural organic matter (NOM) were also made to remove the fluoride from natural water. On the basis of kinetic studies, specific rate constants involved in the adsorption process using RS{sub 2}/KMnO{sub 4} carbon was calculated and second-order adsorption kinetics was observed. Equation isotherms such as Langmuir (L), Freundlich (F), Langmuir-Freundlich (LF) and Dubinin-Radushkevich (DR) were successfully used to model the experimental data. From the DR isotherm parameters, it was considered that the uptake of F{sup -} by RS{sub 2}/KMnO{sub 4} carbon proceeds by an ion-exchange mechanism (E = 10.46 kJ mol{sup -1}). The thermodynamic parameters of fluoride sorption were calculated and the sorption process was chemical in nature. The ability of RS{sub 2}/KMnO{sub 4} to remove F{sup -} from Egyptian crude phosphoric acid (P{sub 2}O{sub 5} = 48.42%) was tested and the adsorption capacity of F{sup -} in H{sub 3}PO{sub 4} was greater than that in distilled water. This is may be due to fluoride adsorption enhanced at lower pH of crude acid.

  18. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nevine Kamal, E-mail: nkamalamin@yahoo.com [Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R{sup 2} > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy ({Delta}G{sup o}), standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), and the activation energy (E{sub a}) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  19. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2 > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔGo), standard enthalpy (ΔHo), standard entropy (ΔSo), and the activation energy (Ea) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  20. Application of adsorption process by activated carbon derived from scrap tires for Pb+2 removal from aqueous solutions

    OpenAIRE

    Edris Hoseinzadeh; Ali Reza Rahmani; Ghorban Asgari; Mohamad Taghi Samadi; Ghodratollah Roshanaei; Mohammad Reza Zare

    2013-01-01

    Background and Aim: Heavy metals have been recognized as very poisonous elements and their discharge into water sources can cause damaging effects on human and environmental health. The present study aimed at producing activated carbon from scrap tires and using it in removing Pb+2 from synthetic aqueous solutions. Materials and Methods: In this experimental study, activated carbon powder was derived from scrap tires under laboratory conditions. The effect of Pb (II) ions wi...

  1. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  2. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  3. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  4. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  5. Heavy metals removal in wastewater by activated carbon adsorption and clays of cationic interchange; Eliminacion de metales pesados en disolucion mediante adsorcion en carbon activo y arcillas de intercambio cationico

    Energy Technology Data Exchange (ETDEWEB)

    Montes, M. A.; Medialdea, J. M.; Garcia Mediavilla, B.; Moron, M. J.; Arnaiz, M. C.; Garcia Martinez de Simon, I.; Lopez, C. M.; Escot, E.; Lebrato, J. [Universidad de Sevilla. Sevilla (Spain)

    1999-11-01

    Among the different treatment systems assessed for the purification of the wastewaters poured from Aznalcollar quarry the last April 25, 1998, physical and chemical adsorption proved highly efficient for the removal of refractory heavy metals. In laboratory experiments, 99% of dissolved Mn and Zn was removed when wastewater passed through a packedbed column filled with a cationic exchange clay. In the same way, activated-carbon adsorption removed more than 80% of dissolved Zn and 11-16% of Mn. Results confirm the feasibility of these processes and contribute knowledge on their operational characteristics so that in any other similar situation we can consider all treatment possibilities. 8 refs.

  6. Weather Effect on the Solar Adsorption Air-conditioning System using Activated Carbon Fiber/Ethanol as Pair of Refrigeration: A Case Study of Malaysia

    Directory of Open Access Journals (Sweden)

    Alkhair M. Abdul Majeed

    2014-02-01

    Full Text Available This study indicates the simulation analysis of the solar adsorption cycle using the activated carbon fiber/ethanol as the pair of refrigeration in Malaysia. The heat source used was evacuated tube collectors. The cycle is used for the purpose of air-conditioning for two temperature levels, where the cooling load can be 7°C. TRNSYS simulation software was used to model the system with the weather data of Malaysia. The results showed that the weather has a high effect on the performance of the cycle. Both the cooling capacity and the COP were calculated in this study.

  7. Weather Effect on the Solar Adsorption Air-conditioning System using Activated Carbon Fiber/Ethanol as Pair of Refrigeration: A Case Study of Malaysia

    OpenAIRE

    Alkhair M. Abdul Majeed; M.Y. Suliman; Sopian, K.

    2014-01-01

    This study indicates the simulation analysis of the solar adsorption cycle using the activated carbon fiber/ethanol as the pair of refrigeration in Malaysia. The heat source used was evacuated tube collectors. The cycle is used for the purpose of air-conditioning for two temperature levels, where the cooling load can be 7°C. TRNSYS simulation software was used to model the system with the weather data of Malaysia. The results showed that the weather has a high effect on the performance of the...

  8. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    Science.gov (United States)

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. PMID:27262123

  9. 四苯硼钠在活性炭表面吸附过程的疏水相互作用%Hydrophobic interaction for the adsorption of sodium tetraphenylborate onto activated carbon

    Institute of Scientific and Technical Information of China (English)

    于玲; 王晓玲; 邹立壮; 支献华; 朱书全

    2003-01-01

    In this paper, the adsorption characteristics of sodium tetraphenylborate(NaBPh4) on activated carbon at 298.2,303.2,308.2,313..2 and 323.2 K was studied.The results show that the adsorption isotherm of NaBPh4 on activated carbon at different temperatures could be described using Langrnuir equation. Furthermore, the standard Gibbs energy, enthalpy, entropy and hydrophobic interaction Gibbs energy for the adsorption of NaBPh4 on activated carbon were studied, and the result shows that the hydrophobic interaction of BPh4- ion plays the most important role for the transfer of NaBPh4 from water to activated carbon surface.

  10. Preparation and Adsorptive Property of Mangosteen Activated Carbon%山竹壳活性炭的制