WorldWideScience

Sample records for actions neural evidence

  1. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    Science.gov (United States)

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for.

  2. The neural basis of body form and body action agnosia.

    Science.gov (United States)

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  3. Differential Recurrent Neural Networks for Action Recognition

    OpenAIRE

    Veeriah, Vivek; Zhuang, Naifan; Qi, Guo-Jun

    2015-01-01

    The long short-term memory (LSTM) neural network is capable of processing complex sequential information since it utilizes special gating schemes for learning representations from long input sequences. It has the potential to model any sequential time-series data, where the current hidden state has to be considered in the context of the past hidden states. This property makes LSTM an ideal choice to learn the complex dynamics of various actions. Unfortunately, the conventional LSTMs do not co...

  4. Brain and language: evidence for neural multifunctionality.

    Science.gov (United States)

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  5. Neural reflections of meaning in gesture, language, and action

    OpenAIRE

    Willems, Roel Mathieu

    2009-01-01

    We gesture when we speak. In this thesis the neural basis in the healthy human brain of integration of action-related (gestural) and visual (pictures) information with spoken language was investigated.

  6. Neural basis of understanding communicative actions: Changes associated with knowing the actor's intention and the meanings of the actions.

    Science.gov (United States)

    Möttönen, Riikka; Farmer, Harry; Watkins, Kate E

    2016-01-29

    People can communicate by using hand actions, e.g., signs. Understanding communicative actions requires that the observer knows that the actor has an intention to communicate and the meanings of the actions. Here, we investigated how this prior knowledge affects processing of observed actions. We used functional MRI to determine changes in action processing when non-signers were told that the observed actions are communicative (i.e., signs) and learned the meanings of half of the actions. Processing of hand actions activated the left and right inferior frontal gyrus (IFG, BA 44 and 45) when the communicative intention of the actor was known, even when the meanings of the actions remained unknown. These regions were not active when the observers did not know about the communicative nature of the hand actions. These findings suggest that the left and right IFG play a role in understanding the intention of the actor, but do not process visuospatial features of the communicative actions. Knowing the meanings of the hand actions further enhanced activity in the anterior part of the IFG (BA 45), the inferior parietal lobule and posterior inferior and middle temporal gyri in the left hemisphere. These left-hemisphere language regions could provide a link between meanings and observed actions. In sum, the findings provide evidence for the segregation of the networks involved in the neural processing of visuospatial features of communicative hand actions and those involved in understanding the actor's intention and the meanings of the actions.

  7. Neural Behavior Chain Learning of Mobile Robot Actions

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2012-01-01

    Full Text Available This paper presents a visual/motor behavior learning approach, based on neural networks. We propose Behavior Chain Model (BCM in order to create a way of behavior learning. Our behavior-based system evolution task is a mobile robot detecting a target and driving/acting towards it. First, the mapping relations between the image feature domain of the object and the robot action domain are derived. Second, a multilayer neural network for offline learning of the mapping relations is used. This learning structure through neural network training process represents a connection between the visual perceptions and motor sequence of actions in order to grip a target. Last, using behavior learning through a noticed action chain, we can predict mobile robot behavior for a variety of similar tasks in similar environment. Prediction results suggest that the methodology is adequate and could be recognized as an idea for designing different mobile robot behaviour assistance.

  8. Neural bases of selective attention in action video game players

    OpenAIRE

    Bavelier, D.; Achtman, RL; M Mani; Föcker, J

    2011-01-01

    Over the past few years, the very act of playing action video games has been shown to enhance several different aspects of visual selective attention. Yet little is known about the neural mechanisms that mediate such attentional benefits. A review of the aspects of attention enhanced in action game players suggests there are changes in the mechanisms that control attention allocation and its efficiency (Hubert-Wallander et al., 2010). The present study used brain imaging to test this hypothes...

  9. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-01

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. PMID:25267830

  10. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-01

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions.

  11. Neural representation of the sensorimotor speech-action-repository

    Directory of Open Access Journals (Sweden)

    Cornelia eEckers

    2013-04-01

    Full Text Available A speech-action-repository (SAR or mental syllabary has been proposed as a central module for sensorimotor processing of syllables. In this approach, syllables occurring frequently within language are assumed to be stored as holistic sensorimotor patterns, while non-frequent syllables need to be assembled from sub-syllabic units. Thus, frequent syllables are processed efficiently and quickly during production or perception by a direct activation of their sensorimotor patterns. Whereas several behavioral psycholinguistic studies provided evidence in support of the existence of a syllabary, fMRI studies have failed to demonstrate its neural reality. In the present fMRI study a reaction paradigm using homogeneous vs. heterogeneous syllable blocks are used during overt vs. covert speech production and auditory vs. visual presentation modes. Two complementary data analyses were performed: (1 in a logical conjunction, activation for syllable processing independent of input modality and response mode was assessed, in order to support the assumption of existence of a supramodal hub within a SAR. (2 In addition priming effects in the BOLD response in homogeneous vs. heterogeneous blocks were measured in order to identify brain regions, which indicate reduced activity during multiple production/perception repetitions of a specific syllable in order to determine state maps. Auditory-visual conjunction analysis revealed an activation network comprising bilateral precentral gyrus and left inferior frontal gyrus (area 44. These results are compatible with the notion of a supramodal hub within the SAR. The main effect of homogeneity priming revealed an activation pattern of areas within frontal, temporal, and parietal lobe. These findings are taken to represent sensorimotor state maps of the SAR. In conclusion, the present study provided preliminary evidence for a SAR.

  12. The neural basis of predicting the outcomes of planned actions

    Directory of Open Access Journals (Sweden)

    Andrew eJahn

    2011-11-01

    Full Text Available A key feature of human intelligence is the ability to predict the outcomes of one’s own actions prior to executing them. Action values are thought to be represented in part in the dorsal and ventral medial prefrontal cortex, yet current studies have focused on the value of executed actions rather than the anticipated value of a planned action. Thus, little is known about the neural basis of how individuals think (or fail to think about their actions and the potential consequences before they act. We scanned individuals with fMRI while they thought about performing actions that they knew would likely be correct or incorrect. Here we show that merely imagining an error, as opposed to imagining a correct outcome, increases activity in the dorsal anterior cingulate cortex, independently of subsequent actions. This activity overlaps with regions that respond to actual error commission. The findings show a distinct network that signals the prospective outcomes of one’s planned actions. A number of clinical disorders such as schizophrenia and drug abuse involve a failure to take the potential consequences of an action into account prior to acting. Our results thus suggest how dysfunctions of the medial prefrontal cortex may contribute to such failures.

  13. Neural underpinnings of superior action prediction abilities in soccer players.

    Science.gov (United States)

    Makris, Stergios; Urgesi, Cosimo

    2015-03-01

    The ability to form anticipatory representations of ongoing actions is crucial for effective interactions in dynamic environments. In sports, elite athletes exhibit greater ability than novices in predicting other players' actions, mainly based on reading their body kinematics. This superior perceptual ability has been associated with a modulation of visual and motor areas by visual and motor expertise. Here, we investigated the causative role of visual and motor action representations in experts' ability to predict the outcome of soccer actions. We asked expert soccer players (outfield players and goalkeepers) and novices to predict the direction of the ball after perceiving the initial phases of penalty kicks that contained or not incongruent body kinematics. During the task, we applied repetitive transcranial magnetic stimulation (rTMS) over the superior temporal sulcus (STS) and the dorsal premotor cortex (PMd). Results showed that STS-rTMS disrupted performance in both experts and novices, especially in those with greater visual expertise (i.e. goalkeepers). Conversely, PMd-rTMS impaired performance only in expert players (i.e. outfield players and goalkeepers), who exhibit strong motor expertise into facing domain-specific actions in soccer games. These results provide causative evidence of the complimentary functional role of visual and motor action representations in experts' action prediction. PMID:24771282

  14. Neural coding of cooperative vs. affective human interactions: 150 ms to code the action's purpose.

    Directory of Open Access Journals (Sweden)

    Alice Mado Proverbio

    Full Text Available The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box or affective (e.g., 2 people smiling and holding hands interactions. The action's goal was automatically discriminated at about 150-170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37, the posterior CC, and the medial frontal gyrus (BA10/11 for the processing of affective interactions, particularly in the 155-175 ms time window. In a later time window (200-250 ms the processing of cooperative interactions activated the left post-central gyrus (BA3, the left parahippocampal gyrus, the left superior frontal gyrus (BA10, as well as the right premotor cortex (BA6. Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220-500 ms. These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS.

  15. Neural evidence that suspense narrows attentional focus.

    Science.gov (United States)

    Bezdek, M A; Gerrig, R J; Wenzel, W G; Shin, J; Pirog Revill, K; Schumacher, E H

    2015-09-10

    The scope of visual attention changes dynamically over time. Although previous research has reported conditions that suppress peripheral visual processing, no prior work has investigated how attention changes in response to the variable emotional content of audiovisual narratives. We used fMRI to test for the suppression of spatially peripheral stimuli and enhancement of narrative-relevant central stimuli at moments when suspense increased in narrative film excerpts. Participants viewed films presented at fixation, while flashing checkerboards appeared in the periphery. Analyses revealed that increasing narrative suspense caused reduced activity in peripheral visual processing regions in the anterior calcarine sulcus and in default mode network nodes. Concurrently, activity increased in central visual processing regions and in frontal and parietal regions recruited for attention and dynamic visual processing. These results provide evidence, using naturalistic stimuli, of dynamic spatial tuning of attention in early visual processing areas due to narrative context. PMID:26143014

  16. Applauding with closed hands: neural signature of action-sentence compatibility effects.

    Directory of Open Access Journals (Sweden)

    Pia Aravena

    Full Text Available BACKGROUND: Behavioral studies have provided evidence for an action-sentence compatibility effect (ACE that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. METHODOLOGY/PRINCIPAL FINDINGS: Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape and three categories (compatible, incompatible and neutral defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP and a re-afferent potential (RAP, which are both enhanced in the compatible condition. CONCLUSIONS/SIGNIFICANCE: The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor

  17. Neural dynamics of object noun, action verb and action noun production in picture naming.

    Science.gov (United States)

    Fargier, Raphaël; Laganaro, Marina

    2015-11-01

    The verb/noun dissociation has often involved the semantic/grammatical confound. We conducted two event-related potentials (ERPs) studies with the aim of minimizing this confound. In Experiment 1 participants named pictures depicting actions, with verbs or nouns and pictures depicting objects with nouns. In Experiment 2, participants named objects (nouns) or actions (verbs/nouns) from the same set of action pictures. Compatible with lexical-semantic processes, semantic category modulated waveform amplitudes and topographic patterns between 250 and 380 ms after picture-onset in Experiment 1. No such effects were observed in Experiment 2. No effects were found for grammatical class in both experiments suggesting that grammatical information is not mandatorily activated during lexical-semantic processes. Given the absence of dissociation when same pictures were used the results are described as feed-forward effects from visual to semantic processing, indicating differential neural networks for lexical selection of action and object words from their corresponding visual referents. PMID:26433472

  18. Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey.

    Directory of Open Access Journals (Sweden)

    Stefano eRozzi

    2015-07-01

    Full Text Available The study of the neural mechanisms underlying grasping actions showed that cognitive functions are deeply embedded in motor organization. In the first part of this review, we describe the anatomical structure of the motor cortex in the monkey and the cortical and sub-cortical connections of the different motor areas. In the second part, we review the neurophysiological literature showing that motor neurons are not only involved in movement execution, but also in the transformation of object physical features into motor programs appropriate to grasp them (through visuo-motor transformations. We also discuss evidence indicating that motor neurons can encode the goal of motor acts and the intention behind action execution. Then, we describe one of the mechanisms – the mirror mechanism – considered to be at the basis of action understanding and intention reading, and describe the anatomo-functional pathways through which information about the social context can reach the areas containing mirror neurons. Finally, we briefly show that a clear similarity exists between monkey and human in the organization of the motor and mirror systems. Based on monkey and human literature, we conclude that the mirror mechanism relies on a more extended network than previously thought, and possibly subserves basic social functions. We propose that this mechanism is also involved in preparing appropriate complementary response to observed actions, allowing two individuals to become attuned and cooperate in joint actions.

  19. Habituation in non-neural organisms: evidence from slime moulds.

    Science.gov (United States)

    Boisseau, Romain P; Vogel, David; Dussutour, Audrey

    2016-04-27

    Learning, defined as a change in behaviour evoked by experience, has hitherto been investigated almost exclusively in multicellular neural organisms. Evidence for learning in non-neural multicellular organisms is scant, and only a few unequivocal reports of learning have been described in single-celled organisms. Here we demonstrate habituation, an unmistakable form of learning, in the non-neural organism Physarum polycephalum In our experiment, using chemotaxis as the behavioural output and quinine or caffeine as the stimulus, we showed that P. polycephalum learnt to ignore quinine or caffeine when the stimuli were repeated, but responded again when the stimulus was withheld for a certain time. Our results meet the principle criteria that have been used to demonstrate habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation or motor fatigue, we also show stimulus specificity. Our results point to the diversity of organisms lacking neurons, which likely display a hitherto unrecognized capacity for learning, and suggest that slime moulds may be an ideal model system in which to investigate fundamental mechanisms underlying learning processes. Besides, documenting learning in non-neural organisms such as slime moulds is centrally important to a comprehensive, phylogenetic understanding of when and where in the tree of life the earliest manifestations of learning evolved. PMID:27122563

  20. Neural Evidence for the Flexible Control of Mental Representations.

    Science.gov (United States)

    Lewis-Peacock, Jarrod A; Drysdale, Andrew T; Postle, Bradley R

    2015-10-01

    This study was designed to explore neural evidence for the simultaneous engagement of multiple mental codes while retaining a visual object in short-term memory (STM) and, if successful, to explore the neural bases of strategic prioritization among these codes. We used multivariate pattern analysis of fMRI data to track patterns of brain activity associated with three common mental codes: visual, verbal, and semantic. When participants did not know which dimension of a sample stimulus would be tested, patterns of brain activity during the memory delay indicated that a visual representation was quickly augmented with both verbal and semantic re-representations of the stimulus. The verbal code emerged as most highly activated, consistent with a canonical visual-to-phonological recoding operation in STM. If participants knew which dimension of a sample stimulus would be tested, brain activity patterns were biased toward the probe-relevant stimulus dimension. Interestingly, probe-irrelevant neural states persisted at an intermediate level of activation when they were potentially relevant later in the trial, but dropped to baseline when cued to be irrelevant. These results reveal the neural dynamics underlying the creation and retention of mental codes, and they illustrate the flexible control that humans can exert over these representations. PMID:24935778

  1. Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies

    Institute of Scientific and Technical Information of China (English)

    William; R; Marchand

    2014-01-01

    Mindfulness is the dispassionate,moment-by-moment awareness of sensations,emotions and thoughts.Mindfulness-based interventions are being increasingly used for stress,psychological well being,coping with chronic illness as well as adjunctive treatments for psychiatric disorders.However,the neural mechanisms associated with mindfulness have not been well characterized.Recent functional and structural neuroimaging studies are beginning to provide insights into neural processes associated with the practice of mindfulness.A review of this literature revealed compelling evidence that mindfulness impacts the function of the medial cortex and associated default mode network as well as insula and amygdala.Additionally,mindfulness practice appears to effect lateral frontal regions and basal ganglia,at least in some cases.Structural imaging studies are consistent with these findings and also indicate changes in the hippocampus.While many questions remain unanswered,the current literature provides evidence of brain regions and networks relevant for understanding neural processes associated with mindfulness.

  2. Evaluation of neural reflex activation as a mode of action for the acute respiratory effects of ozone.

    Science.gov (United States)

    Prueitt, Robyn L; Goodman, Julie E

    2016-09-01

    Exposure to elevated levels of ozone has been associated with a variety of respiratory-related health endpoints in both epidemiology and controlled human exposure studies, including lung function decrements and airway inflammation. A mode of action (MoA) for these effects has not been established, but it has been proposed that they may occur through ozone-induced activation of neural reflexes. We critically reviewed experimental studies of ozone exposure and neural reflex activation and applied the International Programme on Chemical Safety (IPCS) mode-of-action/human relevance framework to evaluate the biological plausibility and human relevance of this proposed MoA. Based on the currently available experimental data, we found that the proposed MoA of neural reflex activation is biologically plausible for the endpoint of ozone-induced lung function decrements at high ozone exposures, but further studies are needed to fill important data gaps regarding the relevance of this MoA at lower exposures. A role for the proposed MoA in ozone-induced airway inflammation is less plausible, as the evidence is conflicting and is also of unclear relevance given the lack of studies conducted at lower exposures. The evidence suggests a different MoA for ozone-induced inflammation that may still be linked to the key events in the proposed MoA, such that neural reflex activation may have some degree of involvement in modulating ozone-induced neutrophil influx, even if it is not a direct role. PMID:27569521

  3. Is There Neural Evidence for an Evidence Accumulation Process in Memory Decisions?

    NARCIS (Netherlands)

    van Vugt, Marieke K; Beulen, Marijke A; Taatgen, Niels A

    2016-01-01

    Models of evidence accumulation have been very successful at describing human decision making behavior. Recent years have also seen the first reports of neural correlates of this accumulation process. However, these studies have mostly focused on perceptual decision making tasks, ignoring the role o

  4. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    Science.gov (United States)

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms. PMID:19203859

  5. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    Science.gov (United States)

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms.

  6. Symmetry Detection in Visual Impairment: Behavioral Evidence and Neural Correlates

    Directory of Open Access Journals (Sweden)

    Zaira Cattaneo

    2014-05-01

    Full Text Available Bilateral symmetry is an extremely salient feature for the human visual system. An interesting issue is whether the perceptual salience of symmetry is rooted in normal visual development. In this review, we discuss empirical work on visual and tactile symmetry detection in normally sighted and visually impaired individuals. On the one hand, available evidence suggests that efficient visual symmetry detection may need normal binocular vision development. On the other hand, converging evidence suggests that symmetry can develop as a principle of haptic perceptual organization in individuals lacking visual experience. Certain features of visual symmetry detection, however, such as the higher salience of the patterns containing a vertical axis of symmetry, do not systematically apply to the haptic modality. The neural correlates (revealed with neuroimaging associated with visual and haptic symmetry detection are also discussed.

  7. The Neural Foundations of Reaction and Action in Aversive Motivation.

    Science.gov (United States)

    Campese, Vincent D; Sears, Robert M; Moscarello, Justin M; Diaz-Mataix, Lorenzo; Cain, Christopher K; LeDoux, Joseph E

    2016-01-01

    Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.

  8. Neural underpinnings of superior action prediction abilities in soccer players

    OpenAIRE

    Makris, Stergios; Urgesi, Cosimo

    2014-01-01

    The ability to form anticipatory representations of ongoing actions is crucial for effective interactions in dynamic environments. In sports, elite athletes exhibit greater ability than novices in predicting other players’ actions, mainly based on reading their body kinematics. This superior perceptual ability has been associated with a modulation of visual and motor areas by visual and motor expertise. Here, we investigated the causative role of visual and motor action representations in exp...

  9. Selection-for-action emerges in neural networks trained to learn spatial associations between stimuli and actions.

    Science.gov (United States)

    Simione, Luca; Nolfi, Stefano

    2015-09-01

    The objects present in our environment evoke multiple conflicting actions at every moment. Thus, a mechanism that resolves this conflict is needed in order to avoid the production of chaotic ineffective behaviours. A plausible candidate for such role is the selective attention, capable of inhibiting the neural representations of the objects irrelevant in the ongoing context and as a consequence the actions they afford. In this paper, we investigated whether a selective attention mechanism emerges spontaneously during the learning of context-dependent behaviour, whereas most neurocomputational models of selective attention and action selection imply the presence of architectural constraints. To this aim, we trained a deep neural network to learn context-dependent visual-action associations. Our main result was the spontaneous emergence of an inhibitory mechanism aimed to solve conflicts between multiple afforded actions by directly suppressing the irrelevant visual stimuli eliciting the incorrect actions for the current context. This suggests that such an inhibitory mechanism emerged as a result of the incorporation of context-independent probabilistic regularities occurring between stimuli and afforded actions. PMID:26232191

  10. Neural Mechanisms Underlying Action Observation in Adults with Down Syndrome

    Science.gov (United States)

    Virji-Babul, Naznin; Moiseev, Alexander; Cheung, Teresa; Weeks, Daniel J.; Cheyne, Douglas; Ribary, Urs

    2010-01-01

    Results of a magnetoencephalography (MEG) brain imaging study conducted to examine the cortical responses during action execution and action observation in 10 healthy adults and 8 age-matched adults with Down syndrome are reported. During execution, the motor responses were strongly lateralized on the ipsilateral rather than the contralateral side…

  11. Beyond simulation? Neural mechanisms for predicting the actions of others

    NARCIS (Netherlands)

    Sebanz, N.; Frith, C.D.

    2003-01-01

    Our ability to attribute mental states such as beliefs and desires to other people has been proposed to involve simulating their mental processes in our own brains. A new imaging study shows that predicting the actions of others does involve areas in the human action control system, but not the same

  12. An integrative neural model of social perception, action observation, and theory of mind

    OpenAIRE

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2015-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites ...

  13. A continuous-time neural model for sequential action

    OpenAIRE

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C.; de Kleijn, Roy; Hommel, Bernhard

    2014-01-01

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically ...

  14. When Language Meets Action: The Neural Integration of Gesture and Speech

    OpenAIRE

    Willems, R.M.; Özyürek, A.; Hagoort, P.

    2007-01-01

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content o...

  15. Neural substrates of interpreting actions and emotions from body postures

    OpenAIRE

    Kana, Rajesh K.; Travers, Brittany G.

    2011-01-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual...

  16. Intention, emotion, and action: a neural theory based on semantic pointers.

    Science.gov (United States)

    Schröder, Tobias; Stewart, Terrence C; Thagard, Paul

    2014-06-01

    We propose a unified theory of intentions as neural processes that integrate representations of states of affairs, actions, and emotional evaluation. We show how this theory provides answers to philosophical questions about the concept of intention, psychological questions about human behavior, computational questions about the relations between belief and action, and neuroscientific questions about how the brain produces actions. Our theory of intention ties together biologically plausible mechanisms for belief, planning, and motor control. The computational feasibility of these mechanisms is shown by a model that simulates psychologically important cases of intention.

  17. Attribution of intentional causation influences the perception of observed movements: Behavioural evidence and neural correlates

    Directory of Open Access Journals (Sweden)

    James W Moore

    2013-01-01

    Full Text Available Recent research on human agency suggests that intentional causation is associated with a subjective compression in the temporal interval between actions and their effects. That is, intentional movements and their causal effects are perceived as closer together in time than equivalent unintentional movements and their causal effects. This so-called intentional binding effect is consistently found for one’s own self-generated actions. It has also been suggested that intentional binding occurs when observing intentional movements of others. However, this evidence is undermined by limitations of the paradigm used. In the current study we aimed to overcome these limitations using a more rigorous design in combination with functional Magnetic Resonance Imaging (fMRI to explore the neural underpinnings of intentional binding of observed movements. In particular, we aimed to identify brain areas sensitive to the interaction between intentionality and causality attributed to the observed action. Our behavioural results confirmed the occurrence of intentional binding for observed movements using this more rigorous paradigm. Our fMRI results highlighted a collection of brain regions whose activity was sensitive to the interaction between intentionality and causation. Intriguingly, these brain regions have previously been implicated in the sense of agency over one’s own movements. We discuss the implications of these results for intentional binding specifically, and the sense of agency more generally.

  18. Action prediction in younger versus older adults: neural correlates of motor familiarity.

    Directory of Open Access Journals (Sweden)

    Nadine Diersch

    Full Text Available Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON, consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed actions into a common code. Much less is known about age-related changes in the neural representation of observed actions. Using fMRI, the present study measured brain activity in younger and older adults during the prediction of temporarily occluded actions (figure skating elements and simple movement exercises. All participants were highly familiar with the movement exercises whereas only some participants were experienced figure skaters. With respect to the AON, the results confirm that this network was preferentially engaged for the more familiar movement exercises. Compared to younger adults, older adults recruited visual regions to perform the task and, additionally, the hippocampus and caudate when the observed actions were familiar to them. Thus, instead of effectively exploiting the sensorimotor matching properties of the AON, older adults seemed to rely predominantly on the visual dynamics of the observed actions to perform the task. Our data further suggest that the caudate played an important role during the prediction of the less familiar figure skating elements in better-performing groups. Together, these findings show that action prediction engages a distributed network in the brain, which is modulated by the content of the observed actions and the age and experience of the observer.

  19. Dissociating modality-specific and supramodal neural systems for action understanding.

    Science.gov (United States)

    Spunt, Robert P; Lieberman, Matthew D

    2012-03-01

    The neural basis of action understanding in humans remains disputed, with some research implicating the putative mirror neuron system (MNS) and some a mentalizing system (MZS) for inferring mental states. The basis for this dispute may be that action understanding is a heterogeneous construct: actions can be understood from sensory information about body movements or from language about action, and with the goal of understanding the implementation ("how") or motive ("why") of an action. Although extant research implicates the MNS in understanding implementation and the MZS in understanding motive, it remains unknown to what extent these systems subserve modality-specific or supramodal functions in action understanding. While undergoing fMRI, 21 volunteers considered the implementation ("How is she doing it?") and motive ("Why is she doing it?") for actions presented in video or text. Bilateral parietal and right frontal areas of the MNS showed a modality-specific association with perceiving actions in videos, while left-hemisphere MNS showed a supramodal association with understanding implementation. Largely left-hemisphere MZS showed a supramodal association with understanding motive; however, connectivity among the MZS and MNS during the inference of motive was modality specific, being significantly stronger when motive was understood from actions in videos compared to text. These results support a tripartite model of MNS and MZS contributions to action understanding, where distinct areas of the MNS contribute to action perception ("perceiving what") and the representation of action implementation ("knowing how"), while the MZS supports an abstract, modality-independent representation of the mental states that explain action performance ("knowing why").

  20. A neural network model to develop actions in urban complex systems represented by 2D meshes.

    OpenAIRE

    Tortosa, Leandro; Oliver, Jose Luis; Vicent, Jose Francisco

    2011-01-01

    Abstract The main idea of this work is to present a tool which may be useful to generate a mesh of points where urban actions may be taken after analyzing and understanding complex urban situations. By the word complex we mean urban concentrations without precise limits and without a recognizable geometry pattern. What we propose is an adaptation of a neural network algorithm to work in the context of urban networks. Our objective is to develop an strategy to change this weakne...

  1. Central neural mechanisms of progesterone action: application to the respiratory system.

    Science.gov (United States)

    Bayliss, D A; Millhorn, D E

    1992-08-01

    Around the turn of the century, it was recognized that women hyperventilate during the luteal phase of the menstrual cycle and during pregnancy. Although a causative role for the steroid hormone progesterone in this hyperventilation was suggested as early as the 1940s, there has been no clear indication as to the mechanism by which it produces its respiratory effects. In contrast, much mechanistic information has been obtained over the same period about a different effect of progesterone, i.e., the facilitation of reproductive behaviors. In this case, the bulk of the evidence supports the hypothesis that progesterone acts via a genomic mechanism with characteristics not unlike those predicted by classic models for steroid hormone action. We recently, therefore, undertook a series of experiments to test predictions of those same models with reference to the respiratory effects of progesterone. Here we highlight the results of those studies; as background to and precedent for our experiments, we briefly review previous work in which effects of progesterone on respiration and reproductive behaviors have been studied. Our results indicate that the respiratory response to progesterone is mediated at hypothalamic sites through an estrogen- (E2) dependent progesterone receptor- (PR) mediated mechanism requiring RNA and protein synthesis, i.e., gene expression. The E2 dependence of the respiratory response to progesterone is likely a consequence of the demonstrated induction of PR mRNA and PR in hypothalamic neurons by E2. In short, we found that neural mechanisms underlying the stimulation of respiration by progesterone were similar to those mediating its reproductive effects. PMID:1399957

  2. Self-organizing neural integration of pose-motion features for human action recognition.

    Science.gov (United States)

    Parisi, German I; Weber, Cornelius; Wermter, Stefan

    2015-01-01

    The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR) networks that obtain progressively generalized representations of sensory inputs and learn inherent spatio-temporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best results for a public benchmark of domestic daily actions. PMID:26106323

  3. Self-organizing neural integration of pose-motion features for human action recognition.

    Science.gov (United States)

    Parisi, German I; Weber, Cornelius; Wermter, Stefan

    2015-01-01

    The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR) networks that obtain progressively generalized representations of sensory inputs and learn inherent spatio-temporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best results for a public benchmark of domestic daily actions.

  4. Self-Organizing Neural Integration of Pose-Motion Features for Human Action Recognition

    Directory of Open Access Journals (Sweden)

    German Ignacio Parisi

    2015-06-01

    Full Text Available The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented towards human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR networks that obtain progressively generalized representations of sensory inputs and learn inherent spatiotemporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best 21 results for a public benchmark of domestic daily actions.

  5. An integrative neural model of social perception, action observation, and theory of mind.

    Science.gov (United States)

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  6. Neural regions supporting lexical processing of objects and actions: A case series analysis

    Directory of Open Access Journals (Sweden)

    Bonnie L Breining

    2014-04-01

    Full Text Available Introduction. Linking semantic representations to lexical items is an important cognitive process for both producing and comprehending language. Past research has suggested that the bilateral anterior temporal lobes are critical for this process (e.g. Patterson, Nestor, & Rogers, 2007. However, the majority of studies focused on object concepts alone, ignoring actions. The few that considered actions suggest that the temporal poles are not critical for their processing (e.g. Kemmerer et al., 2010. In this case series, we investigated the neural substrates of linking object and action concepts to lexical labels by correlating the volume of defined regions of interest with behavioral performance on picture-word verification and picture naming tasks of individuals with primary progressive aphasia (PPA. PPA is a neurodegenerative condition with heterogeneous neuropathological causes, characterized by increasing language deficits for at least two years in the face of relatively intact cognitive function in other domains (Gorno-Tempini et al., 2011. This population displays appropriate heterogeneity of performance and focal atrophy for investigating the neural substrates involved in lexical semantic processing of objects and actions. Method. Twenty-one individuals with PPA participated in behavioral assessment within six months of high resolution anatomical MRI scans. Behavioral assessments consisted of four tasks: picture-word verification and picture naming of objects and actions. Performance on these assessments was correlated with brain volume measured using atlas-based analysis in twenty regions of interest that are commonly atrophied in PPA and implicated in language processing. Results. Impaired performance for all four tasks significantly correlated with atrophy in the right superior temporal pole, left anterior middle temporal gyrus, and left fusiform gyrus. No regions were identified in which volume correlated with performance for both

  7. Pattern recognition in field crickets: concepts and neural evidence.

    Science.gov (United States)

    Kostarakos, Konstantinos; Hedwig, Berthold

    2015-01-01

    Since decades the acoustic communication behavior of crickets is in the focus of neurobiology aiming to analyze the neural basis of male singing and female phonotactic behavior. For temporal pattern recognition several different concepts have been proposed to elucidate the possible neural mechanisms underlying the tuning of phonotaxis in females. These concepts encompass either some form of a feature detecting mechanism using cross-correlation processing, temporal filter properties of brain neurons or an autocorrelation processing based on a delay-line and coincidence detection mechanism. Current data based on intracellular recordings of auditory brain neurons indicate a sequential processing by excitation and inhibition in a local auditory network within the protocerebrum. The response properties of the brain neurons point towards the concept of an autocorrelation-like mechanism underlying female pattern recognition in which delay-lines by long lasting inhibition may be involved.

  8. Mental training enhances attentional stability: neural and behavioral evidence.

    Science.gov (United States)

    Lutz, Antoine; Slagter, Heleen A; Rawlings, Nancy B; Francis, Andrew D; Greischar, Lawrence L; Davidson, Richard J

    2009-10-21

    The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.

  9. Neural network development in late adolescents during observation of risk-taking action.

    Directory of Open Access Journals (Sweden)

    Miyuki Tamura

    Full Text Available Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months. The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions during functional magnetic resonance imaging (fMRI. The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas, and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus. We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed.

  10. Using accelerometers for physical actions recognition by a neural fuzzy network.

    Science.gov (United States)

    Liu, Shing-Hong; Chang, Yuan-Jen

    2009-11-01

    Triaxial accelerometers were employed to monitor human actions under various conditions. This study aimed to determine an optimum classification scheme and sensor placement positions for recognizing different types of physical action. Three triaxial accelerometers were placed on the chest, waist, and thigh, and their abilities to recognize the three actions of walking, sitting down, and falling were determined. The features of the resultant triaxial signals from each accelerometer were extracted by an autoregression (AR) model. A self-constructing neural fuzzy inference network (SONFIN) was used to recognize the three actions. The performance of the SONFIN was assessed based on statistical parameters, sensitivity, specificity, and total classification accuracy. The results show that the SONFIN provided a stability total classification accuracy of 96.3% and 88.7% for the training and testing data, when the parameters of the 60-order AR model were used as the input feature vector, and the accelerometer was placed anywhere on the abdomen. Seven elderly individuals performing the three basic actions had 80.4% confirmation for the testing data.

  11. Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis

    Science.gov (United States)

    Lowe, Robert; Almér, Alexander; Lindblad, Gustaf; Gander, Pierre; Michael, John; Vesper, Cordula

    2016-01-01

    Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically exploited in Joint Action. Such a mechanism would serve to facilitate coordination between co-actors permitting a reduction of required information. Our hypothesized affective mechanism provides a value function based implementation of Associative Two-Process (ATP) theory that entails the classification of external stimuli according to outcome expectancies. This approach has been used to describe animal and human action that concerns differential outcome expectancies. Until now it has not been applied to social interaction. We describe our Affective ATP model as applied to social learning consistent with an “extended common currency” perspective in the social neuroscience literature. We contrast this to an alternative mechanism that provides an example implementation of the so-called social-specific value perspective. In brief, our Social-Affective ATP mechanism builds upon established formalisms for reinforcement learning (temporal difference learning models) nuanced to accommodate expectations (consistent with ATP theory) and extended to integrate non-social and social cues for use in Joint Action. PMID:27601989

  12. Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis.

    Science.gov (United States)

    Lowe, Robert; Almér, Alexander; Lindblad, Gustaf; Gander, Pierre; Michael, John; Vesper, Cordula

    2016-01-01

    Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically exploited in Joint Action. Such a mechanism would serve to facilitate coordination between co-actors permitting a reduction of required information. Our hypothesized affective mechanism provides a value function based implementation of Associative Two-Process (ATP) theory that entails the classification of external stimuli according to outcome expectancies. This approach has been used to describe animal and human action that concerns differential outcome expectancies. Until now it has not been applied to social interaction. We describe our Affective ATP model as applied to social learning consistent with an "extended common currency" perspective in the social neuroscience literature. We contrast this to an alternative mechanism that provides an example implementation of the so-called social-specific value perspective. In brief, our Social-Affective ATP mechanism builds upon established formalisms for reinforcement learning (temporal difference learning models) nuanced to accommodate expectations (consistent with ATP theory) and extended to integrate non-social and social cues for use in Joint Action. PMID:27601989

  13. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  14. Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis.

    Science.gov (United States)

    Lowe, Robert; Almér, Alexander; Lindblad, Gustaf; Gander, Pierre; Michael, John; Vesper, Cordula

    2016-01-01

    Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically exploited in Joint Action. Such a mechanism would serve to facilitate coordination between co-actors permitting a reduction of required information. Our hypothesized affective mechanism provides a value function based implementation of Associative Two-Process (ATP) theory that entails the classification of external stimuli according to outcome expectancies. This approach has been used to describe animal and human action that concerns differential outcome expectancies. Until now it has not been applied to social interaction. We describe our Affective ATP model as applied to social learning consistent with an "extended common currency" perspective in the social neuroscience literature. We contrast this to an alternative mechanism that provides an example implementation of the so-called social-specific value perspective. In brief, our Social-Affective ATP mechanism builds upon established formalisms for reinforcement learning (temporal difference learning models) nuanced to accommodate expectations (consistent with ATP theory) and extended to integrate non-social and social cues for use in Joint Action.

  15. Neural Networks for Template Matching: Application to Real-Time Classification of the Action Potentials of Real Neurons

    OpenAIRE

    Wong, Yiu-fai; Banik, Jashojiban; Bower, James M.

    1988-01-01

    Much experimental study of real neural networks relies on the proper classification of extracellulary sampled neural signals (i .e. action potentials) recorded from the brains of experimental animals. In most neurophysiology laboratories this classification task is simplified by limiting investigations to single, electrically well-isolated neurons recorded one at a time. However, for those interested in sampling the activities of many single neurons simultaneously, waveform cla...

  16. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    OpenAIRE

    Frey, Scott H.; POVINELLI, DANIEL J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of ...

  17. Evidence for single top quark production using Bayesian neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kau, Daekwang [Florida State Univ., Tallahassee, FL (United States)

    2007-01-01

    We present results of a search for single top quark production in p$\\bar{p}$ collisions using a dataset of approximately 1 fb-1 collected with the D0 detector. This analysis considers the muon+jets and electron+jets final states and makes use of Bayesian neural networks to separate the expected signals from backgrounds. The observed excess is associated with a p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess over background of 3.2 standard deviations for a Gaussian density. The p-value computed using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance of 2.2 standard deviations. Assuming the observed excess is due to single top production, we measure a single top quark production cross section of σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.4 ± 1.5 pb.

  18. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  19. Swallowing and Dysphagia Rehabilitation: Translating Principles of Neural Plasticity into Clinically Oriented Evidence

    Science.gov (United States)

    Robbins, JoAnne; Butler, Susan G.; Daniels, Stephanie K.; Gross, Roxann Diez; Langmore, Susan; Lazarus, Cathy L.; Martin-Harris, Bonnie; McCabe, Daniel; Musson, Nan; Rosenbek, John

    2008-01-01

    Purpose: This review presents the state of swallowing rehabilitation science as it relates to evidence for neural plastic changes in the brain. The case is made for essential collaboration between clinical and basic scientists to expand the positive influences of dysphagia rehabilitation in synergy with growth in technology and knowledge. The…

  20. Neural basis of music knowledge: evidence from the dementias.

    Science.gov (United States)

    Hsieh, Sharpley; Hornberger, Michael; Piguet, Olivier; Hodges, John R

    2011-09-01

    The study of patients with semantic dementia has revealed important insights into the cognitive and neural architecture of semantic memory. Patients with semantic dementia are known to have difficulty understanding the meanings of environmental sounds from an early stage but little is known about their knowledge for famous tunes, which might be preserved in some cases. Patients with semantic dementia (n = 13), Alzheimer's disease (n = 14) as well as matched healthy control participants (n = 20) underwent a battery of tests designed to assess knowledge of famous tunes, environmental sounds and famous faces, as well as volumetric magnetic resonance imaging. As a group, patients with semantic dementia were profoundly impaired in the recognition of everyday environmental sounds and famous tunes with consistent performance across testing modalities, which is suggestive of a central semantic deficit. A few notable individuals (n = 3) with semantic dementia demonstrated clear preservation of knowledge of known melodies and famous people. Defects in auditory semantics were mild in patients with Alzheimer's disease. Voxel-based morphometry of magnetic resonance brain images showed that the recognition of famous tunes correlated with the degree of right anterior temporal lobe atrophy, particularly in the temporal pole. This area was segregated from the region found to be involved in the recognition of everyday sounds but overlapped considerably with the area that was correlated with the recognition of famous faces. The three patients with semantic dementia with sparing of musical knowledge had significantly less atrophy of the right temporal pole in comparison to the other patients in the semantic dementia group. These findings highlight the role of the right temporal pole in the processing of known tunes and faces. Overlap in this region might reflect that having a unique identity is a quality that is common to both melodies and people. PMID:21857031

  1. Neural Stem Cell Differentiation Is Dictated by Distinct Actions of Nuclear Receptor Corepressors and Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Gonçalo Castelo-Branco

    2014-09-01

    Full Text Available Signaling factors including retinoic acid (RA and thyroid hormone (T3 promote neuronal, oligodendrocyte, and astrocyte differentiation of cortical neural stem cells (NSCs. However, the functional specificity of transcriptional repressor checkpoints controlling these differentiation programs remains unclear. Here, we show by genome-wide analysis that histone deacetylase (HDAC2 and HDAC3 show overlapping and distinct promoter occupancy at neuronal and oligodendrocyte-related genes in NSCs. The absence of HDAC3, but not HDAC2, initiated a neuronal differentiation pathway in NSCs. The ablation of the corepressor NCOR or HDAC2, in conjunction with T3 treatment, resulted in increased expression of oligodendrocyte genes, revealing a direct HDAC2-mediated repression of Sox8 and Sox10 expression. Interestingly, Sox10 was required also for maintaining the more differentiated state by repression of stem cell programming factors such as Sox2 and Sox9. Distinct and nonredundant actions of NCORs and HDACs are thus critical for control of lineage progression and differentiation programs in neural progenitors.

  2. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2

    DEFF Research Database (Denmark)

    Sigalet, David L; Wallace, Laurie E; Holst, Jens Juul;

    2007-01-01

    Glucagon-like peptide-2 (GLP-2) is an important regulator of nutritional absorptive capacity with anti-inflammatory actions. We hypothesized that GLP-2 reduces intestinal mucosal inflammation by activation of vasoactive intestinal polypeptide (VIP) neurons of the submucosal plexus. Ileitis...... until inflammation was established, resulted in significant improvements in animal weights, mucosal inflammation indices (myeloperoxidase levels, histological mucosal scores), and reduced levels of inflammatory cytokines (IFN-gamma, TNF-alpha, IL-1beta) and inducible nitric oxide synthase...... neurons and to increase the number of cells expressing VIP in the submucosal plexus of the ileum. These findings suggest that GLP-2 acts as an anti-inflammatory agent through activation of enteric VIP neurons, independent of proliferative effects. They support further studies to examine the role of neural...

  3. A Prospective Longitudinal Study of Perceived Infant Outcomes at 18-24 months: Neural and Psychological Correlates of Parental Thoughts and Actions Assessed during the First Month Postpartum

    Directory of Open Access Journals (Sweden)

    Pilyoung eKim

    2015-11-01

    Full Text Available The first postpartum months constitute a critical period for parents to establish an emotional bond with their infants. Neural responses to infant-related stimuli have been associated with parental sensitivity. However, the associations among these neural responses, parenting, and later infant outcomes for mothers and fathers are unknown. In the current longitudinal study, we investigated the relationships between parental thoughts/actions and neural activation in mothers and fathers in the neonatal period with infant outcomes at the toddler stage. At the first month postpartum, mothers (n=21 and fathers (n=19 underwent a neuroimaging session during which they listened to their own and unfamiliar baby’s cry. Parenting-related thoughts/behaviors were assessed by interview twice at the first month and 3-4 months postpartum and infants’ socioemotional outcomes were reported by mothers and fathers at 18-24 months postpartum. In mothers, higher levels of anxious thoughts/actions about parenting at the first month postpartum, but not at 3-4 months postpartum, were associated with infant’s low socioemotional competencies at 18-24 months. Anxious thoughts/actions were also associated with heightened responses in the motor cortex and reduced responses in the substantia nigra to own infant cry sounds. On the other hand, in fathers, higher levels of positive perception of being a parent at the first month postpartum, but not at 3-4 months postpartum, were associated with higher infant socioemotional competencies at 18-24 months. Positive thoughts were associated with heightened responses in the auditory cortex and caudate to own infant cry sounds. The current study provides evidence that parental thoughts are related to concurrent neural responses to their infants at the first month postpartum as well as their infant’s future socioemotional outcome at 18-24 months. Parent differences suggest that anxious thoughts in mothers and positive thoughts in

  4. Neural strategies for selective attention distinguish fast-action video game players.

    Science.gov (United States)

    Krishnan, Lavanya; Kang, Albert; Sperling, George; Srinivasan, Ramesh

    2013-01-01

    We investigated the psychophysical and neurophysiological differences between fast-action video game players (specifically first person shooter players, FPS) and non-action players (role-playing game players, RPG) in a visual search task. We measured both successful detections (hit rates) and steady-state visually evoked EEG potentials (SSVEPs). Search difficulty was varied along two dimensions: number of adjacent attended and ignored regions (1, 2 and 4), and presentation rate of novel search arrays (3, 8.6 and 20 Hz). Hit rates decreased with increasing presentation rates and number of regions, with the FPS players performing on average better than the RPG players. The largest differences in hit rate, between groups, occurred when four regions were simultaneously attended. We computed signal-to-noise ratio (SNR) of SSVEPs and used partial least squares regression to model hit rates, SNRs and their relationship at 3 Hz and 8.6 Hz. The following are the most significant results: RPG players' parietal responses to the attended 8.6 Hz flicker were predictive of hit rate and were positively correlated with it, indicating attentional signal enhancement. FPS players' parietal responses to the ignored 3 Hz flicker were predictive of hit rate and were positively correlated with it, indicating distractor suppression. Consistent with these parietal responses, RPG players' frontal responses to the attended 8.6 Hz flicker, increased as task difficulty increased with number of regions; FPS players' frontal responses to the ignored 3 Hz flicker increased with number of regions. Thus the FPS players appear to employ an active suppression mechanism to deploy selective attention simultaneously to multiple interleaved regions, while RPG primarily use signal enhancement. These results suggest that fast-action gaming can affect neural strategies and the corresponding networks underlying attention, presumably by training mechanisms of distractor suppression. PMID:22614909

  5. Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature

    OpenAIRE

    Fassbender, Catherine; Schweitzer, Julie B.

    2006-01-01

    This article reviews evidence for the presence of a compensatory, alternative, neural system and its possible link to associated processing strategies in children and adults with attention deficit hyperactivity disorder (ADHD). The article presents findings on a region by region basis that suggests ADHD should be characterized not only by neural hypo-activity, as it is commonly thought but neural hyperactivity as well, in regions of the brain that may relate to compensatory brain and behavior...

  6. Musical aptitude and foreign language learning skills - neural and behavioral evidence about their connections

    OpenAIRE

    Milovanov, Riia

    2009-01-01

    Perceiving music and language seems to depend upon subtle and accurate auditory processing skills. Could music and language also share common neural resources? Possible interaction between music and speech memory systems has not been ruled out. On the contrary, there is increasing evidence pointing out the accuracy at perceiving phonetic contrasts in native or foreign language of subjects with musical aptitude or musical training. The main focus of this study was to examine the relationship b...

  7. Distinctive laterality of neural networks supporting action understanding in left- and right-handed individuals: An EEG coherence study.

    Science.gov (United States)

    Kelly, Rachel; Mizelle, J C; Wheaton, Lewis A

    2015-08-01

    Prior work has demonstrated that perspective and handedness of observed actions can affect action understanding differently in right and left-handed persons, suggesting potential differences in the neural networks underlying action understanding between right and left-handed individuals. We sought to evaluate potential differences in these neural networks using electroencephalography (EEG). Right- and left-handed participants observed images of tool-use actions from egocentric and allocentric perspectives, with right- and left-handed actors performing the actions. Participants judged the outcome of the observed actions, and response accuracy and latency were recorded. Behaviorally, the highest accuracy and shortest latency was found in the egocentric perspective for right- and left-handed observers. Handedness of subject showed an effect on accuracy and latency also, where right-handed observers were faster to respond than left-handed observers, but on average were less accurate. Mu band (8-10 Hz) cortico-cortical coherence analysis indicated that right-handed observers have coherence in the motor dominant left parietal-premotor networks when looking at an egocentric right or allocentric left hands. When looking in an egocentric perspective at a left hand or allocentric right hand, coherence was lateralized to right parietal-premotor areas. In left-handed observers, bilateral parietal-premotor coherence patterns were observed regardless of actor handedness. These findings suggest that the cortical networks involved in understanding action outcomes are dependent on hand dominance, and notably right handed participants seem to utilize motor systems based on the limb seen performing the action. The decreased accuracy for right-handed participants on allocentric images could be due to asymmetrical lateralization of encoding action and motoric dominance, which may interfere with translating allocentric limb action outcomes. Further neurophysiological studies will

  8. Evidence for an inhibitory presynaptic component of neuroleptic drug action.

    OpenAIRE

    de Belleroche, J. S.; Bradford, H. F.

    1981-01-01

    1 The action of five neuroleptic drugs (haloperidol, cis-flupenthixol, chlorpromazine, fluphenazine and thioridazine) was studied on the synthesis and release of dopamine from rat striatal synaptosomes. 2. In vitro application of the drugs induced an inhibition of synthesis of [14C]-dopamine from L-[U-14C]-tyrosine and a decrease in the tissue content of [14-C]-dopamine, with IC50 values for the latter effect ranging from 3.6 x 10(-7) to 5.9 x 10(-5) M. The rank of their potency was similar t...

  9. Expert evidence and medical manslaughter: vagueness in action.

    Science.gov (United States)

    Quick, Oliver

    2011-01-01

    This article examines the reliance placed on expert evidence in prosecutions of health professionals for gross negligence manslaughter, where juries must decide whether conduct goes beyond civil negligence and constitutes the crime of involuntary manslaughter. It argues that the test for liability is vague and examines some of the consequences of this. Given the vagueness of the offence, jurors are likely to place great reliance on expert medical evidence. Little is known about how experts negotiate the legal process, empirically speaking: how they approach their task, how they view their role as expert witnesses, and the attitudes, biases, and beliefs that may underpin their testimony. Drawing on the experiences and perceptions often medical experts, this article explores how experts manage the vagueness inherent in the task of interpreting and applying gross negligence. Experts appear to go beyond offering purely medical opinion and enjoy engaging with law and the legal process. PMID:22180927

  10. More evidence for a refined Gribov-Zwanziger action based on an effective potential approach

    OpenAIRE

    Vandersickel, N.; Dudal, D.; Sorella, S.P.

    2011-01-01

    The purpose of this proceeding is twofold. Firstly, we shall make the refining of the Gribov-Zwanziger action more complete by taking into account more condensates than considered so far. Secondly, we shall provide more evidence for the refined Gribov-Zwanziger action based on an effective potential approach.

  11. Enhanced Neural Processing of Goal-directed Actions After Active Training in 4-Month-Old Infants.

    Science.gov (United States)

    Bakker, Marta; Sommerville, Jessica A; Gredebäck, Gustaf

    2016-03-01

    The current study explores the neural correlates of action perception and its relation to infants' active experience performing goal-directed actions. Study 1 provided active training with sticky mittens that enables grasping and object manipulation in prereaching 4-month-olds. After training, EEG was recorded while infants observed images of hands grasping toward (congruent) or away from (incongruent) objects. We demonstrate that brief active training facilitates social perception as indexed by larger amplitude of the P400 ERP component to congruent compared with incongruent trials. Study 2 presented 4-month-old infants with passive training in which they observed an experimenter perform goal-directed reaching actions, followed by an identical ERP session to that used in Study 1. The second study did not demonstrate any differentiation between congruent and incongruent trials. These results suggest that (1) active experience alters the brains' response to goal-directed actions performed by others and (2) visual exposure alone is not sufficient in developing the neural networks subserving goal processing during action observation in infancy.

  12. Action Prediction in Younger versus Older Adults: Neural Correlates of Motor Familiarity

    NARCIS (Netherlands)

    Diersch, N.; Mueller, K.; Cross, E.S.; Stadler, W.; Rieger, M.; Schütz-Bosbach, S.

    2013-01-01

    Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has

  13. A Novel Action Selection Architecture in Soccer Simulation Environment Using Neuro-Fuzzy and Bidirectional Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Zafarani

    2008-11-01

    Full Text Available MultiAgent systems have generated lots of excitement in recent years because of its promise as a new paradigm for conceptualizing, designing, and implementing software systems. One of the most important aspects of agent design in AI is the way agent acts or responds to the environment that the agent is acting upon. An effective action selection and behavioral method gives a powerful advantage in overall agent performance. We define a new method of action selection based on probability/priority models, we thereby introduce two efficient ways to determine probabilities using neurofuzzy systems and bidirectional neural networks and a new priority based system which maps the human knowledge to the action selection method. Furthermore, a behavior model is introduced to make the model more flexible.

  14. The functional neuroanatomy of actions

    OpenAIRE

    Watson, Christine E.; Chatterjee, Anjan

    2011-01-01

    Our current understanding of the neural basis of semantic memory is informed primarily by studies of concrete objects. However, conceptual knowledge encompasses many other, albeit less concrete, domains. This article reviews evidence from neuroimaging and patient studies that speaks to the neural basis of action concepts and the words that refer to them. These data highlight 2 important principles governing the neural instantiation of semantic knowledge. First, the organization of conceptual ...

  15. Do Bans on Affirmative Action Hurt Minority Students? Evidence from the Texas Top 10% Plan

    OpenAIRE

    Kalena E. Cortes

    2010-01-01

    In light of the recent bans on affirmative action in higher education, this paper provides new evidence on the effects of alternative admissions policies on the persistence and college completion of minority students. I find that the change from affirmative action to the Top 10% Plan in Texas decreased both retention and graduation rates of lower-ranked minority students. Results show that both fall-to-fall freshmen retention and six-year college graduation of seconddecile minority students d...

  16. Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network

    CERN Document Server

    Khademi, Mahmoud; Kiapour, Mohammad H; Kiaei, Ali A

    2010-01-01

    Facial Action Coding System consists of 44 action units (AUs) and more than 7000 combinations. Hidden Markov models (HMMs) classifier has been used successfully to recognize facial action units (AUs) and expressions due to its ability to deal with AU dynamics. However, a separate HMM is necessary for each single AU and each AU combination. Since combinations of AU numbering in thousands, a more efficient method will be needed. In this paper an accurate real-time sequence-based system for representation and recognition of facial AUs is presented. Our system has the following characteristics: 1) employing a mixture of HMMs and neural network, we develop a novel accurate classifier, which can deal with AU dynamics, recognize subtle changes, and it is also robust to intensity variations, 2) although we use an HMM for each single AU only, by employing a neural network we can recognize each single and combination AU, and 3) using both geometric and appearance-based features, and applying efficient dimension reducti...

  17. Implementation of evidence-based health care using action research: An emancipatory approach.

    Science.gov (United States)

    Cordeiro, Luciana; Soares, Cassia Baldini

    2016-08-01

    The aim of the study is to discuss the emancipatory approach to action research as an appropriate methodology for workers' meaningful implementation of evidence-based health care. Implementation of evidence-based health care using action research is well supported by the literature. There are various approaches to action research, and they are coherent with the objectives and methods elected to develop the investigation. It is not clear which approach of action research is responsible for meaningful worker engagement in changing praxis. This is a discussion paper based on our experiences and supported by literature on collective health. Health care is defined as a social praxis, dependent upon the capitalist mode of production in which health workers engage themselves in a labour process that has negative (as alienation) as well as positive (as creativity) meanings. Emancipatory changes of social praxis through implementation of evidence-based health care require that participants understand the positive and negative meanings of their work and engage health workers in a conscious and intentional collaborative educational process. Implementation of evidence-based health care through emancipatory action research is capable of overcoming alienation and changing social practice through a participatory meaningful process of knowledge translation. PMID:27562664

  18. Knowing when not to swing: EEG evidence that enhanced perception-action coupling underlies baseball batter expertise.

    Science.gov (United States)

    Muraskin, Jordan; Sherwin, Jason; Sajda, Paul

    2015-12-01

    Given a decision that requires less than half a second for evaluating the characteristics of the incoming pitch and generating a motor response, hitting a baseball potentially requires unique perception-action coupling to achieve high performance. We designed a rapid perceptual decision-making experiment modeled as a Go/No-Go task yet tailored to reflect a real scenario confronted by a baseball hitter. For groups of experts (Division I baseball players) and novices (non-players), we recorded electroencephalography (EEG) while they performed the task. We analyzed evoked EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus alpha power with respect to the expert vs. novice groups. We found strong evidence for differences in inhibitory processes between the two groups, specifically differential activity in supplementary motor areas (SMA), indicative of enhanced inhibitory control in the expert (baseball player) group. We also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the expert group, suggesting an enhanced perception-action coupling in baseball players that differentiates them from matched controls. In sum, our results show that EEG correlates of decision formation can be used to identify neural markers of high-performance athletes.

  19. Neural mechanisms of time-based prospective memory: evidence for transient monitoring.

    Directory of Open Access Journals (Sweden)

    Kevin M Oksanen

    Full Text Available In daily life, we often need to remember to perform an action after, or at, a specific period of time (e.g., take pizza out of oven in 15 minutes. Surprisingly, little is known about the neural mechanisms that support this form of memory, termed time-based prospective memory (PM. Here we pioneer an fMRI paradigm that enables examination of both sustained and transient processes engaged during time-based PM. Participants were scanned while performing a demanding on-going task (n-back working memory, with and without an additional time-based PM demand. During the PM condition participants could access a hidden clock with a specific button-press response, while in the control condition, pseudo-clocks randomly appeared and were removed via the same response. Analyses tested for sustained activation associated with the PM condition, and also transient activation associated with clock-checks and the PM target response. Contrary to prior findings with event-based PM (i.e., remembering to perform a future action when a specific event occurs, no sustained PM-related activity was observed in anterior prefrontal cortex (aPFC or elsewhere in the brain; instead, transient clock-related activity was observed in this region. Critically, the activation was anticipatory, increasing before clock-check responses. Anticipatory activity prior to the PM target response was weaker in aPFC, but strong in pre-Supplementary Motor Area (pre-SMA; relative to clock-check responses, suggesting a functional double dissociation related to volitional decision-making. Together, the results suggest that aPFC-activity dynamics during time-based PM reflect a distinct transient monitoring process, enabling integration of the PM intention with current temporal information to facilitate scheduling of upcoming PM-related actions.

  20. Evidence-Based Practice and School Libraries: Interconnections of Evidence, Advocacy, and Actions

    Science.gov (United States)

    Todd, Ross J.

    2015-01-01

    This author states that a professional focus on evidence based practice (EBP) for school libraries emerged from the International Association of School Librarianship conference when he presented the concept. He challenged the school library profession to actively engage in professional and reflective practices that chart, measure, document, and…

  1. Promoting Student Engagement through Evidence-Based Action Research with Teachers

    Science.gov (United States)

    Strambler, Michael J.; McKown, Clark

    2013-01-01

    We present findings from a group-randomized teacher action research intervention to promote academic engagement and achievement among elementary school students. Eighteen teachers from 3 elementary schools were randomly assigned to 1 of 2 groups. Intervention teachers studied evidence-based instructional practices that cultivate academic…

  2. Action Research: A Personal Epiphany and Journey with Evidence-Based Practice

    Science.gov (United States)

    Ballard, Susan D.

    2015-01-01

    The author reveals in this article that her action research journey in the land of evidence-based practice was not her own idea. She writes that she was lured by the profession's finest scholars who advocated for reflective dispositions for practitioners to improve their practice and demonstrate the school librarian's critical role in teaching and…

  3. Implementation of evidence-based practice in nursing using action research: a review

    NARCIS (Netherlands)

    Munten, Guus; Bogaard, Joop van den; Cox, Karen; Garretsen, Henk; Bongers, Inge

    2010-01-01

    As is often reported in the literature exploring the research-practice gap, applying the principles of evidence-based practice is easier said than done. Action research is a methodology with an explicit intent of linking the worlds of research and practice. This review attempts to answer the questio

  4. Self-organizing neural integration of pose-motion features for human action recognition

    OpenAIRE

    Parisi, German I.; Weber, Cornelius; Wermter, Stefan

    2015-01-01

    The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust...

  5. Self-Organizing Neural Integration of Pose-Motion Features for Human Action Recognition

    OpenAIRE

    German Ignacio Parisi; Cornelius eWeber; Stefan eWermter

    2015-01-01

    The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented towards human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robus...

  6. Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations.

    Science.gov (United States)

    Chapman, Sandra B; Mudar, Raksha A

    2014-01-01

    Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clinical trials that trained gist reasoning strategies in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer's disease. The evidence presented across studies support the potential for Gist reasoning training to strengthen cognitive performance in trained and untrained domains and to engage more efficient communication across widespread neural networks that support higher-order cognition. The meaningful benefits of Gist training provide compelling motivation to examine optimal dose for sustained benefits as well as to explore additive benefits of meditation, physical exercise, and/or improved sleep in future studies. PMID:24808834

  7. Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations.

    Science.gov (United States)

    Chapman, Sandra B; Mudar, Raksha A

    2014-01-01

    Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clinical trials that trained gist reasoning strategies in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer's disease. The evidence presented across studies support the potential for Gist reasoning training to strengthen cognitive performance in trained and untrained domains and to engage more efficient communication across widespread neural networks that support higher-order cognition. The meaningful benefits of Gist training provide compelling motivation to examine optimal dose for sustained benefits as well as to explore additive benefits of meditation, physical exercise, and/or improved sleep in future studies.

  8. Enhancement of Cognitive and Neural Functions through Complex Reasoning Training: Evidence from Normal and Clinical Populations

    Directory of Open Access Journals (Sweden)

    Sandra Bond Chapman

    2014-04-01

    Full Text Available Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clinical trials that trained gist reasoning strategies in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer’s disease. The evidence presented across studies support the potential for Gist reasoning training to strengthen cognitive performance in trained and untrained domains and to engage more efficient communication across widespread neural networks that support higher-order cognition. The meaningful benefits of Gist training provide compelling motivation to examine optimal dose for sustained benefits as well as to explore additive benefits of meditation, physical exercise, and/or improved sleep in future studies.

  9. Neural evidence for an association between social proficiency and sensitivity to social reward.

    Science.gov (United States)

    Gossen, Anna; Groppe, Sarah E; Winkler, Lina; Kohls, Gregor; Herrington, John; Schultz, Robert T; Gründer, Gerhard; Spreckelmeyer, Katja N

    2014-05-01

    Data from developmental psychology suggests a link between the growth of socio-emotional competences and the infant's sensitivity to the salience of social stimuli. The aim of the present study was to find evidence for this relationship in healthy adults. Thirty-five participants were recruited based on their score above the 85th or below the 15th percentile of the empathy quotient questionnaire (EQ, Baron-Cohen and Wheelwright, 2004). Functional magnetic resonance imaging (fMRI) was used to compare neural responses to cues of social and non-social (monetary) reward. When compared to the high-EQ group, the low-EQ group showed reduced activity of the brain s reward system, specifically the right nucleus accumbens, in response to cues predictive of social reward (videos showing gestures of approval)-but increased activation in this area for monetary incentives. Our data provide evidence for a link between self-reported deficits in social proficiency and reduced sensitivity to the motivational salience of positive social stimuli. PMID:23512930

  10. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress

    OpenAIRE

    Purkayastha, Sudarshana; Zhang, Hai; Zhang, Guo; Ahmed, Zaghloul; Wang, Yi; Cai, Dongsheng

    2011-01-01

    Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER s...

  11. Evaluation of the legal consequences of action affects neural activity and emotional experience during the resolution of moral dilemmas.

    Science.gov (United States)

    Pletti, Carolina; Sarlo, Michela; Palomba, Daniela; Rumiati, Rino; Lotto, Lorella

    2015-03-01

    In any modern society killing is regarded as a severe violation of the legal codes that is subjected to penal judgment. Therefore, it is likely that people take legal consequences into account when deciding about the hypothetical killing of one person in classic moral dilemmas, with legal concerns contributing to decision-making. In particular, by differing for the degree of intentionality and emotional salience, Footbridge- and Trolley-type dilemmas might promote differential assignment of blame and punishment while implicating the same severity of harm. The present study was aimed at comparing the neural activity, subjective emotional reactions, and behavioral choices in two groups of participants who either took (Legal group) or did not take (No Legal group) legal consequences into account when deciding on Footbridge-type and Trolley-type moral dilemmas. Stimulus- and response-locked ERPs were measured to investigate the neural activity underlying two separate phases of the decision process. No difference in behavioral choices was found between groups. However, the No Legal group reported greater overall emotional impact, associated with lower preparation for action, suggesting greater conflict between alternative motor responses representing the different decision choices. In contrast, the Legal group showed an overall dampened affective experience during decision-making associated with greater overall action readiness and intention to act, reflecting lower conflict in responding. On these bases, we suggest that in moral dilemmas legal consequences of actions provide a sort of reference point on which people can rely to support a decision, independent of dilemma type. PMID:25638294

  12. Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability

    Science.gov (United States)

    Farkhooi, Farzad; Strube-Bloss, Martin F.; Nawrot, Martin P.

    2009-02-01

    The activity of spiking neurons is frequently described by renewal point process models that assume the statistical independence and identical distribution of the intervals between action potentials. However, the assumption of independent intervals must be questioned for many different types of neurons. We review experimental studies that reported the feature of a negative serial correlation of neighboring intervals, commonly observed in neurons in the sensory periphery as well as in central neurons, notably in the mammalian cortex. In our experiments we observed the same short-lived negative serial dependence of intervals in the spontaneous activity of mushroom body extrinsic neurons in the honeybee. To model serial interval correlations of arbitrary lags, we suggest a family of autoregressive point processes. Its marginal interval distribution is described by the generalized gamma model, which includes as special cases the log-normal and gamma distributions, which have been widely used to characterize regular spiking neurons. In numeric simulations we investigated how serial correlation affects the variance of the neural spike count. We show that the experimentally confirmed negative correlation reduces single-neuron variability, as quantified by the Fano factor, by up to 50%, which favors the transmission of a rate code. We argue that the feature of a negative serial correlation is likely to be common to the class of spike-frequency-adapting neurons and that it might have been largely overlooked in extracellular single-unit recordings due to spike sorting errors.

  13. Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability.

    Science.gov (United States)

    Farkhooi, Farzad; Strube-Bloss, Martin F; Nawrot, Martin P

    2009-02-01

    The activity of spiking neurons is frequently described by renewal point process models that assume the statistical independence and identical distribution of the intervals between action potentials. However, the assumption of independent intervals must be questioned for many different types of neurons. We review experimental studies that reported the feature of a negative serial correlation of neighboring intervals, commonly observed in neurons in the sensory periphery as well as in central neurons, notably in the mammalian cortex. In our experiments we observed the same short-lived negative serial dependence of intervals in the spontaneous activity of mushroom body extrinsic neurons in the honeybee. To model serial interval correlations of arbitrary lags, we suggest a family of autoregressive point processes. Its marginal interval distribution is described by the generalized gamma model, which includes as special cases the log-normal and gamma distributions, which have been widely used to characterize regular spiking neurons. In numeric simulations we investigated how serial correlation affects the variance of the neural spike count. We show that the experimentally confirmed negative correlation reduces single-neuron variability, as quantified by the Fano factor, by up to 50%, which favors the transmission of a rate code. We argue that the feature of a negative serial correlation is likely to be common to the class of spike-frequency-adapting neurons and that it might have been largely overlooked in extracellular single-unit recordings due to spike sorting errors. PMID:19391776

  14. Central perception of position sense involves a distributed neural network - Evidence from lesion-behavior analyses.

    Science.gov (United States)

    Findlater, Sonja E; Desai, Jamsheed A; Semrau, Jennifer A; Kenzie, Jeffrey M; Rorden, Chris; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2016-06-01

    It is well established that proprioceptive inputs from the periphery are important for the constant update of arm position for perception and guiding motor action. The degree to which we are consciously aware of the position of our limb depends on the task. Our understanding of the central processing of position sense is rather limited, largely based on findings in animals and individual human case studies. The present study used statistical lesion-behavior analysis and an arm position matching task to investigate position sense in a large sample of subjects after acute stroke. We excluded subjects who performed abnormally on clinical testing or a robotic visually guided reaching task with their matching arm in order to minimize the potential confound of ipsilesional impairment. Our findings revealed that a number of regions are important for processing position sense and include the posterior parietal cortex, the transverse temporal gyrus, and the arcuate fasciculus. Further, our results revealed that position sense has dissociable components - spatial variability, perceived workspace area, and perceived workspace location. Each component is associated with unique neuroanatomical correlates. These findings extend the current understanding of the neural processing of position sense and identify some brain areas that are not classically associated with proprioception. PMID:27085894

  15. Cognitive enhancement through action video game training: great expectations require greater evidence.

    Science.gov (United States)

    Bisoglio, Joseph; Michaels, Timothy I; Mervis, Joshua E; Ashinoff, Brandon K

    2014-01-01

    Action video game training may hold promise as a cognitive intervention with the potential to enhance daily functioning and remediate impairments, but this must be more thoroughly evaluated through evidence-based practices. We review current research on the effect of action video game training on visual attention and visuospatial processing, executive functions, and learning and memory. Focusing on studies that utilize strict experimental controls and synthesize behavioral and neurophysiological data, we examine whether there is sufficient evidence to support a causal relationship between action video game training and beneficial changes in cognition. Convergent lines of behavioral and neurophysiological evidence tentatively support the efficacy of training, but the magnitude and specificity of these effects remain obscure. Causal inference is thus far limited by a lack of standardized and well-controlled methodology. Considering future directions, we suggest stringent adherence to evidence-based practices and collaboration modeled after clinical trial networks. Finally, we recommend the exploration of more complex causal models, such as indirect causal relationships and interactions that may be masking true effects.

  16. Cognitive Enhancement Through Action Video Game Training: Great Expectations Require Greater Evidence

    Directory of Open Access Journals (Sweden)

    Joseph eBisoglio

    2014-02-01

    Full Text Available Action video game training may hold promise as a cognitive intervention with the potential to enhance daily functioning and remediate impairments, but this must be more thoroughly evaluated through evidence-based practices. We review current research on the effect of action video game training on visual attention and visuospatial processing, executive functions, and learning and memory. Focusing on studies that utilize strict experimental controls and synthesize behavioral and neurophysiological data, we examine whether there is sufficient evidence to support a causal relationship between action video game training and beneficial changes in cognition. Convergent lines of behavioral and neurophysiological evidence tentatively support the efficacy of training, but the magnitude and specificity of these effects remain obscure. Causal inference is thus far limited by a lack of standardized and well-controlled methodology. Considering future directions, we suggest stringent adherence to evidence based practices and collaboration modeled after clinical trial networks. Finally, we recommend the exploration of more complex causal models, such as indirect causal relationships and interactions that may be masking true effects.

  17. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action.

    Science.gov (United States)

    Novembre, Giacomo; Sammler, Daniela; Keller, Peter E

    2016-08-01

    Shared knowledge and interpersonal coordination are prerequisites for most forms of social behavior. Influential approaches to joint action have conceptualized these capacities in relation to the separate constructs of co-representation (knowledge) and self-other entrainment (coordination). Here we investigated how brain mechanisms involved in co-representation and entrainment interact to support joint action. To do so, we used a musical joint action paradigm to show that the neural mechanisms underlying co-representation and self-other entrainment are linked via a process - indexed by EEG alpha oscillations - regulating the balance between self-other integration and segregation in real time. Pairs of pianists performed short musical items while action familiarity and interpersonal (behavioral) synchronization accuracy were manipulated in a factorial design. Action familiarity referred to whether or not pianists had rehearsed the musical material performed by the other beforehand. Interpersonal synchronization was manipulated via congruent or incongruent tempo change instructions that biased performance timing towards the impending, new tempo. It was observed that, when pianists were familiar with each other's parts, millisecond variations in interpersonal synchronized behavior were associated with a modulation of alpha power over right centro-parietal scalp regions. Specifically, high behavioral entrainment was associated with self-other integration, as indexed by alpha suppression. Conversely, low behavioral entrainment encouraged reliance on internal knowledge and thus led to self-other segregation, indexed by alpha enhancement. These findings suggest that alpha oscillations index the processing of information about self and other depending on the compatibility of internal knowledge and external (environmental) events at finely resolved timescales. PMID:27449708

  18. A New Modular Strategy For Action Sequence Automation Using Neural Networks And Hidden Markov Models

    OpenAIRE

    Mohamed Adel Taher; Mostapha Abdeljawad

    2013-01-01

    In this paper, the authors propose a new hybrid strategy (using artificial neural networks and hidden Markov models) for skill automation. The strategy is based on the concept of using an “adaptive desired†that is introduced in the paper. The authors explain how using an adaptive desired can help a system for which an explicit model is not available or is difficult to obtain to smartly cope with environmental disturbances without requiring explicit rules specification (as with fuzzy syste...

  19. Evidence-based modeling of mode-of-action for functional ingredients influencing Alzheimer’s disease through neurotrophin pathway

    Directory of Open Access Journals (Sweden)

    Erfan Younesi

    2014-08-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF is the most widely expressed member of the neurotrophin family in the human brain and is crucially involved in the development of neural circuits, modulation of synaptic plasticity, and regulation of cognitive functions, including learning and memory. Many studies have shown the association of altered BDNF levels with neurodegenerative and neuropsychiatric disorders. However, BDNF is not able to cross the blood-brain barrier and, thus, its delivery to the nervous system is a challenge. Therefore, functional diets with the ability to induce production of BDNF in the brain may offer an alternative route. The objective of this study was three-fold: first, to find out diets that are causally linked to the agonistic activity of BDNF in the neurotrophin signaling pathway; second and mainly, to investigate mode-of-action of these functional diets through systems-based mechanistic modeling in the context of Alzheimer’s disease; and third, to demonstrate the proof-of-concept application of systems biology methods, that are well established in the pharmaceutical sector, to the emerging field of functional food. Methods: In the first step, two cause-and-effect models of BDNF signaling in two states, i.e. normal state and Alzheimer’s disease state, were constructed using published knowledge in scientific literature and pathway databases. A “differential model analysis” between the two states was performed by which mechanistic mode-of-action of BDNF in neurotrophin signaling pathway could be explained with a high molecular resolution in both normal and disease states. The BDNF mode-of-action model was further validated using the “biomarkerguided validation” approach. In the second step, scientific evidence on the effect of various functional diets on BDNF levels and BDNF-related biological processes or outcomes was harvested from biomedical literature using a disease-specific semantic search

  20. Born Toon Soon: Care before and between pregnancy to prevent preterm births: from evidence to action

    OpenAIRE

    Dean, Sohni V; Mason, Elizabeth Mary; Howson, Christopher P; Lassi, Zohra S; Imam, Ayesha M; Bhutta, Zulfiqar A.

    2013-01-01

    Providing care to adolescent girls and women before and between pregnancies improves their own health and wellbeing, as well as pregnancy and newborn outcomes, and can also reduce the rates of preterm birth. This paper has reviewed the evidence based interventions and services for preventing preterm births; reported the findings from research priority exercise; and prescribed actions for taking this call further. Certain factors in the preconception period have been shown to increase the risk...

  1. Neural evidence for cultural differences in the valuation of positive facial expressions.

    Science.gov (United States)

    Park, BoKyung; Tsai, Jeanne L; Chim, Louise; Blevins, Elizabeth; Knutson, Brian

    2016-02-01

    European Americans value excitement more and calm less than Chinese. Within cultures, European Americans value excited and calm states similarly, whereas Chinese value calm more than excited states. To examine how these cultural differences influence people's immediate responses to excited vs calm facial expressions, we combined a facial rating task with functional magnetic resonance imaging. During scanning, European American (n = 19) and Chinese (n = 19) females viewed and rated faces that varied by expression (excited, calm), ethnicity (White, Asian) and gender (male, female). As predicted, European Americans showed greater activity in circuits associated with affect and reward (bilateral ventral striatum, left caudate) while viewing excited vs calm expressions than did Chinese. Within cultures, European Americans responded to excited vs calm expressions similarly, whereas Chinese showed greater activity in these circuits in response to calm vs excited expressions regardless of targets' ethnicity or gender. Across cultural groups, greater ventral striatal activity while viewing excited vs. calm expressions predicted greater preference for excited vs calm expressions months later. These findings provide neural evidence that people find viewing the specific positive facial expressions valued by their cultures to be rewarding and relevant. PMID:26342220

  2. Youth Excel: towards a pan-Canadian platform linking evidence and action for prevention.

    Science.gov (United States)

    Riley, Barbara L; Manske, Steve; Cameron, Roy

    2011-05-15

    Population-level intervention is required to prevent cancer and other chronic diseases. It also promotes health for those living with established risk factors and illness. In this article, the authors describe a vision and approach for continuously improving population-level programs and policies within and beyond the health sector. The vision and approach are anchored in contemporary thinking about what is required to link evidence and action in the field of population and public health. The authors believe that, as a cancer prevention and control community, organizations and practitioners must be able to use the best available evidence to inform action and continually generate evidence that improves prevention policies and programs on an ongoing basis. These imperatives require leaders in policy, practice, and research fields to work together to jointly plan, conduct, and act on relevant evidence. The Propel Center and colleagues are implementing this approach in Youth Excel-a pan-Canadian initiative that brings together national and provincial organizations from health and education sectors and capitalizes on a history of collaboration. The objective of Youth Excel is to build sustainable capacity for knowledge development and exchange that can guide and redirect prevention efforts in a rapidly evolving social environment. This goal is to contribute to creating health-promoting environments and to accelerate progress in preventing cancer and other diseases among youth and young adults and in the wider population. Although prevention is the aim, health-promoting environments also can support health gains for individuals of all ages and with established illness. In addition, the approach Youth Excel is taking to link evidence and action may be applicable to early intervention and treatment components of cancer control.

  3. Linking perception, cognition, and action: psychophysical observations and neural network modelling.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Méndez

    Full Text Available It has been argued that perception, decision making, and movement planning are in reality tightly interwoven brain processes. However, how they are implemented in neural circuits is still a matter of debate. We tested human subjects in a temporal categorization task in which intervals had to be categorized as short or long. Subjects communicated their decision by moving a cursor into one of two possible targets, which appeared separated by different angles from trial to trial. Even though there was a 1 second-long delay between interval presentation and decision communication, categorization difficulty affected subjects' performance, reaction (RT and movement time (MT. In addition, reaction and movement times were also influenced by the distance between the targets. This implies that not only perceptual, but also movement-related considerations were incorporated into the decision process. Therefore, we searched for a model that could use categorization difficulty and target separation to describe subjects' performance, RT, and MT. We developed a network consisting of two mutually inhibiting neural populations, each tuned to one of the possible categories and composed of an accumulation and a memory node. This network sequentially acquired interval information, maintained it in working memory and was then attracted to one of two possible states, corresponding to a categorical decision. It faithfully replicated subjects' RT and MT as a function of categorization difficulty and target distance; it also replicated performance as a function of categorization difficulty. Furthermore, this model was used to make new predictions about the effect of untested durations, target distances and delay durations. To our knowledge, this is the first biologically plausible model that has been proposed to account for decision making and communication by integrating both sensory and motor planning information.

  4. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  5. Neural representations of kinematic laws of motion: Evidence for action-perception coupling

    OpenAIRE

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-01-01

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of b...

  6. Neural Correlates of Perception for Action in Humans Using TMS and fMRI

    OpenAIRE

    Reichenbach, Alexandra

    2010-01-01

    Movements are humans interface to their social and physical environment. The human brain processes numerous complex computations during everyday actions, such as reaching for a door knob. It must recognize and localize the knob visually, and calculate its spatial relation to the hand. Then, the movement of the arm and hand with all their muscles has to be planned. During the movement, these parameters are monitored, and when the environment changes, for instance when the door is opened, the m...

  7. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

    Science.gov (United States)

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-05-01

    This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh-Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the "folds" in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

  8. Evidence for a Sex-Dependent MAOA× Childhood Stress Interaction in the Neural Circuitry of Aggression.

    Science.gov (United States)

    Holz, Nathalie; Boecker, Regina; Buchmann, Arlette F; Blomeyer, Dorothea; Baumeister, Sarah; Hohmann, Sarah; Jennen-Steinmetz, Christine; Wolf, Isabella; Rietschel, Marcella; Witt, Stephanie H; Plichta, Michael M; Meyer-Lindenberg, Andreas; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2016-03-01

    Converging evidence emphasizes the role of an interaction between monoamine oxidase A (MAOA) genotype, environmental adversity, and sex in the pathophysiology of aggression. The present study aimed to clarify the impact of this interaction on neural activity in aggression-related brain systems. Functional magnetic resonance imaging was performed in 125 healthy adults from a high-risk community sample followed since birth. DNA was genotyped for the MAOA-VNTR (variable number of tandem repeats). Exposure to childhood life stress (CLS) between the ages of 4 and 11 years was assessed using a standardized parent interview, aggression by the Youth/Young Adult Self-Report between the ages of 15 and 25 years, and the VIRA-R (Vragenlijst Instrumentele En Reactieve Agressie) at the age of 15 years. Significant interactions were obtained between MAOA genotype, CLS, and sex relating to amygdala, hippocampus, and anterior cingulate cortex (ACC) response, respectively. Activity in the amygdala and hippocampus during emotional face-matching increased with the level of CLS in male MAOA-L, while decreasing in male MAOA-H, with the reverse pattern present in females. Findings in the opposite direction in the ACC during a flanker NoGo task suggested that increased emotional activity coincided with decreased inhibitory control. Moreover, increasing amygdala activity was associated with higher Y(A)SR aggression in male MAOA-L and female MAOA-H carriers. Likewise, a significant association between amygdala activity and reactive aggression was detected in female MAOA-H carriers. The results point to a moderating role of sex in the MAOA× CLS interaction for intermediate phenotypes of emotional and inhibitory processing, suggesting a possible mechanism in conferring susceptibility to violence-related disorders. PMID:25331606

  9. Neural correlates of uncertain decision making: ERP evidence from the Iowa Gambling Task

    Directory of Open Access Journals (Sweden)

    Ji-fang eCui

    2013-11-01

    Full Text Available In our daily life, it is very common to make decisions in uncertain situations. The Iowa Gambling Task (IGT has been widely used in laboratory studies because of its good simulation of uncertainty in real life activities. The present study aimed to examine the neural correlates of uncertain decision making with the IGT. Twenty-six university students completed this study. An adapted IGT was administered to them, and the EEG data were recorded. The adapted IGT we used allowed us to analyze the choice evaluation, response selection, and feedback evaluation stages of uncertain decision making within the same paradigm. In the choice evaluation stage, the advantageous decks evoked larger P3 amplitude in the left hemisphere, while the disadvantageous decks evoked larger P3 in the right hemisphere. In the response selection stage, the response of pass (the card was not turned over; the participants neither won nor lost money evoked larger negativity preceding the response compared to that of play (the card was turned over; the participant either won or lost money. In the feedback evaluation stage, feedback-related negativity was only sensitive to the valence (win/loss but not the magnitude (large/small of the outcome, and P3 was sensitive to both the valence and the magnitude of the outcome. These results were consistent with the notion that a positive somatic state was represented in the left hemisphere and a negative somatic state was represented in the right hemisphere. There were also anticipatory ERP effects that guided the participants’ responses and provided evidence for the somatic marker hypothesis with more precise timing.

  10. Neural correlates of uncertain decision making: ERP evidence from the Iowa Gambling Task.

    Science.gov (United States)

    Cui, Ji-Fang; Chen, Ying-He; Wang, Ya; Shum, David H K; Chan, Raymond C K

    2013-01-01

    In our daily life, it is very common to make decisions in uncertain situations. The Iowa Gambling Task (IGT) has been widely used in laboratory studies because of its good simulation of uncertainty in real life activities. The present study aimed to examine the neural correlates of uncertain decision making with the IGT. Twenty-six university students completed this study. An adapted IGT was administered to them, and the EEG data were recorded. The adapted IGT we used allowed us to analyze the choice evaluation, response selection, and feedback evaluation stages of uncertain decision making within the same paradigm. In the choice evaluation stage, the advantageous decks evoked larger P3 amplitude in the left hemisphere, while the disadvantageous decks evoked larger P3 in the right hemisphere. In the response selection stage, the response of "pass" (the card was not turned over; the participants neither won nor lost money) evoked larger negativity preceding the response compared to that of "play" (the card was turned over; the participant either won or lost money). In the feedback evaluation stage, feedback-related negativity (FRN) was only sensitive to the valence (win/loss) but not the magnitude (large/small) of the outcome, and P3 was sensitive to both the valence and the magnitude of the outcome. These results were consistent with the notion that a positive somatic state was represented in the left hemisphere and a negative somatic state was represented in the right hemisphere. There were also anticipatory ERP effects that guided the participants' responses and provided evidence for the somatic marker hypothesis with more precise timing. PMID:24298248

  11. Deciding not to decide: computational and neural evidence for hidden behavior in sequential choice.

    Science.gov (United States)

    Gluth, Sebastian; Rieskamp, Jörg; Büchel, Christian

    2013-10-01

    Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction of how, but also of when, people choose. Sequential sampling models (SSMs) have greatly advanced the decision sciences by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs) become predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs for predicting RTs from two independent samples of an electroencephalography (EEG) and a functional magnetic resonance imaging (fMRI) study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately. However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies (14-30 Hz), indicating that responses were repeatedly prepared and inhibited and thus lending further support for the existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our paradigm in which participants had to press a button for sampling more information. Our results show how computational modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.

  12. Deciding not to decide: computational and neural evidence for hidden behavior in sequential choice.

    Directory of Open Access Journals (Sweden)

    Sebastian Gluth

    2013-10-01

    Full Text Available Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction of how, but also of when, people choose. Sequential sampling models (SSMs have greatly advanced the decision sciences by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs become predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs for predicting RTs from two independent samples of an electroencephalography (EEG and a functional magnetic resonance imaging (fMRI study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately. However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies (14-30 Hz, indicating that responses were repeatedly prepared and inhibited and thus lending further support for the existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our paradigm in which participants had to press a button for sampling more information. Our results show how computational modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.

  13. Neural correlates of the self-reference effect: evidence from evaluation and recognition processes.

    Science.gov (United States)

    Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-01-01

    The self-reference effect (SRE) is defined as better recall or recognition performance when the memorized materials refer to the self. Recently, a number of neuroimaging studies using self-referential and other-referential tasks have reported that self- and other-referential judgments basically show greater activation in common brain regions, specifically in the medial prefrontal cortex (MPFC) when compared with nonmentalizing judgments, but that a ventral-to-dorsal gradient in MPFC emerges from a direct comparison between self- and other-judgments. However, most of these previous studies could not provide an adequate explanation for the neural basis of SRE because they did not directly compare brain activation for recognition/recall of the words referenced to the self with another person. Here, we used an event-related functional magnetic resonance imaging (fMRI) that measured brain activity during processing of references to the self and another, and for recognition of self and other referenced words. Results from the fMRI evaluation task indicated greater activation in ventromedial prefrontal cortex (VMPFC) in the self-referential condition. While in the recognition task, VMPFC, posterior cingulate cortex (PCC) and bilateral angular gyrus (AG) showed greater activation when participants correctly recognized self-referenced words versus other-referenced words. These data provide evidence that the self-referenced words evoked greater activation in the self-related region (VMPFC) and memory-related regions (PCC and AG) relative to another person in the retrieval phase, and that the words remained as a stronger memory trace that supports recognition. PMID:26167149

  14. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  15. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Directory of Open Access Journals (Sweden)

    Ana eBengoetxea

    2014-09-01

    Full Text Available In this study we employed a dynamic recurrent neural network (DRNN in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane. We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others patterns of reciprocal activation operating in orthogonal

  16. AKT signaling mediates IGF-I survival actions on otic neural progenitors.

    Directory of Open Access Journals (Sweden)

    Maria R Aburto

    Full Text Available BACKGROUND: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I, through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K. Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of organotypic cultures of chicken (Gallus gallus otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1 transcription factor. By contrast, our results indicate that post-mitotic p27(Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.

  17. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  18. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain

    OpenAIRE

    Finn, Amy S.; Sheridan, Margaret A.; Hudson Kam, Carla L.; Hinshaw, Stephen; D’Esposito, Mark

    2010-01-01

    Although children perform more poorly than adults on many cognitive measures, they are better able to learn things such as language and music. These differences could result from the delayed specialization of neural circuits and asynchronies in the maturation of neural substrates required for learning. Working memory—the ability to hold information in mind that is no longer present in the environment—comprises a set of cognitive processes required for many, if not all, forms of learning. A cr...

  19. Interprofessional collaborative practice within cancer teams: Translating evidence into action. A mixed methods study protocol

    Directory of Open Access Journals (Sweden)

    Roberge Danièle

    2010-07-01

    Full Text Available Abstract Background A regional integrated cancer network has implemented a program (educational workshops, reflective and mentoring activities designed to support the uptake of evidence-informed interprofessional collaborative practices (referred to in this text as EIPCP within cancer teams. This research project, which relates to the Registered Nurses' Association of Ontario (RNAO Best Practice Guidelines and other sources of research evidence, represents a unique opportunity to learn more about the factors and processes involved in the translation of evidence-based recommendations into professional practices. The planned study seeks to address context-specific challenges and the concerns of nurses and other stakeholders regarding the uptake of evidence-based recommendations to effectively promote and support interprofessional collaborative practices. Aim This study aims to examine the uptake of evidence-based recommendations from best practice guidelines intended to enhance interprofessional collaborative practices within cancer teams. Design The planned study constitutes a practical trial, defined as a trial designed to provide comprehensive information that is grounded in real-world healthcare dynamics. An exploratory mixed methods study design will be used. It will involve collecting quantitative data to assess professionals' knowledge and attitudes, as well as practice environment factors associated with effective uptake of evidence-based recommendations. Semi-structured interviews will be conducted concurrently with care providers to gather qualitative data for describing the processes involved in the translation of evidence into action from both the users' (n = 12 and providers' (n = 24 perspectives. The Graham et al. Ottawa Model of Research Use will serve to construct operational definitions of concepts, and to establish the initial coding labels to be used in the thematic analysis of the qualitative data. Quantitative and qualitative

  20. Modes of Collective Action in Village Economies:Evidence from Natural and Artefactual Field Experiments in a Developing Country

    OpenAIRE

    SAWADA Yasuyuki; Kasahara, Ryuji; Aoyagi, Aoyagi; Shoji, Masahiro; Ueyama, Mika

    2012-01-01

    In a canonical model of collective action, individual contribution to collective action is negatively correlated with group size. Yet, empirical evidence on the group size effect has been mixed, partly due to heterogeneities in group activities. In this paper, we first construct a simple model of collective action with the free rider problem, altruism, public goods, and positive externalities of social networks. We then empirically test the theoretical implications of the group size effect on...

  1. Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays.

    Directory of Open Access Journals (Sweden)

    Idil Kokal

    Full Text Available Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network, here we used Granger causality mapping (GCM [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum and more posterior nodes of the pMNS (BA2. Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays.

  2. Facial Action and Emotional Language: ERP Evidence that Blocking Facial Feedback Selectively Impairs Sentence Comprehension.

    Science.gov (United States)

    Davis, Joshua D; Winkielman, Piotr; Coulson, Seana

    2015-11-01

    There is a lively and theoretically important debate about whether, how, and when embodiment contributes to language comprehension. This study addressed these questions by testing how interference with facial action impacts the brain's real-time response to emotional language. Participants read sentences about positive and negative events (e.g., "She reached inside the pocket of her coat from last winter and found some (cash/bugs) inside it.") while ERPs were recorded. Facial action was manipulated within participants by asking participants to hold chopsticks in their mouths using a position that allowed or blocked smiling, as confirmed by EMG. Blocking smiling did not influence ERPs to the valenced words (e.g., cash, bugs) but did influence ERPs to final words of sentences describing positive events. Results show that affectively positive sentences can evoke smiles and that such facial action can facilitate the semantic processing indexed by the N400 component. Overall, this study offers causal evidence that embodiment impacts some aspects of high-level comprehension, presumably involving the construction of the situation model.

  3. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Directory of Open Access Journals (Sweden)

    Karin Petrini

    Full Text Available In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music, visual (musician's movements only, and auditory emotional (music only displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound than for emotionally matching music performances (combining the musician's movements with matching emotional sound as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  4. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Science.gov (United States)

    Petrini, Karin; Crabbe, Frances; Sheridan, Carol; Pollick, Frank E

    2011-04-29

    In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music), visual (musician's movements only), and auditory emotional (music only) displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound) than for emotionally matching music performances (combining the musician's movements with matching emotional sound) as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  5. The Neural Correlates Underlying Belief Reasoning for Self and for Others: Evidence from ERPs

    Science.gov (United States)

    Jiang, Qin; Wang, Qi; Li, Peng; Li, Hong

    2016-01-01

    Belief reasoning is typical mental state reasoning in theory of mind (ToM). Although previous studies have explored the neural bases of belief reasoning, the neural correlates of belief reasoning for self and for others are rarely addressed. The decoupling mechanism of distinguishing the mental state of others from one’s own is essential for ToM processing. To address the electrophysiological bases underlying the decoupling mechanism, the present event-related potential study compared the time course of neural activities associated with belief reasoning for self and for others when the belief belonging to self was consistent or inconsistent with others. Results showed that during a 450–600 ms period, belief reasoning for self elicited a larger late positive component (LPC) than for others when beliefs were inconsistent with each other. The LPC divergence is assumed to reflect the categorization of agencies in ToM processes. PMID:27757093

  6. The Athlete’s Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise

    OpenAIRE

    Sebastian Ludyga; Thomas Gronwald; Kuno Hottenrott

    2016-01-01

    The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n = 14; 55.6 ± 2.8 mL/min/kg) and lower (...

  7. Neural Evidence for a Distinction between Short-Term Memory and the Focus of Attention

    Science.gov (United States)

    Lewis-Peacock, Jarrod A.; Drysdale, Andrew T.; Oberauer, Klaus; Postle, Bradley R.

    2012-01-01

    It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay period activity may, in fact, reflect the focus of attention, rather than STM. We…

  8. Social categories shape the neural representation of emotion: evidence from a visual face adaptation task

    NARCIS (Netherlands)

    M. Otten; M.R. Banaji

    2012-01-01

    A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the iden

  9. Social Categories Shape the Neural Representation of Emotion: Evidence from a Visual Face Adaptation Task.

    Directory of Open Access Journals (Sweden)

    Marte eOtten

    2012-02-01

    Full Text Available A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion. Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race trials than same race trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  10. Neural Signatures of Number Processing in Human Infants: Evidence for Two Core Systems Underlying Numerical Cognition

    Science.gov (United States)

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2011-01-01

    Behavioral research suggests that two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants by recording event-related potentials…

  11. On the Nature of the Intrinsic Connectivity of the Cat Motor Cortex: Evidence for a Recurrent Neural Network Topology

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, C; Brizzi, L;

    2009-01-01

    Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102: 2131-2141, 2009. First published July 22, 2009; doi: 10.1152/jn.91319.2008. The details...... and functional significance of the intrinsic horizontal connections between neurons in the motor cortex (MCx) remain to be clarified. To further elucidate the nature of this intracortical connectivity pattern, experiments were done on the MCx of three cats. The anterograde tracer biocytin was ejected...

  12. cables1 is required for embryonic neural development: molecular, cellular, and behavioral evidence from the zebrafish.

    Science.gov (United States)

    Groeneweg, Jolijn W; White, Yvonne A R; Kokel, David; Peterson, Randall T; Zukerberg, Lawrence R; Berin, Inna; Rueda, Bo R; Wood, Antony W

    2011-01-01

    In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.

  13. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution.

    Science.gov (United States)

    Proulx, Michael J; Gwinnutt, James; Dell'Erba, Sara; Levy-Tzedek, Shelly; de Sousa, Alexandra A; Brown, David J

    2015-01-01

    Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action. PMID:26599473

  14. Causal role of the sensorimotor cortex in action simulation: neuropsychological evidence.

    Science.gov (United States)

    Tomasino, Barbara; Skrap, Miran; Rumiati, Raffaella Ida

    2011-08-01

    Interest in sensorimotor cortex involvement in higher cognitive functions has recently been revived, although whether the cortex actually contributes to the simulation of body part movements has not yet been established. Neurosurgical patients with selective lesions to the hand sensorimotor representation offer a unique opportunity to demonstrate that the sensorimotor cortex plays a causal role in hand action simulations. Patients with damage to hand representation showed a selective deficit in simulating hand movements compared with object movements (Experiment 1). This deficit extended to objects when the patients imagined moving them with their own hands while maintaining the ability to visualize them rotating in space (Experiment 2). The data provide conclusive evidence for a causal role of the sensorimotor cortex in the continuous update of sensorimotor representations while individuals mentally simulate motor acts. PMID:20849231

  15. Relaxin for the Treatment of Acute Decompensated Heart Failure: Pharmacology, Mechanisms of Action, and Clinical Evidence.

    Science.gov (United States)

    Ng, Tien M H; Goland, Sorel; Elkayam, Uri

    2016-01-01

    Acute heart failure remains a major cause of morbidity, and its treatment requires an increasing investment of the health care system. Whereas success in treating chronic heart failure has been achieved over the last decades, several pharmacological approaches for acute heart failure have been introduced but have failed to demonstrate any clinical benefit. Serelaxin is a recombinant human relaxin-2 vasoactive peptide that causes systemic and renal vasodilation. Data suggest that the clinical benefits may be attributable to a potential combination of multiple actions of serelaxin, including improving systemic, cardiac, and renal hemodynamics, and protecting cells and organs from damage via neurohormonal, anti-inflammatory, antiremodeling, antifibrotic, anti-ischemic, and proangiogenic effects. Recently, a number of clinical trials have demonstrated that serelaxin infusion over 48 hours improved dyspnea with more rapid relief of congestion during the first days after admission for heart failure. In addition, administration of serelaxin diminished cardiac, renal, and hepatic damage, which were associated with improved long-term mortality. Available data support substantial clinical benefits and significant promise for serelaxin as a treatment option for patients with acute heart failure. This review focuses on the pharmacology and mechanisms of action of serelaxin and provides a detailed discussion of the clinical evidence for this novel therapy in acute heart failure. PMID:26331289

  16. Poverty and child health in the UK: using evidence for action.

    Science.gov (United States)

    Wickham, Sophie; Anwar, Elspeth; Barr, Ben; Law, Catherine; Taylor-Robinson, David

    2016-08-01

    There are currently high levels of child poverty in the UK, and for the first time in almost two decades child poverty has started to rise in absolute terms. Child poverty is associated with a wide range of health-damaging impacts, negative educational outcomes and adverse long-term social and psychological outcomes. The poor health associated with child poverty limits children's potential and development, leading to poor health and life chances in adulthood. This article outlines some key definitions with regard to child poverty, reviews the links between child poverty and a range of health, developmental, behavioural and social outcomes for children, describes gaps in the evidence base and provides an overview of current policies relevant to child poverty in the UK. Finally, the article outlines how child health professionals can take action by (1) supporting policies to reduce child poverty, (2) providing services that reduce the health consequences of child poverty and (3) measuring and understanding the problem and assessing the impact of action. PMID:26857824

  17. Neural networks and forecasting stock price movements-accounting approach: Empirical evidence from Iran

    Directory of Open Access Journals (Sweden)

    Hossein Naderi

    2012-08-01

    Full Text Available Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron. Independent variables are accounting ratios and dependent variable of stock price , so the latter was gathered for the industry of Motor Vehicles and Auto Parts. The results of this study show that neural networks models are useful tools in forecasting stock price movements in emerging markets but multi-layer perception provides better results in term of lowering error terms.

  18. Neural systems for social cognition in Klinefelter syndrome (47,XXY): evidence from fMRI

    OpenAIRE

    van Rijn, Sophie; Swaab, Hanna; Baas, Daan; de Haan, Edward; Kahn, René S; Aleman, André

    2011-01-01

    Klinefelter syndrome (KS) is a chromosomal condition (47, XXY) that may help us to unravel gene–brain behavior pathways to psychopathology. The phenotype includes social cognitive impairments and increased risk for autism traits. We used functional MRI to study neural mechanisms underlying social information processing. Eighteen nonclinical controls and thirteen men with XXY were scanned during judgments of faces with regard to trustworthiness and age. While judging faces as untrustworthy in ...

  19. Neural networks and forecasting stock price movements-accounting approach: Empirical evidence from Iran

    OpenAIRE

    Hossein Naderi; Mojtaba Moradpour; Mehdi Zangeneh; Farzad Khani

    2012-01-01

    Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE) using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron...

  20. Context-Dependent Interpretation Of Words: Evidence For Interactive Neural Processes

    OpenAIRE

    Gennari, Silvia P; MacDonald, Maryellen C.; Postle, Bradley R.; Seidenberg, Mark S.

    2007-01-01

    The meaning of a word usually depends on the context in which it occurs. This study investigated the neural mechanisms involved in computing word meanings that change as a function of syntactic context. Current semantic processing theories suggest that word meanings are retrieved from diverse cortical regions storing sensory-motor and other types of semantic information, and are further integrated with context in left inferior frontal gyrus (LIFG). Our fMRI data indicate that brain activity i...

  1. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models

    OpenAIRE

    Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo

    2015-01-01

    Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental hea...

  2. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models

    OpenAIRE

    Patricia eSoto-Icaza; Francisco eAboitiz; Pablo eBilleke

    2015-01-01

    Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other’s behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental heal...

  3. Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr;

    2010-01-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The current...... study investigates the effects of Epo on the neural and cognitive response to emotional facial expressions in depressed patients....

  4. Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr;

    2010-01-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The curren...... study investigates the effects of Epo on the neural and cognitive response to emotional facial expressions in depressed patients....

  5. Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages.

    Directory of Open Access Journals (Sweden)

    David eCorina

    2013-01-01

    Full Text Available Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language,; core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language.

  6. The Athlete's Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise.

    Science.gov (United States)

    Ludyga, Sebastian; Gronwald, Thomas; Hottenrott, Kuno

    2016-01-01

    The "neural efficiency" hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n = 14; 55.6 ± 2.8 mL/min/kg) and lower (LOW; n = 15; 46.4 ± 4.1 mL/min/kg) maximal oxygen consumption (VO2MAX). Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F = 12.04; p = 0.002), as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p ≤ 0.018) and the exercise condition (p ≤ 0.025). The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes. PMID:26819767

  7. The Athlete's Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise.

    Science.gov (United States)

    Ludyga, Sebastian; Gronwald, Thomas; Hottenrott, Kuno

    2016-01-01

    The "neural efficiency" hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n = 14; 55.6 ± 2.8 mL/min/kg) and lower (LOW; n = 15; 46.4 ± 4.1 mL/min/kg) maximal oxygen consumption (VO2MAX). Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F = 12.04; p = 0.002), as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p ≤ 0.018) and the exercise condition (p ≤ 0.025). The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.

  8. The Athlete’s Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Sebastian Ludyga

    2016-01-01

    Full Text Available The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n=14; 55.6 ± 2.8 mL/min/kg and lower (LOW; n=15; 46.4 ± 4.1 mL/min/kg maximal oxygen consumption (VO2MAX. Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F=12.04; p=0.002, as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p≤0.018 and the exercise condition (p≤0.025. The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.

  9. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Directory of Open Access Journals (Sweden)

    Carlos M Hamamé

    Full Text Available BACKGROUND: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. METHODOLOGY/PRINCIPAL FINDINGS: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d' and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz and alpha (8-14 Hz frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. CONCLUSIONS/SIGNIFICANCE: We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  10. What are they up to? The role of sensory evidence and prior knowledge in action understanding.

    Directory of Open Access Journals (Sweden)

    Valerian Chambon

    Full Text Available Explaining or predicting the behaviour of our conspecifics requires the ability to infer the intentions that motivate it. Such inferences are assumed to rely on two types of information: (1 the sensory information conveyed by movement kinematics and (2 the observer's prior expectations--acquired from past experience or derived from prior knowledge. However, the respective contribution of these two sources of information is still controversial. This controversy stems in part from the fact that "intention" is an umbrella term that may embrace various sub-types each being assigned different scopes and targets. We hypothesized that variations in the scope and target of intentions may account for variations in the contribution of visual kinematics and prior knowledge to the intention inference process. To test this hypothesis, we conducted four behavioural experiments in which participants were instructed to identify different types of intention: basic intentions (i.e. simple goal of a motor act, superordinate intentions (i.e. general goal of a sequence of motor acts, or social intentions (i.e. intentions accomplished in a context of reciprocal interaction. For each of the above-mentioned intentions, we varied (1 the amount of visual information available from the action scene and (2 participant's prior expectations concerning the intention that was more likely to be accomplished. First, we showed that intentional judgments depend on a consistent interaction between visual information and participant's prior expectations. Moreover, we demonstrated that this interaction varied according to the type of intention to be inferred, with participant's priors rather than perceptual evidence exerting a greater effect on the inference of social and superordinate intentions. The results are discussed by appealing to the specific properties of each type of intention considered and further interpreted in the light of a hierarchical model of action representation.

  11. Simulation modifies prehension: evidence for a conjoined representation of the graspable features of an object and the action of grasping it.

    Directory of Open Access Journals (Sweden)

    Victor Frak

    Full Text Available Movement formulas, engrams, kinesthetic images and internal models of the body in action are notions derived mostly from clinical observations of brain-damaged subjects. They also suggest that the prehensile geometry of an object is integrated in the neural circuits and includes the object's graspable characteristics as well as its semantic properties. In order to determine whether there is a conjoined representation of the graspable characteristics of an object in relation to the actual grasping, it is necessary to separate the graspable (low-level from the semantic (high-level properties of the object. Right-handed subjects were asked to grasp and lift a smooth 300-g cylinder with one hand, before and after judging the level of difficulty of a "grasping for pouring" action, involving a smaller cylinder and using the opposite hand. The results showed that simulated grasps with the right hand exert a direct influence on actual motor acts with the left hand. These observations add to the evidence that there is a conjoined representation of the graspable characteristics of the object and the biomechanical constraints of the arm.

  12. Neural evidence for a 3-state model of visual short-term memory.

    Science.gov (United States)

    Nee, Derek Evan; Jonides, John

    2013-07-01

    Recent research has suggested that short-term memory (STM) can be partitioned into three distinct states. By this model, a single item is held in the focus of attention making it available for immediate processing (focus of attention), a capacity-limited set of additional items is actively maintained for future processing (direct access region), and other recently presented information is passively active, but can nevertheless influence ongoing cognition (activated portion of long-term memory). While there is both behavioral and neural support for this 3-state model in verbal STM, it is unclear whether the model generalizes to non-verbal STM. Here, we tested a 3-state model of visual STM using fMRI. We found a triple dissociation of regions involved in the access of each hypothesized state. The inferior parietal cortex mediated access to the focus of attention, the medial temporal lobe (MTL) including the hippocampus mediated access to the direct access region, and the left ventrolateral prefrontal cortex (VLPFC) mediated access to the activated portion of long-term memory. Direct comparison with previously collected verbal STM data revealed overlapping neural activations involved in the access of each state across different forms of content suggesting that mechanisms of access are domain general. These data support a 3-state model of STM.

  13. Neural evidence for compromised motor imagery in right hemiparetic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Michiel Van Elk

    2010-11-01

    Full Text Available In the present EEG study we investigated the neural and temporal dynamics of motor imagery in participants with right-sided HCP (n = 10 and in left-handed control participants (n = 10. A mental rotation task was used in which participants were required to judge the laterality of hand pictures. At a behavioral level participants with HCP were slower in making hand laterality judgments compared to control subjects, especially when presented with pictures representing the affected hand. At a neural level, individuals with HCP were characterized by a reduced rotation-related negativity (RRN over parietal areas, that was delayed in onset with respect to control participants. Interestingly, participants that were relatively mildly impaired showed a stronger RRN for the rotation of right hand stimuli than participants that were more strongly impaired in their motor function, suggesting a direct relation between the motor imagery process and the biomechanical constraints of the participant. Together, the results provide new insights in the relation between motor imagery and motor capabilities and indicate that participants with HCP may be characterized by a compromised ability to use motor imagery.

  14. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models

    Science.gov (United States)

    Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo

    2015-01-01

    Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development. PMID:26483621

  15. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models

    Directory of Open Access Journals (Sweden)

    Patricia eSoto-Icaza

    2015-09-01

    Full Text Available Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other’s behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are only recently being studied by neuroscience. In this paper we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development.

  16. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    Science.gov (United States)

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. PMID:24762973

  17. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    Science.gov (United States)

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains.

  18. How treatment affects the brain: meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression.

    Science.gov (United States)

    Boccia, Maddalena; Piccardi, Laura; Guariglia, Paola

    2016-06-01

    The idea that modifications of affect, behavior and cognition produced by psychotherapy are mediated by biological underpinnings predates the advent of the modern neurosciences. Recently, several studies demonstrated that psychotherapy outcomes are linked to modifications in specific brain regions. This opened the debate over the similarities and dissimilarities between psychotherapy and pharmacotherapy. In this study, we used activation likelihood estimation meta-analysis to investigate the effects of psychotherapy (PsyTh) and pharmacotherapy (DrugTh) on brain functioning in Major Depression (MD). Our results demonstrate that the two therapies modify different neural circuits. Specifically, PsyTh induces selective modifications in the left inferior and superior frontal gyri, middle temporal gyrus, lingual gyrus and middle cingulate cortex, as well as in the right middle frontal gyrus and precentral gyrus. Otherwise, DrugTh selectively affected brain activation in the right insula in MD patients. These results are in line with previous evidence of the synergy between psychotherapy and pharmacotherapy but they also demonstrate that the two therapies have different neural underpinnings. PMID:26164169

  19. Attentional Dissociation in Hypnosis And Neural Connectivity: Preliminary Evidence from Bilateral Electrodermal Activity.

    Science.gov (United States)

    Bob, Petr; Siroka, Ivana

    2016-01-01

    According to recent findings, interhemispheric interactions and information connectivity represent crucial mechanisms used in processing information across various sensory modalities. To study these interactions, the authors measured bilateral electrodermal activity (EDA) in 33 psychiatric outpatients. The results show that, during congruent Stroop stimuli in hypnosis, the patients with higher hypnotizability manifest a decreased level of interhemispheric information transfer measured by pointwise transinformation (PTI) that was calculated from left and right EDA records. These results show that specific shifts of attentional focus during hypnosis are related to changes of interhemispheric interactions that may be reflected in neural connectivity calculated from the bilateral EDA measurement. This attentional shift may cause dissociated attentional control disturbing integrative functions of consciousness and contextual experiences. PMID:27267677

  20. Higher incentives can impair performance: neural evidence on reinforcement and rationality.

    Science.gov (United States)

    Achtziger, Anja; Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Steinhauser, Marco

    2015-11-01

    Standard economic thinking postulates that increased monetary incentives should increase performance. Human decision makers, however, frequently focus on past performance, a form of reinforcement learning occasionally at odds with rational decision making. We used an incentivized belief-updating task from economics to investigate this conflict through measurements of neural correlates of reward processing. We found that higher incentives fail to improve performance when immediate feedback on decision outcomes is provided. Subsequent analysis of the feedback-related negativity, an early event-related potential following feedback, revealed the mechanism behind this paradoxical effect. As incentives increase, the win/lose feedback becomes more prominent, leading to an increased reliance on reinforcement and more errors. This mechanism is relevant for economic decision making and the debate on performance-based payment. PMID:25816816

  1. Neural correlates of "feeling-of-not-knowing":Evidence from functional MRI

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The neural correlates of "feeling-of-not- knowing" ("FOnK", i.e. the feeling-of-knowing judgments that accurately predicted "not knowing" or "misses" in the criterion test) were investigated by the event-related fMRI method through an RJR (recall-judgment-recognition) procedure that adopted unrelated word pairs as materials. Results revealed that, relative to the inaccurate "FOnK" predictions, the accurate ones were associated with activities in right ventral prefrontal cortex (PFC) and insula, the areas that were known to subserve "cue specification" in which the retrieval cues were converted into "descriptors" that could be used for direct memory search. This result implied that the accurate "FOnK" predictions relayed more on "cue specification" process than the inaccurate ones and was in consistent with the cue familiarity heuristic hypothesis of feeling-of-knowing.

  2. COGNITIVE LEARNING OF INTELLIGENCE SYSTEMS USING NEURAL NETWORKS: EVIDENCE FROM THE AUSTRALIAN CAPITAL MARKETS

    Directory of Open Access Journals (Sweden)

    Joachim Tan

    2002-01-01

    Full Text Available Artificial neural networks (ANNs allow users to improve forecasts through pattern recognition. The purpose of this paper is to validate ANNs as a detection tool in four financial markets. This study investigates whether market inefficiencies exist using ANN as a model. It also investigates whether additional publicly available information can provide investors with a trading advantage. In finance, any forecasting advantage obtained through the use of publicly available information albeit internal or/and external market factors suggest inefficiencies in the financial markets. In this paper, we explore the efficiency of the United States, Japan, Hong Kong and Australia. In Australia, using the ASX 200 index, we demonstrate how the inclusion of external information to our ANN improves our forecasting. Our results show accounting for external market signals significantly improves forecasts of the ASX200 index by an additional 10 percent. This suggests the inclusion of publicly available information from other markets, can improve predictions and returns for investors.

  3. Systematic implementation of evidence-based practice in a clinical nursing setting : a participatory action research project

    NARCIS (Netherlands)

    Friesen-Storms, Jolanda; Moser, Albine; Loo, Sandra van der; Beurskens, Anna; Bours, Gerrie

    2015-01-01

    Aims and objectives: To describe the process of implementing evidence-based practice (EBP) in a clinical nursing setting. Background: EBP has become a major issue in nursing, it is insufficiently integrated in daily practice and its implementation is complex. Design: Participatory action researc

  4. From evidence to action to deliver a healthy start for the next generation.

    Science.gov (United States)

    Mason, Elizabeth; McDougall, Lori; Lawn, Joy E; Gupta, Anuradha; Claeson, Mariam; Pillay, Yogan; Presern, Carole; Lukong, Martina Baye; Mann, Gillian; Wijnroks, Marijke; Azad, Kishwar; Taylor, Katherine; Beattie, Allison; Bhutta, Zulfiqar A; Chopra, Mickey

    2014-08-01

    attention to increasing of health worker numbers and skills with attention to high-quality childbirth care for newborn babies as well as mothers and children; and (5) evaluation, tracking coverage of priority interventions and packages of care with clear accountability to accelerate progress and reach the poorest groups. The Every Newborn Action Plan provides an evidence-based roadmap towards care for every woman, and a healthy start for every newborn baby, with a right to be counted, survive, and thrive wherever they are born.

  5. From evidence to action to deliver a healthy start for the next generation.

    Science.gov (United States)

    Mason, Elizabeth; McDougall, Lori; Lawn, Joy E; Gupta, Anuradha; Claeson, Mariam; Pillay, Yogan; Presern, Carole; Lukong, Martina Baye; Mann, Gillian; Wijnroks, Marijke; Azad, Kishwar; Taylor, Katherine; Beattie, Allison; Bhutta, Zulfiqar A; Chopra, Mickey

    2014-08-01

    attention to increasing of health worker numbers and skills with attention to high-quality childbirth care for newborn babies as well as mothers and children; and (5) evaluation, tracking coverage of priority interventions and packages of care with clear accountability to accelerate progress and reach the poorest groups. The Every Newborn Action Plan provides an evidence-based roadmap towards care for every woman, and a healthy start for every newborn baby, with a right to be counted, survive, and thrive wherever they are born. PMID:24853599

  6. Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions

    Institute of Scientific and Technical Information of China (English)

    Huaping Zhu; Yaoru Sun; Fang Wang

    2013-01-01

    Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm ("mu suppression") across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of "impoverished hand actions", such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.

  7. Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there?

    Science.gov (United States)

    Fioravanti, Antonella; Cantarini, Luca; Guidelli, Giacomo Maria; Galeazzi, Mauro

    2011-01-01

    Spa therapy represents a popular treatment for many rheumatic diseases. The mechanisms by which immersion in mineral or thermal water or the application of mud alleviates suffering in rheumatic diseases are not fully understood. The net benefit is probably the result of a combination of factors, with mechanical, thermal and chemical effects among the most prominent ones. Buoyancy, immersion, resistance and temperature all play important roles. According to the gate theory, pain relief may be due to the pressure and temperature of the water on skin; hot stimuli may influence muscle tone and pain intensity, helping to reduce muscle spasm and to increase the pain threshold. Mud-bath therapy increases plasma β-endorphin levels and secretion of corticotrophin, cortisol, growth hormone and prolactin. It has recently been demonstrated that thermal mud-pack therapy induces a reduction in the circulating levels of prostaglandin E2 (PGE2), leukotriene B4 (LTB4), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), important mediators of inflammation and pain. Spa therapy has been found to cause an increase in insulin-like growth factor-1 (IGF1), which stimulates cartilage metabolism, and transforming growth factor-β (TGF-β). There is also evidence of the positive action of mud-packs and thermal baths on the oxidant/antioxidant system, with a reduction in the release of reactive oxygen (ROS) and nitrogen (RNS) species. Overall, thermal stress has an immunosuppressive effect. Many other non-specific factors may also contribute to the beneficial effects observed after spa therapy in some rheumatic diseases, including effects on cardiovascular risk factors, and changes in the environment, pleasant surroundings and the absence of work duties.

  8. Neural Bases of Unconscious Error Detection in a Chinese Anagram Solution Task: Evidence from ERP Study.

    Directory of Open Access Journals (Sweden)

    Hua-Zhan Yin

    Full Text Available In everyday life, error monitoring and processing are important for improving ongoing performance in response to a changing environment. However, detecting an error is not always a conscious process. The temporal activation patterns of brain areas related to cognitive control in the absence of conscious awareness of an error remain unknown. In the present study, event-related potentials (ERPs in the brain were used to explore the neural bases of unconscious error detection when subjects solved a Chinese anagram task. Our ERP data showed that the unconscious error detection (UED response elicited a more negative ERP component (N2 than did no error (NE and detect error (DE responses in the 300-400-ms time window, and the DE elicited a greater late positive component (LPC than did the UED and NE in the 900-1200-ms time window after the onset of the anagram stimuli. Taken together with the results of dipole source analysis, the N2 (anterior cingulate cortex might reflect unconscious/automatic conflict monitoring, and the LPC (superior/medial frontal gyrus might reflect conscious error recognition.

  9. The price of your soul: neural evidence for the non-utilitarian representation of sacred values.

    Science.gov (United States)

    Berns, Gregory S; Bell, Emily; Capra, C Monica; Prietula, Michael J; Moore, Sara; Anderson, Brittany; Ginges, Jeremy; Atran, Scott

    2012-03-01

    Sacred values, such as those associated with religious or ethnic identity, underlie many important individual and group decisions in life, and individuals typically resist attempts to trade off their sacred values in exchange for material benefits. Deontological theory suggests that sacred values are processed based on rights and wrongs irrespective of outcomes, while utilitarian theory suggests that they are processed based on costs and benefits of potential outcomes, but which mode of processing an individual naturally uses is unknown. The study of decisions over sacred values is difficult because outcomes cannot typically be realized in a laboratory, and hence little is known about the neural representation and processing of sacred values. We used an experimental paradigm that used integrity as a proxy for sacredness and which paid real money to induce individuals to sell their personal values. Using functional magnetic resonance imaging (fMRI), we found that values that people refused to sell (sacred values) were associated with increased activity in the left temporoparietal junction and ventrolateral prefrontal cortex, regions previously associated with semantic rule retrieval. This suggests that sacred values affect behaviour through the retrieval and processing of deontic rules and not through a utilitarian evaluation of costs and benefits. PMID:22271790

  10. Neural signatures of third-party punishment: evidence from penetrating traumatic brain injury.

    Science.gov (United States)

    Glass, Leila; Moody, Lara; Grafman, Jordan; Krueger, Frank

    2016-02-01

    The ability to survive within a cooperative society depends on impartial third-party punishment (TPP) of social norm violations. Two cognitive mechanisms have been postulated as necessary for the successful completion of TPP: evaluation of legal responsibility and selection of a suitable punishment given the magnitude of the crime. Converging neuroimaging research suggests two supporting domain-general networks; a mentalizing network for evaluation of legal responsibility and a central-executive network for determination of punishment. A whole-brain voxel-based lesion-symptom mapping approach was used in conjunction with a rank-order TPP task to identify brain regions necessary for TPP in a large sample of patients with penetrating traumatic brain injury. Patients who demonstrated atypical TPP had specific lesions in core regions of the mentalizing (dorsomedial prefrontal cortex [PFC], ventromedial PFC) and central-executive (bilateral dorsolateral PFC, right intraparietal sulcus) networks. Altruism and executive functioning (concept formation skills) were significant predictors of TPP: altruism was uniquely associated with TPP in patients with lesions in right dorsolateral PFC and executive functioning was uniquely associated with TPP in individuals with lesions in left PFC. Our findings contribute to the extant literature to support underlying neural networks associated with TPP, with specific brain-behavior causal relationships confirming recent functional neuroimaging research.

  11. Neural signatures of third-party punishment: evidence from penetrating traumatic brain injury.

    Science.gov (United States)

    Glass, Leila; Moody, Lara; Grafman, Jordan; Krueger, Frank

    2016-02-01

    The ability to survive within a cooperative society depends on impartial third-party punishment (TPP) of social norm violations. Two cognitive mechanisms have been postulated as necessary for the successful completion of TPP: evaluation of legal responsibility and selection of a suitable punishment given the magnitude of the crime. Converging neuroimaging research suggests two supporting domain-general networks; a mentalizing network for evaluation of legal responsibility and a central-executive network for determination of punishment. A whole-brain voxel-based lesion-symptom mapping approach was used in conjunction with a rank-order TPP task to identify brain regions necessary for TPP in a large sample of patients with penetrating traumatic brain injury. Patients who demonstrated atypical TPP had specific lesions in core regions of the mentalizing (dorsomedial prefrontal cortex [PFC], ventromedial PFC) and central-executive (bilateral dorsolateral PFC, right intraparietal sulcus) networks. Altruism and executive functioning (concept formation skills) were significant predictors of TPP: altruism was uniquely associated with TPP in patients with lesions in right dorsolateral PFC and executive functioning was uniquely associated with TPP in individuals with lesions in left PFC. Our findings contribute to the extant literature to support underlying neural networks associated with TPP, with specific brain-behavior causal relationships confirming recent functional neuroimaging research. PMID:26276809

  12. When does action comprehension need motor involvement? Evidence from upper limb aplasia.

    Science.gov (United States)

    Vannuscorps, Gilles; Andres, Michael; Pillon, Agnesa

    2013-01-01

    Motor theories of action comprehension claim that comprehending the meaning of an action performed by a conspecific relies on the perceiver's own motor representation of the same action. According to this view, whether an action belongs to the motor repertoire of the perceiver should impact the ease by which this action is comprehended. We tested this prediction by assessing the ability of an individual (D.C.) born without upper limbs to comprehend actions involving hands (e.g., throwing) or other body parts (e.g., jumping). The tests used a range of different visual stimuli differing in the kind of information provided. The results showed that D.C. was as accurate and fast as control participants in comprehending natural video and photographic presentations of both manual and nonmanual actions, as well as pantomimes. However, he was selectively impaired at identifying point-light animations of manual actions. This impairment was not due to a difficulty in processing kinematic information per se. D.C. was indeed as accurate as control participants in two additional tests requiring a fine-grained analysis of an actor's arm or whole-body movements. These results challenge motor theories of action comprehension by showing that the visual analysis of body shape and motion provides sufficient input for comprehending observed actions. However, when body shape information is sparsely available, motor involvement becomes critical to interpret observed actions. We suggest that, with natural human movement stimuli, motor representations contribute to action comprehension each time visual information is incomplete or ambiguous. PMID:24215324

  13. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  14. Evidence implementation: Development of an online methodology from the knowledge-to-action model of knowledge translation.

    Science.gov (United States)

    Lockwood, Craig; Stephenson, Matthew; Lizarondo, Lucylynn; van Den Hoek, Joan; Harrison, Margaret

    2016-08-01

    This paper describes an online facilitation for operationalizing the knowledge-to-action (KTA) model. The KTA model incorporates implementation planning that is optimally suited to the information needs of clinicians. The can-implement(©) is an evidence implementation process informed by the KTA model. An online counterpart, the can-implement.pro(©) , was developed to enable greater dissemination and utilization of the can-implement(©) process. The driver for this work was health professionals' need for facilitation that is iterative, informed by context and localized to the specific needs of users. The literature supporting this paper includes evaluation studies and theoretical concepts relevant to KTA model, evidence implementation and facilitation. Nursing and other health disciplines require a skill set and resources to successfully navigate the complexity of organizational requirements, inter-professional leadership and day-to-day practical management to implement evidence into clinical practice. The can-implement.pro(©) provides an accessible, inclusive system for evidence implementation projects. There is empirical support for evidence implementation informed by the KTA model, which in this phase of work has been developed for online uptake. Nurses and other clinicians seeking to implement evidence could benefit from the directed actions, planning advice and information embedded in the phases and steps of can-implement.pro(©) . PMID:27562662

  15. Neural and muscular control functions of the gut in odontocetes: morphologic evidence in beaked whales and beluga whales.

    Science.gov (United States)

    Pfeiffer, C J

    1993-01-01

    The present data provide some new and unique, gastrointestinal morphologic findings in two species of toothed whales, the Cuvier's beaked whale (Ziphius cavirostris) and the beluga or white whale (Delphinapterus leucas), which are discussed relative to their atypical feeding behavior and alimentary tract functions. Specifically, the findings show myenteric neural modifications and muscularis externa structural specializations which may support voluntary and involuntary fore- and hindgut behavior. Histologic evidence of intercalation-like striations in the gastric and colonic musculature was discovered, as well as an unusual massive size of the colonic myenteric plexuses. These observations, which are not evident in terrestrial mammalian gastrointestinal tracts, may help explain the unusual upper gastrointestinal tract motility such as ingestion-by-sucking in the absence of prehensile teeth and processing of ingesta in a multi-compartmentalized pyloric stomach. Further, the hindgut modifications may help explain the animal's acute, rectal discharge escape mechanism, likened to squid inking, which seems to be an evolved function of some cetaceans.

  16. Pupillometric evidence for the locus coeruleus-noradrenaline system facilitating attentional processing of action-triggered visual stimuli

    Directory of Open Access Journals (Sweden)

    Ken eKihara

    2015-06-01

    Full Text Available It has been argued that attentional processing of visual stimuli is facilitated by a voluntary action that triggers the stimulus onset. However, the relationship between action-induced facilitation of attention and the neural substrates has not been well established. The present study investigated whether the locus coeruleus-noradrenaline (LC-NA system is involved in this facilitation effect. A rapid serial visual presentation paradigm was used to assess the dynamics of transient attention in humans. Participants were instructed to change a digit stream to a letter stream by pressing a button and specifying successive targets of four letters. Pupil dilation was measured as an index of LC-NA function. Accuracy of target identification was better when the temporal delay between participants' key press and target onset was 800 ms than when targets appeared just after the key press or when targets appeared without key press. Accuracy of target identification was positively correlated with both the peak amplitude of pupil dilation and the pupil size at the time of the key press. These results indicate that target identification in the visual task is closely linked to pupil dilation. We conclude that the LC-NA system plays an important role in the facilitation of transient attention driven by voluntary action.

  17. Neural bases of falsification in conditional proposition testing: evidence from an fMRI study.

    Science.gov (United States)

    Liu, Jimei; Zhang, Meng; Jou, Jerwen; Wu, Xin; Li, Wei; Qiu, Jiang

    2012-08-01

    The ability of testing the validity of a conditional statement is important in our everyday life. However, the brain mechanisms underlying this process, especially falsification process which is important in daily life, but especially crucial to scientific reasoning and research is not as yet completely clear. Therefore, in the present study, we used event-related functional magnetic resonance imaging (fMRI) to examine the neural bases of the falsification process in testing the validity of a conditional statement as used in Wason's (1966) selection task. Our fMRI results showed that: (1) compared with the baseline condition, both Falsification (by using Modus Ponens, and Modus Tollens) and Non-Falsification conditions (affirming the consequent, and denying the antecedent) activated the left frontal areas (BA44/45, or BA6), and basal ganglia, the areas previously found in the rule-guided conditional reasoning operations; the parietal area (BA40, BA7) for recruiting cognitive resources to represent and maintain the different evidential information in working memory. (2) The left middle frontal gyrus (BA9) and cerebellum were shown to be activated in the contrast of Falsification condition versus Non-Falsification condition and in the contrast of MT versus Non-Falsification condition. These results indicated that the left middle frontal gyrus (BA9) might be the key brain region involved in the falsification process of conditional statement for which abstracting and integrating logical relationships, and inhibiting the distraction of the irrelevant information were the essential processes. Moreover, the cerebellum was found to be responsible for constructing an internal working model. In addition, our brain imaging results might support the dual-process theory of reasoning.

  18. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    Full Text Available The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI. A second strong positive correlation was observed in the anterior cingulate gyrus (ACC. Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  19. Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations

    OpenAIRE

    Sandra B Chapman; Mudar, Raksha A.

    2014-01-01

    Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clin...

  20. Enhancement of Cognitive and Neural Functions through Complex Reasoning Training: Evidence from Normal and Clinical Populations

    OpenAIRE

    Sandra Bond Chapman; Raksha Anand Mudar

    2014-01-01

    Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clin...

  1. Neural evidence for an association between social proficiency and sensitivity to social reward

    OpenAIRE

    Gossen, Anna; Groppe, Sarah E.; Winkler, Lina; Kohls, Gregor; Herrington, John; Schultz, Robert T.; Gründer, Gerhard; Spreckelmeyer, Katja N.

    2013-01-01

    Data from developmental psychology suggests a link between the growth of socio-emotional competences and the infant's sensitivity to the salience of social stimuli. The aim of the present study was to find evidence for this relationship in healthy adults. Thirty-five participants were recruited based on their score above the 85th or below the 15th percentile of the empathy quotient questionnaire (EQ, Baron-Cohen and Wheelwright, 2004). Functional magnetic resonance imaging (fMRI) was used to ...

  2. Prevention and control of noncommunicable diseases through evidence-based public health: implementing the NCD 2020 action plan.

    Science.gov (United States)

    Diem, Günter; Brownson, Ross C; Grabauskas, Vilius; Shatchkute, Aushra; Stachenko, Sylvie

    2016-09-01

    The control of noncommunicable diseases (NCDs) was addressed by the declaration of the 66th United Nations (UN) General Assembly followed by the World Health Organization's (WHO) NCD 2020 action plan. There is a clear need to better apply evidence in public health settings to tackle both behaviour-related factors and the underlying social and economic conditions. This article describes concepts of evidence-based public health (EBPH) and outlines a set of actions that are essential for successful global NCD prevention. The authors describe the importance of knowledge translation with the goal of increasing the effectiveness of public health services, relying on both quantitative and qualitative evidence. In particular, the role of capacity building is highlighted because it is fundamental to progress in controlling NCDs. Important challenges for capacity building include the need to bridge diverse disciplines, build the evidence base across countries and the lack of formal training in public health sciences. As brief case examples, several successful capacity-building efforts are highlighted to address challenges and further evidence-based decision making. The need for a more comprehensive public health approach, addressing social, environmental and cultural conditions, has led to government-wide and society-wide strategies that are now on the agenda due to efforts such as the WHO's NCD 2020 action plan and Health 2020: the European Policy for Health and Wellbeing. These efforts need research to generate evidence in new areas (e.g. equity and sustainability), training to build public health capacity and a continuous process of improvement and knowledge generation and translation. PMID:25758171

  3. Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Noham eWolpe

    2015-10-01

    Full Text Available Parkinson’s disease (PD impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors, which in healthy adults bias perception towards success in proportion to trait optimism. We tested the hypotheses that (i the priors on the perception of the consequences of one’s own actions differ between patients and age- and sex-matched controls, and (ii that these priors are modulated by the levodopa dose equivalent in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their levodopa dose equivalent. Patients with high levodopa dose equivalent showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one’s own actions, and may have implications for the management of PD.

  4. Neural Correlates of Action Observation and Execution in 14-Month-Old Infants: An Event-Related EEG Desynchronization Study

    Science.gov (United States)

    Marshall, Peter J.; Young, Thomas; Meltzoff, Andrew N.

    2011-01-01

    There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants.…

  5. Are owners' reports of their dogs' 'guilty look' influenced by the dogs' action and evidence of the misdeed?

    Science.gov (United States)

    Ostojić, Ljerka; Tkalčić, Mladenka; Clayton, Nicola S

    2015-02-01

    While dog owners claim that their dogs' greeting behaviour after having performed a misdeed indicates the dogs' 'guilt', current experimental evidence suggests that dogs show these 'guilty look' behaviours as a response to being scolded by their owners. Given reports that 'guilty look' behaviours are shown also in the absence of being scolded, we investigated whether the dogs' own actions or the evidence of a misdeed might serve as triggering cues. We manipulated whether or not dogs ate a 'forbidden' food item and whether or not the food was visible upon the owners' return. Based on their dogs' greeting behaviour, owners stated that their dog had eaten the food no more than expected by chance. In addition, dogs' greeting behaviours were not affected by their own action or the presence or absence of the food. Thus, our findings do not support the hypothesis that dogs show the 'guilty look' in the absence of a concurrent negative reaction by their owners.

  6. Systematic implementation of evidence-based practice in a clinical nursing setting: a participatory action research project

    OpenAIRE

    Friesen-Storms, Jolanda; Moser, Albine; Loo, Sandra,; Beurskens, Anna; Bours, Gerrie

    2015-01-01

    Aims and objectives: To describe the process of implementing evidence-based practice (EBP) in a clinical nursing setting. Background: EBP has become a major issue in nursing, it is insufficiently integrated in daily practice and its implementation is complex. Design: Participatory action research. Method: The main participants were nurses working in a lung unit of a rural hospital. A multi-method process of data collection was used during the observing, reflecting, planning and acting phases....

  7. Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    OpenAIRE

    Münte, Thomas F.; Marcus Heldmann; Hermann Hinrichs; Josep Marco-Pallares; Krämer, Ulrike M.; Volker Sturm; Hans-Jochen Heinze

    2008-01-01

    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic mid...

  8. Simulating the 'other-race' effect with autoassociative neural networks: further evidence in favor of the face-space model.

    Science.gov (United States)

    Caldara, Roberto; Hervé, Abdi

    2006-01-01

    Other-race (OR) faces are less accurately recognized than same-race (SR) faces, but faster classified by race. This phenomenon has often been reported as the 'other-race' effect (ORE). Valentine (1991 Quarterly Journal of Experimental Psychology A: Human Experimental Psychology 43 161-204) proposed a theoretical multidimensional face-space model that explained both of these results, in terms of variations in exemplar density between races. According to this model, SR faces are more widely distributed across the dimensions of the space than OR faces. However, this model does not quantify nor state the dimensions coded within this face space. The aim of the present study was to test the face-space explanation of the ORE with neural network simulations by quantifying its dimensions. We found the predicted density properties of Valentine's framework in the face-projection spaces of the autoassociative memories. This was supported by an interaction for exemplar density between the race of the learned face set and the race of the faces. In addition, the elaborated face representations showed optimal responses for SR but not for OR faces within SR face spaces when explored at the individual level, as gender errors occurred significantly more often in OR than in SR face-space representations. Altogether, our results add further evidence in favor of a statistical exemplar density explanation of the ORE as suggested by Valentine, and question the plausibility of such coding for faces in the framework of recent neuroimaging studies.

  9. The Physics of Decision Making:. Stochastic Differential Equations as Models for Neural Dynamics and Evidence Accumulation in Cortical Circuits

    Science.gov (United States)

    Holmes, Philip; Eckhoff, Philip; Wong-Lin, K. F.; Bogacz, Rafal; Zacksenhouse, Miriam; Cohen, Jonathan D.

    2010-03-01

    We describe how drift-diffusion (DD) processes - systems familiar in physics - can be used to model evidence accumulation and decision-making in two-alternative, forced choice tasks. We sketch the derivation of these stochastic differential equations from biophysically-detailed models of spiking neurons. DD processes are also continuum limits of the sequential probability ratio test and are therefore optimal in the sense that they deliver decisions of specified accuracy in the shortest possible time. This leaves open the critical balance of accuracy and speed. Using the DD model, we derive a speed-accuracy tradeoff that optimizes reward rate for a simple perceptual decision task, compare human performance with this benchmark, and discuss possible reasons for prevalent sub-optimality, focussing on the question of uncertain estimates of key parameters. We present an alternative theory of robust decisions that allows for uncertainty, and show that its predictions provide better fits to experimental data than a more prevalent account that emphasises a commitment to accuracy. The article illustrates how mathematical models can illuminate the neural basis of cognitive processes.

  10. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  11. L-040: EPR-First Responders: Forensic Evidence Management group. Action Guides

    International Nuclear Information System (INIS)

    This conference is about the forensic evidence managed by the radiological emergency group. The protection guides, the evidences, the fingerprints, the experience, the strategies, the contamination level, the monitoring, the photography and the interrogation are important aspects to be considered by the first responders.

  12. Neural evidence for competition-mediated suppression in the perception of a single object.

    Science.gov (United States)

    Cacciamani, Laura; Scalf, Paige E; Peterson, Mary A

    2015-11-01

    Multiple objects compete for representation in visual cortex. Competition may also underlie the perception of a single object. Computational models implement object perception as competition between units on opposite sides of a border. The border is assigned to the winning side, which is perceived as an object (or "figure"), whereas the other side is perceived as a shapeless ground. Behavioral experiments suggest that the ground is inhibited to a degree that depends on the extent to which it competed for object status, and that this inhibition is relayed to low-level brain areas. Here, we used fMRI to assess activation for ground regions of task-irrelevant novel silhouettes presented in the left or right visual field (LVF or RVF) while participants performed a difficult task at fixation. Silhouettes were designed so that the insides would win the competition for object status. The outsides (grounds) suggested portions of familiar objects in half of the silhouettes and novel objects in the other half. Because matches to object memories affect the competition, these two types of silhouettes operationalized, respectively, high competition and low competition from the grounds. The results showed that activation corresponding to ground regions was reduced for high- versus low-competition silhouettes in V4, where receptive fields (RFs) are large enough to encompass the familiar objects in the grounds, and in V1/V2, where RFs are much smaller. These results support a theory of object perception involving competition-mediated ground suppression and feedback from higher to lower levels. This pattern of results was observed in the left hemisphere (RVF), but not in the right hemisphere (LVF). One explanation of the lateralized findings is that task-irrelevant silhouettes in the RVF captured attention, allowing us to observe these effects, whereas those in the LVF did not. Experiment 2 provided preliminary behavioral evidence consistent with this possibility.

  13. Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities.

    Science.gov (United States)

    Anticevic, Alan; Repovs, Grega; Barch, Deanna M

    2013-01-01

    Substantial evidence implicates working memory (WM) as a core deficit in schizophrenia (SCZ), purportedly due to primary deficits in dorsolateral prefrontal cortex functioning. Recent findings suggest that SCZ is also associated with abnormalities in suppression of certain regions during cognitive engagement--namely the default mode system--that may further contribute to WM pathology. However, no study has systematically examined activation and suppression abnormalities across both encoding and maintenance phases of WM in SCZ. Twenty-eight patients and 24 demographically matched healthy subjects underwent functional magnetic resonance imaging at 3T while performing a delayed match-to-sample WM task. Groups were accuracy matched to rule out performance effects. Encoding load was identical across subjects to facilitate comparisons across WM phases. We examined activation differences using an assumed model approach at the whole-brain level and within meta-analytically defined WM areas. Despite matched performance, we found regions showing less recruitment during encoding and maintenance for SCZ subjects. Furthermore, we identified 2 areas closely matching the default system, which SCZ subjects failed to deactivate across WM phases. Lastly, activation in prefrontal regions predicted the degree of deactivation for healthy but not SCZ subjects. Current results replicate and extend prefrontal recruitment abnormalities across WM phases in SCZ. Results also indicate deactivation abnormalities across WM phases, possibly due to inefficient prefrontal recruitment. Such regional deactivation may be critical for suppressing sources of interference during WM trace formation. Thus, deactivation deficits may constitute an additional source of impairments, which needs to be further characterized for a complete understanding of WM pathology in SCZ.

  14. The Theory of Reasoned Action and Self-Construal: Evidence from Three Cultures.

    Science.gov (United States)

    Park, Hee Sun; Levine, Timothy R.

    1999-01-01

    Investigates the effects of self-construals on the attitudinal and normative components of the Theory of Reasoned Action in the cultures of Korea, Hawaii, and the mainland United States. Finds that undergraduate students in all three locations scored higher on independence than interdependence, and culture appears to affect the extent to which…

  15. Object manipulation and motion perception: Evidence of an influence of action planning on visual processing

    NARCIS (Netherlands)

    Lindemann, O.; Bekkering, H.

    2009-01-01

    In 3 experiments, the authors investigated the bidirectional coupling of perception and action in the context of object manipulations and motion perception. Participants prepared to grasp an X-shaped object along one of its 2 diagonals and to rotate it in a clockwise or a counterclockwise direction.

  16. Evidence for differential action of indoleacetic acid upon ion fluxes in single cells of Petroselinum sativum.

    Science.gov (United States)

    Bentrup, F W; Pfrüner, H; Wagner, G

    1973-12-01

    The apparent influx of (36)Cl(-) and (86)Rb(+)/K(+) into cells from the higher plant Petroselinum sativum has been measured during the presence and absence in the culture medium of indolacetic acid (IAA) which is an essential auxin of these cells. While 10(-5) M IAA did not significantly affect the influx of (86)Rb(+)/K(+), it substantially reduced that of (36)Cl(-), i.e. by a factor 0.25 within 30 min. This differential action of IAA, which holds for a reasonable range of external pH, is assumed to bear on current hypotheses that the primary events of auxin action involve plasmalemma functions. PMID:24474466

  17. Neural circuitry underlying the central hypertensive action of nesfatin-1: melanocortins, corticotropin-releasing hormone, and oxytocin.

    Science.gov (United States)

    Yosten, Gina L C; Samson, Willis K

    2014-05-15

    Nesfatin-1 is produced in the periphery and in the brain where it has been demonstrated to regulate appetite, stress hormone secretion, and cardiovascular function. The anorexigenic action of central nesfatin-1 requires recruitment of neurons producing the melanocortins and centrally projecting oxytocin (OT) and corticotropin-releasing hormone (CRH) neurons. We previously have shown that two components of this pathway, the central melanocortin and oxytocin systems, contribute to the hypertensive action of nesfatin-1 as well. We hypothesized that the cardiovascular effect of nesfatin-1 also was dependent on activation of neurons expressing CRH receptors, and that the order of activation of the melanocortin-CRH-oxytocin circuit was preserved for both the anorexigenic and hypertensive actions of the peptide. Pretreatment of male rats with the CRH-2 receptor antagonist astressin2B abrogated nesfatin-1-induced increases in mean arterial pressure (MAP). Furthermore, the hypertensive action of CRH was blocked by pretreatment with an oxytocin receptor antagonist ornithine vasotocin (OVT), indicating that the hypertensive effect of nesfatin-1 may require activation of oxytocinergic (OTergic) neurons in addition to recruitment of CRH neurons. Interestingly, we found that the hypertensive effect of α-melanocyte stimulating hormone (α-MSH) itself was not blocked by either astressin2B or OVT. These data suggest that while α-MSH-producing neurons are part of a core melanocortin-CRH-oxytocin circuit regulating food intake, and a subpopulation of melanocortin neurons activated by nesfatin-1 do mediate the hypertensive action of the peptide, α-MSH can signal independently from this circuit to increase MAP.

  18. Effect of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action.

    OpenAIRE

    Azouvi, P; Roby-Brami, A.; Biraben, A; Thiebaut, J B; Thurel, C; Bussel, B

    1993-01-01

    Intrathecal baclofen is a very powerful antispastic agent. Its mechanism of action on the monosynaptic H-reflex in spinal patients was investigated. It could inhibit rapidly and profoundly monosynaptic reflexes in lower limbs, but did not modify Ia vibratory inhibition of the soleus H-reflex. To assess more precisely its effect on Ia afferents, an experimental paradigm using Ia heteronymous facilitation of the soleus H-reflex was used. Intrathecal baclofen did not modify the amount of monosyn...

  19. Evidence-Based Robust Design of Deflection Actions for Near Earth Objects

    OpenAIRE

    Zuiani, Federico; Vasile, Massimiliano; Gibbings, Alison

    2012-01-01

    This paper presents a novel approach to the robust design of deflection actions for Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth threatening trajectory. This work investigates the integrated design of the Space-based Laser system a...

  20. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?

    Science.gov (United States)

    Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian

    2015-06-01

    Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. PMID:25810318

  1. Self-other disturbance in borderline personality disorder: Neural, self-report, and performance-based evidence.

    Science.gov (United States)

    Beeney, Joseph E; Hallquist, Michael N; Ellison, William D; Levy, Kenneth N

    2016-01-01

    Individuals with borderline personality disorder (BPD) display an impoverished sense of self and representations of self and others that shift between positive and negative poles. However, little research has investigated the nature of representational disturbance in BPD. The present study takes a multimodal approach. A card sort task was used to investigate complexity, integration, and valence of self-representation in BPD. Impairment in maintenance of self and other representations was assessed using a personality representational maintenance task. Finally, functional MRI (fMRI) was used to assess whether individuals with BPD show neural abnormalities related specifically to the self and what brain areas may be related to poor representational maintenance. Individuals with BPD sorted self-aspects suggesting more complexity of self-representation, but also less integration and more negative valence overall. On the representational maintenance task, individuals with BPD showed less consistency in their representations of self and others over the 3-hr period, but only for abstract, personality-based representations. Performance on this measure mediated between-groups brain activation in several areas supporting social cognition. We found no evidence for social-cognitive disturbance specific to the self. Additionally, the BPD group showed main effects, insensitive to condition, of hyperactivation in the medial prefrontal cortex, temporal parietal junction, several regions of the frontal pole, the precuneus and middle temporal gyrus, all areas crucial social cognition. In contrast, controls evidenced greater activation in visual, sensory, motor, and mirror neuron regions. These findings are discussed in relation to research regarding hypermentalization and the overlap between self- and other-disturbance.

  2. Collective Action and Common Agricultural Policy Lobbying: Evidence of Euro-Group Influence, 1986-2003

    OpenAIRE

    Jonsson, Thomas

    2007-01-01

    This paper attempts to explain Common Agricultural Policy (CAP) subsidies to farmers by the in.uence of farmer interest-groups with an EU-wide membership (so called Euro-groups). The analysis is based on panel-data for .fteen commodities over the period 1986-2003. Because the CAP is set as an overall EU policy, e¤ective lobbying presents a collective action problem to the farmers in the EU as a whole. Indicators of lobbying, which are based on this perception, are found to explain part of the...

  3. Dopamine Modulation of Emotional Processing in Cortical and Subcortical Neural Circuits: Evidence for a Final Common Pathway in Schizophrenia?

    OpenAIRE

    Laviolette, Steven R

    2007-01-01

    The neural regulation of emotional perception, learning, and memory is essential for normal behavioral and cognitive functioning. Many of the symptoms displayed by individuals with schizophrenia may arise from fundamental disturbances in the ability to accurately process emotionally salient sensory information. The neurotransmitter dopamine (DA) and its ability to modulate neural regions involved in emotional learning, perception, and memory formation has received considerable research attent...

  4. Enforcement actions and their effectiveness in securities regulation:Empirical evidence from management earnings forecasts

    Institute of Scientific and Technical Information of China (English)

    Yunling Song; Xinwei Ji

    2012-01-01

    Due to resource constraints,securities regulators cannot find or punish all firms that have conducted irregular or even illegal activities(hereafter referred to as fraud).Those who study securities regulations can only find the instances of fraud that have been punished,not those that have not been punished,and it is these unknown cases that would make the best control sample for studies of enforcement action criteria.China’s mandatory management earnings forecasts solve this sampling problem.In the A-share market,firms that have not forecasted as mandated are likely in a position to be punished by securities regulators or are attempting to escape punishment,and their identification allows researchers to build suitable study and control samples when examining securities regulations.Our results indicate that enforcement actions taken by securities regulators are selective.The probability that a firm will be punished for irregular management forecasting is significantly related to proxies for survival rates.Specifically,fraudulent firms with lower return on assets(ROAs) or higher cash flow risk are more likely to be punished.Further analysis shows that selective enforcement of regulations has had little positive effect on the quality of listed firms’ management forecasts.

  5. Spatial representations in older adults are not modified by action: Evidence from tool use.

    Science.gov (United States)

    Costello, Matthew C; Bloesch, Emily K; Davoli, Christopher C; Panting, Nicholas D; Abrams, Richard A; Brockmole, James R

    2015-09-01

    Theories of embodied perception hold that the visual system is calibrated by both the body schema and the action system, allowing for adaptive action-perception responses. One example of embodied perception involves the effects of tool use on distance perception, in which wielding a tool with the intention to act upon a target appears to bring that object closer. This tool-based spatial compression (i.e., tool-use effect) has been studied exclusively with younger adults, but it is unknown whether the phenomenon exists with older adults. In this study, we examined the effects of tool use on distance perception in younger and older adults in 2 experiments. In Experiment 1, younger and older adults estimated the distances of targets just beyond peripersonal space while either wielding a tool or pointing with the hand. Younger adults, but not older adults, estimated targets to be closer after reaching with a tool. In Experiment 2, younger and older adults estimated the distance to remote targets while using either a baton or a laser pointer. Younger adults displayed spatial compression with the laser pointer compared to the baton, although older adults did not. Taken together, these findings indicate a generalized absence of the tool-use effect in older adults during distance estimation, suggesting that the visuomotor system of older adults does not remap from peripersonal to extrapersonal spatial representations during tool use. PMID:26052886

  6. Managing research evidence to inform action: influencing HIV policy to protect marginalised populations in Pakistan.

    Science.gov (United States)

    Hawkes, Sarah; Zaheer, Hasan Abbas; Tawil, Oussama; O'Dwyer, Michael; Buse, Kent

    2012-01-01

    Abstract Our aim was to demonstrate that an understanding of the process of how research may (or may not) influence policy and practice is crucial to leverage research findings and bring about evidence-informed policy and its implementation. We describe a process of research design and execution, based on theories of the relationship between evidence and public policy-making, which sought to improve the uptake of evidence into the HIV policy-making process in Pakistan. We designed and implemented specific strategies in research methods, management and dissemination to increase the policy influence by recommendations from a multi-disciplinary research project. Research to policy is complex, rarely linear and causal attribution is problematic. Nonetheless, we believe that, in part, some of the current changes in HIV policy and practice in Pakistan may be due to the managed process of research influence. We offer four key recommendations for those concerned with improving the chances of seeing their research incorporated into policy and practice - these are (1) involve stakeholders in research management; (2) set realistic expectations of research impact; (3) invest in long-term research-policy-maker relationships; and (4) build capacity of end users to use research to demand policy change. PMID:22385331

  7. Evidence for Action on HIV Treatment and Care Systems in low and middle-income countries: background and introduction.

    Science.gov (United States)

    Ross, David A; South, Annabelle; Weller, Ian; Hakim, James

    2012-12-01

    Despite the unprecedented scale-up of treatment for HIV in low and middle-income countries over the past decade, 49% of adults and 77% of children in need of HIV treatment still do not have access to it. ART programmes that were initially set up as an emergency response now need to be adapted to ensure that they include all the essential components and are well integrated with other health services; meet the needs of special groups, including children, adolescents, pregnant women and older people; address the mental health needs of HIV-positive people; and monitor as well as report their impact in valid and comparable ways.This supplement is an output from the Evidence for Action on HIV Treatment and Care Systems research programme consortium. Evidence for Action was a 5-year, multidisciplinary research programme, which ran from 2006 to 2011, with partners in India, Malawi, Uganda, Zambia and the United Kingdom.The primary aim of this supplement is to stimulate reflection and provide guidance on what should be in the package of HIV treatment and care systems, as national programmes look to maintain the major advances of the past decade and scale-up treatment to the other 50% of people in need of it.

  8. Differential neural activation for camouflage detection task in Field-Independent and Field-Dependent individuals: Evidence from fMRI.

    Science.gov (United States)

    Rajagopalan, Janani; Modi, Shilpi; Kumar, Pawan; Khushu, Subash; Mandal, Manas K

    2015-12-01

    It is not clearly known as to why some people identify camouflaged objects with ease compared with others. The literature suggests that Field-Independent individuals detect camouflaged object better than their Field-Dependent counterparts, without having evidence at the neural activation level. A paradigm was designed to obtain neural correlates of camouflage detection, with real-life photographs, using functional magnetic resonance imaging. Twenty-three healthy human subjects were stratified as Field-Independent (FI) and Field-Dependent (FD), with Witkin's Embedded Figure Test. FIs performed better than FDs (marginal significance; p=0.054) during camouflage detection task. fMRI revealed differential activation pattern between FI and FD subjects for this task. One sample T-test showed greater activation in terms of cluster size in FDs, whereas FIs showed additional areas for the same task. On direct comparison of the two groups, FI subjects showed additional activation in parts of primary visual cortex, thalamus, cerebellum, inferior and middle frontal gyrus. Conversely, FDs showed greater activation in inferior frontal gyrus, precentral gyrus, putamen, caudate nucleus and superior parietal lobule as compared to FIs. The results give preliminary evidence to the differential neural activation underlying the variances in cognitive styles of the two groups. PMID:26648036

  9. Differential neural activation for camouflage detection task in Field-independent and Field-Dependent individuals: Evidence from fMRI

    Indian Academy of Sciences (India)

    Janani Rajagopalan; Shilpi Modi; Pawan Kumar; Subash Khushu; Manas K Mandal

    2015-12-01

    It is not clearly known as to why some people identify camouflaged objects with ease compared with others. The literature suggests that Field-Independent individuals detect camouflaged object better than their Field-Dependent counterparts, without having evidence at the neural activation level. A paradigm was designed to obtain neural correlates of camouflage detection, with real-life photographs, using functional magnetic resonance imaging. Twenty-three healthy human subjects were stratified as Field-Independent (Fl) and Field-Dependent (FD), with Witkins Embedded Figure Test. FIs performed better than FDs (marginal significance; =0.054) during camouflage detection task. fMRI revealed differential activation pattern between Fl and FD subjects for this task. One sample T-test showed greater activation in terms of cluster size in FDs, whereas FIs showed additional areas for the same task. On direct comparison of the two groups, Fl subjects showed additional activation in parts of primary visual cortex, thalamus, cerebellum, inferior and middle frontal gyrus. Conversely, FDs showed greater activation in inferior frontal gyms, precentral gyms, putamen, caudate nucleus and superior parietal lobule as compared to FIs. The results give preliminary evidence to the differential neural activation underlying the variances in cognitive styles of the two groups.

  10. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    Science.gov (United States)

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. PMID:25318081

  11. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    Science.gov (United States)

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure.

  12. Dopamine depletion affects communicative intentionality in Parkinson's disease patients: Evidence from action kinematics.

    Science.gov (United States)

    Straulino, Elisa; Scaravilli, Tomaso; Castiello, Umberto

    2016-04-01

    Appropriate communication is at the heart of successful, healthy social interactions in humans. Deficits in social communication are a hallmark of several neurological and psychiatric disorders. Yet, very little research has been devoted to understanding the mechanisms underlying these issues. It has been suggested that dopamine is a candidate neurotransmitter system involved in stimulating communication in individuals that are not highly motivated to communicate. A typical model to study dopaminergic dysfunctions in humans is represented by Parkinson's disease (PD) patients, who show motor, cognitive and motivational symptoms. Our study aimed to investigate the effects of social communication on actions in non-demented PD patients receiving dopamine replacement therapy (Levodopa = l-Dopa) and in neurologically healthy control participants. Patients' ability to modulate motor patterning depending on the communicative intention motivating the action to be performed was evaluated both in "on" (with l-Dopa) and "off" (without l-Dopa) states. In two main conditions, participants were requested to reach towards, grasp an object, and either simply lift it (individual condition) or lift it with the intent to communicate a meaning to a partner (communicative condition). Movements' kinematics was recorded using a three-dimensional motion analysis system. The results indicate that kinematics is sensitive to communicative intention and that l-Dopa treatment has positive effects on translating communicative intentions into specific motor patterns in PD patients. Although the to-be-grasped object remained the same both the controls and the PD patients in an 'on' state adopted different kinematic patterning for the 'individual' and the 'communication' conditions. The PD patients in the 'off' state, instead, were unable to kinematically differentiate between the two conditions. We contend that social and communicative impairments are associated with abnormalities in

  13. Work at night and breast cancer--report on evidence-based options for preventive actions

    DEFF Research Database (Denmark)

    Bonde, Jens Peter; Hansen, Johnni; Kolstad, Henrik Albert;

    2012-01-01

    is needed before definite recommendations can be made. Earlier or more intensive mammography screening among female night shift worker is not recommended because the harm-benefit ratio in this age group may not be beneficial. Preventive effects of melatonin supplementation on breast cancer risk have...... by suppression of melatonin secretion. Work during the night is widespread worldwide. To provide additional evidence-based recommendations on prevention of diseases related to night shift work, large studies on the impact of various shift schedules and type of light on circadian rhythms need to be conducted...

  14. Direct evidence for two different neural mechanisms for reading familiar and unfamiliar words: an intra-cerebral EEG study

    Directory of Open Access Journals (Sweden)

    Alexandra eJuphard

    2011-09-01

    Full Text Available After intensive practice, unfamiliar letter strings become familiar words and reading speed increases strikingly from a slow processing to a fast and with more global recognition of words. While this effect has been well documented at the behavioral level, its neural underpinnings are still unclear. The question is how the brain modulates the activity of the reading network according to the novelty of the items. Several models have proposed that familiar and unfamiliar words are not processed by separate networks but rather by common regions operating differently according to familiarity. This hypothesis has proved difficult to test at the neural level because the effects of familiarity and length on reading occur (a on a millisecond scale, shorter than the resolution of fMRI and (b in regions which cannot be isolated with non-invasive EEG or MEG. We overcame these limitations by using invasive intra-cerebral EEG recording in epileptic patients. Neural activity (gamma-band responses, GBR, between 50 Hz and 150 Hz was measured in three major nodes of reading network – left inferior frontal, supramarginal and inferior temporo-occipital cortices - while patients silently read familiar (words and unfamiliar (pseudo-words items of two lengths (short composed of one-syllable vs. long composed of three syllables. While all items elicited strong neural responses in the three regions, we found that the duration of the neural response increases with length only for pseudo-words, in direct relation to grapheme-to-phoneme conversion. Our results validate at the neural level the hypothesis that all words are processed by a common network operating more or less efficiently depending on words’ novelty.

  15. Economic evidence on identifying clinically actionable findings with whole-genome sequencing: a scoping review.

    Science.gov (United States)

    Douglas, Michael P; Ladabaum, Uri; Pletcher, Mark J; Marshall, Deborah A; Phillips, Kathryn A

    2016-02-01

    The American College of Medical Genetics and Genomics (ACMG) recommends that mutations in 56 genes for 24 conditions are clinically actionable and should be reported as secondary findings after whole-genome sequencing (WGS). Our aim was to identify published economic evaluations of detecting mutations in these genes among the general population or among targeted/high-risk populations and conditions and identify gaps in knowledge. A targeted PubMed search from 1994 through November 2014 was performed, and we included original, English-language articles reporting cost-effectiveness or a cost-to-utility ratio or net benefits/benefit-cost focused on screening (not treatment) for conditions and genes listed by the ACMG. Articles were screened, classified as targeting a high-risk or general population, and abstracted by two reviewers. General population studies were evaluated for actual cost-effectiveness measures (e.g., incremental cost-effectiveness ratios (ICER)), whereas studies of targeted populations were evaluated for whether at least one scenario proposed was cost-effective (e.g., ICER of ≤$100,000 per life-year or quality-adjusted life-year gained). A total of 607 studies were identified, and 32 relevant studies were included. Identified studies addressed fewer than one-third (7 of 24; 29%) of the ACMG conditions. The cost-effectiveness of screening in the general population was examined for only 2 of 24 conditions (8%). The cost-effectiveness of most genetic findings that the ACMG recommends for return has not been evaluated in economic studies or in the context of screening in the general population. The individual studies do not directly address the cost-effectiveness of WGS. PMID:25996638

  16. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity.

    Science.gov (United States)

    de Bézenac, Christophe E; Sluming, Vanessa; Gouws, André; Corcoran, Rhiannon

    2016-09-01

    In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis.

  17. Experiencing Past and Future Personal Events: Functional Neuroimaging Evidence on the Neural Bases of Mental Time Travel

    Science.gov (United States)

    Botzung, Anne; Denkova, Ekaterina; Manning, Lilianne

    2008-01-01

    Functional MRI was used in healthy subjects to investigate the existence of common neural structures supporting re-experiencing the past and pre-experiencing the future. Past and future events evocation appears to involve highly similar patterns of brain activation including, in particular, the medial prefrontal cortex, posterior regions and the…

  18. Musicians' enhanced neural differentiation of speech sounds arises early in life: developmental evidence from ages 3 to 30.

    Science.gov (United States)

    Strait, Dana L; O'Connell, Samantha; Parbery-Clark, Alexandra; Kraus, Nina

    2014-09-01

    The perception and neural representation of acoustically similar speech sounds underlie language development. Music training hones the perception of minute acoustic differences that distinguish sounds; this training may generalize to speech processing given that adult musicians have enhanced neural differentiation of similar speech syllables compared with nonmusicians. Here, we asked whether this neural advantage in musicians is present early in life by assessing musically trained and untrained children as young as age 3. We assessed auditory brainstem responses to the speech syllables /ba/ and /ga/ as well as auditory and visual cognitive abilities in musicians and nonmusicians across 3 developmental time-points: preschoolers, school-aged children, and adults. Cross-phase analyses objectively measured the degree to which subcortical responses differed to these speech syllables in musicians and nonmusicians for each age group. Results reveal that musicians exhibit enhanced neural differentiation of stop consonants early in life and with as little as a few years of training. Furthermore, the extent of subcortical stop consonant distinction correlates with auditory-specific cognitive abilities (i.e., auditory working memory and attention). Results are interpreted according to a corticofugal framework for auditory learning in which subcortical processing enhancements are engendered by strengthened cognitive control over auditory function in musicians. PMID:23599166

  19. The Neural Basis of Reversible Sentence Comprehension: Evidence from Voxel-Based Lesion Symptom Mapping in Aphasia

    Science.gov (United States)

    Thothathiri, Malathi; Kimberg, Daniel Y.; Schwartz, Myrna F.

    2012-01-01

    We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We…

  20. Using Complement Coercion to Understand the Neural Basis of Semantic Composition: Evidence from an fMRI Study

    Science.gov (United States)

    Husband, E. Matthew; Kelly, Lisa A.; Zhu, David C.

    2011-01-01

    Previous research regarding the neural basis of semantic composition has relied heavily on violation paradigms, which often compare implausible sentences that violate world knowledge to plausible sentences that do not violate world knowledge. This comparison is problematic as it may involve extralinguistic operations such as contextual repair and…

  1. Real world evidence: a form of big data, transforming healthcare data into actionable real time insights and informed business decisions

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Barick

    2015-09-01

    Full Text Available Data has always played an important role in assisting business decisions and overall improvement of a company’s strategies. The introduction of what has come to be named ‘BIG data’ has changed the industry paradigm altogether for a few domains like media, mobility, retail and social. Data from the real world is also considered as BIG data based on its magnitude, sources and the industry’s capacity to handle the same. Although, the healthcare industry has been using real world data for decades, digitization of health records has demonstrated its value to all the stakeholders with a reaffirmation of interest in it. Over time, companies are looking to adopt new technologies in linking these fragmented data for meaningful and actionable insights to demonstrate their value over competition. It has also been noticed that the consequences of not demonstrating the value of data are sometimes leads regulators and payers to be severe. The real challenge though is not in identifying data sets but transforming these data sets into actionable real time insights and business decisions. Evidence and value development frameworks need to work side by side, harnessing meaningful insights in parallel to product development from early phase to life-cycle management. This should in-turn create evidence and value-based insights for multiple stakeholders across the industry; ultimately supporting the patient as the end user to take informed decisions that impact access to care. This article attempts to review the current state of affairs in the area of BIG data in pharma OR BIG DIP as it is increasingly being referred to.

  2. The causes of neural tube defect:evidence-based research%神经管缺陷发生原因的循证医学研究

    Institute of Scientific and Technical Information of China (English)

    谷茜; 刘佳琦; 何达; 葛智馨; 陈英耀; 厉传琳

    2011-01-01

    目的:通过系统性综述的方法,分析神经管缺陷(NTDs)的病因.方法:检索国内外文献数据库,检索时间从建库~2009年12月,纳入神经管缺陷病因学的系统性综述/Meta分析和随机对照试验,中文文献研究设计等级为病例-对照研究.结果:共纳入系统性综述/Meta分析9篇,随机对照试验2篇,病例-对照研究7篇.现有证据显示,遗传方面,MTHFR基因677位点TT基因型是非拉丁裔欧洲人群子代NTDs发生的危险因素;与HCY(同型半胱氨酸)代谢途径有关的酶或基因突变可引起NTDs发生概率增加,具有家族史及NTDs生产史其子代NTDs发病率较高.环境暴露方面,孕妇高热、父亲接触有机溶剂和使用抗癫痫药物(卡马西平和丙戊酸)是NTDs发生的危险因素,现有证据不支持紫外线照射和使用克罗米酚柠檬酸盐影响子代NTDs的发病风险的假设.生活行为方面,孕妇超重或肥胖、多次孕产史是NTDs发生的危险因素,使用IVF辅助生殖技术对NTDs发病的影响仍存在争议.结论:NTDs病因复杂,具有较高证据等级的病因学研究不多,病因仍有待探索.目前在孕早期补充叶酸是被广泛推荐使用的有效干预措施.%Objective: To analyze the causes of neural tube defect by systematic review. Methods: The international and national databases (from establishment to December 2009) were searched, all systematic reviews/Meta analysis and randomized controlled trials researches about the etiology of neural tube defect were included, case - control studies were also supplemented in Chinese literatures. Results: 9 systematic reviews/ Meta analysis researches, 2 randomized controlled trials and 7 case -control studies in Chinese were included. The current evidence suggested that TT genotype in 677 locus of MTHFR gene was a risk factor of neural tube defect of non - Latin European descents from the genetic point of view; the enzymatic mutation and gene mutation related to

  3. Evident?

    DEFF Research Database (Denmark)

    Plant, Peter

    2012-01-01

    Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind......Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind...

  4. Scaling up of physical activity interventions in Brazil: how partnerships and research evidence contributed to policy action.

    Science.gov (United States)

    Parra, Diana C; Hoehner, Christine M; Hallal, Pedro C; Reis, Rodrigo S; Simoes, Eduardo J; Malta, Deborah C; Pratt, Michael; Brownson, Ross C

    2013-12-01

    The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated.

  5. Is there a domain-general cognitive structuring system? Evidence from structural priming across music, math, action descriptions, and language.

    Science.gov (United States)

    Van de Cavey, Joris; Hartsuiker, Robert J

    2016-01-01

    Cognitive processing in many domains (e.g., sentence comprehension, music listening, and math solving) requires sequential information to be organized into an integrational structure. There appears to be some overlap in integrational processing across domains, as shown by cross-domain interference effects when for example linguistic and musical stimuli are jointly presented (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Slevc, Rosenberg, & Patel, 2009). These findings support theories of overlapping resources for integrational processing across domains (cfr. SSIRH Patel, 2003; SWM, Kljajevic, 2010). However, there are some limitations to the studies mentioned above, such as the frequent use of unnaturalistic integrational difficulties. In recent years, the idea has risen that evidence for domain-generality in structural processing might also be yielded though priming paradigms (cfr. Scheepers, 2003). The rationale behind this is that integrational processing across domains regularly requires the processing of dependencies across short or long distances in the sequence, involving respectively less or more syntactic working memory resources (cfr. SWM, Kljajevic, 2010), and such processing decisions might persist over time. However, whereas recent studies have shown suggestive priming of integrational structure between language and arithmetics (though often dependent on arithmetic performance, cfr. Scheepers et al., 2011; Scheepers & Sturt, 2014), it remains to be investigated to what extent we can also find evidence for priming in other domains, such as music and action (cfr. SWM, Kljajevic, 2010). Experiment 1a showed structural priming from the processing of musical sequences onto the position in the sentence structure (early or late) to which a relative clause was attached in subsequent sentence completion. Importantly, Experiment 1b showed that a similar structural manipulation based on non-hierarchically ordered color sequences did not yield any priming effect

  6. Is there a domain-general cognitive structuring system? Evidence from structural priming across music, math, action descriptions, and language.

    Science.gov (United States)

    Van de Cavey, Joris; Hartsuiker, Robert J

    2016-01-01

    Cognitive processing in many domains (e.g., sentence comprehension, music listening, and math solving) requires sequential information to be organized into an integrational structure. There appears to be some overlap in integrational processing across domains, as shown by cross-domain interference effects when for example linguistic and musical stimuli are jointly presented (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Slevc, Rosenberg, & Patel, 2009). These findings support theories of overlapping resources for integrational processing across domains (cfr. SSIRH Patel, 2003; SWM, Kljajevic, 2010). However, there are some limitations to the studies mentioned above, such as the frequent use of unnaturalistic integrational difficulties. In recent years, the idea has risen that evidence for domain-generality in structural processing might also be yielded though priming paradigms (cfr. Scheepers, 2003). The rationale behind this is that integrational processing across domains regularly requires the processing of dependencies across short or long distances in the sequence, involving respectively less or more syntactic working memory resources (cfr. SWM, Kljajevic, 2010), and such processing decisions might persist over time. However, whereas recent studies have shown suggestive priming of integrational structure between language and arithmetics (though often dependent on arithmetic performance, cfr. Scheepers et al., 2011; Scheepers & Sturt, 2014), it remains to be investigated to what extent we can also find evidence for priming in other domains, such as music and action (cfr. SWM, Kljajevic, 2010). Experiment 1a showed structural priming from the processing of musical sequences onto the position in the sentence structure (early or late) to which a relative clause was attached in subsequent sentence completion. Importantly, Experiment 1b showed that a similar structural manipulation based on non-hierarchically ordered color sequences did not yield any priming effect

  7. Neural and sympathetic activity associated with exploration in decision-making: Further evidence for involvement of insula

    Directory of Open Access Journals (Sweden)

    Hideki eOhira

    2014-11-01

    Full Text Available We previously reported that sympathetic activity was associated with exploration in decision-making indexed by entropy, which is a concept in information theory and indexes randomness of choices or the degree of deviation from sticking to recent experiences of gains and losses, and that activation of the anterior insula mediated this association. The current study aims to replicate and to expand these findings in a situation where contingency between options and outcomes is manipulated. Sixteen participants performed a stochastic decision-making task in which we manipulated a condition with low uncertainty of gain/loss (contingent-reward condition and a condition with high uncertainty of gain/loss (random-reward condition. Regional cerebral blood flow was measured by 15O-water positron emission tomography (PET, and cardiovascular parameters and catecholamine in the peripheral blood were measured, during the task. In the contingent-reward condition, norepinephrine as an index of sympathetic activity was positively correlated with entropy indicating exploration in decision-making. Norepinephrine was negatively correlated with neural activity in the right posterior insula, rostral anterior cingulate cortex, and dorsal pons, suggesting neural bases for detecting changes of bodily states. Furthermore, right anterior insular activity was negatively correlated with entropy, suggesting influences on exploration in decision-making. By contrast, in the random-reward condition, entropy correlated with activity in the dorsolateral prefrontal and parietal cortices but not with sympathetic activity. These findings suggest that influences of sympathetic activity on exploration in decision-making and its underlying neural mechanisms might be dependent on the degree of uncertainty of situations.

  8. The Smoke around Mirror Neurons: Goals as Sociocultural and Emotional Organizers of Perception and Action in Learning

    Science.gov (United States)

    Immordino-Yang, Mary Helen

    2008-01-01

    From the pragmatists to the neo-Piagetians, development has been understood to involve cycles of perception and action--the internalization of interactions with the world and the construction of skills for acting in the world. From a neurobiological standpoint, new evidence suggests that neural activities related to action and perception converge…

  9. Mind your errors: evidence for a neural mechanism linking growth mind-set to adaptive posterror adjustments.

    Science.gov (United States)

    Moser, Jason S; Schroder, Hans S; Heeter, Carrie; Moran, Tim P; Lee, Yu-Hao

    2011-12-01

    How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals' ability to rebound from mistakes.

  10. Preliminary Evidence for Impaired Brain Activity of Neural Reward Processing in Children and Adolescents with Reactive Attachment Disorder.

    Science.gov (United States)

    Tomoda, Akemi

    2016-01-01

    Childhood maltreatment, which markedly increases risks for psychopathology, is associated with structural and functional brain differences. Especially, exposure to parental verbal abuse (PVA) or interparental violence during childhood is associated with negative outcomes such as depression, posttraumatic stress disorder (PTSD), and reduced cognitive abilities. Other forms of childhood maltreatment have been associated with brain structure or developmental alteration. Our earlier studies elucidated potential discernible effects of PVA and witnessing domestic violence during childhood on brain morphology, including gray matter volume or cortical thickness. Brain regions that process and convey the adverse sensory input of the abuse might be modified specifically by such experiences, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in the corticolimbic regions. These findings fit with preclinical studies showing that sensory cortices are highly plastic structures. Using tasks with high and low monetary rewards while subjects underwent functional MRI, we also examined whether neural activity during reward processing was altered, or not, in children and adolescents with reactive attachment disorder (RAD). Significantly reduced activity in the caudate and nucleus accumbens was observed during a high monetary reward condition in the RAD group compared to the typically developed group. The striatal neural reward activity in the RAD group was also markedly decreased. The present results suggest that dopaminergic dysfunction occurred in the striatum in children and adolescents with RAD, potentially leading to a future risk of psychiatric disorders such as dependence. PMID:27150924

  11. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects.

    Science.gov (United States)

    Bauters, Marijke; Frints, Suzanna G; Van Esch, Hilde; Spruijt, Liesbeth; Baldewijns, Marcella M; de Die-Smulders, Christine E M; Fryns, Jean-Pierre; Marynen, Peter; Froyen, Guy

    2014-08-01

    Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.

  12. THEORY OF MIND AND THE WHOLE BRAIN FUNCTIONAL CONNECTIVITY: BEHAVIORAL AND NEURAL EVIDENCES WITH THE AMSTERDAM RESTING STATE QUESTIONNAIRE

    Directory of Open Access Journals (Sweden)

    ANTONELLA eMARCHETTI

    2015-12-01

    Full Text Available A topic of common interest to psychologists and philosophers is the spontaneous flow of thoughts when the individual is awake but not involved in cognitive demands. This argument, classically referred to as the stream of consciousness of James, is now known in the psychological literature as Mind-Wandering. Although of great interest, this construct has been scarcely investigated so far. Diaz and colleagues (2013 created the Amsterdam Resting State Questionnaire (ARSQ, composed of 27 items, distributed in seven factors: discontinuity of mind, theory of mind (ToM, self, planning, sleepiness, comfort and somatic awareness. The present study aims at: testing psychometric properties of the ARSQ in a sample of 670 Italian subjects; exploring the neural correlates of a subsample of participants (N=28 divided into two groups on the basis of the scores obtained in the ToM factor. Results show a satisfactory reliability of the original factional structure in the Italian sample. In the subjects with a high mean in the ToM factor compared to low mean subjects, functional MRI revealed: a network (48 nodes with higher functional connectivity (FC with a dominance of the left hemisphere; an increased within-lobe FC in frontal and insular lobes. In both neural and behavioral terms, our results support the idea that the mind, which does not rest even when explicitly asked to do so, has various and interesting mentalistic-like contents.

  13. Neural adaptation provides evidence for categorical differences in processing of faces and Chinese characters: an ERP study of the N170.

    Directory of Open Access Journals (Sweden)

    Shimin Fu

    Full Text Available Whether face perception involves domain-specific or domain-general processing is an extensively debated issue. Relative to non-face objects and alphabetical scripts, Chinese characters provide a good contrast to faces because of their structural configuration, requirement for high level of visual expertise to literate Chinese people, and unique appearance and identity for each individual stimulus. To examine potential categorical differences in their neural processing, event-related potentials (ERPs were recorded to blocked face and Chinese character stimuli. Fast adaptation method was applied to better control for the low-level stimulus difference between faces and Chinese characters. Participants were required to respond to the color of the outer frame in which these stimuli were presented, at either a fast (ISI 650 ms or slow (ISI 1300 ms rate, and with an orientation that was either the same or alternated between upright and inverted. Faces elicited a larger and later N170 relative to characters, but the N170 was more left-lateralized for characters relative to the faces. Adaptation-by-rate and adaptation-by-orientation effects were observed on the amplitude of N170, and both were more pronounced for faces relative to characters. Inverted stimuli elicited a later N170 relative to upright stimuli, without amplitude change, and this inversion effect was more pronounced for faces relative to characters. Moreover, faces elicited a larger and later P1 and a larger adaptation-by-rate effect on P1 relative to characters. The adaptation-by-orientation effect was illustrated by a larger P1 under the same relative to the alternated orientation condition. Therefore, evidence from the amplitude and the lateralization of N170, the stimulus inversion effect on N170 latency, and the neural adaptation between faces and Chinese characters on P1 and N170 components support the notion that the processing of faces and Chinese characters involve categorically

  14. Facilitation effect of observed motor deviants in a cooperative motor task: Evidence for direct perception of social intention in action.

    Science.gov (United States)

    Quesque, François; Delevoye-Turrell, Yvonne; Coello, Yann

    2016-08-01

    Spatiotemporal parameters of voluntary motor action may help optimize human social interactions. Yet it is unknown whether individuals performing a cooperative task spontaneously perceive subtly informative social cues emerging through voluntary actions. In the present study, an auditory cue was provided through headphones to an actor and a partner who faced each other. Depending on the pitch of the auditory cue, either the actor or the partner were required to grasp and move a wooden dowel under time constraints from a central to a lateral position. Before this main action, the actor performed a preparatory action under no time constraint, consisting in placing the wooden dowel on the central location when receiving either a neutral ("prêt"-ready) or an informative auditory cue relative to who will be asked to perform the main action (the actor: "moi"-me, or the partner: "lui"-him). Although the task focused on the main action, analysis of motor performances revealed that actors performed the preparatory action with longer reaction times and higher trajectories when informed that the partner would be performing the main action. In this same condition, partners executed the main actions with shorter reaction times and lower velocities, despite having received no previous informative cues. These results demonstrate that the mere observation of socially driven motor actions spontaneously influences the low-level kinematics of voluntary motor actions performed by the observer during a cooperative motor task. These findings indicate that social intention can be anticipated from the mere observation of action patterns. PMID:26288247

  15. Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine

    OpenAIRE

    Hasala, Hannele; Giembycz, Mark A.; Janka-Junttila, Mirkka; Moilanen, Eeva; Kankaanranta, Hannu

    2008-01-01

    Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine correspondence: Corresponding author. Tel.: +358335517318; fax: +358335518082. (Kankaanranta, Hannu) (Kankaanranta, Hannu) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere--> , Tampere--> - FINLAND (Hasala, H...

  16. The neural substrates of response inhibition to negative information across explicit and implicit tasks in GAD patients: Electrophysiological evidence from an ERP study

    Directory of Open Access Journals (Sweden)

    Fengqiong eYu

    2015-03-01

    Full Text Available Background: It has been established that the inability to inhibit a response to negative stimuli is the genesis of anxiety. However, the neural substrates of response inhibition to sad faces across explicit and implicit tasks in general anxiety disorder (GAD patients remain unclear.Methods: Electrophysiological data were recorded when subjects performed two modified emotional go/no-go tasks in which neutral and sad faces were presented: one task was explicit (emotion categorization, and the other task was implicit (gender categorization.Results: In the explicit task, electrophysiological evidence showed decreased amplitudes of no-go/go difference waves at the N2 interval in the GAD group compared to the control group. However, in the implicit task, the amplitudes of no-go/go difference waves at the N2 interval showed a reversed trend. Source localization analysis on no-go/N2 components revealed a decreased current source density (CSD in the right dorsal lateral prefrontal cortex in GAD individuals relative to controls. In the implicit task, the left superior temporal gyrus and the left inferior parietal lobe showed enhanced activation in GAD individuals and may compensate for the dysfunction of the right dorsal lateral prefrontal cortex.Conclusions: These findings indicated that the processing of response inhibition to socially sad faces in GAD individuals was interrupted in the explicit task. However, this processing was preserved in the implicit task. The neural substrates of response inhibition to sad faces were dissociated between implicit and explicit tasks.

  17. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  18. Evidence for the embodiment of space perception: Concurrent hand but not arm action moderates reachability and egocentric distance perception.

    Directory of Open Access Journals (Sweden)

    Stephane eGrade

    2015-06-01

    Full Text Available The perception of reachability (i.e., whether an object is within reach relies on body representations and action simulation. Similarly, egocentric distance estimation (i.e., the perception of the distance an object is from the self is thought to be partly derived from embodied action simulation. Although motor simulation is important for both, it is unclear whether the cognitive processes underlying these behaviors rely on the same motor processes. To investigate this, we measured the impact of a motor interference dual-task paradigm on reachability judgment, egocentric distance estimation, and allocentric length estimation (i.e., how distant two stimuli are from each other independent from the self used as a control task. Participants were required to make concurrent actions with either hand actions of foam ball grip squeezing or arm actions of weight lifting, or no concurrent actions. Results showed that concurrent squeeze actions significantly slowed response speed in the reachability judgment and egocentric distance estimation tasks, but that there was no impact of the concurrent actions on allocentric length estimation. Together, these results suggest that reachability and distance perception, both egocentric perspective tasks, and in contrast to the allocentric perspective task, involve action simulation cognitive processes. The results are discussed in terms of the implication of action simulation when evaluating the position of a target relative to the observer’s body, supporting an embodied view of spatial cognition.

  19. Evidence of mirror neurons in human inferior frontal gyrus.

    Science.gov (United States)

    Kilner, James M; Neal, Alice; Weiskopf, Nikolaus; Friston, Karl J; Frith, Chris D

    2009-08-12

    There is much current debate about the existence of mirror neurons in humans. To identify mirror neurons in the inferior frontal gyrus (IFG) of humans, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging. Subjects either executed or observed a series of actions. Here we show that in the IFG, responses were suppressed both when an executed action was followed by the same rather than a different observed action and when an observed action was followed by the same rather than a different executed action. This pattern of responses is consistent with that predicted by mirror neurons and is evidence of mirror neurons in the human IFG.

  20. Introduction. Modelling natural action selection

    OpenAIRE

    Tony J Prescott; Bryson, Joanna J; Seth, Anil K.

    2007-01-01

    Action selection is the task of resolving conflicts between competing behavioural alternatives. This theme issue is dedicated to advancing our understanding of the behavioural patterns and neural substrates supporting action selection in animals, including humans. The scope of problems investigated includes: (i) whether biological action selection is optimal (and, if so, what is optimized), (ii) the neural substrates for action selection in the vertebrate brain, (iii) the role of perceptual s...

  1. Where's the action? The pragmatic turn in cognitive science.

    Science.gov (United States)

    Engel, Andreas K; Maye, Alexander; Kurthen, Martin; König, Peter

    2013-05-01

    In cognitive science, we are currently witnessing a 'pragmatic turn', away from the traditional representation-centered framework towards a paradigm that focuses on understanding cognition as 'enactive', as skillful activity that involves ongoing interaction with the external world. The key premise of this view is that cognition should not be understood as providing models of the world, but as subserving action and being grounded in sensorimotor coupling. Accordingly, cognitive processes and their underlying neural activity patterns should be studied primarily with respect to their role in action generation. We suggest that such an action-oriented paradigm is not only conceptually viable, but already supported by much experimental evidence. Numerous findings either overtly demonstrate the action-relatedness of cognition or can be re-interpreted in this new framework. We argue that new vistas on the functional relevance and the presumed 'representational' nature of neural processes are likely to emerge from this paradigm.

  2. Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Directory of Open Access Journals (Sweden)

    Li-Jun eYin

    2015-03-01

    Full Text Available Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009. Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10, left superior parietal lobule (SPL, left premotor cortex (PMC, and left dorsolateral prefrontal cortex (DLPFC, were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG and intraparietal sulci (IPS were less engaged in the study phase of 2-digit condition for C.L. (vs. controls. These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.

  3. Meditation experience predicts less negative appraisal of pain: electrophysiological evidence for the involvement of anticipatory neural responses.

    Science.gov (United States)

    Brown, Christopher A; Jones, Anthony K P

    2010-09-01

    The aim of mindfulness meditation is to develop present-focused, non-judgmental, attention. Therefore, experience in meditation should be associated with less anticipation and negative appraisal of pain. In this study we compared a group of individuals with meditation experience to a control group to test whether any differences in the affective appraisal of pain could be explained by lower anticipatory neural processing. Anticipatory and pain-evoked ERPs and reported pain unpleasantness were recorded in response to laser stimuli of matched subjective intensity between the two groups. ERP data were analysed after source estimation with LORETA. No group effects were found on the laser energies used to induce pain. More experienced meditators perceived the pain as less unpleasant relative to controls, with meditation experience correlating inversely with unpleasantness ratings. ERP source data for anticipation showed that in meditators, lower activity in midcingulate cortex relative to controls was related to the lower unpleasantness ratings, and was predicted by lifetime meditation experience. Meditators also reversed the normal positive correlation between medial prefrontal cortical activity and pain unpleasantness during anticipation. Meditation was also associated with lower activity in S2 and insula during the pain-evoked response, although the experiment could not disambiguate this activity from the preceding anticipation response. Our data is consistent with the hypothesis that meditation reduces the anticipation and negative appraisal of pain, but effects on pain-evoked activity are less clear and may originate from preceding anticipatory activity. Further work is required to directly test the causal relationship between meditation, pain anticipation, and pain experience.

  4. Neural Consequences of Increasing Body Weight: Evidence from Somatosensory Evoked Potentials and the Frequency-Specificity of Brain Oscillations

    Science.gov (United States)

    Lhomond, Olivia; Teasdale, Normand; Simoneau, Martin; Mouchnino, Laurence

    2016-01-01

    Previous studies on the control of human balance suggested that increased pressure under the feet, leading to reduced plantar sole mechanoreceptors sensitivity, increases body sway. Although this suggestion is attracting, it is unclear whether increased plantar sole pressure simply reduces the transmission of plantar sole afferent to the cortex or also alters the sensorimotor integrative mechanisms. Here we used electrical stimulation applied under the sole of the foot to probe the sensorimotor mechanisms processing foot mechanoreceptors. Balance control of healthy individuals was assessed either when wearing a loaded vest or in normal-weight condition. In the Loaded condition, we observed decreased cortical activity over the primary somatosensory cortex (SI) for both an early P50-N90 somatosensory evoked potential (SEP) and for oscillatory brain activity within the gamma band (30–80 Hz). These reductions were interpreted as a disrupted early sensory transmission (i.e., decreased early SEP) leading to a decreased perception of plantar sole sensory information (i.e., decreased gamma band power). These early sensory mechanisms for the Loaded condition were associated with an increase in the late P170-N210 SEP and oscillatory brain activity within the beta band (19–24 Hz). These neural signatures involved areas which are engaged in sensorimotor integrative processes (secondary somatosensory cortex (SII) and right temporoparietal junction). Altered early and late sensory processes may result from the increase pressure on the mechanoreceptors of the foot sole and not from postural instability per se. Indeed, postural instability with normal weight condition did not lead to SEP changes. PMID:27445758

  5. Expressive timing facilitates the neural processing of phrase boundaries in music: evidence from event-related potentials.

    Directory of Open Access Journals (Sweden)

    Eva Istók

    Full Text Available The organization of sound into meaningful units is fundamental to the processing of auditory information such as speech and music. In expressive music performance, structural units or phrases may become particularly distinguishable through subtle timing variations highlighting musical phrase boundaries. As such, expressive timing may support the successful parsing of otherwise continuous musical material. By means of the event-related potential technique (ERP, we investigated whether expressive timing modulates the neural processing of musical phrases. Musicians and laymen listened to short atonal scale-like melodies that were presented either isochronously (deadpan or with expressive timing cues emphasizing the melodies' two-phrase structure. Melodies were presented in an active and a passive condition. Expressive timing facilitated the processing of phrase boundaries as indicated by decreased N2b amplitude and enhanced P3a amplitude for target phrase boundaries and larger P2 amplitude for non-target boundaries. When timing cues were lacking, task demands increased especially for laymen as reflected by reduced P3a amplitude. In line, the N2b occurred earlier for musicians in both conditions indicating general faster target detection compared to laymen. Importantly, the elicitation of a P3a-like response to phrase boundaries marked by a pitch leap during passive exposure suggests that expressive timing information is automatically encoded and may lead to an involuntary allocation of attention towards significant events within a melody. We conclude that subtle timing variations in music performance prepare the listener for musical key events by directing and guiding attention towards their occurrences. That is, expressive timing facilitates the structuring and parsing of continuous musical material even when the auditory input is unattended.

  6. Left occipitotemporal cortex contributes to the discrimination of tool-associated hand actions: fMRI and TMS evidence

    Directory of Open Access Journals (Sweden)

    Francesca ePerini

    2014-08-01

    Full Text Available Functional neuroimaging studies have implicated the left lateral occipitotemporal cortex (LOTC in both tool and hand perception but the functional role of this region is not fully known. Here, by using a task manipulation, we tested whether tool-/hand-selective LOTC contributes to the discrimination of tool-associated hand actions. Participants viewed briefly presented pictures of kitchen and garage tools while they performed one of two tasks: in the action task, they judged whether the tool is associated with a hand rotation action (e.g., screwdriver or a hand squeeze action (e.g., garlic press, while in the location task they judged whether the tool is typically found in the kitchen (e.g., garlic press or in the garage (e.g., screwdriver. Both tasks were performed on the same stimulus set and were matched for difficulty. Contrasting fMRI responses between these tasks showed stronger activity during the action task than the location task in both tool- and hand-selective LOTC regions, which closely overlapped. No differences were found in nearby object- and motion-selective control regions. Importantly, these findings were confirmed by a TMS study, which showed that effective TMS over the tool-/hand-selective LOTC region significantly slowed responses for tool action discriminations relative to tool location discriminations, with no such difference during sham TMS. We conclude that left LOTC contributes to the discrimination of tool-associated hand actions.

  7. Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions.

    Science.gov (United States)

    Nieuwkoop, P D

    1997-04-01

    After some introductory remarks about vertical versus horizontal inductive interactions and about planar versus homoiogenetic induction, the author discusses: a) the historical development of the more recently studied endo-mesoderm induction in the Urodeles and in the anuran Xenopus laevis, b) the possible causal relationship between endo-mesoderm induction and the initiation of the gastrulation process, and c) the older history of the regional neural induction as initially studied in the Urodeles and only recently analysed in the anuran Xenopus laevis. The essential vertical interaction in the neural induction process both in urodelian and in anuran amphibians is emphasized.

  8. Precision Medicine Intelligence - evidence scoring evaluating the clinical actionability of BRAF V600E in multiple non-melanoma solid tumors.

    Science.gov (United States)

    Crescenzo, A

    2016-07-01

    With the ever-increasing growth of next-generation sequencing literature, how can researchers and clinicians assess clinical actionability and utility and objectively assign confidence to gene variant-phenotype associations? This article presents an informatics solution for clinical interpretation of patient-derived genomic and molecular data containing manually curated scientific evidence supporting gene variant-disease and -drug response phenotypes in somatic cancers. An algorithm for direct evidence scoring will be used to demonstrate the diverse utility of BRAF V600E in treating many common cancers.

  9. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Matthew L Dixon

    Full Text Available Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task and created novel 'free-choice' versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives.

  10. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence.

    Science.gov (United States)

    Dixon, Matthew L; Christoff, Kalina

    2012-01-01

    Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel 'free-choice' versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives. PMID:23284730

  11. Predicate Structures, Gesture, and Simultaneity in the Representation of Action in British Sign Language: Evidence From Deaf Children and Adults

    OpenAIRE

    Cormier, K.; Smith, S.; Sevcikova, Z.

    2013-01-01

    British Sign Language (BSL) signers use a variety of structures, such as constructed action (CA), depicting constructions (DCs), or lexical verbs, to represent action and other verbal meanings. This study examines the use of these verbal predicate structures and their gestural counterparts, both separately and simultaneously, in narratives by deaf children with various levels of exposure to BSL (ages 5;1 to 7;5) and deaf adult native BSL signers. Results reveal that all groups used the same t...

  12. A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface

    OpenAIRE

    Gurney, Kevin N.; Humphries, Mark D.; Peter Redgrave

    2015-01-01

    Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike t...

  13. Comparing the processing of music and language meaning using EEG and FMRI provides evidence for similar and distinct neural representations.

    Directory of Open Access Journals (Sweden)

    Nikolaus Steinbeis

    Full Text Available Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG and fMRI, it was shown that single chords varying in harmonic roughness (consonance/dissonance and thus perceived affect could prime the processing of subsequently presented affective target words, as indicated by an increased N400 and activation of the right middle temporal gyrus (MTG. Most importantly, however, when primed by affective words, single chords incongruous to the preceding affect also elicited an N400 and activated the right posterior STS, an area implicated in processing meaning of a variety of signals (e.g. prosody, voices, motion. This provides an important piece of evidence in support of music meaning being represented in a very similar but also distinct fashion to language meaning: Both elicit an N400, but activate different portions of the right temporal lobe.

  14. Comparing the processing of music and language meaning using EEG and FMRI provides evidence for similar and distinct neural representations.

    Science.gov (United States)

    Steinbeis, Nikolaus; Koelsch, Stefan

    2008-01-01

    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG and fMRI, it was shown that single chords varying in harmonic roughness (consonance/dissonance) and thus perceived affect could prime the processing of subsequently presented affective target words, as indicated by an increased N400 and activation of the right middle temporal gyrus (MTG). Most importantly, however, when primed by affective words, single chords incongruous to the preceding affect also elicited an N400 and activated the right posterior STS, an area implicated in processing meaning of a variety of signals (e.g. prosody, voices, motion). This provides an important piece of evidence in support of music meaning being represented in a very similar but also distinct fashion to language meaning: Both elicit an N400, but activate different portions of the right temporal lobe. PMID:18493611

  15. Is the Motor System Necessary for Processing Action and Abstract Emotion Words? Evidence from Focal Brain Lesions.

    Science.gov (United States)

    Dreyer, Felix R; Frey, Dietmar; Arana, Sophie; von Saldern, Sarah; Picht, Thomas; Vajkoczy, Peter; Pulvermüller, Friedemann

    2015-01-01

    Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas, contribute to the semantic processing of action related concrete words. Still, a possible role of sensorimotor areas in processing abstract meaning remains under debate. Recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g., "love") which resembles activation patterns seen for action words. But are the activated areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded Lexical Decision Task on meticulously matched word groups showed that the recognition of nouns from different semantic categories - related to food, animals, tools, and abstract-emotional concepts - was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor systems next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left supplementary motor area was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or 'epiphenomenal' to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into modality

  16. Neural Correlates of Fixation Duration during Real-world Scene Viewing: Evidence from Fixation-related (FIRE) fMRI.

    Science.gov (United States)

    Henderson, John M; Choi, Wonil

    2015-06-01

    During active scene perception, our eyes move from one location to another via saccadic eye movements, with the eyes fixating objects and scene elements for varying amounts of time. Much of the variability in fixation duration is accounted for by attentional, perceptual, and cognitive processes associated with scene analysis and comprehension. For this reason, current theories of active scene viewing attempt to account for the influence of attention and cognition on fixation duration. Yet almost nothing is known about the neurocognitive systems associated with variation in fixation duration during scene viewing. We addressed this topic using fixation-related fMRI, which involves coregistering high-resolution eye tracking and magnetic resonance scanning to conduct event-related fMRI analysis based on characteristics of eye movements. We observed that activation in visual and prefrontal executive control areas was positively correlated with fixation duration, whereas activation in ventral areas associated with scene encoding and medial superior frontal and paracentral regions associated with changing action plans was negatively correlated with fixation duration. The results suggest that fixation duration in scene viewing is controlled by cognitive processes associated with real-time scene analysis interacting with motor planning, consistent with current computational models of active vision for scene perception. PMID:25436668

  17. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    Science.gov (United States)

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  18. Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions

    Directory of Open Access Journals (Sweden)

    Felix R. Dreyer

    2015-11-01

    Full Text Available Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas contribute to the semantic processing of action related concrete words. In contrast, a possible role of modality-preferential – including sensorimotor – areas in processing abstract meaning remains under debate. However, recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g. love. But are these areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded lexical decision task (LDT on meticulously matched word groups showed that the recognition of nouns from different semantic categories – related to food, animals, tools and abstract-emotional concepts – was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor cortex next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left SMA was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or ‘epiphenomenal’ to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into sensorimotor areas.

  19. Additional Evidence of the Trypanocidal Action of (−-Elatol on Amastigote Forms through the Involvement of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Vânia Cristina Desoti

    2014-09-01

    Full Text Available Chagas’ disease, a vector-transmitted infectious disease, is caused by the protozoa parasite Trypanosoma cruzi. Drugs that are currently available for the treatment of this disease are unsatisfactory, making the search for new chemotherapeutic agents a priority. We recently described the trypanocidal action of (−-elatol, extracted from the macroalga Laurencia dendroidea. However, nothing has been described about the mechanism of action of this compound on amastigotes that are involved in the chronic phase of Chagas’ disease. The goal of the present study was to evaluate the effect of (−-elatol on the formation of superoxide anions (O2•−, DNA fragmentation, and autophagy in amastigotes of T. cruzi to elucidate the possible mechanism of the trypanocidal action of (−-elatol. Treatment of the amastigotes with (−-elatol increased the formation of O2•− at all concentrations of (−-elatol assayed compared with untreated parasites. Increased fluorescence was observed in parasites treated with (−-elatol, indicating DNA fragmentation and the formation of autophagic compartments. The results suggest that the trypanocidal action of (−-elatol might involve the induction of the autophagic and apoptotic death pathways triggered by an imbalance of the parasite’s redox metabolism.

  20. Establishing New Mappings between Familiar Phones: Neural and Behavioral Evidence for Early Automatic Processing of Nonnative Contrasts.

    Science.gov (United States)

    Barrios, Shannon L; Namyst, Anna M; Lau, Ellen F; Feldman, Naomi H; Idsardi, William J

    2016-01-01

    To attain native-like competence, second language (L2) learners must establish mappings between familiar speech sounds and new phoneme categories. For example, Spanish learners of English must learn that [d] and [ð], which are allophones of the same phoneme in Spanish, can distinguish meaning in English (i.e., /deɪ/ "day" and /ðeɪ/ "they"). Because adult listeners are less sensitive to allophonic than phonemic contrasts in their native language (L1), novel target language contrasts between L1 allophones may pose special difficulty for L2 learners. We investigate whether advanced Spanish late-learners of English overcome native language mappings to establish new phonological relations between familiar phones. We report behavioral and magnetoencepholographic (MEG) evidence from two experiments that measured the sensitivity and pre-attentive processing of three listener groups (L1 English, L1 Spanish, and advanced Spanish late-learners of English) to differences between three nonword stimulus pairs ([idi]-[iði], [idi]-[iɾi], and [iði]-[iɾi]) which differ in phones that play a different functional role in Spanish and English. Spanish and English listeners demonstrated greater sensitivity (larger d' scores) for nonword pairs distinguished by phonemic than by allophonic contrasts, mirroring previous findings. Spanish late-learners demonstrated sensitivity (large d' scores and MMN responses) to all three contrasts, suggesting that these L2 learners may have established a novel [d]-[ð] contrast despite the phonological relatedness of these sounds in the L1. Our results suggest that phonological relatedness influences perceived similarity, as evidenced by the results of the native speaker groups, but may not cause persistent difficulty for advanced L2 learners. Instead, L2 learners are able to use cues that are present in their input to establish new mappings between familiar phones.

  1. Establishing New Mappings between Familiar Phones: Neural and Behavioral Evidence for Early Automatic Processing of Nonnative Contrasts.

    Science.gov (United States)

    Barrios, Shannon L; Namyst, Anna M; Lau, Ellen F; Feldman, Naomi H; Idsardi, William J

    2016-01-01

    To attain native-like competence, second language (L2) learners must establish mappings between familiar speech sounds and new phoneme categories. For example, Spanish learners of English must learn that [d] and [ð], which are allophones of the same phoneme in Spanish, can distinguish meaning in English (i.e., /deɪ/ "day" and /ðeɪ/ "they"). Because adult listeners are less sensitive to allophonic than phonemic contrasts in their native language (L1), novel target language contrasts between L1 allophones may pose special difficulty for L2 learners. We investigate whether advanced Spanish late-learners of English overcome native language mappings to establish new phonological relations between familiar phones. We report behavioral and magnetoencepholographic (MEG) evidence from two experiments that measured the sensitivity and pre-attentive processing of three listener groups (L1 English, L1 Spanish, and advanced Spanish late-learners of English) to differences between three nonword stimulus pairs ([idi]-[iði], [idi]-[iɾi], and [iði]-[iɾi]) which differ in phones that play a different functional role in Spanish and English. Spanish and English listeners demonstrated greater sensitivity (larger d' scores) for nonword pairs distinguished by phonemic than by allophonic contrasts, mirroring previous findings. Spanish late-learners demonstrated sensitivity (large d' scores and MMN responses) to all three contrasts, suggesting that these L2 learners may have established a novel [d]-[ð] contrast despite the phonological relatedness of these sounds in the L1. Our results suggest that phonological relatedness influences perceived similarity, as evidenced by the results of the native speaker groups, but may not cause persistent difficulty for advanced L2 learners. Instead, L2 learners are able to use cues that are present in their input to establish new mappings between familiar phones. PMID:27445949

  2. Establishing New Mappings between Familiar Phones: Neural and Behavioral Evidence for Early Automatic Processing of Nonnative Contrasts

    Science.gov (United States)

    Barrios, Shannon L.; Namyst, Anna M.; Lau, Ellen F.; Feldman, Naomi H.; Idsardi, William J.

    2016-01-01

    To attain native-like competence, second language (L2) learners must establish mappings between familiar speech sounds and new phoneme categories. For example, Spanish learners of English must learn that [d] and [ð], which are allophones of the same phoneme in Spanish, can distinguish meaning in English (i.e., /deɪ/ “day” and /ðeɪ/ “they”). Because adult listeners are less sensitive to allophonic than phonemic contrasts in their native language (L1), novel target language contrasts between L1 allophones may pose special difficulty for L2 learners. We investigate whether advanced Spanish late-learners of English overcome native language mappings to establish new phonological relations between familiar phones. We report behavioral and magnetoencepholographic (MEG) evidence from two experiments that measured the sensitivity and pre-attentive processing of three listener groups (L1 English, L1 Spanish, and advanced Spanish late-learners of English) to differences between three nonword stimulus pairs ([idi]-[iði], [idi]-[iɾi], and [iði]-[iɾi]) which differ in phones that play a different functional role in Spanish and English. Spanish and English listeners demonstrated greater sensitivity (larger d' scores) for nonword pairs distinguished by phonemic than by allophonic contrasts, mirroring previous findings. Spanish late-learners demonstrated sensitivity (large d' scores and MMN responses) to all three contrasts, suggesting that these L2 learners may have established a novel [d]-[ð] contrast despite the phonological relatedness of these sounds in the L1. Our results suggest that phonological relatedness influences perceived similarity, as evidenced by the results of the native speaker groups, but may not cause persistent difficulty for advanced L2 learners. Instead, L2 learners are able to use cues that are present in their input to establish new mappings between familiar phones. PMID:27445949

  3. Predicate structures, gesture, and simultaneity in the representation of action in British Sign Language: evidence from deaf children and adults.

    Science.gov (United States)

    Cormier, Kearsy; Smith, Sandra; Sevcikova, Zed

    2013-01-01

    British Sign Language (BSL) signers use a variety of structures, such as constructed action (CA), depicting constructions (DCs), or lexical verbs, to represent action and other verbal meanings. This study examines the use of these verbal predicate structures and their gestural counterparts, both separately and simultaneously, in narratives by deaf children with various levels of exposure to BSL (ages 5;1 to 7;5) and deaf adult native BSL signers. Results reveal that all groups used the same types of predicative structures, including children with minimal BSL exposure. However, adults used CA, DCs, and/or lexical signs simultaneously more frequently than children. These results suggest that simultaneous use of CA with lexical and depicting predicates is more complex than the use of these predicate structures alone and thus may take deaf children more time to master. PMID:23670881

  4. Proprioception contributes to the sense of agency during visual observation of hand movements: evidence from temporal judgments of action

    OpenAIRE

    Balslev, Daniela; Cole, Jonathan; Miall, R. Chris

    2007-01-01

    The ability to recognize one's own movement visually is important for motor control and, through attribution of agency, for social interactions. Agency of actions may be decided by comparisons of visual feedback, efferent signals and proprioceptive inputs. Because the ability to identify own visual feedback from passive movements is decreased relative to active movements, or in some cases is even absent, the role of proprioception in self-recognition has been questioned. Proprioception during...

  5. Chlordiazepoxide enhances the anxiogenic action of CGS 8216 in the social interaction test: evidence for benzodiazepine withdrawal?

    Science.gov (United States)

    File, S E; Pellow, S

    1985-07-01

    The benzodiazepine receptor 'inverse agonist' CGS 8216 has a specific anxiogenic action in the social interaction test that cannot be reversed by other compounds acting at the benzodiazepine site: Ro 15-1788, FG 7142 or beta-CCE. We tried to reverse the anxiogenic effect with chlordiazepoxide, which is able to antagonise the anxiogenic effects of several other compounds acting at benzodiazepine or related sites. Chlordiazepoxide given acutely (10-20 mg/kg) was unable to antagonise the anxiogenic action of CGS 8216 (5-10 mg/kg); instead there was a tendency to enhance its effects. The effects of chlordiazepoxide after 5 days pretreatment were then assessed, since chronic treatment is necessary to reverse the anxiogenic actions of Ro 15-1788 and Ro 5-4864. At 5 mg/kg chronically, chlordiazepoxide was unable to antagonise the anxiogenic effect of CGS 8216, and at 20 mg/kg there was a significant enhancement of the effects of CGS 8216 on social interaction without an effect on locomotor activity. These results are discussed in terms of withdrawal from benzodiazepine treatment.

  6. Different mechanisms for role relations versus verb-action congruence effects: evidence from ERPs in picture-sentence verification.

    Science.gov (United States)

    Knoeferle, Pia; Urbach, Thomas P; Kutas, Marta

    2014-10-01

    Extant accounts of visually situated language processing do make general predictions about visual context effects on incremental sentence comprehension; these, however, are not sufficiently detailed to accommodate potentially different visual context effects (such as a scene-sentence mismatch based on actions versus thematic role relations, e.g., (Altmann & Kamide, 2007; Knoeferle & Crocker, 2007; Taylor & Zwaan, 2008; Zwaan & Radvansky, 1998)). To provide additional data for theory testing and development, we collected event-related brain potentials (ERPs) as participants read a subject-verb-object sentence (500 ms SOA in Experiment 1 and 300 ms SOA in Experiment 2), and post-sentence verification times indicating whether or not the verb and/or the thematic role relations matched a preceding picture (depicting two participants engaged in an action). Though incrementally processed, these two types of mismatch yielded different ERP effects. Role-relation mismatch effects emerged at the subject noun as anterior negativities to the mismatching noun, preceding action mismatch effects manifest as centro-parietal N400s greater to the mismatching verb, regardless of SOAs. These two types of mismatch manipulations also yielded different effects post-verbally, correlated differently with a participant's mean accuracy, verbal working memory and visual-spatial scores, and differed in their interactions with SOA. Taken together these results clearly implicate more than a single mismatch mechanism for extant accounts of picture-sentence processing to accommodate. PMID:25216075

  7. The human premotor cortex is 'mirror' only for biological actions.

    Science.gov (United States)

    Tai, Yen F; Scherfler, Christoph; Brooks, David J; Sawamoto, Nobukatsu; Castiello, Umberto

    2004-01-20

    Previous work has shown that both human adults and children attend to grasping actions performed by another person but not necessarily to those made by a mechanical device. According to recent neurophysiological data, the monkey premotor cortex contains "mirror" neurons that discharge both when the monkey performs specific manual grasping actions and when it observes another individual performing the same or similar actions. However, when a human model uses tools to perform grasping actions, the mirror neurons are not activated. A similar "mirror" system has been described in humans, but whether or not it is also tuned specifically to biological actions has never been tested. Here we show that when subjects observed manual grasping actions performed by a human model a significant neural response was elicited in the left premotor cortex. This activation was not evident for the observation of grasping actions performed by a robot model commanded by an experimenter. This result indicates for the first time that in humans the mirror system is biologically tuned. This system appears to be the neural substrate for biological preference during action coding.

  8. Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase.

    Science.gov (United States)

    Pierrat, Olivier A; Maxwell, Anthony

    2005-03-22

    Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.

  9. The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers.

    Science.gov (United States)

    Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten

    2010-01-01

    Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion. PMID:19823959

  10. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans.

    Science.gov (United States)

    Cavina-Pratesi, Cristiana; Monaco, Simona; Fattori, Patrizia; Galletti, Claudio; McAdam, Teresa D; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2010-08-01

    Picking up a cup requires transporting the arm to the cup (transport component) and preshaping the hand appropriately to grasp the handle (grip component). Here, we used functional magnetic resonance imaging to examine the human neural substrates of the transport component and its relationship with the grip component. Participants were shown three-dimensional objects placed either at a near location, adjacent to the hand, or at a far location, within reach but not adjacent to the hand. Participants performed three tasks at each location as follows: (1) touching the object with the knuckles of the right hand; (2) grasping the object with the right hand; or (3) passively viewing the object. The transport component was manipulated by positioning the object in the far versus the near location. The grip component was manipulated by asking participants to grasp the object versus touching it. For the first time, we have identified the neural substrates of the transport component, which include the superior parieto-occipital cortex and the rostral superior parietal lobule. Consistent with past studies, we found specialization for the grip component in bilateral anterior intraparietal sulcus and left ventral premotor cortex; now, however, we also find activity for the grasp even when no transport is involved. In addition to finding areas specialized for the transport and grip components in parietal cortex, we found an integration of the two components in dorsal premotor cortex and supplementary motor areas, two regions that may be important for the coordination of reach and grasp.

  11. Collective action for public goods provision in low-income groups: a model and evidence from Peru

    Directory of Open Access Journals (Sweden)

    Catherine Almirall

    2009-12-01

    Full Text Available ¿Bajo qué circunstancias aparece la acción colectiva? ¿Cuáles son los factores que le dan mayoresposibilidades de éxito? ¿En qué medida las comunidades pobres tienen capacidad para organizarsecon el objetivo de mejorar sus condiciones de vida? Estas preguntas no son nuevas y se hanhecho muchas investigaciones, pero usualmente para el mundo rural. La investigación sobre laacción colectiva en el mundo urbano parece estar más desarrollada en la ciencia política que en laeconomía. La pregunta fundamental se mantiene: ¿cómo se producen y se mantienen los bienespúblicos en comunidades urbanas pobres?Este artículo presenta un conjunto de hipótesis sobre los determinantes de la acción colectiva. La accióncolectiva en barrios urbanos pobres enfrentan tres restricciones básicas: el problema olsoniano,el problema de Maslow y el problema de la exclusión. La parte empírica del artículo utiliza datosrecolectados en barrios marginales de Lima, Perú, en seis tipos de organizaciones comunales. -- Under what circumstances does collective action arise? What contributes to the likelihood that aparticular collective initiative will succeed? To what extent are poor communities capable of organizingthemselves to improve their quality of life? These questions are not new, and economic researchershave studied a number of models in rural settings. Yet the research on collective action in urban areasseems to be more in the political sciences, and an economic model is still lacking. The fundamentalquestion remains: How are public goods produced and maintained by poor urban communities?This paper presents a set of hypotheses on collective action determinants. Collective action in poorneighborhoods faces three key barriers to success: the Olsonian free-rider problem, the Maslowianproblem, and the exclusion problem. The empirical portion of this paper uses data collected inpoor urban and peri-urban areas of Lima, Peru, in six types of community

  12. Evidence that 17alpha-estradiol is biologically active in the uterine tissue: Antiuterotonic and antiuterotrophic action

    Directory of Open Access Journals (Sweden)

    Navarrete Erika

    2005-07-01

    Full Text Available Abstract Background 17alpha-Estradiol has been considered as the hormonally inactive isomer of 17beta-estradiol. Recently, nongenomic (smooth muscle relaxation and genomic (light estrogenic activity effects of 17alpha-estradiol have been reported, but no reports have yet determined its possible antiestrogenic activity. Therefore, this study investigated: the nongenomic action of 17alpha-estradiol on uterine contractile activity and its potential agonist-antagonist activity on uterine growth. Methods Uterine rings from rats were isometrically recorded. Different concentrations (0.2–200 microM of 17alpha-estradiol were tested on spontaneous contraction and equimolarly compared with 17beta-estradiol. To examine the mechanism of 17alpha-estradiol action, its effect was studied in presence of beta2-antagonist (propranolol, antiestrogens (tamoxifen and ICI 182,780 or inhibitors of protein synthesis (cycloheximide and transcription (actinomycin D. Moreover, contractions induced by high potassium (KCl solution or calcium in depolarized tissues by KCl-calcium free solution were exposed to 17alpha-estradiol. Collaterally, we performed an uterotrophic assay in adult ovariectomized rats measuring the uterine wet weight. The administration for three days of 0.3 microM/day/Kg 17beta-estradiol was equimolarly compared with the response produced by 17alpha-estradiol. Antiuterotrophic activity was assayed by administration of 0.3 microM/day/Kg 17beta-estradiol and various doses ratios (1:1, 1:3, 1:5, and 1:100 of 17alpha-estradiol. Results The estradiol isomers elicited an immediate relaxation, concentration-dependent and reversible on spontaneous contraction. 17alpha-Estradiol presented lower potency than 17beta-estradiol although it did not antagonize 17beta-estradiol-induced relaxation. Relaxation to 17alpha-estradiol was not inhibited by propranolol, tamoxifen, ICI 182,780, cycloheximide or actinomycin D. The KCl contractions were also sensitive to 17alpha

  13. Structures and dynamics of transnational cooperation networks: evidence based on Local Action Groups in the Veneto Region, Italy

    Directory of Open Access Journals (Sweden)

    Elena Pisani

    2014-12-01

    Full Text Available The paper assesses the structures and dynamics of transnational cooperation projects promoted by Local Action Groups (LAGs in different periods (from LEADER II to LEADER Axis using Social Network Analysis (SNA in a specific case study: the Veneto Region in Italy. The classical indexes of SNA have been critically examined, and the paper also presents innovative indexes that can capture the peculiarity of transnational cooperation: disaggregated densities of the network and transnational centrality of the node. These indexes are useful in order to quantify how transnational a network actually is, and to measure the power-information that each actor (LAG can acquire through its transnational contacts. The methodology can become a tool for Managing Authorities to implement new forms of evaluation of transnational cooperation of LAGs.

  14. Evidence from action and fluorescence spectra that UV-induced violet-blue-green fluorescence enhances leaf photosynthesis.

    Science.gov (United States)

    Mantha, S V; Johnson, G A; Day, T A

    2001-03-01

    We assessed the contribution of UV-induced violet-blue-green leaf fluorescence to photosynthesis in Poa annua, Sorghum halepense and Nerium oleander by measuring UV-induced fluorescence spectra (280-380 nm excitation, 400-550 nm emission) from leaf surfaces and determining the monochromatic UV action spectra for leaf photosynthetic O2-evolution. Peak fluorescence emission wavelengths from leaf surfaces ranged from violet (408 nm) to blue (448 nm), while excitation peaks for these maxima ranged from 333 to 344 nm. Action spectra were developed by supplementing monochromatic radiation from 280 to 440 nm, in 20 nm increments, to a visible nonsaturating background of 500 mumol m-2 s-1 photosynthetically active radiation and measuring photosynthetic O2-evolution rates. Photosynthetic rates tended to be higher with the 340 nm supplement than with higher or lower wavelength UV supplements. Comparing photosynthetic rates with the 340 nm supplement to those with the 400 nm supplement, the percentage enhancement in photosynthetic rates at 340 nm ranged from 7.8 to 9.8%. We suspect that 340 nm UV improves photosynthetic rates via fluorescence that provides violet-blue-green photons for photosynthetic energy conversion because (1) the peak excitation wavelength (340 nm) for violet-blue-green fluorescence from leaves was also the most effective UV wavelength at enhancing photosynthetic rates, and (2) the magnitude of photosynthetic enhancements attributable to supplemental 340 nm UV was well correlated (R2 = 0.90) with the apparent intensity of 340 nm UV-induced violet-blue-green fluorescence emission from leaves.

  15. Efeitos do potencial de ação neural sobre a percepção de fala em usuários de implante coclear Influence of evoked compound action potential on speech perception in cochlear implant users

    Directory of Open Access Journals (Sweden)

    Mariana Cardoso Guedes

    2007-08-01

    Full Text Available O Potencial de Ação Composto Evocado Eletricamente reflete a atividade do nervo auditivo, podendo ser registrado através dos eletrodos do implante coclear. A determinação dos elementos neurais estimuláveis pode contribuir para explicar a variabilidade de desempenho entre indivíduos implantados. OBJETIVO: Comparar o desempenho nos testes de percepção da fala entre pacientes que apresentaram e que não apresentaram potencial de ação composto evocado eletricamente no momento intra-operatório. MATERIAL E MÉTODO: Estudo prospectivo no qual 100 indivíduos usuários do implante coclear Nucleus 24 foram divididos em dois grupos de acordo com a presença ou ausência do potencial de ação intra-operatório. Após 6 meses de uso do dispositivo, os resultados dos testes de percepção de fala foram comparados entre os grupos. RESULTADOS: O potencial foi observado em 72% dos pacientes. A percepção no teste de frases em formato aberto foi melhor nos indivíduos com presença de potencial (média 82,8% contra 41,0%, p = 0,005. Houve associação entre ausência do potencial e etiologia da surdez por meningite. CONCLUSÃO: Ausência de potencial neural intraoperatório esteve associada ao pior desempenho na percepção da fala e à etiologia da surdez por meningite. Por outro lado, a presença do potencial de ação intraoperatório sugere ótimo prognóstico.Electrically Evoked Compound Action Potential is a measure of synchronous cochlear nerve fibers activity elicited by electrical stimulation of the cochlear implant. The electrophysiological nerve responses may contribute to explain the variability in individual performance of cochlear implant recipients. AIM: To compare speech perception tests’ performances of cochlear implant users according to the presence or absence of intraoperative neural telemetry responses. MATERIAL AND METHOD: Prospective study design with 100 "Nucleus 24" cochlear implant users divided in two groups according

  16. Electrophysiological evidence for the action of a center-surround mechanism on semantic processing in the left hemisphere

    Directory of Open Access Journals (Sweden)

    Diana eDeacon

    2013-12-01

    Full Text Available Physiological evidence was sought for a center-surround attentional mechanism (CSM, which has been proposed to assist in the retrieval of weakly activated items from semantic memory. The CSM operates by facilitating strongly related items in the center of the weakly activated area of semantic memory, and inhibiting less strongly related items in its surround. In this study weak activation was created by having subjects acquire the meanings of new words to a recall criterion of only 50%. Subjects who attained this approximate criterion level of performance were subsequently included in a semantic priming task, during which ERPs were recorded. Primes were newly learned rare words, and targets were either synonyms, nonsynonymously related words, or unrelated words. All stimuli were presented to the RVF/LH (right visual field/left hemisphere or the LVF/RH (left visual field/right hemisphere. Under RVF/LH stimulation the newly learned word primes produced facilitation on N400 for synonym targets, and inhibition for related targets. No differences were observed under LVF/RH stimulation. The LH thus, supports a CSM, whereby a synonym in the center of attention focused on the newly learned word is facilitated, whereas a related word in the surround is inhibited. The data are consistent with the view of this laboratory that semantic memory is subserved by a spreading activation system in the LH. Also consistent with our view, there was no evidence of spreading activation in the RH. The findings are discussed in the context of additional recent theories of semantic memory. Finally, the adult right hemisphere may require more learning than the LH in order to demonstrate evidence of meaning acquisition.

  17. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  18. Evidence for Helical Magnetic fields in Kiloparsec-Scale AGN Jets and the Action of a Cosmic Battery

    Science.gov (United States)

    Gabuzda, D. C.; Christodoulou, D. M.; Contopulos, I.; Kazanas, D.

    2012-01-01

    A search for transverse kiloparsec-scale gradients in Faraday rotation-measure (RM) maps of extragalactic radio sources in the literature has yielded 6 AGNs displaying continuous, monotonic RM gradients across their jets, oriented roughly orthogonal to the local jet direction. The most natural interpretation of such transverse RM gradients is that they are caused by the systematic change in the line-of-sight components of helical magnetic fields associated with these jets. All the identified transverse RM gradients increase in the counterclockwise (CCW) direction on the sky relative to the centers of these AGNs. Taken together with the results of Contopoulos et al. who found evidence for a predominance of clockwise (CW) transverse RM gradients across parsec-scale (VLBI) jets, this provides new evidence for preferred orientations of RM gradients due to helical jet magnetic fields, with a reversal from CW in the inner jets to CCW farther from the centers of activity. This can be explained by the "Poynting-Robertson cosmic-battery" mechanism, which can generate helical magnetic fields with a. characteristic "twist," which are expelled with the jet outflows. If the Poynting-Robertson battery mechanism is not operating, an alternative mechanism must be identified, which is able to explain the 'predominance of CW /CCW RM gradients on parsec/kiloparsec scales.

  19. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers

    Directory of Open Access Journals (Sweden)

    Walid M. Al-Ghoul

    2014-01-01

    Full Text Available Simvastatin (SMV has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI+SMV immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel (1.86 mg/kg i.p., TI+Mel mice were compared as a positive control. Mice were assessed for the following: (1 tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2 NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3 transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER. Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1 gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO and Gr-1 infiltration, (2 NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3 transepithelial gut leakiness as assessed

  20. On the Legality Requirements of Evidence in Civil Action%民事诉讼证据合法性要件之批判

    Institute of Scientific and Technical Information of China (English)

    李旭斌; 金健

    2012-01-01

    The viewpoint that evidence must be lawful in its nature has been a consensus in the acade- mia and the legal practice field, though what is the legality of evidence has still been a disputed issue in the academia. The paper introduces the concept of evidence with its original functions and analyzs the legality requirements of evidence logically and empirically. It is pointed out that when a fact is evidence of a certain case, the legality of the evidence, rather than being the natural or constitutive element, tends to be a rule for the judge to make value selection and interest weighing and decide the acceptance of the evidence on the basis of the integration of external and internal elements. The law regulates the form of evidence, the actor, the procedure and the approach of evidence collecting, for the purpose of confirming the truth and relevance of the evidence, protecting the lawful rights of the civil subject, and taking consideration of other values. As to the evidence itself, it shouldn't be simply judged as lawful or unlawful to decide its eligibility positively or negatively. The legality requirementsof the negative evidence enhancing the burden of pensable for the court to would work well in straightening out theoretically the evidence system and proof when the party is overburdened in the civil action. They are also indis- find out the truth of the case thoroughly.%证据必须具备合法性要件是目前诉讼法学学界、司法实务界的共识性结论,但对于合法性要件的具体内容,目前学界尚存在较大的分歧。从证据概念及证据的本源意义人手,从逻辑理论和实证分析两个视角对证据的合法性要件进行分析,可以发现合法性不能成为证据的一个特征或构成要件,而是法官在某一事实材料已经成为某一案件的证据之后,综合案件内外各种因素进行价值选择和利益衡量,进而决定是否采纳该项证据的一种证据规则。法律对

  1. A role for the precuneus in thought–action fusion: Evidence from participants with significant obsessive–compulsive symptoms

    Directory of Open Access Journals (Sweden)

    Rhiannon Jones

    2014-01-01

    Full Text Available Likelihood thought–action fusion (TAF-L refers to a cognitive bias in which individuals believe that the mere thought of a negative event increases its likelihood of occurring in reality. TAF-L is most commonly associated with obsessive–compulsive disorder (OCD but is also present in depression, generalized anxiety disorder and psychosis. We induced TAF-L in individuals with high (High-OC, N = 23 and low (Low-OC, N = 24 levels of OC traits, and used low resolution electromagnetic tomography (LORETA to localise the accompanying electrical brain activity patterns. The results showed greater TAF-L in the High-OC than in the Low-OC group (p < .005, which was accompanied by significantly greater upper beta frequency (19–30 Hz activity in the precuneus (p < .05. Further, the precuneus activity was positively correlated with self-reported magnitude of TAF-L (p < .01, suggesting a specific role of this region in this cognitive bias. Results are discussed with reference to self-referential processing and the default-mode network.

  2. Building evidence for peer-led interventions: assessing the cost of the Adolescent Asthma Action program in Australia.

    Science.gov (United States)

    Otim, Michael E; Jayasinha, Ranmalie; Forbes, Hayley; Shah, Smita

    2015-01-01

    Asthma is the most common chronic illness among adolescents in Australia. Aboriginal and Torres Strait Islander adolescents, in particular, face substantial inequalities in asthma-related outcomes. Triple A (Adolescent Asthma Action) is a peer-led education intervention, which aims to improve asthma self-management and reduce the uptake of smoking among adolescents. The aim of this study was to determine the cost of implementing the Triple A program in Australia. Standard economic costing methods were used. It involved identifying the resources that were utilised (such as personnel and program materials), measuring them and then valuing them. We later performed sensitivity analysis so as to identify the cost drivers and a stress test to test how the intervention can perform when some inputs are lacking. Results indicate that the estimated cost of implementing the Triple A program in five schools was $41060, assuming that the opportunity cost of all the participants and venues was accounted for. This translated to $8212 per school or $50 per target student. From sensitivity analysis and a stress test, it was identified that the cost of the intervention (in practice) was $14 per student. This appears to be a modest cost, given the burden of asthma. In conclusion, the Triple A program is an affordable intervention to implement in high schools. The potential asthma cost savings due to the program are significant. If the Triple A program is implemented nation-wide, the benefits would be substantial. PMID:25230153

  3. Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action

    Science.gov (United States)

    Tong, Shilu; Confalonieri, Ulisses; Ebi, Kristie; Olsen, Jorn

    2016-01-01

    Summary: Climate change affects many natural and social systems and processes that are essential for life. It disrupts the Earth’s life-support systems that underpin the world’s capacity to supply adequate food and fresh water, and it disturbs the eco-physical buffering against natural disasters. Epidemiologists need to develop and improve research and monitoring programs to better understand the scale and immediacy of the threat of climate change to human health and to act within a much larger and more comprehensive framework. To address one of the greatest environmental issues of our lifetime, the scientific and policy-making communities should work together to formulate evidence-informed public policy to mitigate greenhouse gas emissions and adapt to its inevitable impacts in this generation and, more importantly, in future generations to come. PMID:27689449

  4. Innoversity in knowledge-for-action and adaptation to climate change: the first steps of an 'evidence-based climatic health' transfrontier training program.

    Science.gov (United States)

    Lapaige, Véronique; Essiembre, Hélène

    2010-01-01

    It has become increasingly clear to the international scientific community that climate change is real and has important consequences for human health. To meet these new challenges, the World Health Organization recommends reinforcing the adaptive capacity of health systems. One of the possible avenues in this respect is to promote awareness and knowledge translation in climatic health, at both the local and global scales. Within such perspective, two major themes have emerged in the field of public health research: 1) the development of advanced training adapted to 'global environment' change and to the specific needs of various groups of actors (doctors, nurses, public health practitioners, health care managers, public service managers, local communities, etc) and 2) the development of strategies for implementing research results and applying various types of evidence to the management of public health issues affected by climate change. Progress on these two fronts will depend on maximum innovation in transdisciplinary and transsectoral collaborations. The general purpose of this article is to present the program of a new research and learning chair designed for this double set of developmental objectives - a chair that emphasizes 'innoversity' (the dynamic relationship between innovation and diversity) and 'transfrontier ecolearning for adaptive actions'. The Écoapprentissages, santé mentale et climat collaborative research chair (University of Montreal and Quebec National Public Health Institute) based in Montreal is a center for 'transdisciplinary research' on the transfrontier knowledge-for-action that can aid adaptation of the public health sector, the public mental health sector, and the public service sector to climate change, as well as a center for complex collaborations on evidence-based climatic health 'training'. This program-focused article comprises two main sections. The first section presents the 'general' and 'specific contexts' in which the

  5. Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis.

    Science.gov (United States)

    Arendt-Nielsen, Lars; Egsgaard, Line Lindhardt; Petersen, Kristian Kjær

    2016-08-01

    The COX-2 inhibitor etoricoxib modulates the peripheral and central nociceptive mechanisms in animals. This interaction has not been studied in patients with pain. This randomized, double-blind, placebo-controlled, 2-way crossover, 4-week treatment study investigated the pain mechanisms modulated by etoricoxib in patients with painful knee osteoarthritis. Patients were randomized to group A (60 mg/d etoricoxib followed by placebo) or B (placebo followed by 60 mg/d etoricoxib). The quantitative, mechanistic pain biomarkers were pressure pain thresholds, temporal summation (TS), and conditioning pain modulation. Clinical readouts were Brief Pain Inventory, WOMAC, painDETECT questionnaire (PD-Q), and time and pain intensity during walking and stair climbing. Etoricoxib as compared with placebo significantly modulated the pressure pain thresholds (P = 0.012, localized sensitization) at the knee and leg (control site) (P = 0.025, spreading sensitization) and TS assessed from the knee (P = 0.038) and leg (P = 0.045). Conditioning pain modulation was not modulated. The Brief Pain Inventory (pain scores), PD-Q, WOMAC, and walking and stair climbing tests were all significantly improved by etoricoxib. Based on a minimum of 30% or 50% pain alleviation (day 0-day 28), responders and nonresponders were defined. The nonresponders showed a significant association between increased facilitation of TS and increased pain alleviation. None of the other parameters predicted the degree of pain alleviation. Generally, a responder to etoricoxib has the most facilitated TS. In conclusion, etoricoxib (1) modulated central pain modulatory mechanisms and (2) improved pain and function in painful osteoarthritis. Stronger facilitation of TS may indicate a better response to etoricoxib, supporting the central mode-of-action of the drug. PMID:27007068

  6. Addressing the social and environmental determinants of urban health equity: evidence for action and a research agenda.

    Science.gov (United States)

    Friel, Sharon; Akerman, Marco; Hancock, Trevor; Kumaresan, Jacob; Marmot, Michael; Melin, Thomas; Vlahov, David

    2011-10-01

    Urban living is the new reality for the majority of the world's population. Urban change is taking place in a context of other global challenges--economic globalization, climate change, financial crises, energy and food insecurity, old and emerging armed conflicts, as well as the changing patterns of communicable and noncommunicable diseases. These health and social problems, in countries with different levels of infrastructure and health system preparedness, pose significant development challenges in the 21st century. In all countries, rich and poor, the move to urban living has been both good and bad for population health, and has contributed to the unequal distribution of health both within countries (the urban-rural divide) and within cities (the rich-poor divide). In this series of papers, we demonstrate that urban planning and design and urban social conditions can be good or bad for human health and health equity depending on how they are set up. We argue that climate change mitigation and adaptation need to go hand-in-hand with efforts to achieve health equity through action in the social determinants. And we highlight how different forms of governance can shape agendas, policies, and programs in ways that are inclusive and health-promoting or perpetuate social exclusion, inequitable distribution of resources, and the inequities in health associated with that. While today we can describe many of the features of a healthy and sustainable city, and the governance and planning processes needed to achieve these ends, there is still much to learn, especially with respect to tailoring these concepts and applying them in the cities of lower- and middle-income countries. By outlining an integrated research agenda, we aim to assist researchers, policy makers, service providers, and funding bodies/donors to better support, coordinate, and undertake research that is organized around a conceptual framework that positions health, equity, and sustainability as central

  7. XVII International AIDS Conference: From Evidence to Action - Social, behavioural and economic science and policy and political science.

    Science.gov (United States)

    Mykhalovskiy, Eric; Brown, Glen; Kort, Rodney

    2009-01-01

    AIDS 2008 firmly established stigma and discrimination as fundamental priorities in the push for universal access to HIV prevention, treatment, care and support. Conference sessions and discussions reinforced the tangible negative effects of stigma on national legislation and policies. A strong theme throughout the conference was the need to replace prevention interventions that focus exclusively on individual behaviour change or biomedical prevention interventions with "combination prevention" approaches that address both individual and structural factors that increase vulnerability to HIV infection.Several high-level sessions addressed various aspects of the debate over "vertical" (disease-specific) versus "horizontal" (health systems) funding. The majority of evidence presented at the conference suggests that HIV investments strengthen health systems through the establishment of clinical and laboratory infrastructure, strengthened supply and procurement systems, improvements in health care worker training, and increased community engagement.Human rights were a focal point at the conference; several presentations emphasized the importance of securing human rights to achieve universal access goals, including workplace discrimination, travel restrictions, gender inequality, and the criminalization of homosexuality, drug use, sex work, and HIV transmission and/or exposure. PMID:19811671

  8. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  9. Micro- and nanotechnologies for optical neural interfaces

    Directory of Open Access Journals (Sweden)

    Ferruccio ePisanello

    2016-03-01

    Full Text Available In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review discusses the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles.

  10. Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans.

    Science.gov (United States)

    Hecht, Erin E; Gutman, David A; Preuss, Todd M; Sanchez, Mar M; Parr, Lisa A; Rilling, James K

    2013-05-01

    Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal-temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal-parietal and frontal-parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611

  11. Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism

    NARCIS (Netherlands)

    S. Krach; I. Kamp-Becker; W. Einhäuser; J. Sommer; S. Frässle; A. Jansen; L. Rademacher; L. Müller-Pinzler; V. Gazzola; F.M. Paulus

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by substantial social deficits. The notion that dysfunctions in neural circuits involved in sharing another's affect explain these deficits is appealing, but has received only modest experimental support. Here we evaluated a complex paradigm on the vic

  12. Innoversity in knowledge-for-action and adaptation to climate change: the first steps of an 'evidence-based climatic health' transfrontier training program

    Directory of Open Access Journals (Sweden)

    Véronique Lapaige

    2010-12-01

    Full Text Available Véronique Lapaige1–3, Hélène Essiembre41Department of Psychiatry, University of Montreal, Montreal, QC, Canada; 2Fernand-Seguin Research Centre, Montreal, QC, Canada; 3Quebec National Public Health Institute; 4Industrial and Organizational Program, Department of Psychology, University of Montreal, Montreal, QC, CanadaAbstract: It has become increasingly clear to the international scientific community that climate change is real and has important consequences for human health. To meet these new challenges, the World Health Organization recommends reinforcing the adaptive capacity of health systems. One of the possible avenues in this respect is to promote awareness and knowledge translation in climatic health, at both the local and global scales. Within such perspective, two major themes have emerged in the field of public health research: 1 the development of advanced training adapted to 'global environment' change and to the specific needs of various groups of actors (doctors, nurses, public health practitioners, health care managers, public service managers, local communities, etc and 2 the development of strategies for implementing research results and applying various types of evidence to the management of public health issues affected by climate change. Progress on these two fronts will depend on maximum innovation in transdisciplinary and transsectoral collaborations. The general purpose of this article is to present the program of a new research and learning chair designed for this double set of developmental objectives – a chair that emphasizes 'innoversity' (the dynamic relationship between innovation and diversity and 'transfrontier ecolearning for adaptive actions'. The Écoapprentissages, santé mentale et climat collaborative research chair (University of Montreal and Quebec National Public Health Institute based in Montreal is a center for 'transdisciplinary research' on the transfrontier knowledge-for-action that can aid

  13. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor receptor response to neural cell adhesion molecule activation

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Lundfald, Line; Ditlevsen, Dorte K;

    2004-01-01

    Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells...... ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM...

  14. Perception, action, and Roelofs effect: a mere illusion of dissociation.

    Directory of Open Access Journals (Sweden)

    Paul Dassonville

    2004-11-01

    Full Text Available A prominent and influential hypothesis of vision suggests the existence of two separate visual systems within the brain, one creating our perception of the world and another guiding our actions within it. The induced Roelofs effect has been described as providing strong evidence for this perception/action dissociation: When a small visual target is surrounded by a large frame positioned so that the frame's center is offset from the observer's midline, the perceived location of the target is shifted in the direction opposite the frame's offset. In spite of this perceptual mislocalization, however, the observer can accurately guide movements to the target location. Thus, perception is prone to the illusion while actions seem immune. Here we demonstrate that the Roelofs illusion is caused by a frame-induced transient distortion of the observer's apparent midline. We further demonstrate that actions guided to targets within this same distorted egocentric reference frame are fully expected to be accurate, since the errors of target localization will exactly cancel the errors of motor guidance. These findings provide a mechanistic explanation for the various perceptual and motor effects of the induced Roelofs illusion without requiring the existence of separate neural systems for perception and action. Given this, the behavioral dissociation that accompanies the Roelofs effect cannot be considered evidence of a dissociation of perception and action. This indicates a general need to re-evaluate the broad class of evidence purported to support this hypothesized dissociation.

  15. Neural Adaptation Provides Evidence for Categorical Differences in Processing of Faces and Chinese Characters: An ERP Study of the N170

    OpenAIRE

    Shimin Fu; Chunliang Feng; Shichun Guo; Yuejia Luo; Raja Parasuraman

    2012-01-01

    Whether face perception involves domain-specific or domain-general processing is an extensively debated issue. Relative to non-face objects and alphabetical scripts, Chinese characters provide a good contrast to faces because of their structural configuration, requirement for high level of visual expertise to literate Chinese people, and unique appearance and identity for each individual stimulus. To examine potential categorical differences in their neural processing, event-related potential...

  16. Priorities for action on the social determinants of health: Empirical evidence on the strongest associations with life expectancy in 54 low-income countries, 1990-2012.

    Science.gov (United States)

    Hauck, K; Martin, S; Smith, P C

    2016-10-01

    The WHO Commission on the Social Determinants of Health set out an impressive collection of policy proposals on the social determinants of health. However, a serious weakness for securing implementation is the difficulty for policymakers in identifying priorities for action. The objective of this study is to determine a small set of the most influential determinants using existing data and an empirical approach. 45 Indicators from the World Bank's World Development Indicators are selected to measure attainment for the determinants proposed by the Commission. Panel data models of life expectancy at birth for 54 low-income countries over the years 1990-2012 (1188 country-years) are estimated. Each determinant is subjected to a robustness test using Extreme Bound Analysis, to determine the stability of its estimated impact on life expectancy. For 20 robust and significant determinants the magnitude of association with life expectancy is determined. The largest average increases in life expectancy at 14.5 months per capita is associated with a one standard deviation reduction in HIV prevalence among children, followed by advances in gender equality at 9.4 months. Improvements in life expectancy between 6 and 9 months are associated with agricultural production, political stability, access to clean water and sanitation, good governance, and primary school enrolment. Improvements below 6 months are associated with increases in private health expenditure and overseas development assistance, and control of armed conflict and HIV prevalence among men. There is no evidence that national income, public spending on healthcare and education, secondary schooling, terms of international trade, employment, debt service and relief, out-of-pocket expenditures, agricultural ex- or imports, lifestock production, foreign investment, urbanization or environmental degradation are robustly associated with population health. Results provide support for the relevance of some proposed

  17. Priorities for action on the social determinants of health: Empirical evidence on the strongest associations with life expectancy in 54 low-income countries, 1990-2012.

    Science.gov (United States)

    Hauck, K; Martin, S; Smith, P C

    2016-10-01

    The WHO Commission on the Social Determinants of Health set out an impressive collection of policy proposals on the social determinants of health. However, a serious weakness for securing implementation is the difficulty for policymakers in identifying priorities for action. The objective of this study is to determine a small set of the most influential determinants using existing data and an empirical approach. 45 Indicators from the World Bank's World Development Indicators are selected to measure attainment for the determinants proposed by the Commission. Panel data models of life expectancy at birth for 54 low-income countries over the years 1990-2012 (1188 country-years) are estimated. Each determinant is subjected to a robustness test using Extreme Bound Analysis, to determine the stability of its estimated impact on life expectancy. For 20 robust and significant determinants the magnitude of association with life expectancy is determined. The largest average increases in life expectancy at 14.5 months per capita is associated with a one standard deviation reduction in HIV prevalence among children, followed by advances in gender equality at 9.4 months. Improvements in life expectancy between 6 and 9 months are associated with agricultural production, political stability, access to clean water and sanitation, good governance, and primary school enrolment. Improvements below 6 months are associated with increases in private health expenditure and overseas development assistance, and control of armed conflict and HIV prevalence among men. There is no evidence that national income, public spending on healthcare and education, secondary schooling, terms of international trade, employment, debt service and relief, out-of-pocket expenditures, agricultural ex- or imports, lifestock production, foreign investment, urbanization or environmental degradation are robustly associated with population health. Results provide support for the relevance of some proposed

  18. Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism.

    Science.gov (United States)

    Krach, Sören; Kamp-Becker, Inge; Einhäuser, Wolfgang; Sommer, Jens; Frässle, Stefan; Jansen, Andreas; Rademacher, Lena; Müller-Pinzler, Laura; Gazzola, Valeria; Paulus, Frieder M

    2015-11-01

    Autism spectrum disorder (ASD) is characterized by substantial social deficits. The notion that dysfunctions in neural circuits involved in sharing another's affect explain these deficits is appealing, but has received only modest experimental support. Here we evaluated a complex paradigm on the vicarious social pain of embarrassment to probe social deficits in ASD as to whether it is more potent than paradigms currently in use. To do so we acquired pupillometry and fMRI in young adults with ASD and matched healthy controls. During a simple vicarious physical pain task no differences emerged between groups in behavior, pupillometry, and neural activation of the anterior insula (AIC) and anterior cingulate cortex (ACC). In contrast, processing complex vicarious social pain yielded reduced responses in ASD on all physiological measures of sharing another's affect. The reduced activity within the AIC was thereby explained by the severity of autistic symptoms in the social and affective domain. Additionally, behavioral responses lacked correspondence with the anterior cingulate and anterior insula cortex activity found in controls. Instead, behavioral responses in ASD were associated with hippocampal activity. The observed dissociation echoes the clinical observations that deficits in ASD are most pronounced in complex social situations and simple tasks may not probe the dysfunctions in neural pathways involved in sharing affect. Our results are highly relevant because individuals with ASD may have preserved abilities to share another's physical pain but still have problems with the vicarious representation of more complex emotions that matter in life. PMID:26367817

  19. Freeman's mass action

    OpenAIRE

    Freeman, Walter J III; Kozma, Robert

    2010-01-01

    Freeman's Mass Action (FMA) refers to the collective synaptic actions that neurons in the cortex exert on each other in vast numbers by synchronizing their firing of action potentials. In the aggregate, FMA is a powerful force that creates bursts of cortical neural activity that resemble the vortices of tornadoes and hurricanes. The bursts rapidly and repeatedly retrieve memories and bind them with sensory information into percepts. In this way, FMA expresses and transmits the meaning of sens...

  20. Reducing the volume, exposure and negative impacts of advertising for foods high in fat, sugar and salt to children: a systematic review of the evidence from statutory and self-regulatory actions and educational measures

    OpenAIRE

    Chambers, Stephanie; Freeman, Ruth; Anderson, Annie S.; MacGillivray, Steve

    2015-01-01

    Purpose: To identify and review evidence on 1) the effectiveness of statutory and self-regulatory actions to reduce the volume, exposure or wider impact of advertising for foods high in fat, sugar and salt (HFSS) to children, and 2) the role of educational measures. Design/methodology/approach: A systematic review of three databases (Medline, CINAHL and PsycINFO) and grey literature was carried out. Relevant evidence included studies evaluating advertising bans and restrictions, adve...

  1. Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors (PPARs in Dysregulated Metabolic Homeostasis, Inflammation and Cancer: Current Evidence and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Antonio Simone Laganà

    2016-06-01

    Full Text Available Background: Peroxisome proliferator-activated receptors (PPARs have demonstrated a lot of important effects in the regulation of glucose and lipid metabolism and in the correct functioning of adipose tissue. Recently, many studies have evaluated a possible effect of PPARs on tumor cells. The purpose of this review is to describe the effects of PPARs, their action and their future prospective; Methods: Narrative review aimed to synthesize cutting-edge evidence retrieved from searches of computerized databases; Results: PPARs play a key role in metabolic diseases, which include several cardiovascular diseases, insulin resistance, type 2 diabetes, metabolic syndrome, impaired immunity and the increasing risk of cancer; in particular, PPARα and PPARβ/δ mainly enable energy combustion, while PPARγ contributes to energy storage by enhancing adipogenesis; Conclusion: PPAR agonists could represent interesting types of molecules that can treat not only metabolic diseases, but also inflammation and cancer. Additional research is needed for the identification of high-affinity, high-specificity agonists for the treatment of obesity, type 2 diabetes (T2DM and other metabolic diseases. Further studies are needed also to elucidate the role of PPARs in cancer.

  2. Further evidences for the mode of action of the larvicidal m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds against Aedes aegypti.

    Science.gov (United States)

    Souza, Terezinha M; Menezes, Erika S Bezerra; Oliveira, Rodrigo V; Almeida Filho, Luiz Carlos P; Martins, Jorge M; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Moura, Arlindo A Araripe; Carvalho, Ana F Urano

    2015-12-01

    Nowadays, dengue fever is considered the most important arbovirosis worldwide and its control is still based upon combating the vector Aedes aegypti. Besides monitoring of mosquito populations resistant to conventional insecticides, the search for new environmentally safe insecticides and conduction of molecular studies focusing on the elucidation of mode of action and possible resistance mechanisms are considered the key for a sustainable management of the mosquito vector. Thus, the present work aimed to assess changes in protein expression of 3rd-instar larvae of Ae. aegypti after exposure to the natural insecticide m-pentadecadienyl-phenol. Bidimensional electrophoresis followed by mass spectrometry resulted in identification of 12 proteins differentially expressed between control and treated groups. Larvae exposed to the toxic compound for 24h showed elevated detoxification response (glutathione-S-transferase), increased levels of stress-related proteins (HSP70) as well as evidence of lysosome stabilization to enable survival. Furthermore, expression of proteins involved in protection of peritrophic membrane and metabolism of lipids indicated systemic effect of toxic effects in treated larvae.

  3. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  4. Imaging the neural mechanisms of TMS neglect-like bias in healthy volunteers with the interleaved TMS/fMRI technique: preliminary evidence.

    Science.gov (United States)

    Ricci, Raffaella; Salatino, Adriana; Li, Xingbao; Funk, Agnes P; Logan, Sarah L; Mu, Qiwen; Johnson, Kevin A; Bohning, Daryl E; George, Mark S

    2012-01-01

    Applying a precisely timed pulse of transcranial magnetic stimulation (TMS) over the right posterior parietal cortex (PPC) can produce temporary visuo-spatial neglect-like effects. Although the TMS is applied over PPC, it is not clear what other brain regions are involved. We applied TMS within a functional magnetic resonance imaging (fMRI) scanner to investigate brain activity during TMS induction of neglect-like bias in three healthy volunteers, while they performed a line bisection judgment task (i.e., the landmark task). Single-pulse TMS at 115% of motor threshold was applied 150 ms after the visual stimulus onset. Participants completed two different TMS/fMRI sessions while performing this task: one session while single-pulse TMS was intermittently and time-locked applied to the right PPC and a control session with TMS positioned over the vertex. Perceptual rightward bias was observed when TMS was delivered over the right PPC. During neglect-like behavior, the fMRI maps showed decreased neural activity within parieto-frontal areas, which are often lesioned or dysfunctional in patients with left neglect. Vertex TMS induced behavioral effects compatible with leftward response bias and increased BOLD signal in the left caudate (a site which has been linked to response bias). These results are discussed in relation to recent findings on neural networks subserving attention in space.

  5. Modeling the value of strategic actions in the superior colliculus

    Directory of Open Access Journals (Sweden)

    Dhushan Thevarajah

    2010-02-01

    Full Text Available In learning models of strategic game play, an agent constructs a valuation (action value over possible future choices as a function of past actions and rewards. Choices are then stochastic functions of these action values. Our goal is to uncover a neural signal that correlates with the action value posited by behavioral learning models. We measured activity from neurons in the superior colliculus (SC, a midbrain region involved in planning saccadic eye movements, in monkeys while they performed two saccade tasks. In the strategic task, monkeys competed against a computer in a saccade version of the mixed-strategy game “matching-pennies”. In the instructed task, stochastic saccades were elicited through explicit instruction rather than free choices. In both tasks, neuronal activity and behavior were shaped by past actions and rewards with more recent events exerting a larger influence. Further, SC activity predicted upcoming choices during the strategic task and upcoming reaction times during the instructed task. Finally, we found that neuronal activity in both tasks correlated with an established learning model, the Experience Weighted Attraction model of action valuation (Ho, Camerer, and Chong, 2007. Collectively, our results provide evidence that action values hypothesized by learning models are represented in the motor planning regions of the brain in a manner that could be used to select strategic actions.

  6. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  7. Neuroart: Picturing the Neuroscience of Intentional Actions in Art & Science

    Directory of Open Access Journals (Sweden)

    Todd Lael Siler

    2015-07-01

    Full Text Available Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014, he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways metaphorical thinking and symbolic modeling can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics.

  8. The role of BDNF in depression on the basis of its location in the neural circuitry

    Institute of Scientific and Technical Information of China (English)

    Hui YU; Zhe-yu CHEN

    2011-01-01

    Depression is one of the most prevalent and life-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their roles in depression and antidepressant action. While these regions no doubt play important roles in the mental illness, there is compelling evi-dence that other brain regions are also involved. Brain-derived neurotrophic factor (BDNF) is broadly expressed in the developing and adult mammalian brain and has been implicated in development, neural regeneration, synaptic transmission, synaptic plasticity and neurogenesis. Recently BDNF has been shown to play an important role in the pathophysiology of depression, however there are con-troversial reports about the effects of BDNF on depression. Here, we present an overview of the current knowledge concerning BDNF actions and associated intracellular signaling in hippocampus, prefrontal cortex, nucleus accumbens (NAc) and amygdala as their rela-tion to depression.

  9. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  10. Social class affects Mu-suppression during action observation.

    Science.gov (United States)

    Varnum, Michael E W; Blais, Chris; Brewer, Gene A

    2016-01-01

    Socioeconomic status (SES) has been linked to differences in the degree to which people are attuned to others. Those who are lower in SES also tend to be more interpersonally attuned. However, to date, this work has not been demonstrated using neural measures. In the present electroencephalogram study, we found evidence that lower SES was linked to stronger Mu-suppression during action observation. This finding adds to the growing literature on factors that affect Mu-suppression and suggests that the mirror neuron system may be influenced by one's social class. PMID:26458132

  11. Evidence from pharmacology and pathophysiology suggests that chemicals with dissimilar mechanisms of action could be of bigger concern in the toxicological risk assessment of chemical mixtures than chemicals with a similar mechanism of action

    DEFF Research Database (Denmark)

    Hadrup, Niels

    2014-01-01

    concomitantly contribute to the pathophysiology, suggesting that a grouping based on common target organs may also be inefficient. A better option may be to prioritise chemicals on the basis of potency and risk of exposure. In conclusion, there are arguments to suggest that we should concomitantly consider all...... mechanisms of action, similar modes of action or with common target organs. In the European Union, efforts are currently being made to subgroup chemicals according to this need. However, it remains to be determined whether this is the best strategy to obtain data for risk assessment. In conditions...... such as cancer or HIV, it is generally recognised that pharmacological combination therapy targeting different mechanisms of action is more effective than a strategy where only one mechanism is targeted. Moreover, in diseases such as acute myocardial infarction and congestive heart failure, several organ systems...

  12. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  13. Evidence for enhanced multisensory facilitation with stimulus relevance: an electrophysiological investigation.

    Directory of Open Access Journals (Sweden)

    Ayla Barutchu

    Full Text Available Currently debate exists relating to the interplay between multisensory processes and bottom-up and top-down influences. However, few studies have looked at neural responses to newly paired audiovisual stimuli that differ in their prescribed relevance. For such newly associated audiovisual stimuli, optimal facilitation of motor actions was observed only when both components of the audiovisual stimuli were targets. Relevant auditory stimuli were found to significantly increase the amplitudes of the event-related potentials at the occipital pole during the first 100 ms post-stimulus onset, though this early integration was not predictive of multisensory facilitation. Activity related to multisensory behavioral facilitation was observed approximately 166 ms post-stimulus, at left central and occipital sites. Furthermore, optimal multisensory facilitation was found to be associated with a latency shift of induced oscillations in the beta range (14-30 Hz at right hemisphere parietal scalp regions. These findings demonstrate the importance of stimulus relevance to multisensory processing by providing the first evidence that the neural processes underlying multisensory integration are modulated by the relevance of the stimuli being combined. We also provide evidence that such facilitation may be mediated by changes in neural synchronization in occipital and centro-parietal neural populations at early and late stages of neural processing that coincided with stimulus selection, and the preparation and initiation of motor action.

  14. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  15. EVIDENCE FOR A NON-GENOMIC ACTION OF TESTOSTERONE IN SKELETAL MUSCLE WHICH MAY IMPROVE ATHLETIC PERFORMANCE: IMPLICATIONS FOR THE FEMALE ATHLETE

    Directory of Open Access Journals (Sweden)

    Jessica R. Dent

    2012-09-01

    Full Text Available This review will focus on the proposed second mode of testosterone action (now termed non-genomic that appears to occur independently of the traditional transcriptional mechanism in mammalian skeletal muscle cells which may enhance skeletal muscle contractile properties. This mechanism of testosterone action differs from the traditional pathway, originating at the cell membrane, having a rapid onset of action, requiring second messengers to execute its effects and is insensitive to inhibitors of traditional androgen receptor action, transcription and protein synthesis. Importantly, unlike the traditional action of testosterone in skeletal muscle, this non-genomic pathway is shown to have a direct acute effect on calcium- dependent components important for the contractile process. The changes within the contractile apparatus may enhance the ability of the muscle to produce explosive power during athletic performance. Rapid increases in Inositol triphosphate mass and calcium release from the sarcoplasmic reticulum have been reported in rodent skeletal muscle cells, and a rapid androgen (dihydrotestosterone-induced increase in peak force production has been recorded in intact rodent skeletal muscle fibre bundles while showing increases in the activity of the Ras/MAP/ERK mediated pathway. Because the non-genomic action of testosterone is enhanced during increases in exposure to testosterone and is acute in its action, implications for athletic performance are likely greater in females than males due to natural fluctuations in circulating testosterone levels during the female menstrual cycle, reproductive pathology, and changes induced by hormonal contraceptive methods. Research should be undertaken in humans to confirm a pathway for non-genomic testosterone action in human skeletal muscle. Specifically, relationships between testosterone fluctuations and physiological changes within skeletal muscle cells and whole muscle exercise performance need to

  16. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  17. Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies.

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    Full Text Available BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs. The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs. METHODS: An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11. Odds ratios (ORs with 95% confidence intervals (CIs were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis. RESULTS: A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR= 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR= 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR= 1.330, 95% CI: 1.160, 1.525. Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls. CONCLUSION: The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.

  18. A Neural Dissociation Within Language: Evidence that the Mental Dictionary is Part of Declarative Memory, and that Grammatical Rules are Processed by the Procedural System

    OpenAIRE

    Ullman, Michael T.; Corkin, Suzanne; Coppola, Marie; Hickok, Gregory; Growdon, John Herbert; Walter J Koroshetz; Pinker, Steven

    1997-01-01

    Language comprises a lexicon for storing words and a grammar for generating rule-governed forms. Evidence is presented that the lexicon is part of a temporal-parietalhnedial-temporal “declarative memory” system and that granlmatical rules are processed by a frontamasal-ganglia “procedural” system. Patients produced past tenses of regular and novel verbs (looked and plagged), which require an -ed-suffixation rule, and irregular verbs (dug), which are retrieved from memory. Word-finding difficu...

  19. Comparing the processing of music and language meaning using EEG and fMRI provides evidence for similar and distinct neural representations

    OpenAIRE

    Steinbeis, Nikolaus; Koelsch, Stefan

    2008-01-01

    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG ...

  20. Comparing the Processing of Music and Language Meaning Using EEG and fMRI Provides Evidence for Similar and Distinct Neural Representations

    OpenAIRE

    Steinbeis, Nikolaus; Koelsch, Stefan

    2008-01-01

    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG ...

  1. Neural Engineering

    Science.gov (United States)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  2. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    Science.gov (United States)

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system. PMID:17499164

  3. The neural processing of taste

    Directory of Open Access Journals (Sweden)

    Katz Donald B

    2007-09-01

    Full Text Available Abstract Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.. Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale.

  4. Sentential context modulates the involvement of the motor cortex in action language processing: an FMRI study.

    Science.gov (United States)

    Schuil, Karen D I; Smits, Marion; Zwaan, Rolf A

    2013-01-01

    Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a weak view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in non-literal sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to non-literal and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than non-literal action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  5. Generalisation of action sequences in RNNPB networks with mirror properties

    NARCIS (Netherlands)

    Cuijpers, R.H.; Stuijt, F.H.A.; Sprinkhuizen-Kuyper, I.G.

    2009-01-01

    The human mirror neuron system (MNS) is supposed to be involved in recognition of observed action sequences. However, it remains unclear how such a system could learn to recognise a large variety of action sequences. Here we investigated a neural network with mirror properties, the Recurrent Neural

  6. Comparing the Processing of Music and Language Meaning Using EEG and fMRI Provides Evidence for Similar and Distinct Neural Representations

    Science.gov (United States)

    Steinbeis, Nikolaus; Koelsch, Stefan

    2008-01-01

    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG and fMRI, it was shown that single chords varying in harmonic roughness (consonance/dissonance) and thus perceived affect could prime the processing of subsequently presented affective target words, as indicated by an increased N400 and activation of the right middle temporal gyrus (MTG). Most importantly, however, when primed by affective words, single chords incongruous to the preceding affect also elicited an N400 and activated the right posterior STS, an area implicated in processing meaning of a variety of signals (e.g. prosody, voices, motion). This provides an important piece of evidence in support of music meaning being represented in a very similar but also distinct fashion to language meaning: Both elicit an N400, but activate different portions of the right temporal lobe. PMID:18493611

  7. Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction

    Directory of Open Access Journals (Sweden)

    Estela Bicho

    2010-05-01

    Full Text Available How do humans coordinate their intentions, goals and motor behaviors when performing joint action tasks? Recent experimental evidence suggests that resonance processes in the observer's motor system are crucially involved in our ability to understand actions of others', to infer their goals and even to comprehend their action-related language. In this paper, we present a control architecture for human-robot collaboration that exploits this close perception-action linkage as a means to achieve more natural and efficient communication grounded in sensorimotor experiences. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of neural populations that encode in their activation patterns goals, actions and shared task knowledge. We validate the verbal and non-verbal communication skills of the robot in a joint assembly task in which the human-robot team has to construct toy objects from their components. The experiments focus on the robot’s capacity to anticipate the user’s needs and to detect and communicate unexpected events that may occur during joint task execution.

  8. Rapid neural discrimination of communicative gestures.

    Science.gov (United States)

    Redcay, Elizabeth; Carlson, Thomas A

    2015-04-01

    Humans are biased toward social interaction. Behaviorally, this bias is evident in the rapid effects that self-relevant communicative signals have on attention and perceptual systems. The processing of communicative cues recruits a wide network of brain regions, including mentalizing systems. Relatively less work, however, has examined the timing of the processing of self-relevant communicative cues. In the present study, we used multivariate pattern analysis (decoding) approach to the analysis of magnetoencephalography (MEG) to study the processing dynamics of social-communicative actions. Twenty-four participants viewed images of a woman performing actions that varied on a continuum of communicative factors including self-relevance (to the participant) and emotional valence, while their brain activity was recorded using MEG. Controlling for low-level visual factors, we found early discrimination of emotional valence (70 ms) and self-relevant communicative signals (100 ms). These data offer neural support for the robust and rapid effects of self-relevant communicative cues on behavior.

  9. Efficient coding and the neural representation of value.

    Science.gov (United States)

    Louie, Kenway; Glimcher, Paul W

    2012-03-01

    To survive in a dynamic environment, an organism must be able to effectively learn, store, and recall the expected benefits and costs of potential actions. The nature of the valuation and decision processes is thus of fundamental interest to researchers at the intersection of psychology, neuroscience, and economics. Although normative theories of choice have outlined the theoretical structure of these valuations, recent experiments have begun to reveal how value is instantiated in the activity of neurons and neural circuits. Here, we review the various forms of value coding that have been observed in different brain systems and examine the implications of these value representations for both neural circuits and behavior. In particular, we focus on emerging evidence that value coding in a number of brain areas is context dependent, varying as a function of both the current choice set and previously experienced values. Similar contextual modulation occurs widely in the sensory system, and efficient coding principles derived in the sensory domain suggest a new framework for understanding the neural coding of value. PMID:22694213

  10. Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Kristi R Griffiths

    2014-05-01

    Full Text Available The ability to learn contingencies between actions and outcomes in a dynamic environment is critical for flexible, adaptive behavior. Goal-directed actions adapt to changes in action-outcome contingencies as well as to changes in the reward-value of the outcome. When networks involved in reward processing and contingency learning are maladaptive, this fundamental ability can be lost, with detrimental consequences for decision-making. Impaired decision-making is a core feature in a number of psychiatric disorders, ranging from depression to schizophrenia. The argument can be developed, therefore, that seemingly disparate symptoms across psychiatric disorders can be explained by dysfunction within common decision-making circuitry. From this perspective, gaining a better understanding of the neural processes involved in goal-directed action, will allow a comparison of deficits observed across traditional diagnostic boundaries within a unified theoretical framework. This review describes the key processes and neural circuits involved in goal-directed decision-making using evidence from animal studies and human neuroimaging. Select studies are discussed to outline what we currently know about causal judgments regarding actions and their consequences, action-related reward evaluation, and, most importantly, how these processes are integrated in goal-directed learning and performance. Finally, we look at how adaptive decision-making is impaired across a range of psychiatric disorders and how deepening our understanding of this circuitry may offer insights into phenotypes and more targeted interventions.

  11. A Neural Dissociation within Language: Evidence that the Mental Dictionary Is Part of Declarative Memory, and that Grammatical Rules Are Processed by the Procedural System.

    Science.gov (United States)

    Ullman, M T; Corkin, S; Coppola, M; Hickok, G; Growdon, J H; Koroshetz, W J; Pinker, S

    1997-03-01

    Language comprises a lexicon for storing words and a grammar for generating rule-governed forms. Evidence is presented that the lexicon is part of a temporal-parietalhnedial-temporal "declarative memory" system and that granlmatical rules are processed by a frontamasal-ganglia "procedural" system. Patients produced past tenses of regular and novel verbs (looked and plagged), which require an -ed-suffixation rule, and irregular verbs (dug), which are retrieved from memory. Word-finding difficulties in posterior aphasia, and the general declarative memory impairment in Alzheimer's disease, led to more errors with irregular than regular and novel verbs. Grammatical difficulties in anterior aphasia, and the general impairment of procedures in Parkinson's disease, led to the opposite pattern. In contrast to the Parkinson's patients, who showed sup pressed motor activity and rule use, Huntington's disease patients showed excess motor activity and rule use, underscoring a role for the basal ganglia in grammatical processing. PMID:23962016

  12. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  13. Learning about goals : development of action perception and action control

    NARCIS (Netherlands)

    Verschoor, Stephan Alexander

    2014-01-01

    By using innovative paradigms, the present thesis provides convincing evidence that action-effect learning, and sensorimotor processes in general play a crucial role in the development of action- perception and production in infancy. This finding was further generalized to sequential action. Further

  14. Action semantics modulate action prediction.

    Science.gov (United States)

    Springer, Anne; Prinz, Wolfgang

    2010-11-01

    Previous studies have demonstrated that action prediction involves an internal action simulation that runs time-locked to the real action. The present study replicates and extends these findings by indicating a real-time simulation process (Graf et al., 2007), which can be differentiated from a similarity-based evaluation of internal action representations. Moreover, results showed that action semantics modulate action prediction accuracy. The semantic effect was specified by the processing of action verbs and concrete nouns (Experiment 1) and, more specifically, by the dynamics described by action verbs (Experiment 2) and the speed described by the verbs (e.g., "to catch" vs. "to grasp" vs. "to stretch"; Experiment 3). These results propose a linkage between action simulation and action semantics as two yet unrelated domains, a view that coincides with a recent notion of a close link between motor processes and the understanding of action language.

  15. Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs: an example of Feixianguan Formation, east Sichuan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The reservoir of Feixianguan Formation of the Lower Triassic in the Sichuan Basin is the deepest buried carbonate reservoir in China, with developed secondary corrosion holes, high quantities carbonate reservoir, maximum effective carbonate reservoir thickness. Also Feixianguan gas reservoir has the highest quantities of H2S. Research discovers that there are close relationships between the formation of reservoir and H2S. The mutual actions between acidity fluid and carbonate promoted the forming of secondary carbonate holes. Through the experiment of corrosion of the samples of Feixianguan carbonate reservoir in saturated aqueous solution of hydrogen sulfide, the porosity and permeability increased greatly, porosity increased 2% and permeability increased nearly two quantity degrees, also the density became light, which confirm the corrosion and reform actions of H2S to carbonate.

  16. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  17. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  18. Cocaine-induced cardiovascular effects: lack of evidence for a central nervous system site of action based on hemodynamic studies with cocaine methiodide.

    Science.gov (United States)

    Dickerson, L W; Rodak, D J; Kuhn, F E; Wahlstrom, S K; Tessel, R E; Visner, M S; Schaer, G L; Gillis, R A

    1999-01-01

    It has been suggested that cocaine acts directly in the brain to enhance central sympathetic outflow. However, some studies suggested that the cardiovascular effects of cocaine are related to a peripheral action. To characterize further the site of cocaine's cardiovascular effect, we compared the hemodynamic effects of cocaine (2 mg/kg, i.v. bolus) with those observed after administration of an equimolar dose (2.62 mg/kg, i.v. bolus) of cocaine methiodide, a quaternary derivative of cocaine that does not penetrate the blood-brain barrier, by using sufentanil-sedated dogs. Cocaine produced significant (p < 0.05) increases in heart rate (+37+/-11 beats/min), mean arterial pressure (+55+/-11 mm Hg), left ventricular end-diastolic pressure (+5.3+/-1.0 mm Hg), and cardiac output (+2.4+/-0.9 L/min). Cocaine methiodide produced increases in heart rate (+57+/-11 beats/min), mean arterial pressure (+45+/-11 mm Hg), left ventricular end-diastolic pressure (+3.4+/-1.0 mm Hg), and cardiac output (1.1+/-0.9 L/min), which were not significantly different from those observed with cocaine. Because opiate sedation potentially might have attenuated central sympathetic outflow, we further confirmed the qualitative similarity of the actions of cocaine and cocaine methiodide on heart rate and blood pressure in unsedated, conscious dogs. Our data suggest that the cardiovascular effects of cocaine result primarily from a peripheral site of action.

  19. Cross-resistance of an amsacrine-resistant human leukemia line to topoisomerase II reactive DNA intercalating agents. Evidence for two topoisomerase II directed drug actions

    Energy Technology Data Exchange (ETDEWEB)

    Zwelling, L.A.; Mayes, J.; Hinds, M.; Chan, D.; Altschuler, E.; Carroll, B.; Parker, E.; Deisseroth, K.; Radcliffe, A.; Seligman, M.; Li, Li; Farquhar, D. (Univ. of Texas M.D. Anderson Cancer Center, Houston (USA))

    1991-04-23

    HL-60/AMSA is a human leukemia cell line that is 50-100-fold more resistant than its drug-sensitive HL-60 parent line to the cytotoxic actions of the DNA intercalator amsacrine (m-AMSA). HL-60/AMSA topoisomerase II is also resistant to the inhibitory actions of m-AMSA. HL-60/AMSA cells and topoisomerase II are cross-resistant to anthracycline and ellipticine intercalators but relatively sensitive to the nonintercalating topoisomerase II reactive epipodophyllotoxin etoposide. The authors now demonstrate that HL-60/AMSA and its topoisomerase II are cross-resistant to the DNA intercalators mitoxantrone and amonafide, thus strongly indicating that HL-60/AMSA and its topoisomerase II are resistant to topoisomerase II reactive intercalators but not to nonintercalators. At high concentrations, mitoxantrone and amonafide were also found to inhibit their own, m-AMSA's, and etoposide's abilities to stabilize topoisomerase II-DNA complexes. These results suggest that the cytotoxicity of m-AMSA and etoposide is initiated primarily by the stabilization of the topoisomerase II-DNA complex. Other topoisomerase II reactive drugs may inhibit the enzyme at other steps in the topoisomerization cycle, particularly at elevated concentrations. Under these conditions, these latter drugs may not produce protein-associated DNA cleavage while still inhibiting topoisomerase II function as well as the actions of other topoisomerase II reactive drugs.

  20. Improved probabilistic inference as a general learning mechanism with action video games.

    Science.gov (United States)

    Green, C Shawn; Pouget, Alexandre; Bavelier, Daphne

    2010-09-14

    Action video game play benefits performance in an array of sensory, perceptual, and attentional tasks that go well beyond the specifics of game play [1-9]. That a training regimen may induce improvements in so many different skills is notable because the majority of studies on training-induced learning report improvements on the trained task but limited transfer to other, even closely related, tasks ([10], but see also [11-13]). Here we ask whether improved probabilistic inference may explain such broad transfer. By using a visual perceptual decision making task [14, 15], the present study shows for the first time that action video game experience does indeed improve probabilistic inference. A neural model of this task [16] establishes how changing a single parameter, namely the strength of the connections between the neural layer providing the momentary evidence and the layer integrating the evidence over time, captures improvements in action-gamers behavior. These results were established in a visual, but also in a novel auditory, task, indicating generalization across modalities. Thus, improved probabilistic inference provides a general mechanism for why action video game playing enhances performance in a wide variety of tasks. In addition, this mechanism may serve as a signature of training regimens that are likely to produce transfer of learning.

  1. Learning about goals: development of action perception and action control

    OpenAIRE

    Verschoor, Stephan Alexander

    2014-01-01

    By using innovative paradigms, the present thesis provides convincing evidence that action-effect learning, and sensorimotor processes in general play a crucial role in the development of action- perception and production in infancy. This finding was further generalized to sequential action. Furthermore the thesis suggests that means-selection-, ends-selection information, and action-effect knowledge together feed into a unitary concept of goal. Both these findings have the potential to gener...

  2. Intentional Action and Action Slips.

    Science.gov (United States)

    Heckhausen, Heinz; Beckmann, Jurgen

    1990-01-01

    An explanation of action slips is offered that examines controlled actions in the context of an intentional behavior theory. Actions are considered guided by mentally represented intentions, subdivided into goal intentions and contingent instrumental intentions. Action slips are categorized according to problem areas in the enactment of goal…

  3. The minimalist grammar of action.

    Science.gov (United States)

    Pastra, Katerina; Aloimonos, Yiannis

    2012-01-12

    Language and action have been found to share a common neural basis and in particular a common 'syntax', an analogous hierarchical and compositional organization. While language structure analysis has led to the formulation of different grammatical formalisms and associated discriminative or generative computational models, the structure of action is still elusive and so are the related computational models. However, structuring action has important implications on action learning and generalization, in both human cognition research and computation. In this study, we present a biologically inspired generative grammar of action, which employs the structure-building operations and principles of Chomsky's Minimalist Programme as a reference model. In this grammar, action terminals combine hierarchically into temporal sequences of actions of increasing complexity; the actions are bound with the involved tools and affected objects and are governed by certain goals. We show, how the tool role and the affected-object role of an entity within an action drives the derivation of the action syntax in this grammar and controls recursion, merge and move, the latter being mechanisms that manifest themselves not only in human language, but in human action too.

  4. Action video game training reduces the Simon Effect.

    Science.gov (United States)

    Hutchinson, Claire V; Barrett, Doug J K; Nitka, Aleksander; Raynes, Kerry

    2016-04-01

    A number of studies have shown that training on action video games improves various aspects of visual cognition including selective attention and inhibitory control. Here, we demonstrate that action video game play can also reduce the Simon Effect, and, hence, may have the potential to improve response selection during the planning and execution of goal-directed action. Non-game-players were randomly assigned to one of four groups; two trained on a first-person-shooter game (Call of Duty) on either Microsoft Xbox or Nintendo DS, one trained on a visual training game for Nintendo DS, and a control group who received no training. Response times were used to contrast performance before and after training on a behavioral assay designed to manipulate stimulus-response compatibility (the Simon Task). The results revealed significantly faster response times and a reduced cost of stimulus-response incompatibility in the groups trained on the first-person-shooter game. No benefit of training was observed in the control group or the group trained on the visual training game. These findings are consistent with previous evidence that action game play elicits plastic changes in the neural circuits that serve attentional control, and suggest training may facilitate goal-directed action by improving players' ability to resolve conflict during response selection and execution. PMID:26238760

  5. Action video game training reduces the Simon Effect.

    Science.gov (United States)

    Hutchinson, Claire V; Barrett, Doug J K; Nitka, Aleksander; Raynes, Kerry

    2016-04-01

    A number of studies have shown that training on action video games improves various aspects of visual cognition including selective attention and inhibitory control. Here, we demonstrate that action video game play can also reduce the Simon Effect, and, hence, may have the potential to improve response selection during the planning and execution of goal-directed action. Non-game-players were randomly assigned to one of four groups; two trained on a first-person-shooter game (Call of Duty) on either Microsoft Xbox or Nintendo DS, one trained on a visual training game for Nintendo DS, and a control group who received no training. Response times were used to contrast performance before and after training on a behavioral assay designed to manipulate stimulus-response compatibility (the Simon Task). The results revealed significantly faster response times and a reduced cost of stimulus-response incompatibility in the groups trained on the first-person-shooter game. No benefit of training was observed in the control group or the group trained on the visual training game. These findings are consistent with previous evidence that action game play elicits plastic changes in the neural circuits that serve attentional control, and suggest training may facilitate goal-directed action by improving players' ability to resolve conflict during response selection and execution.

  6. Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Moody

    2002-01-01

    Full Text Available The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.

  7. Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing

    Directory of Open Access Journals (Sweden)

    Bettina eMohr

    2014-11-01

    Full Text Available The role of the two hemispheres in the neurorehabilitation of language is still under dispute. This study explored the changes in language-evoked brain activation over a two-week treatment interval with intensive constraint induced aphasia therapy (CIAT, which is also called intensive language action therapy (ILAT. Functional magnetic resonance imaging (fMRI was used to assess brain activation in perilesional left hemispheric and in homotopic right hemispheric areas during passive listening to high and low-ambiguity sentences and non-speech control stimuli in chronic non-fluent aphasia patients. All patients demonstrated significant clinical improvements of language functions after therapy. In an event-related fMRI experiment, a significant increase of BOLD signals was manifest in right inferior frontal and temporal areas. This activation increase was stronger for highly ambiguous sentences than for unambiguous ones. These results suggest that the known language improvements brought about by intensive constraint-induced language action therapy at least in part relies on circuits within the right-hemispheric homologues of left-perisylvian language areas, which are most strongly activated in the processing of semantically complex language.

  8. Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing.

    Science.gov (United States)

    Mohr, Bettina; Difrancesco, Stephanie; Harrington, Karen; Evans, Samuel; Pulvermüller, Friedemann

    2014-01-01

    The role of the two hemispheres in the neurorehabilitation of language is still under dispute. This study explored the changes in language-evoked brain activation over a 2-week treatment interval with intensive constraint induced aphasia therapy (CIAT), which is also called intensive language action therapy (ILAT). Functional magnetic resonance imaging (fMRI) was used to assess brain activation in perilesional left hemispheric and in homotopic right hemispheric areas during passive listening to high and low-ambiguity sentences and non-speech control stimuli in chronic non-fluent aphasia patients. All patients demonstrated significant clinical improvements of language functions after therapy. In an event-related fMRI experiment, a significant increase of BOLD signal was manifest in right inferior frontal and temporal areas. This activation increase was stronger for highly ambiguous sentences than for unambiguous ones. These results suggest that the known language improvements brought about by intensive constraint-induced language action therapy at least in part relies on circuits within the right-hemispheric homologs of left-perisylvian language areas, which are most strongly activated in the processing of semantically complex language.

  9. Modulation of Attribution of Responsibility on ‘Action Effect' and Its ERP Evidence%责任归因对“做效应”的调控及其ERP证据

    Institute of Scientific and Technical Information of China (English)

    索涛; 冯廷勇; 顾本柏; 王会丽; 李红

    2011-01-01

    significantly different between following their action and inaction; while the emotions and responsibility experienced by the ELC participants for the feedback outcomes following their action were more intense than that following their inaction. Moreover, the FRNs and P300s elicited by the feedback outcomes following action and inaction were no differences for the ILC participants, whereas the two ERP components elicited by the feedback outcomes following action were both larger than that following inaction for the ELC participants. In short, the action effect is not evident in ILC participants, but evident in EIC participants. Thus, it most likely that action effect is induced by different degree of sense of responsibility to identical outcomes following variant behavior.

  10. Radioactive fallout and neural tube defects

    Directory of Open Access Journals (Sweden)

    Nejat Akar

    2015-10-01

    Full Text Available Possible link between radioactivity and the occurrence of neural tube defects is a long lasting debate since the Chernobyl nuclear fallout in 1986. A recent report on the incidence of neural defects in the west coast of USA, following Fukushima disaster, brought another evidence for effect of radioactive fallout on the occurrence of NTD’s. Here a literature review was performed focusing on this special subject.

  11. Designing neural networks that process mean values of random variables

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Michael J. [AIT Austrian Institute of Technology, Innovation Systems Department, 1220 Vienna (Austria); Clark, John W. [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal (Portugal)

    2014-06-13

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence.

  12. Sentential context modulates the involvement of the motor cortex in action language processing: An fMRI study

    Directory of Open Access Journals (Sweden)

    Karen D.I. Schuil

    2013-04-01

    Full Text Available Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a moderate view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in nonliteral sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to nonliteral and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than nonliteral action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  13. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  14. Experimental evidence for the mode of action based on electrostatic and hydrophobic forces to explain interaction between chitosans and phospholipid Langmuir monolayers.

    Science.gov (United States)

    Pavinatto, Adriana; Delezuk, Jorge A M; Souza, Adriano L; Pavinatto, Felippe J; Volpati, Diogo; Miranda, Paulo B; Campana-Filho, Sérgio P; Oliveira, Osvaldo N

    2016-09-01

    The interaction between chitosans and Langmuir monolayers mimicking cell membranes has been explained with an empirical scheme based on electrostatic and hydrophobic forces, but so far this has been tested only for dimyristoyl phosphatidic acid (DMPA). In this paper, we show that the mode of action in such a scheme is also valid for dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG), whose monolayers were expanded and their compressibility modulus decreased by interacting with chitosans. In general, the effects were stronger for the negatively charged DPPG in comparison to DPPC, and for the low molecular weight chitosan (LMWChi) which was better able to penetrate into the hydrophobic chains than the high molecular weight chitosan (Chi). Penetration into the hydrophobic chains was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum frequency generation (SFG) spectroscopy. A slight reduction in conformational order of the lipid chains induced by the chitosans was quantitatively estimated by measuring the ratio between the intensities of the methyl (r(+)) and methylene (d(+)) peaks in the SFG spectra for DPPG. The ratio decreased from 35.6 for the closely packed DPPG monolayer to 7.0 and 6.6 for monolayers containing Chi and LMWChi, respectively. Since in both cases there was a significant phospholipid monolayer expansion, the incorporation of chitosans led to chitosan-rich and lipid-rich condensed domains, which mantained conformational order for their hydrophobic tails. The stronger effects from LMWChi are ascribed to an easier access to the hydrophobic tails, as corroborated by measuring aggregation in solution with dynamic light scattering, where the hydrodynamic radius for LMWChi was close to half of that for Chi. Taken together, the results presented here confirm that the same mode of action applies to different phospholipids that are important constituents of mammalian (DPPC) and

  15. Action physics

    Science.gov (United States)

    McGinness, Lachlan P.; Savage, C. M.

    2016-09-01

    More than a decade ago, Edwin Taylor issued a "call to action" that presented the case for basing introductory university mechanics teaching around the principle of stationary action [E. F. Taylor, Am. J. Phys. 71, 423-425 (2003)]. We report on our response to that call in the form of an investigation of the teaching and learning of the stationary action formulation of physics in a first-year university course. Our action physics instruction proceeded from the many-paths approach to quantum physics to ray optics, classical mechanics, and relativity. Despite the challenges presented by action physics, students reported it to be accessible, interesting, motivational, and valuable.

  16. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  17. Complementary Actions

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2015-05-01

    Full Text Available Complementary colors are color pairs which, when combined in the right proportions, produce white or black. Complementary actions refer here to forms of social interaction wherein individuals adapt their joint actions according to a common aim. Notably, complementary actions are incongruent actions. But being incongruent is not sufficient to be complementary (i.e., to complete the action of another person. Successful complementary interactions are founded on the abilities: (i to simulate another person’s movements, (ii to predict another person’s future action/s, (iii to produce an appropriate incongruent response which differ, while interacting, with observed ones, and (iv to complete the social interaction by integrating the predicted effects of one’s own action with those of another person. This definition clearly alludes to the functional importance of complementary actions in the perception–action cycle and prompts us to scrutinize what is taking place behind the scenes. Preliminary data on this topic have been provided by recent cutting-edge studies utilizing different research methods. This mini-review aims to provide an up-to-date overview of the processes and the specific activations underlying complementary actions.

  18. Action representation: crosstalk between semantics and pragmatics.

    Science.gov (United States)

    Prinz, Wolfgang

    2014-03-01

    Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics.

  19. The Consortium for Evidence Based Research in Rural Educational Settings (CEBRRES): Applying Collaborative Action Research as a Means of Enhancing the Development of Rural Middle School Science Teachers

    Science.gov (United States)

    Wulff, A. H.

    2006-05-01

    Kentucky ranks third in the U.S. in need of rural education attention. Rural schools in Kentucky serve nearly 40% of the total student population, and graduation rates and NAEP scores are low. A two-year pilot study is being completed addressing psychological, social, and content knowledge based constructs, as they apply to science and mathematics achievement in rural environments. The goals are to identify the key aspects of rural teachers knowledge and skills, use a framework to describe how knowledge and skills develop in the rural classroom, apply a useful model of intervention to promote teacher development and increased student learning. If proven successful the knowledge can be incorporated into the practice of current teaching and preservice pedagogical methods. The problem that was identified and addressed by CEBRRES is the high level of student disengagement and the shortage of rigorous stimulating curriculum models. The action taken was the development and implementation of model eliciting activities. Teachers at the target school were expected to utilize action research methodology to execute model-eliciting activities in the classroom, and then communicate results in forms that are useful for other teachers. Benefits to teachers included stipends, increased science content depth and breadth, support to achieve "highly qualified teacher status", extensive professional development, and technology, equipment, and supplies for their school. Survey instruments were devised to address school perceptions (61% worry that they are not doing well enough in school), future plans (80% expect to attend college vs. the current 47.5%), various self concepts, academic self concepts (23% feel that learning is difficult for them), and family self concepts. Science was identified by the students as the subject that interests them the most, followed by math, yet Kentucky ranks near the bottom of the U.S. in math and science training in the workplace. Geology

  20. Neuroart: picturing the neuroscience of intentional actions in art and science

    Science.gov (United States)

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629

  1. Neuroart: picturing the neuroscience of intentional actions in art and science.

    Science.gov (United States)

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629

  2. Hippocampal signatures of episodic memory: Evidence from single-unit recording studies

    Directory of Open Access Journals (Sweden)

    Amy L Griffin

    2013-05-01

    Full Text Available What hippocampal neural firing patterns signal memory and, more importantly, how is this memory code used by associated structures to translate a memory into a decision or action? Candidate hippocampal activity patterns will be discussed including (1 trajectory-specific firing of place cells with place fields on an overlapping segment of two (or more distinct trajectories (2 prospective firing of hippocampal neurons that signal an upcoming event or action, and (3 place cell remapping to changes in environment and task. To date, there has not compelling evidence for any of these activity patterns being the neural substrate of episodic memory. New findings suggest that learning and memory processes are emergent properties of interregional interactions and not localized within any one discrete brain region. Therefore, the next step in understanding how remapping and trajectory coding participate in memory coding may be to investigate how these activity patterns relate to activity in anatomically-connected structures such as the prefrontal cortex.

  3. The potent opioid agonist, (+)-cis-3-methylfentanyl binds pseudoirreversibly to the opioid receptor complex in vitro and in vivo: Evidence for a novel mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Band, L.; Xu, Heng; Bykov, V.; Rothman, R.B.; Kim, Chongho; Newman, A.; Jacobson, A.E.; Rice, K.C. (NIDDK, Bethesda, MD (USA)); Greig, N. (NIA, Bethesda, MD (USA))

    1990-01-01

    The present study demonstrates that pretreatment of rat brain membranes with (+)-cis-3-methylfentanyl ((+)-cis-MF), followed by extensive washing of the membranes, produces a wash-resistant decreasing in the binding of ({sup 3}H)-(D-ala{sup 2}, D-leu{sup 5})enkephalin to the d binding site of the opioid receptor complex ({delta}{sub cx} binding site). Intravenous administration of (+)-cis-MF (50 {mu}g/kg) to rats produced a pronounced catalepsy and also produced a wash-resistant masking of {delta}{sub cx} and {mu} binding sites in membranes prepared 120 min post-injection. Administration of 1 mg/kg i.v. of the opioid antagonist, 6-desoxy-6{beta}-fluoronaltrexone (cycloFOXY), 100 min after the injection of (+)-cis-MF (20 min prior to the preparation of membranes) completely reversed the catatonia and restored masked {delta}{sub cx} binding sites to control levels. This was not observed with (+)-cycloFOXY. The implications of these and other findings for the mechanism of action of (+)-cis-MF and models of the opioid receptors are discussed.

  4. [Neural mechanisms of decision making].

    Science.gov (United States)

    Funahashi, Shintaro

    2008-09-01

    Decision-making plays an important role in the transformation of incoming sensory information to purposeful actions. Many decisions have important biological and social consequences, while others may have a more limited impact on our everyday life. The neural mechanisms of decision-making currently constitute an important subject under intense investigation in the field of cognitive and behavioral neuroscience. Among the investigations, on this topic, those involving sensory discrimination tasks using visual motion have provided a wealth of information about the nature of the neural circuitry required to perform perceptual decision-making. For example, by using a motion discrimination task, Shadlen and Newsome have shown an essential role of area LIP in perceptual decision-making. On the other hand, the importance of reward and reward expectations as determinants of decision-making is increasingly appreciated. In particular, reinforcement learning and economic theories, such as game theory, have provided valuable insights into the brain functions related to decision-making. By using a competitive game analogous to matching pennies against a computer, Lee's group showed that in monkeys, previous selections modulated prefrontal neural activity and that this modulation affected the current choice behavior. The prefrontal cortex has been shown to participate in decision-making in free-choice conditions. By using a task involving the free choice of 1 target from multiple saccade targets, Funahashi's group examined the prefrontal participation in decision-making in a free-choice condition. They compared the activities of prefrontal neurons during an oculomotor delay task with forced-choice conditions and free-choice conditions and identified the neural components reflecting the underlying decision-making processes. Although several attempts have been made to understand the neural mechanisms of decision-making, further investigations are required to fully understand these

  5. FGF signaling transforms non-neural ectoderm into neural crest.

    Science.gov (United States)

    Yardley, Nathan; García-Castro, Martín I

    2012-12-15

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling. PMID:23000357

  6. Evidence for dual mode of action of a thiosemicarbazone, NSC73306: A potent substrate of the multidrug resistance-linked ABCG2 transporter

    Science.gov (United States)

    Wu, Chung-Pu; Shukla, Suneet; Calcagno, Anna Maria; Hall, Matthew D.; Gottesman, Michael M.; Ambudkar, Suresh V.

    2008-01-01

    Multidrug resistance due to reduced drug accumulation is a phenomenon predominantly caused by the overexpression of members of the ATP-binding cassette transporters, including ABCB1 (P-glycoprotein), ABCG2 and several ABCC family members (MRPs). We previously reported that a thiosemicarbazone derivative, NSC73306, is cytotoxic to carcinoma cells that overexpress functional P-glycoprotein and it re-sensitizes these cells to chemotherapeutics. In this study, we investigated the effect of NSC73306 on cells overexpressing other ABC drug transporters, including ABCG2, MRP1, MRP4 and MRP5. Our findings demonstrated that NSC73306 is not more toxic to cells that overexpress these transporters compared to their respective parental cells, and these transporters do not confer resistance to NSC73306 either. In spite of this, we observed that NSC73306 is a transport substrate for ABCG2 that can effectively inhibit ABCG2-mediated drug transport and reverse resistance to both mitoxantrone and topotecan in ABCG2-expressing cells. Interactions between NSC73306 and the ABCG2 drug-binding site(s) were confirmed by its stimulatory effect on ATPase activity (140–150 nM concentration required for 50% stimulation) and by inhibition of [125I]-Iodoarylazidoprazosin photolabeling (50% inhibition at 250–400 nM) of the substrate-binding site(s). Overall, NSC73306 appears to be a potent modulator of ABCG2 that does not interact with MRP1, MRP4 or MRP5. Collectively, these data suggest that NSC73306 can potentially be used, due to its dual mode of action, as an effective agent to overcome drug resistance by eliminating P-glycoprotein-overexpressing cells, and by acting as a potent modulator that re-sensitizes ABCG2-expressing cancer cells to chemotherapeutics. PMID:18089722

  7. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is......In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...

  8. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  9. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  10. Radioprotection by DMSO against the biological effects of incorporated radionuclides in vivo. Comparison with other radioprotectors and evidence for indirect action of Auger electrons

    International Nuclear Information System (INIS)

    Dimethyl sulfoxide (DMSO) was studied for its capacity to protect against the biological effects of chronic irradiation by incorporated radionuclides. Spermatogenesis in mice was used as experimental model and spermatogonial cell survival was the biological endpoint. DMSO was injected intratesticularly 4 h prior to a similar injection of the radiochemical and the spermhead survival determined. Iodine-125 was localized in either the cytoplasm (H125IPDM) or in the DNA (125IUdR) of the tecticular cells. Protection was observed against the high-LET type effects of DNA-bound 125I as well as the low-LET effects of cytoplasmically localized 125I with dose modification factors (DMF) of 3.1±1.0 and 4.4±1.0 respectively. No protection (DMF=1.1±0.1) was observed against the effects of high-LET 5.3 MeV alpha partciles of 210Po. The present findings provide supporting evidence that the mechanism responsible for the extreme biological damage caused by DNA-bound Auger emitters is largely radical mediated and therefore indirect in nature. (orig.)

  11. From Knowledge to Action

    DEFF Research Database (Denmark)

    Hjelmar, Ulf; Møller, Anne Mette

    2016-01-01

    In recent years, focus has been on the utilisation of research-based knowledge and evidence in social work policy and practice in order to make it more effective. A part of this process has been the launch of knowledge portals to make use of knowledge from research. In this article, we investigate...... how knowledge portals about vulnerable children and youth present knowledge and evidence, and how they try to work as ?knowledge brokers? or intermediaries of evidence. We argue that knowledge portals are not merely channels for dissemination of knowledge. Knowledge portals could be considered as part...... of a greater process of bringing knowledge to action, encompassing the social and organisational contexts of research utilisation. The article concludes by stating that knowledge portals have the potential to be effective instruments in knowledge-to-action processes. The two main challenges, however...

  12. An fMRI study of perception and action in deaf signers.

    Science.gov (United States)

    Okada, Kayoko; Rogalsky, Corianne; O'Grady, Lucinda; Hanaumi, Leila; Bellugi, Ursula; Corina, David; Hickok, Gregory

    2016-02-01

    Since the discovery of mirror neurons, there has been a great deal of interest in understanding the relationship between perception and action, and the role of the human mirror system in language comprehension and production. Two questions have dominated research. One concerns the role of Broca's area in speech perception. The other concerns the role of the motor system more broadly in understanding action-related language. The current study investigates both of these questions in a way that bridges research on language with research on manual actions. We studied the neural basis of observing and executing American Sign Language (ASL) object and action signs. In an fMRI experiment, deaf signers produced signs depicting actions and objects as well as observed/comprehended signs of actions and objects. Different patterns of activation were found for observation and execution although with overlap in Broca's area, providing prima facie support for the claim that the motor system participates in language perception. In contrast, we found no evidence that action related signs differentially involved the motor system compared to object related signs. These findings are discussed in the context of lesion studies of sign language execution and observation. In this broader context, we conclude that the activation in Broca's area during ASL observation is not causally related to sign language understanding. PMID:26796716

  13. The developmental cognitive neuroscience of action: semantics, motor resonance and social processing.

    Science.gov (United States)

    Ní Choisdealbha, Áine; Reid, Vincent

    2014-06-01

    The widespread use of EEG methods and the introduction of new brain imaging methods such as near-infrared spectroscopy have made cognitive neuroscience research with infants more feasible, resulting in an explosion of new findings. Among the long-established study of the neural correlates of face and speech perception in infancy, there has been an abundance of recent research on infant perception and production of action and concomitant neurocognitive development. In this review, three significant strands of developmental action research are discussed. The first strand focuses on the relationship of diverse social cognitive processes, including the perception of goals and animacy, and the development of precursors to theory of mind, to action perception. The second investigates the role of motor resonance and mirror systems in early action development. The third strand focuses on the extraction of meaning from action by infants and discusses how semantic processing of action emerges early in life. Although these strands of research are pursued separately, many of the findings from each strand inform all three theoretical frameworks. This review will evaluate the evidence for a synthesised account of infant action development.

  14. Neural prostheses and brain plasticity

    Science.gov (United States)

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-12-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices' hardware and software and the dynamic environment in which the devices operate: the patient's body or 'wetware'. Over 120 000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wetware, and of the important role of the dynamic nature of wetware. In the case of neural prostheses, the most critical component of that wetware is the central nervous system. This paper will examine the evidence of changes in the central auditory system that contribute to changes in performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. The relationship between the human data and evidence from animals of the remarkable capacity for plastic change of the central auditory system, even into adulthood, will then be examined. Finally, we will discuss the role of brain plasticity in neural prostheses in general.

  15. Holographic neural networks

    OpenAIRE

    Manger, R

    1998-01-01

    Holographic neural networks are a new and promising type of artificial neural networks. This article gives an overview of the holographic neural technology and its possibilities. The theoretical principles of holographic networks are first reviewed. Then, some other papers are presented, where holographic networks have been applied or experimentally evaluated. A case study dealing with currency exchange rate prediction is described in more detail.

  16. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten;

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  17. READING A NEURAL CODE

    NARCIS (Netherlands)

    BIALEK, W; RIEKE, F; VANSTEVENINCK, RRD; WARLAND, D

    1991-01-01

    Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - extracting information about an unknown time-dependent stimulus from short segments of a spike train. Here the neural code was characterized from

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Preventing neural tube defects in Europe : A missed opportunity

    NARCIS (Netherlands)

    Busby, A; Armstrong, B; Dolk, H; Armstrong, N; Haeusler, M; Berghold, A; Gillerot, Y; Baguette, A; Gjerga, R; Barisic, [No Value; Christiansen, M; Goujard, J; Steinbicker, [No Value; Rosch, C; McDonnell, R; Scarano, G; Calzolari, E; Neville, A; Cocchi, G; Bianca, S; Gatt, M; De Walle, H; Braz, P; Latos-Bielenska, A; Gener, B; Portillor, [No Value; Addor, MC; Abramsky, L; Ritvanen, A; Robert-Gnansia, E; Daltveit, AK; Aneren, G; Olars, B; Edwards, G

    2005-01-01

    Each year, more than 4500 pregnancies in the European Union are affected by neural tube defects (NTD). Unambiguous evidence of the effectiveness of peri conceptional folic acid in preventing the majority of neural tube defects has been available since 1991. We report on trends in the total prevalenc

  3. Cortical Activation to Action Perception is Associated with Action Production Abilities in Young Infants

    OpenAIRE

    Lloyd-Fox, Sarah; Wu, Rachel; RICHARDS, JOHN E.; Elwell, Clare E; Johnson, Mark H.

    2013-01-01

    The extent to which perception and action share common neural processes is much debated in cognitive neuroscience. Taking a developmental approach to this issue allows us to assess whether perceptual processing develops in close association with the emergence of related action skills within the same individual. The current study used functional near-infrared spectroscopy (fNIRS) to investigate the perception of human action in 4- to 6-month-old human infants. In addition, the infants' manual ...

  4. Neural computation and the computational theory of cognition.

    Science.gov (United States)

    Piccinini, Gualtiero; Bahar, Sonya

    2013-04-01

    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism-neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous signals; digital computation requires strings of digits. But current neuroscientific evidence indicates that typical neural signals, such as spike trains, are graded like continuous signals but are constituted by discrete functional elements (spikes); thus, typical neural signals are neither continuous signals nor strings of digits. It follows that neural computation is sui generis. Finally, we highlight three important consequences of a proper understanding of neural computation for the theory of cognition. First, understanding neural computation requires a specially designed mathematical theory (or theories) rather than the mathematical theories of analog or digital computation. Second, several popular views about neural computation turn out to be incorrect. Third, computational theories of cognition that rely on non-neural notions of computation ought to be replaced or reinterpreted in terms of neural computation.

  5. Action Research Empowers School Librarians

    Science.gov (United States)

    Robins, Jennifer

    2015-01-01

    Successful school library programs occur through careful planning and reflection. This reflective process is improved when it is applied in a systematic way through action research. The action research described in this paper enabled school librarians to reflect based on evidence, using data they had collected. This study presents examples of the…

  6. Applying neural networks in autonomous systems

    Science.gov (United States)

    Thornbrugh, Allison L.; Layne, J. D.; Wilson, James M., III

    1992-03-01

    Autonomous and teleautonomous operations have been defined in a variety of ways by different groups involved with remote robotic operations. For example, Conway describes architectures for producing intelligent actions in teleautonomous systems. Applying neural nets in such systems is similar to applying them in general. However, for autonomy, learning or learned behavior may become a significant system driver. Thus, artificial neural networks are being evaluated as components in fully autonomous and teleautonomous systems. Feed- forward networks may be trained to perform adaptive signal processing, pattern recognition, data fusion, and function approximation -- as in control subsystems. Certain components of particular autonomous systems become more amenable to implementation using a neural net due to a match between the net's attributes and desired attributes of the system component. Criteria have been developed for distinguishing such applications and then implementing them. The success of hardware implementation is a crucial part of this application evaluation process. Three basic applications of neural nets -- autoassociation, classification, and function approximation -- are used to exemplify this process and to highlight procedures that are followed during the requirements, design, and implementation phases. This paper assumes some familiarity with basic neural network terminology and concentrates upon the use of different neural network types while citing references that cover the underlying mathematics and related research.

  7. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm.

    Science.gov (United States)

    Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M; Maynard, Thomas M; Mood, Kathy; Daar, Ira O; Moody, Sally A

    2016-06-01

    The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc. PMID:27092474

  8. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus

    OpenAIRE

    Gao, Xiang; Enikolopov, Grigori; Chen, Jinhui

    2009-01-01

    Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. We here used a transgenic reporter Nestin-GFP mouse line, in...

  4. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    Science.gov (United States)

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  5. Pharmacogenetics of neural injury recovery.

    Science.gov (United States)

    Pearson-Fuhrhop, Kristin M; Cramer, Steven C

    2013-10-01

    Relatively few pharmacological agents are part of routine care for neural injury, although several are used or under consideration in acute stroke, chronic stroke, traumatic brain injury and secondary stroke prevention. Tissue plasminogen activator is approved for the treatment of acute ischemic stroke, and genetic variants may impact the efficacy and safety of this drug. In the chronic phase of stroke, several drugs such as L-dopa, fluoxetine and donepezil are under investigation for enhancing rehabilitation therapy, with varying levels of evidence. One potential reason for the mixed efficacy displayed by these drugs may be the influence of genetic factors that were not considered in prior studies. An understanding of the genetics impacting the efficacy of dopaminergic, serotonergic and cholinergic drugs may allow clinicians to target these potential therapies to those patients most likely to benefit. In the setting of stroke prevention, which is directly linked to neural injury recovery, the most highly studied pharmacogenomic interactions pertain to clopidogrel and warfarin. Incorporating pharmacogenomics into neural injury recovery has the potential to maximize the benefit of several current and potential pharmacological therapies and to refine the choice of pharmacological agent that may be used to enhance benefits from rehabilitation therapy.

  6. Neurodevelopmental Actions of Leptin

    OpenAIRE

    Bouret, Sebastien G.

    2010-01-01

    Leptin is well known as an important hormone in the central control of feeding behavior. During development, fetuses and newborns are exposed to leptin and recent evidence has shown that leptin receptors are widespread throughout the developing brain. Accordingly, leptin affects brain development during both pre- and post-natal life. The actions of leptin in the developing brain are generally permanent and range from the establishment of hypothalamic circuits to plasticity in cortical pathway...

  7. Equal Opportunity Laws, Affirmative Action and Asymmetric Tournaments:Some Experimental Evidence%机会公平、倾斜政策与不对称锦标赛:一项实验研究

    Institute of Scientific and Technical Information of China (English)

    闫威; 陈长怀

    2012-01-01

    employees with low abilities? If the affirmative action program has been put into practice, will the objective of equality be achieved at the cost of efficiency loss? In this paper, based on the seminal work by Schotter and Weigelt ( 1992) , we experimentally study the impact of equal opportunity law and affirmative action on agents' effort. Our study differs from the previous research in two ways. First, we recruit Chinese students as subjects in seven experiments. This design can provide new evidence and promote research interests among domestic scholars. Second, in contrast with findings in Schotter and Weigelt's study ( 1992) our experimental results suggest the implementation of affirmative action programs do not increase subjects' effort and their total output. This finding is quite different from that of most studies on affirmative action or weakens most literature based on Schotter and Weigelt's study.In the first part, following the basic tournament models established by Lazear & Rosen (1981) and Schotter & Weigelt (1992) the equilibrium efforts are derived respectively for the unfair tournament model, uneven tournament model and affirmative action model. A brief discussion on those models and some research inferences are presented to provide the baseline for empirical analysis. The second part gives a detailed explanation of the experimental design and experimental procedures adopted in this study. We recruited 130 subjects from students attending economics or management courses at Chongqing University. Seven experiments were designed and carried out to study the behavior modes of subjects in different tournament settings. There are two main parameters in these " experiments, kanda , representing the degree of unfairness and asymmetry respectively in a certain tournament. To be more specific, each experiment differs from the other one by a change in only one parameter. Experiment 1 is a fair and symmetrical benchmark experiment. In order to investigate the impact

  8. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  9. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...... is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V...

  10. The generalized anomeric effect in the 1,3-thiazolidines: Evidence for both sulphur and nitrogen as electron donors. Crystal structures of various N-acylthiazolidines including mercury(II) complexes. Possible relevance to penicillin action

    Science.gov (United States)

    Chandrasekhar, Sosale; Chopra, Deepak; Gopalaiah, Kovuru; Guru Row, Tayur N.

    2007-06-01

    Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the C2- N and C2- S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were ˜0.04 Å for C2- N3, S1- C2, and ˜0.08 Å for N3- C6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr 2 complex. (The sulphur atom appears to be sp 2 hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins.

  11. Neural network based speech synthesizer: A preliminary report

    Science.gov (United States)

    Villarreal, James A.; Mcintire, Gary

    1987-01-01

    A neural net based speech synthesis project is discussed. The novelty is that the reproduced speech was extracted from actual voice recordings. In essence, the neural network learns the timing, pitch fluctuations, connectivity between individual sounds, and speaking habits unique to that individual person. The parallel distributed processing network used for this project is the generalized backward propagation network which has been modified to also learn sequences of actions or states given in a particular plan.

  12. Neural Control of Energy Balance: Translating Circuits to Therapies

    OpenAIRE

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacother...

  13. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    Science.gov (United States)

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  14. Kernel Temporal Differences for Neural Decoding

    Directory of Open Access Journals (Sweden)

    Jihye Bae

    2015-01-01

    Full Text Available We study the feasibility and capability of the kernel temporal difference (KTD(λ algorithm for neural decoding. KTD(λ is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm’s convergence can be guaranteed for policy evaluation. The algorithm’s nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement. KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey’s neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm’s capabilities in reinforcement learning brain machine interfaces.

  15. Exploring neural code in natural environments

    Science.gov (United States)

    Nemenman, Ilya

    2010-03-01

    Neurons communicate by means of stereotyped pulses, called action potentials or spikes, and a central issue in systems neuroscience is to understand this neural coding. We study how sensory information is encoded in sequences of spikes, using motion detection in the blowfly as a model system. To emphasize the importance of the environment, and specifically the statistics of its dynamics, on shaping the animal's response, we perform experiments in an environment maximally similar to the natural one. This results in a number of unexpected, striking observations about the structure of the neural code in this system, typically unseen in simpler, more traditional experimental setups. First, the timing of spikes is important with a precision roughly two orders of magnitude greater than the temporal dynamics of the stimulus, which is behaviorally controlled in the natural settings. Second, the fly goes a long way to utilize the redundancy in the stimulus in order to optimize the neural code and encode efficiently more refined features than would be possible otherwise, providing sufficient information about the stimulus in time for behavioral decision making. This implies that the neural code, even in low-level vision, may be significantly context (that is, environment and behavior) dependent. The presentation is based on: I Nemenman, GD Lewen, W Bialek, RR de Ruyter van Steveninck. Neural Coding of Natural Stimuli: Information at Sub-Millisecond Resolution. PLoS Comput Biol 4 (3): e1000025, 2008.

  16. Bayesian modeling and classification of neural signals

    OpenAIRE

    Lewicki, Michael S.

    1994-01-01

    Signal processing and classification algorithms often have limited applicability resulting from an inaccurate model of the signal's underlying structure. We present here an efficient, Bayesian algorithm for modeling a signal composed of the superposition of brief, Poisson-distributed functions. This methodology is applied to the specific problem of modeling and classifying extracellular neural waveforms which are composed of a superposition of an unknown number of action potentials CAPs). ...

  17. Deep Learning in Neural Networks: An Overview

    OpenAIRE

    Schmidhuber, Juergen

    2014-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpr...

  18. Do mirror neurons subserve action understanding?

    Science.gov (United States)

    Hickok, Gregory

    2013-04-12

    Mirror neurons were once widely believed to support action understanding via motor simulation of the observed actions. Recent evidence regarding the functional properties of mirror neurons in monkeys as well as much neuropsychological evidence in humans has shown that this is not the case.

  19. Neural Networks: Implementations and Applications

    OpenAIRE

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  20. Action Research

    Science.gov (United States)

    Milton-Brkich, Katie Lynn; Shumbera, Kristen; Beran, Becky

    2010-01-01

    Defined as "any systemic inquiry conducted by teachers... for the purpose of gathering information about how their particular schools operate, how they teach, and how their students learn" (Mertler, 2009), "action research" is empowering and professional research done by teachers to inform and improves their own practices. Although there are many…

  1. China's Actions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ China's National Development and Reform Commission publicized the country's policies and actions for addressing climate change in a report released on November 26,2009.The report highlighted China's efforts in cutting greenhouse gas emissions in 2009 by: (1)Rigorously checking the blind expansion of its energy-and pollution-intensive industries.

  2. A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,an adaptive dynamic control scheme based on a fuzzy neural network is presented,that presents utilizes both feed-forward and feedback controller elements.The former of the two elements comprises a neural network with both identification and control role,and the latter is a fuzzy neural algorithm,which is introduced to provide additional control enhancement.The feedforward controller provides only coarse control,whereas the feedback oontroller can generate on-line conditional proposition rule automatically to improve the overall control action.These properties make the design very versatile and applicable to a range of industrial applications.

  3. Primary neural leprosy: systematic review

    Directory of Open Access Journals (Sweden)

    Jose Antonio Garbino

    2013-06-01

    Full Text Available The authors proposed a systematic review on the current concepts of primary neural leprosy by consulting the following online databases: MEDLINE, Lilacs/SciELO, and Embase. Selected studies were classified based on the degree of recommendation and levels of scientific evidence according to the “Oxford Centre for Evidence-based Medicine”. The following aspects were reviewed: cutaneous clinical and laboratorial investigations, i.e. skin clinical exam, smears, and biopsy, and Mitsuda's reaction; neurological investigation (anamnesis, electromyography and nerve biopsy; serological investigation and molecular testing, i.e. serological testing for the detection of the phenolic glycolipid 1 (PGL-I and the polymerase chain reaction (PCR; and treatment (classification criteria for the definition of specific treatment, steroid treatment, and cure criteria.

  4. Interhemispheric inhibition during mental actions of different complexity.

    Directory of Open Access Journals (Sweden)

    Nicolas Gueugneau

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Yet, neurophysiological evidences on the nature of interhemispheric interactions during mental movements are still meagre. Here, we asked whether the content of mental images, investigated by task complexity, is finely represented in the inhibitory interactions between the two primary motor cortices (M1s. Subjects' left M1 was stimulated by means of transcranial magnetic stimulation (TMS while they were performing actual or mental movements of increasing complexity with their right hand and exerting a maximum isometric force with their left thumb and index. Thus, we simultaneously assessed the corticospinal excitability in the right opponent pollicis muscle (OP and the ipsilateral silent period (iSP in the left OP during actual and mental movements. Corticospinal excitability in right OP increased during actual and mental movements, but task complexity-dependent changes were only observed during actual movements. Interhemispheric motor inhibition in the left OP was similarly modulated by task complexity in both mental and actual movements. Precisely, the duration and the area of the iSP increased with task complexity in both movement conditions. Our findings suggest that mental and actual movements share similar inhibitory neural circuits between the two homologous primary motor cortex areas.

  5. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  6. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  7. Expanding the mirror : vicarious activity for actions, emotions, and sensations

    NARCIS (Netherlands)

    Keysers, Christian; Gazzola, Valeria

    2009-01-01

    We often empathically share the states of others. The discovery of 'mirror neurons' suggested a neural mechanism for monkeys to share the actions of others. Here we expand this view by showing that mirror neurons for actions not only exist in the premotor cortex or in monkeys and that vicarious acti

  8. Is neural Darwinism Darwinism?

    Science.gov (United States)

    van Belle, T

    1997-01-01

    Neural Darwinism is a theory of cognition developed by Gerald Edelman along with George Reeke and Olaf Sporns at Rockefeller University. As its name suggests, neural Darwinism is modeled after biological Darwinism, and its authors assert that the two processes are strongly analogous. both operate on variation in a population, amplifying the more adaptive individuals. However, from a computational perspective, neural Darwinism is quite different from other models of natural selection, such as genetic algorithms. The individuals of neural Darwinism do not replicate, thus robbing the process of the capacity to explore new solutions over time and ultimately reducing it to a random search. Because neural Darwinism does not have the computational power of a truly Darwinian process, it is misleading to label it as such. to illustrate this disparity in adaptive power, one of Edelman's early computer experiments, Darwin I, is revisited, and it is shown that adding replication greatly improves the adaptive power of the system.

  9. Brain basis of communicative actions in language.

    Science.gov (United States)

    Egorova, Natalia; Shtyrov, Yury; Pulvermüller, Friedemann

    2016-01-15

    Although language is a key tool for communication in social interaction, most studies in the neuroscience of language have focused on language structures such as words and sentences. Here, the neural correlates of speech acts, that is, the actions performed by using language, were investigated with functional magnetic resonance imaging (fMRI). Participants were shown videos, in which the same critical utterances were used in different communicative contexts, to Name objects, or to Request them from communication partners. Understanding of critical utterances as Requests was accompanied by activation in bilateral premotor, left inferior frontal and temporo-parietal cortical areas known to support action-related and social interactive knowledge. Naming, however, activated the left angular gyrus implicated in linking information about word forms and related reference objects mentioned in critical utterances. These findings show that understanding of utterances as different communicative actions is reflected in distinct brain activation patterns, and thus suggest different neural substrates for different speech act types.

  10. Do Neural Avalanches Indicate Criticality After All?

    CERN Document Server

    Dehghani, Mohammad; Shahbazi, Farhad

    2016-01-01

    Neural avalanches in size and duration exhibit a power law distribution illustrating as a straight line when plotted on the logarithmic scales. The power-law exponent is interpreted as the signature of criticality and it is assumed that the resting brain operates near criticality. However, there is no clear evidence that supports this assumption, and even there are extensive research studies conflicting one another. The model of the current paper is an extension of a previous publication wherein we used an integrate-and-fire model on a regular lattice with periodic boundary conditions and introduced the temporal complexity as a genuine signature of criticality. However, in that model the power-law distribution of neural avalanches were manifestation of super-criticality rather than criticality. Here, however, we show that replacing the discrete noise in the model with a Gaussian noise and continuous time solution of the equation leads to coincidence of temporal complexity and spatiotemporal patterns of neural...

  11. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  12. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  13. AUV fuzzy neural BDI

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The typical BDI (belief desire intention) model of agent is not efficiently computable and the strict logic expression is not easily applicable to the AUV (autonomous underwater vehicle) domain with uncertainties. In this paper, an AUV fuzzy neural BDI model is proposed. The model is a fuzzy neural network composed of five layers: input ( beliefs and desires) , fuzzification, commitment, fuzzy intention, and defuzzification layer. In the model, the fuzzy commitment rules and neural network are combined to form intentions from beliefs and desires. The model is demonstrated by solving PEG (pursuit-evasion game), and the simulation result is satisfactory.

  14. ANT Advanced Neural Tool

    International Nuclear Information System (INIS)

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs

  15. The neural mechanisms of learning from competitors.

    Science.gov (United States)

    Howard-Jones, Paul A; Bogacz, Rafal; Yoo, Jee H; Leonards, Ute; Demetriou, Skevi

    2010-11-01

    Learning from competitors poses a challenge for existing theories of reward-based learning, which assume that rewarded actions are more likely to be executed in the future. Such a learning mechanism would disadvantage a player in a competitive situation because, since the competitor's loss is the player's gain, reward might become associated with an action the player should themselves avoid. Using fMRI, we investigated the neural activity of humans competing with a computer in a foraging task. We observed neural activity that represented the variables required for learning from competitors: the actions of the competitor (in the player's motor and premotor cortex) and the reward prediction error arising from the competitor's feedback. In particular, regions positively correlated with the unexpected loss of the competitor (which was beneficial to the player) included the striatum and those regions previously implicated in response inhibition. Our results suggest that learning in such contexts may involve the competitor's unexpected losses activating regions of the player's brain that subserve response inhibition, as the player learns to avoid the actions that produced them.

  16. Action potentials reliably invade axonal arbors of rat neocortical neurons

    OpenAIRE

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  17. Action Learning: Avoiding Conflict or Enabling Action

    Science.gov (United States)

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  18. The Criticality Hypothesis in Neural Systems

    Science.gov (United States)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  19. Evidences of SEU tolerance for digital implementations of artificial neural networks: one year of MPTB flight results; Mise en evidences de la tolerance aux SEU des implantations digitales de reseaux de neurones artificiels: un an de resultats en vol sur le projet MPTB

    Energy Technology Data Exchange (ETDEWEB)

    Velazco, R.; Cheynet, Ph. [Laboratoire TIMA, 38 - Grenoble (France); Tissot, A.; Haussy, J.; Lambert, J. [CEA Bruyeres-le-Chatel, 91 (France); Ecoffet, R. [Centre National d' Etudes Spatiales (CNES-CT/AQ/CE), 31 - Toulouse (France)

    1999-07-01

    The Microelectronics and Photonics Test-bed (MPTB) carrying twenty-four experiments on-board a scientific satellite is in a high radiation orbit since November 1997. This paper presents flight results of two of these experiments programmed to emulate an Artificial Neural Network devoted to texture analysis. (authors)

  20. The Future of Neural Networks

    OpenAIRE

    Lakra, Sachin; T. V. Prasad; G. Ramakrishna

    2012-01-01

    The paper describes some recent developments in neural networks and discusses the applicability of neural networks in the development of a machine that mimics the human brain. The paper mentions a new architecture, the pulsed neural network that is being considered as the next generation of neural networks. The paper also explores the use of memristors in the development of a brain-like computer called the MoNETA. A new model, multi/infinite dimensional neural networks, are a recent developme...

  1. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  2. Neural Networks in Data Mining

    OpenAIRE

    Priyanka Gaur

    2012-01-01

    The application of neural networks in the data mining is very wide. Although neural networks may have complex structure, long training time, and uneasily understandable representation of results, neural networks have high acceptance ability for noisy data and high accuracy and are preferable in data mining. In this paper the data mining based on neural networks is researched in detail, and the key technology and ways to achieve the data mining based on neural networks are also researched.

  3. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  4. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  5. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  6. Neural Turing Machines

    OpenAIRE

    Graves, Alex; Wayne, Greg; Danihelka, Ivo

    2014-01-01

    We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.

  7. Imaging the Neural Symphony.

    Science.gov (United States)

    Svoboda, Karel

    2016-01-01

    Since the start of the new millennium, a method called two-photon microscopy has allowed scientists to peer farther into the brain than ever before. Our author, one of the pioneers in the development of this new technology, writes that "directly observing the dynamics of neural networks in an intact brain has become one of the holy grails of brain research." His article describes the advances that led to this remarkable breakthrough-one that is helping neuroscientists better understand neural networks.

  8. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  9. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  10. Neural correlates of the contents of visual awareness in humans

    OpenAIRE

    Rees, G.

    2007-01-01

    The immediacy and directness of our subjective visual experience belies the complexity of the neural mechanisms involved, which remain incompletely understood. This review focuses on how the subjective contents of human visual awareness are encoded in neural activity. Empirical evidence to date suggests that no single brain area is both necessary and sufficient for consciousness. Instead, necessary and sufficient conditions appear to involve both activation of a distributed representation of ...

  11. Autonomous robot behavior based on neural networks

    Science.gov (United States)

    Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo

    1997-04-01

    The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.

  12. Classifying and Visualizing Motion Capture Sequences using Deep Neural Networks

    OpenAIRE

    Cho, Kyunghyun; Chen, Xi

    2013-01-01

    The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative...

  13. Effects of category-specific costs on neural systems for perceptual decision-making

    DEFF Research Database (Denmark)

    Fleming, Stephen M; Whiteley, Louise Emma; Hulme, Oliver James;

    2010-01-01

    Perceptual judgments are often biased by prospective losses, leading to changes in decision criteria. Little is known about how and where sensory evidence and cost information interact in the brain to influence perceptual categorization. Here we show that prospective losses systematically bias...... the perception of noisy face-house images. Asymmetries in category-specific cost were associated with enhanced blood-oxygen-level-dependent signal in a frontoparietal network. We observed selective activation of parahippocampal gyrus for changes in category-specific cost in keeping with the hypothesis that loss...... perception and action, expressed via general effects on frontal cortex, and selective effects on extrastriate cortex. These findings indicate that asymmetric costs may affect a neural implementation of perceptual decision making in a similar manner to changes in category expectation, constituting a step...

  14. Brain-Machine Interfaces: The Perception-Action Closed Loop

    OpenAIRE

    Millán, José del R.

    2015-01-01

    A brain-machine interface (BMI) is about transforming neural activity into action and sensation into perception (Figure 1). In a BMI system, neural signals recorded from the brain are fed into a decoding algorithm that translates these signals into motor outputs to control a variety of practical devices for motor-disabled people [1]-[5]. Feedback from the prosthetic device, conveyed to the user either via normal sensory pathways or directly through brain stimulation, establishes a closed cont...

  15. Ideomotor feedback control in a recurrent neural network.

    Science.gov (United States)

    Galtier, Mathieu

    2015-06-01

    The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.

  16. Towards a unifying neural theory of social cognition

    NARCIS (Netherlands)

    Keysers, Christian; Gazzola, Valeria; Anders, S; Ende, G; Junghoffer, M; Kissler, J; Wildgruber, D

    2006-01-01

    Humans can effortlessly understand a lot of what is going on in other peoples' minds. Understanding the neural basis of this capacity has proven quite difficult. Since the discovery of mirror neurons, a number of successful experiments have approached the question of how we understand the actions of

  17. Gabor-like Image Filtering using a Neural Microcircuit

    OpenAIRE

    C. Mayr; A. Heittmann; Schüffny, R.

    2014-01-01

    In this letter, we present an implementation of a neural microcircuit for image processing employing Hebbian-adaptive learning. The neuronal circuit utilizes only excitatory synapses to correlate action potentials, extracting the uncorrelated ones, which contain significant image information. This circuit is capable of approximating Gabor-like image filtering and other image processing functions

  18. Visual intelligence using neural-symbolic learning and reasoning

    NARCIS (Netherlands)

    Penning, H.L.H. de

    2011-01-01

    The DARPA Mind’s Eye program seeks to develop in machines a capability that currently exists only in animals: visual intelligence. This short paper describes the initial results of a Neural-Symbolic approach for action recognition and description to be demonstrated at the 7th international workshop

  19. Chaotifying delayed recurrent neural networks via impulsive effects

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2016-02-01

    In this paper, chaotification of delayed recurrent neural networks via chaotically changing moments of impulsive actions is considered. Sufficient conditions for the presence of Li-Yorke chaos with its ingredients proximality, frequent separation, and existence of infinitely many periodic solutions are theoretically proved. Finally, effectiveness of our theoretical results is illustrated by an example with numerical simulations.

  20. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  1. The endocannabinoid system drives neural progenitor proliferation.

    Science.gov (United States)

    Aguado, Tania; Monory, Krisztina; Palazuelos, Javier; Stella, Nephi; Cravatt, Benjamin; Lutz, Beat; Marsicano, Giovanni; Kokaia, Zaal; Guzmán, Manuel; Galve-Roperh, Ismael

    2005-10-01

    The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.

  2. Neural crack identification

    International Nuclear Information System (INIS)

    The inverse, crack identification problem in elasticity can be formulated as an output error minimization problem which, nevertheless, can not be solved without difficulties by classical numerical optimization. A review of all these previous results, where we used neural networks, filter-driven optimization and genetic algorithms is presented and in a companion lecture during this conference. The use of neural networks for the solution of the inverse problem makes possible the on-line solution of the problem. In fact, one usually approximates the inverse mapping (measurements versus crack quantities). Most of the effort is spent for the learning of this relation, while a sufficiently trained neural network provides predictions with, practically, zero computational cost. Potential applications include on-line, in-flight health monitoring systems with applications in civil and mechanical engineering and production control. In this paper we present new developments in the design of specialized neural networks for the solution of the crack identification problem. Emphasis is posed on the effective use of the learning data, which are produced by the boundary element method. Several technical data will be discussed. They include thoughts about the effective choice of the neural network architecture, the number of training examples and of the learning algorithms will be provided, together with the results of our recent numerical investigation. A detailed application for one or more elliptical cracks using static analysis results with the use of back-propagation trained neural networks will be provided. The general methodology follows our previously published results. By using more refined algorithms for the numerical solution of the neural network learning problem, which are based on the MERLIN optimization system developed in the department of the second author, we are able to solve complicated tasks. First results based on dynamic investigations (wave propagation driven

  3. Body selectivity in occipitotemporal cortex: Causal evidence.

    Science.gov (United States)

    Downing, Paul E; Peelen, Marius V

    2016-03-01

    Perception of others' bodies provides information that is useful for a number of important social-cognitive processes. Evidence from neuroimaging methods has identified focal cortical regions that are highly selective for perceiving bodies and body parts, including the extrastriate body area (EBA) and fusiform body area (FBA). Our understanding of the functional properties of these regions, and their causal contributions to behavior, has benefitted from the study of neuropsychological patients and particularly from investigations using transcranial magnetic stimulation (TMS). We review this evidence, focusing on TMS studies that are revealing of how (and when) activity in EBA contributes to detecting people in natural scenes; to resolving their body shape, movements, actions, individual parts, and identities; and to guiding goal-directed behavior. These findings are considered in reference to a framework for body perception in which the patterns of neural activity in EBA and FBA jointly serve to make explicit the elements of the visual scene that correspond to the body and its parts. These representations are modulated by other sources of information such as prior knowledge, and are shared with wider brain networks involved in many aspects of social cognition. PMID:26044771

  4. Action Experience and Action Discovery in Medicated Individuals with Parkinson’s Disease

    Science.gov (United States)

    Bednark, Jeffery G.; Reynolds, John N. J.; Stafford, Tom; Redgrave, Peter; Franz, Elizabeth A.

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that markedly affects voluntary action. While regular dopamine treatment can help restore motor function, dopamine also influences cognitive portions of the action system. Previous studies have demonstrated that dopamine medication boosts action-effect associations, which are crucial for the discovery of new voluntary actions. In the present study, we investigated whether neural processes involved in the discovery of new actions are altered in PD participants on regular dopamine treatment, compared to healthy age-matched controls. We recorded brain electroencephalography (EEG) activity while PD patients and age-matched controls performed action discovery (AD) and action control tasks. We found that the novelty P3, a component normally present when there is uncertainty about the occurrence of the sensory effect, was enhanced in PD patients. However, AD was maintained in PD patients, and the novelty P3 demonstrated normal learning-related reductions. Crucially, we found that in PD patients the causal association between an action and its resulting sensory outcome did not modulate the amplitude of the feedback correct-related positivity (fCRP), an EEG component sensitive to the association between an action and its resulting effect. Collectively, these preliminary results suggest that the formation of long-term action-outcome representations may be maintained in PD patients on regular dopamine treatment, but the initial experience of action-effect association may be affected.

  5. Ovarian actions of resveratrol.

    Science.gov (United States)

    Ortega, Israel; Duleba, Antoni J

    2015-08-01

    Resveratrol, a natural polyphenol found in grapes, berries, and medicinal plants, exhibits antioxidant and anti-inflammatory activities and has been proposed to be a longevity-prolonging agent. There is also growing evidence that resveratrol has cardioprotective properties and beneficial effects on both glucose and lipid metabolism. Recently, several studies have examined the use of resveratrol as a therapeutic agent to treat numerous pathological and metabolic disorders. Herein, we present insights into the mechanisms of action, biological effects, and current evidence of actions of resveratrol on the ovary. In vitro, resveratrol inhibits proliferation and androgen production by theca-interstitial cells. Resveratrol also exerts a cytostatic, but not cytotoxic, effect on granulosa cells, while decreasing aromatization and vascular endothelial growth factor expression. In vivo, resveratrol treatment reduced the size of adipocytes and improved estrus cyclicity in the previously acyclic rat model of polycystic ovary syndrome (PCOS). In addition, resveratrol increased the ovarian follicular reserve and prolonged the ovarian life span in rats. Taken together, resveratrol emerges as a potential therapeutic agent to treat conditions associated with androgen excess, such as PCOS. The efficacy of resveratrol in the treatment of gynecological conditions requires further investigation. PMID:26315293

  6. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  7. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.

    Science.gov (United States)

    Gurney, Kevin N; Humphries, Mark D; Redgrave, Peter

    2015-01-01

    Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our

  8. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.

    Science.gov (United States)

    Gurney, Kevin N; Humphries, Mark D; Redgrave, Peter

    2015-01-01

    Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our

  9. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.

    Directory of Open Access Journals (Sweden)

    Kevin N Gurney

    2015-01-01

    Full Text Available Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and

  10. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals. PMID:25497990

  11. Action simulation in hallucination-prone adolescents

    OpenAIRE

    Dahoun, Tarik; Eliez, Stephan; Chen, Fei; Badoud, Deborah; Schneider, Maude; Larøi, Frank; Debbane, Martin

    2013-01-01

    Theoretical and empirical accounts suggest that impairments in self-other discrimination processes are likely to promote the expression of hallucinations. Studies using a variety of paradigms involving self-performed actions argue in favor of perspective taking confusion in hallucination-prone subjects. However, our understanding of such processes during adolescence is still at an early stage. The present study thus aims (1) to delineate the neural correlates sustaining mental simulation of a...

  12. Neural regulation of the stress response: glucocorticoid feedback mechanisms

    Directory of Open Access Journals (Sweden)

    J.P. Herman

    2012-04-01

    Full Text Available The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA axis, driven by a neural signal originating in the paraventricular nucleus (PVN. Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

  13. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  14. Terminology versus action (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-12-01

    Full Text Available I have heard it said, as many of us have, that evidence based library and information practice is an area dominated and led by librarians in the health sciences. It is a logical leap to say that medical librarians may be more familiar with the evidence based model of practice because of their need to be familiar, on some level, with evidence based medicine. The idea of making a decision based on the appropriate evidence is as familiar to a medical librarianas is how to effectively search PubMed. How pervasive is the influence of the medical profession on this area? Being a librarian looking for quick information, I turned to Google. The results on the first two pages from a Google search for evidence based practice are 100% health/medicine related. Being a good librarian, I refined my search to see how the results would differ, and I added the term library to the search. This time there were 75% health/medicine results and 5% representing evidence based library and information practice (eblip. Note that a high percentage of the health/medicine hits were library webpages on evidence based medicine. Being an obsessive‐compulsive librarian, I changed my search strategy again by replacing library with librarianship. This time there were 30% health/medicine results and 65% eblip. A final search for evidence based information had this journal as the top hit. Being a busy librarian with a lot of work to do, I stopped right there. OK, so the terminology appears to point strongly in one direction and weighs heavily on the health sciences penetration. Let’s leave terminology aside for a moment and look at action. Since Evidence Based Library and Information Practice is the first journal on this topic, the list of contributors and their backgrounds should give an indication on whether or not there is a concentration of medical librarians. Approximately two thirds of the articles that we have published are non‐health/medicine related. Only 29% of our

  15. Contextual behavior and neural circuits

    Directory of Open Access Journals (Sweden)

    Inah eLee

    2013-05-01

    Full Text Available Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item-response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item-response selection takes place whereby the animal either choose an item or inhibit such a response depending on item-context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for

  16. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  17. Wittgenstein running: neural mechanisms of collective intentionality and we-mode.

    Science.gov (United States)

    Becchio, Cristina; Bertone, Cesare

    2004-03-01

    In this paper we discuss the problem of the neural conditions of shared attitudes and intentions: which neural mechanisms underlie "we-mode" processes or serve as precursors to such processes? Neurophysiological and neuropsychological evidence suggests that in different areas of the brain neural representations are shared by several individuals. This situation, on the one hand, creates a potential problem for correct attribution. On the other hand, it may provide the conditions for shared attitudes and intentions.

  18. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  19. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  20. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. PMID:25462637

  1. "Remember Me": Memory and Action in "Hamlet".

    Science.gov (United States)

    Andrews, Michael Cameron

    1981-01-01

    Examines the relationship between Hamlet's commitments to the past and his failure to translate these commitments into action, as he permits himself to be deflected by preoccupation with the future consequences of his action. Cites supportive evidence from the text. (DMM)

  2. Signi fi cance of Neural Crest in Tooth Development: The Molecular Signature

    Directory of Open Access Journals (Sweden)

    VP Jayasekharan

    2014-07-01

    Full Text Available The neural crest originates from cells located along the lateral margins of the neural plate. Neural crest cells arise as the result of an inductive action by the non-neural ectoderm adjacent to the neural plate and possibly by nearby mesoderm as well. As the neural tube forms, a group of cells separate from the neuro- ectoderm. These cells have the capacity to migrate and differen- tiate extensively within the developing embryo and they are the basis of structures such as spinal sensory ganglia, sympathetic neurons, Schwann cells, pigment cells and meninges. Speci fi c interactions occur during the development of tooth and recent research has concentrated more on the molecular aspects of these interactions. Thus, it is highly imperative to understand and digress the complex mechanisms involved in these processes

  3. Electroconvulsive treatment: hypotheses about mechanisms of action

    Directory of Open Access Journals (Sweden)

    Roar Fosse

    2013-08-01

    Full Text Available No consensus has been reached on the mode of action of electroconvulsive treatment (ECT. We suggest that two features may aid in the delineation of the involved mechanisms. First, when effective, ECT would be likely to affect brain functions that are typically altered in its primary recipient group, people with severe depression. Central among these are the frontal and temporal lobes, the hypothalamus-pituitary-adrenal (HPA stress axis, and the mesocorticolimbic dopamine system. Second, the involved mechanisms should be affected for a time period that matches the average endurance of clinical effects, which is indicated to be several days to a few weeks. To identify effects upon frontal and temporal lobe functioning we reviewed human studies using EEG, PET, SPECT, and fMRI. Effects upon the HPA axis and the dopamine system were assessed by reviewing both human and animal studies. The EEG studies indicate that ECT decelerates neural activity in the frontal and temporal lobes (increased delta and theta wave activity for weeks to months. Comparable findings are reported from PET and SPECT studies, with reduced cerebral blood flow (functional deactivation for weeks to months after treatment. The EEG deceleration and functional deactivation following ECT are statistically associated with reduced depression scores. FMRI studies indicate that ECT flattens the pattern of activation and deactivation that is associated with cognitive task performance and alters cortical functional connectivity in the ultra slow frequency range. A common finding from human and animal studies is that electroconvulsive treatment acutely activates both the HPA axis and the dopamine system. In considering this evidence, we hypothesize that ECT affects the brain in a similar manner as severe stress or brain trauma which activates the HPA axis and the dopamine system and may compromise frontotemporal functions.

  4. High school music classes enhance the neural processing of speech

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence. PMID:24367339

  5. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  6. High school music classes enhance the neural processing of speech.

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  7. High school music classes enhance the neural processing of speech.

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence. PMID:24367339

  8. Adult neural stem cells-Functional potential and therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  9. Neural correlates of the contents of visual awareness in humans.

    Science.gov (United States)

    Rees, Geraint

    2007-05-29

    The immediacy and directness of our subjective visual experience belies the complexity of the neural mechanisms involved, which remain incompletely understood. This review focuses on how the subjective contents of human visual awareness are encoded in neural activity. Empirical evidence to date suggests that no single brain area is both necessary and sufficient for consciousness. Instead, necessary and sufficient conditions appear to involve both activation of a distributed representation of the visual scene in primary visual cortex and ventral visual areas, plus parietal and frontal activity. The key empirical focus is now on characterizing qualitative differences in the type of neural activity in these areas underlying conscious and unconscious processing. To this end, recent progress in developing novel approaches to accurately decoding the contents of consciousness from brief samples of neural activity show great promise. PMID:17395576

  10. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    OpenAIRE

    Fabián Muñoz; Pablo Fuentealba

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the th...

  11. NeuroGrid: recording action potentials from the surface of the brain

    OpenAIRE

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneous...

  12. Neural Circuitry of the Bilingual Mental Lexicon: Effect of Age of Second Language Acquisition

    Science.gov (United States)

    Isel, Frederic; Baumgaertner, Annette; Thran, Johannes; Meisel, Jurgen M.; Buchel, Christian

    2010-01-01

    Numerous studies have proposed that changes of the human language faculty caused by neural maturation can explain the substantial differences in ultimate attainment of grammatical competences between first language (L1) acquirers and second language (L2) learners. However, little evidence on the effect of neural maturation on the attainment of…

  13. Introduction to neural networks

    International Nuclear Information System (INIS)

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  14. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  15. Neural mechanisms of proactive and reactive inhibitory control : Studies in healthy volunteers and schizophrenia patients

    NARCIS (Netherlands)

    Zandbelt, B.B.

    2011-01-01

    The neural underpinnings of our ability to restrain actions in advance (i.e. proactive inhibition) and stop actions in reaction to some event (i.e. reactive inhibition) remain largely unknown. In this thesis we used neuroimaging (functional magnetic resonance imaging, fMRI) and brain stimulation (tr

  16. Neural markers of errors as endophenotypes in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2013-07-01

    Full Text Available Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a promising approach.

  17. Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (quenching?) on long term potentiation of amygdala efferents and behavior following kindling.

    Science.gov (United States)

    Adamec, R E

    1999-08-21

    lasting increases in defensiveness and amygdalo-PAG LTP with FG-7142. The parallel between the present findings and the FG-7142 experiments suggests that lasting changes in defensive response are dependent on LTP of right amygdala efferents to the PAG, however produced. The findings suggest further that the spectrum of behavioral changes produced by partial kindling are dependent on changes in a variety of neural circuits, and that amygdala efferent transmission changes are responsible for changes in defensive behavior, but not predatory attack behavior. Clinical implications are discussed.

  18. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    Science.gov (United States)

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was

  19. Neural Measures of Conscious and Unconscious Memory

    Directory of Open Access Journals (Sweden)

    Ken A. Paller

    2000-01-01

    Full Text Available Neuropsychological studies of memory disorders have played a prominent role in the development of theories of memory. To test and refine such theories in future, it will be advantageous to include research that utilizes physiological measures of the neural events responsible for memory. Measures of the electrical activity of the brain in the form of event-related potentials (ERPs provide one source of such information. Recent results suggest that these real-time measures reflect relevant encoding and retrieval operations. In particular, distinct electrical responses have been associated with recollective processing of words and with priming of visual word-form. This source of evidence can thus enrich our understanding of both the cognitive structure and neural substrates of human memory.

  20. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs